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Abstract
We present a new method for determining the consensus
sequence in DNA fragment assemblies. The new method,
Trace-Evidence, directly incorporates aligned ABI trace
information into consensus calculations via our previously
described representation, Trace-Data Classifications. The
new method extracts and sums evidence indicated by the
representation to determine consensus calls. Using the
Trace-Evidence method results in automatically produced
consensus sequences that are more accurate and less
ambiguous than those produced with standard majority-
voting methods. Additionally, these improvements are
achieved with less coverage than required by the standard
methods – using Trace-Evidence and a coverage of only
three, error rates are as low as those with a coverage of over
ten sequences.

Introduction
Our goal is to improve the quality and efficiency of
automatic DNA sequencing (determining the sequence of
bases in DNA molecules). One important task in the
sequencing process is to establish the consensus sequence
for aligned fragments of DNA. This task, often referred to
as consensus calling, is the focus of this paper.

The usual method to accomplish consensus calling relies
on the fragments’ representation as sequences of base
calls. Before alignment, the base-call sequences are
determined by computer analysis of the fluorescent-dye
intensity signal, called trace data, that is output by
automatic sequencers such as the Applied Biosystems Inc.
(ABI) 377. The base calls are used to align the sequences
and then a majority-voting scheme is commonly used to
identify the consensus for each aligned column of bases.
We believe, and have shown with an earlier case study in
sequence trimming (Allex et al. 1996), that automatic

sequencing processes can be improved by incorporation of
descriptive fluorescent trace information.

The new method we have developed for automatic
consensus calling, Trace-Evidence, incorporates ABI trace
information via the Trace-Data Classifications we defined
in prior work (Allex et al. 1996). The use of this
representation is the key to the improvements we see when
using our new method. Previous methods use only a very
simplified representation of trace data: the sequence of
base calls. The representation we use is much more
descriptive; it captures shape and intensity visual
characteristics of traces.

Our Trace-Evidence method results in automatically
produced consensus sequences that are more accurate and
less ambiguous. In addition, it attains these improvements
with fewer aligned sequences. (The number of aligned
sequences is known as the coverage.) Both an increase in
accuracy and a reduction in the coverage needed are
significant results.

Higher accuracy using Trace-Evidence consensus
calling mitigates the problem of errors in DNA sequences.
The error rate for sequences in GenBank has been
estimated to be from 0.3 to 0.03% (Lawrence & Solovyev
1994). If the DNA is translated into protein, the results are
potential errors in 0.1 to 0.01% of the amino acids. The
mutation of a single amino acid can have substantial
adverse effects on protein-related research. Furthermore,
the change, deletion, or insertion of a single base can lead
to frame shifts and/or the inability to identify open reading
frames. Sequencing accuracy is significantly dependent
upon careful human examination and editing of consensus
sequences in fragment assemblies. The hand process is
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time-consuming, expensive, and error-prone. Automatic
assemblies with improved consensus accuracies alleviate
these problems.

Reducing the needed coverage for accurate sequencing
by using Trace-Evidence means a reduction in overall
sequencing costs. Fragment preparation represents a
substantial portion of the expense of sequencing. In large
sequencing projects, it is typical to produce a coverage of
at least six to ensure accurate results. We show in this
work that equivalent accuracy can be achieved with as
little coverage as three sequences.

We have implemented our new Trace-Evidence
consensus calling (as well as previously described Trace-
Class sequence trimming) in the DNAStar Inc. SeqMan II
fragment assembly program. Among numerous other
software packages available to facilitate sequencing efforts
are: GCG Fragment Assembly System (Dolz 1994), TIGR
Assembler (Sutton et al. 1995), Staden Package (Bonfield
et al. 1995), PHRED and PHRAP (the University of
Washington), and Sequencher (Gene Codes Corporation).
In contrast to these systems, our approach ignores base
calls and derives the consensus directly from the trace
data.

The remainder of this paper first describes a common
previous method for consensus calling, followed by a
detailed description of our new Trace-Evidence method.
We then present empirical evidence of the effectiveness of
using Trace-Evidence. A discussion of future work and
conclusions complete the paper. For readers who are
unfamiliar with DNA sequencing, an appendix provides a
brief background.

We make liberal use of figures to illustrate our points
throughout this paper. In these figures, all trace data
displayed are representations of actual sequencing data
supplied by the E. coli Genome Project at the University
of Wisconsin.

