
RETROSPECTIVE: 

Using Cache Memory to Reduce Processor-Memory Traffic 
James R. Goodman 

Computer Science Department 
University of Wisconsin-Madison 

goodman@cs.wisc.edu 

vv hile it has long been recognized that 
memory latency was a key parameter of perfor- 
mance, the impact of memory bandwidth (or its 
absence) has always been much harder to charac- 
terize. The complex relationship between latency 
and bandwidth is much better understood today 
than it was in 1982. Nevertheless, this relationship 
in the ever-varying context of “modern” system 
designs, created a fertile ground for studying a 
range of solutions to the same problem over many 
generations of computers: how to balance band- 
width and latency to provide a cost-effective, high- 
performance memory system [1,3]. 

This paper was an enthusiastic attempt by an 
assistant professor - who had never had a paper 
accepted to ISCA - to establish credentials in the 
area of single-board computer design, an exciting 
and growing market at the time. The paper reflects 
the exuberance and naivete of the era, where col- 
lecting data was as simple as figuring out how to 
use the trace mode on a VAX to generate a trace, 
and writing a cache simulator to evaluate the 
effects. With those simple tools, we studied every- 
thing from cold start/warm start phenomena to 
sector caches and block sizes, to replacement algo- 
rithms. Along the way, it became apparent to me 
that processors were approaching the point where 
it was preferable to allow them to sit idle rather 
than trying to keep them busy by switching tasks 
frequently. This seemed obvious to me because of 
the high-bandwidth, burst traffic required immedi- 
ately following a task switch. While this conclusion 
led us down some interesting paths, apparently 
including the first publication of a snooping cache 
algorithm, we are still waiting expectantly for peo- 
ple to stop worrying about idle processors. 

In the 1970s I was involved in the design of 
several add-on memory systems for IBM main- 
frame computers. Working on these designs, I had 

developed an appreciation for the design of cache 
memory, and the difficulty of supporting multiple 
processors in the process. In 1979 I had the oppor- 
tunity to participate in the specification of the Intel 
80286. Microprocessors were just arriving at the 
point where they were “interesting” to a computer 
architect, and I spent a lot of time thinking about 
Multibus-based systems. The Multibus standard 
allowed for multiple processors to share a bus, and 
to share commonly accessible memory on the bus 
but generally accessed memory on their own 
board. Microprocessors were just beginning to out- 
run DRAM memories. In discussions of how to 
support cache memory for the 286 I began to think 
about the implications of a small, on-chip cache, 
and how it could support a multiprocessor, and the 
idea came up of watching the bus from within the 
286 chip. However, the multiprocessor systems I 
had studied were brute-force invalidation systems 
consisting of only two processors. Every write 
from a processor was conveyed to the cache of the 
other processor, where it was treated the same as 
an I/O operation, i.e., the remote cache was always 
checked, and invalidated on a hit. This resulted in 
a lot of traffic to the cache, since a check was 
required for every write. 

In March of 1982, Carl Amdahl, on a visit to 
Madison, pointed out that write-back caches could 
reduce the invalidation traffic substantially: once a 
cache had been cleansed of a line, further invalida- 
tion requests were unnecessary if it could be guar- 
anteed that the line didn’t find its way back into 
the cache. This realization led us to a key reason 
that snooping is effective: the same mechanism can 
be used to detect a write - causing invalidation 
and exclusive access - and a subsequent read - 
causing intervention to prevent the reading of stale 
data. 

32 



The concept of a snooping cache developed 

over an extended period, so that when all the 
pieces finally fit together, I failed to see it as an 
important advance. In fairness, at least two other 
groups discovered the idea of snooping indepen- 
dently: Thacker and McCreight working on 

Dragon [4] at Xerox Part and Steve Frank [Z], archi- 

tect of the Synapse N+l. In fact, when I wrote the 
paper, I believed that the important contribution of 
the paper was the recognition that caches - which 

usually had much higher bandwidth on the mem- 
ory side than on the processor side-could actually 
reduce traffic from memory instead of increase it. 

All of our studies were conducted in the con- 
text of a Multibus system, though we never actu- 
ally implemented the idea at Wisconsin. (I was 
involved with the design of the Balance system 
developed in 1983 at Sequent.) We recognized that 
the addition of a couple of extra bus signals would 
make a protocol much simpler to implement, as 
well as provide better performance. Because of 
concern for commodity parts (the Multibus mar- 
ketplace), we confined our design to one that could 
work in an unmodified Multibus system. From 
that experience I came to the realization that limi- 
tations imposed by commodity parts have their 
place, but that these limitations should not be 
allowed to stifle the search for novel solutions. 

It was always apparent to me that there were 
better algorithms available if one relaxed our self- 
imposed constraint of Multibus compatibility I 
was unprepared for the flood of papers introduc- 
ing a plethora of variations. Many years passed 
before I was convinced that the seemingly small 
differences among these algorithms were impor- 
tant. I believe that, to this day, the most underrated 
contribution to understanding of snooping caches 
was Paul Sweazy’s work on Futurebus, and his 
insistence that there had to be a common frame- 
work for comparing the algorithms. This work, of 
course, ultimately resulted in the MOESI model 

151. 

Finally, it’s important to mention that my use 
of the term “we” in the original paper was not the 
royal we. As a junior professor I stumbled into an 
incredibly supportive and nurturing environment 

at the University of Wisconsin, one that allowed 
me to focus early on the research side of my career. 
I’m especially indebted to Jim Smith and David 
Dewitt, who led by example, and to Larry Land- 
weber for his vision, leadership and advice. As 
acknowledged in the original paper, Phil Vitale 
and Tom Doyle participated in many stimulating 
discussions, both before and after this paper was 

written. Tswen-Hwey Yang built a powerful VAX 
trace tool that we used for this and much later 
work. She left the university before this paper was 
completed, and alas I have not heard from her 
since. David Patterson also played a critical role as 
a mentor during this period, and was one of the 
first to appreciate the importance of this work. Ed 
Davidson and Al Despain also provided critical 
advice and feedback during this difficult period. 

I also want to put in a plug for supporting 
“small science” in the way that the National Sci- 
ence Foundation does so well. Support from NSF, 
particularly John Lehmann and, later, Zeke 
Zalcstein, has been critical in allowing many of us 
to develop our research programs. NSF support 
was enormously helpful to me, and this work 
resulted from my first NSF grant. 

References 

PI 

El 

[31 

[41 

[51 

D.C. Burger, A. Kagi, and J.R. Goodman, “Memory 
Bandwidth Limitations of Future 
Microprocessors,“ 23rd international Symposium on 

Completer Architectrlre (ISCA-23), May 1996. 

S. J. Frank, “Tightly coupled multiprocessor system 
speeds memory-access times,” Electronics, Vol. 57, 
No. 1, (January 12,1984), pp. 164-169. 

J. R. Goodman, “Using Cache Memory to Reduce 
Processor-Memory Traffic,” Proc. 20th Annual 
Symposium on Computer Architecture USCA-lo), 

(June 1983), pp. 124-131. 

E. McCreight, “The Dragon computer system: an 
early overview.” TR, Xerox Corp., Sept. 1984. 

l? Sweazy, A.J. Smith, “A Class of Compatible 
Cache Consistency Protocols and Their Support by 
the IEEE Futurebus,” Proc. 13th Annual Symposium 
on Computer Architecture (ISCA-13), pp. 414-423, 

June 1986. 

33 