Previous Method: Majority
A common, simple method to calculate the consensus
counts the number of calls of each base in an aligned
column (Staden 1982). If the majority base count is above
a given fractional threshold of the total count, that base is
called unambiguously (A, C, G, or T); otherwise the
consensus is called as the appropriate ambiguity
(combination of A, C, G, and/or T). We refer to this
method as Majority. Figure 1 contains an example of
calculating the consensus by Majority.

Since the Majority approach examines only the base
calls and not the underlying trace data, it is prone to errors.
Majority also requires a minimum number of sequences to

make an unambiguous call when a column of base calls is
not in total agreement. Methods that directly analyze the
trace data help to avoid these problems.

(a)
… AAGAAGCACTWAGGATTTGGT …
	
… AAGAGGCACTAAGGATTTGGT …
… AAGAAGCACTTAGGATTTGGT …
… AAGAAGCACTAAGGATTTGGT …
… AAGAAGCACTTAGGATTTGGT …

Consensus

Aligned
Fragments

       5                                                          11                                                     17

(b)

Column
Majority
Base(s) %

Consensus
Call

5 A 75 A

11 A, T 50 W (A or T)

17 T 100 T

Figure 1: Majority Consensus Calls. (a) Four sequences are
aligned and the consensus computed using Majority.  (b) In this
example, the threshold is set at 75%. The consensus call for
column 5 is an A since three of four (at least 75%) of the calls are
A. In column 11, 50% of the calls are A and 50% are T; the call is
W (A or T) since both percentages are below the threshold. In
column 17, all calls are T, resulting in a consensus call of T.

New Method: Trace-Evidence
We improve the quality of automatic consensus calling by
emulating human analysis of trace data. When an
ambiguous consensus call is made by an assembly
program, human editors attempt to resolve the ambiguity
by a visual examination of the fluorescent trace data.
Figure 2 describes an example of resolving an ambiguity
by hand. While watching editors working, we observed
that many, if not most, of the decisions they make are
straight-forward. We believed that we could program a
computer to capture the visual characteristics that are
relevant to human editors in their work and use this
information to improve automatic consensus-calling.

Overview

The new method we have developed for computing a
consensus directly incorporates ABI trace-data
information via the Trace-Data Classifications we
developed and described in earlier work (Allex et al.
1996). Figure 3 contains a brief review of our Trace-Data
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Classifications. The new method for consensus calling
sums the evidence supplied for each base by the
classification scores. We will refer to the new method as
the Trace-Evidence consensus method.

The Trace-Evidence method is based on the idea that
each of the six scores for the Trace-Data Classifications
supplies an amount of evidence that the associated base
should be assigned in the consensus. High strong peak
(SP) scores supply the greatest amount of evidence, high
medium peak (MP) scores supply the next greatest amount
of evidence, followed by high weak peak (WP), weak,
medium, and strong valley (WV, MV, and SV) scores in
decreasing order. In fact, a high valley score actually
provides counter-evidence for its base. Figure 4
demonstrates the evidence idea.

DNAStar Inc. SeqMan II

Figure 2: Human Editing. The ambiguity in the highlighted
column must be resolved to A, C, G, or T. Human editors
examine the traces and observe that the the first two sequences
are of good quality and exhibit sharp, well-defined peaks in the C
trace. The third sequence, although of poorer quality, also shows
a small, discernible peak in the C trace, even though the base has
been miscalled as a T. Human editors determine that the
consensus should be a C.

To determine the consensus for a column of aligned
bases, we sum the evidence, based on Trace-Data
Classification scores, for each of the four bases. The
evidence for each base is weighted by the quality of the
trace data in a local area; the quality is also determined by
examining Trace-Data Classification scores. The base
with the highest evidence sum is identified as the leader
and its evidence sum is the leading evidence. The other
three bases are competitors, and their evidence sums are

competing evidence. A threshold between 0 and 1 is
specified that determines the ignorable fraction of
competing evidence to leading evidence. If the leader has
no competitors with competing evidence greater than the
threshold, the leader is assigned as the consensus. If
competing evidence for any bases surpasses the threshold,
then those bases are included in determining an ambiguous
call.

(a) Definition

Valley

Peak
negative
curvature

positive
curvature

sign change 
in slope

Strong
otherwise

Weak
shoulder with 

zero slope

Medium

(b) Example

Peak

 Strong 	 57
 Medium	 43
 Weak	   	   0

Valley

 Strong	 19
 Medium	   7
 Weak		   0

Figure 3: Trace-Data Classifications. The Trace-Data
Classification representation uses shape and intensity to
categorize the trace data for a single base call. (a) The classes
and the criteria used to distinguish among them are listed and
illustrated. A score from 0 to 100 is assigned for each of six
classes that reflects the amount of strong, medium, and weak
peak and valley characteristic that is exhibited by the data. Both
the peak and valley nearest the base call are identified and
scored. Gray lines show the location of the base call. (b) For
some calculations we need the classifications for all four sets of
trace data while for others we need only the classification of the
trace associated with the base that is called. In this example, one
of the four sets of trace data is shown. The scores for the trace
indicate a combination strong-medium peak at the base-call
location and a strong-medium valley distanced from the base-call
location. Scores are adjusted to reflect the distance of the peak or
valley from the base-call location as well as the intensity relative
to the other three traces.
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Algorithmic Details

To determine the consensus for a column of aligned bases,
two types of values must be calculated for each sequence
in the column: the Trace-Data Classification scores and a
measure of the quality of the data. We use the quality of
the trace data to weight the evidence supplied by each set
of classification scores. That way, more credible, higher
quality trace data supplies more evidence than trace data
of lower quality.

When gaps occur in a column, a quality measure is also
used to decide if the consensus should be called as a gap.
To do this, we sum the quality measures for sequences
with a gap in the column and compare them with the sum
of the quality measures of sequences without a gap. If the
gap quality sum exceeds the non-gap sum, the consensus
is called as a gap. The problem of calling the consensus
when gaps are involved is not always as simply solved as
this. We will discuss this further in the Discussion and
Future Work section.

A

T
G
C

Figure 4: Evidence in Traces. Consider the evidence found in
the four traces in the shaded region. The C trace will produce a
high strong peak (SP) score, the T trace will yield a relatively
smaller SP score, and both the A and G traces will produce valley
scores. A visual examination of the traces supports the premise
that the vast majority of the evidence is for a base call of C and
that there is counter-evidence for a base call of A or G.

The steps used in the consensus calculation for a single
aligned column appear below. Details of calculations
mentioned follow the algorithm.

Trace-Evidence Consensus Algorithm

For a single aligned column

1. For each sequence, find the quality of trace
data, Q, within a small window centered on
the column.

2. Sum Q for each sequence with a gap in the
column and compare it to the sum of Q for
the remaining sequences. If the gap sum
exceeds the non-gap sum, return gap.

3. Determine S, the 4 x 6 (six scores for each of
f o u r t r a c e s ) m a t r i x o f Tr a c e - D a t a
Classification scores for each sequence.

4. Reduce each S to a vector, E, of four values
that summarize the evidence for each trace.

5. Multiply each value in E by its corresponding
Q to produce a vector E’ that has been
adjusted by data quality.

6. Sum each of the corresponding E’ s to
produce a vector, T, of the total evidence for
each of the four bases.

7. Find the highest evidence (leading evidence)
in T ; its corresponding base is the leader.

8. Multiply leading evidence by the threshold to
compute the maximum ignorable competing
evidence.

9. Compare leading evidence to each competing
evidence. If no competing evidence surpasses
the maximum ignorable, then return leader as
the consensus call, otherwise use all
competitors who surpass the maximum to
determine and return an ambiguity.

We use the Trace-Data Classifications as indicators of
trace data quality. The idea is similar to that described
earlier for establishing evidence. Base calls that are highly
reliable are made from trace-data peaks that are sharp and
well-defined – those that classify as strong peaks. Base
calls made from trace data that classify as medium peaks
are less reliable, and those made from weak peaks or
valleys are increasingly less reliable. Therefore, to
determine quality,  we examine the Trace-Data
Classification scores for the traces associated with the
called bases. (For example, if the sequence of bases has
been called as GGTACG,  only the Trace-Data
Classifications for the corresponding G, G, T, A, C, and G
traces are calculated.) If the strong peak scores are high, it
is likely that the data is of good quality – the higher the
scores, the better the quality of the data. On the other
hand, if the bases have been called with low peak scores or
non-trivial valley scores, the base calls are not as obvious
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and the data is likely to be less reliable and of lower
quality. Figure 5 compares the relative quality of some
trace data.

CA A A T T C A G G G GN A T T T T C GG T GG G G

C A A A T T C A G T G GT A C T T T C GG T C G T G

A

T
G
C

Figure 5: Quality of Trace Data. In the top sequence, the trace
associated with each called base exhibits a sharp well-defined
peak. The corresponding Trace-Data Classifications all show
high strong peak scores. In contrast, the traces in the bottom
sequence are flattened and overlapping; corresponding strong
peak scores are generally nominal. The top sequence is much
more reliable and is of high quality. We want to give the
evidence it supplies more weight in consensus calculations.

For use in our calculations of quality, we predefine a
constant weight vector, W, such that classes (such as SP)
that imply better-quality data for a base are given higher
values than those (such as SV) that imply lower-quality
data. The definition follows.

Let

W =  |WSP WMP WWP WWV WMV WSV |
where

Wi is the weight for class i 

and
1 ≥ WSP ≥ WMP ≥ WWP ≥ WWV ≥ WMV ≥ WSV ≥ 0

Using the weight vector, the quality of the data for each
sequence in a column is calculated as follows.

1. For each base, i, in a window of size n
centered on the column of interest, calculate
the vector of Trace-Data Classification scores,
Si , for the trace associated with the base that
has been called (details of the calculation of Si
appear in Allex et al. 1996):

Si = |SP i MPi WPi WVi MVi SV i |

2. The dot product of Si and W t (W-transpose)
produces a scalar quality measure, Qi , for
base i :

Qi = Si l Wt

3. Average the measures to produce an overall
quality score, Q, for the base at the center of
the window:

Q = (Q1 + Q2 + … + Qn)  /   n

In our work, we found that W = |1 .67 .33 0 0 0| yields
good results. Using this definition, the quality measures,
Q, are between 0 and 100 since peak classification scores
sum to 100 or less. (Other possible definitions of the
weight vector are discussed in the Discussion and Future
Work section.) Figure 6 contains an example calculation
of a quality score.

C C T

For the center base, Q = 68.

Total

Total / 3 68

204

SP MP WP WV MV SV

C 0 59 41 2 8 0 53

C 83 17 0 1 5 0 94

T 43 21 0 0 2 7 57

S lW t

T
C

Figure 6: Quality Score. In this example, the window size, n, is
3 bases. We want to calculate the quality score, Q, for the center
base, C. Three sets of Trace-Data Classification scores, S, have
been calculated: one for each of the C traces corresponding to the
first two C base calls,  and a third for the T trace data associated
with the T call. The dot product of each set of scores with the
weight vector (|1 .67 .33 0 0 0 |) is computed. The average of the
three is the quality score for the C base in the center of the
window.
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We use the same weight vector, W, in a similar manner
to summarize the Trace-Data Classification scores during
consensus computation. Multiplication by the weight
vector ensures that scores supplying the most evidence
(such as those with high SP scores) are given the more
weight than those that supply less evidence. Figure 7
demonstrates this idea.

For each sequence in a column, a vector, E, summarizes
the evidence for each possible base (A, C, G, andT). For
each base, the computed value reflects the amount of
evidence that the call should be that base. The vector is
computed as follows.

1. Form a  4x6 matrix o f  Trace-Data
Classification scores, S, by computing the
scores for each trace:

SPA	 MPA	 WPA	 WVA	 MVA	 SVA
 SPC	 MPC	 WPC	 WVC	 MVC	 SVC

SPG	 MPG	 WPG	 WVG	 MVG	 SVG

SPT	 MPT	 WPT	 WVT	 MVT	 SVT

S =

2. The transpose of the matrix multiplication of S
and W t produces a vector of evidence values,
E, for the possible bases:

E  = (S x W t )t = | EA EC EG ET |

3. Multiply E by the quality of the local trace
data, Q, to produce evidence values, E’ , that
have been adjusted by the quality of the data:

E’ = E x Q

Finally, we sum the evidence for each base in an aligned
column as described next.

Sum corresponding E’ values to produce the total
evidence, Ti , for each possible base i, where n is
number of sequences in the column:

TA = EA1’ + EA2’ +  … + EAn’

TC = EC1’ + EC2’ +  … + ECn’

TG = EG1’ + EG2’ +  … + EGn’

TT = ET1’ + ET2’ +  … + ETn’

Once T has been calculated, consensus calling can be
completed as described in steps 7-9 of the Trace-Evidence
Consensus Algorithm. An example determination of a
consensus base call appears in Figure 8.

A

G

C

T

SP

0

89

3

0

MP

4

11

1

0

WP

30

0

0

0

WV

8

0

0

0

MV

1

0

0

13

SV

0

0

0

76

S l W t

13

96

4

0

A

T
G
C

Figure 7: Summarizing Trace-Data Classification Scores. The
Trace-Data Classification scores for each of the four traces is
computed. When dotted with the weight vector (|1.67.330 00 |),
the result is a high value for the C trace – the trace exhibiting
highest evidence. The values for the A, G, and T traces are all
low. When these summarized values are used to provide
evidence, the C trace appropriately has the highest value. Note
that in this calculation, the Trace-Data Classification scores are
computed for each of the four traces in contrast to the calculation
of the quality measure (Figure 6) in which only the scores for the
trace associated with the called base are computed. Here, we
need to know how much evidence each trace supplies.

Testing
All code for testing the new consensus calling method was
incorporated into an experimental version of the DNAStar
Inc. SeqMan fragment assembly program for the Apple
Macintosh PowerPC.  SeqMan uses the Majority
consensus calling method. (SeqMan has since been
superseded by SeqMan II, a more powerful version that
incorporates trace analysis as described in this and a
previous paper (Allex et al. 1996).)

Method

Fragment assemblies for a 124 kb section of E. coli are
used to compare correct calls to Majority and Trace-
Evidence calls. The data and correct calls for the
assemblies were supplied by the E. coli Genome Project at
the University of Wisconsin. The original assembly of
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2221 ABI sequences ranged in coverage from one to 45
sequences. In order to generate an abundance of test cases
with varying amounts of coverage, we developed and
applied a minimization algorithm, Minimize Coverage, to
the assembly.

G G T

G G T

G T T

Sequence
Q  x  E

Q

.51

.82

.26

E

G TCA

Total

52 000

73 000

21 500

G

26.5

59.9

5.4

91.8

T

0

0

1.3

1.3

C

0

0

0

0

A

0

0

0

0

T
G

Figure 8: Trace-Evidence Consensus Example. The consensus
base for the center column of three aligned sequences must be
called. For each sequence, the evidence for each base is
multiplied by the corresponding quality score. When these
products are summed for the three sequences, the evidence for A
and C is 0, for G is 91.8 and for T is 1.3. If the threshold is .50, G
will be called unambiguously since no competing evidence
surpasses 45.9 (91.8 x .50). In contrast, the Majority method with
a 75% threshold would make an ambiguous call of K (T or G).

With Minimize Coverage, sequence fragments are
removed from an assembly such that the coverage for any
single column does not fall below a specified coverage
(unless the coverage is already below the threshold). The
idea for the Minimize Coverage algorithm is simple. At
each pass through the assembly, for each sequence we
determine the lowest coverage, low-coverage, of any

column in which the sequence occurs. We then remove the
sequence with the highest low-coverage, provided that
low-coverage is not at or below the threshold. If more than
one sequence has the same low-coverage, the shorter one
is removed. Passes over the assembly are repeated until no
more sequences can be removed without violating the
coverage threshold restriction. At completion, some
columns will have more than the desired coverage (due to
the restriction) and some less. The algorithm is
summarized next.

Minimize Coverage Algorithm

Let S be the list of all n sequences, Si, in the
assembly.

S = {S1, …, Sn }

Let L be the list of all n sequences considered for
removal. Each sequence, Si is paired with its low-
coverage, LCSi.

L = {(S1, LCS1), …, (Sn, LCSn )}

While not_empty(L)

1. Remove from L sequences whose low-
coverage is at or below the threshold.

2. Remove from S and L the shortest
sequence with the highest low-coverage.

3. Update low-coverage values.

Figure 9 steps through an example execution of the
Minimize Coverage algorithm.

We repeatedly applied the Minimize Coverage algorithm
to the original assembly for the range of coverage
thresholds from two to ten. This produced nine assemblies
with differing coverages, each with an abundance of
aligned columns whose coverage corresponded to its
threshold. For testing, from each of the nine minimized
assemblies, we extracted the statistics for consensus
calling only for columns that corresponded to the coverage
threshold. For example, for the assembly with a minimum
coverage threshold of three, we compiled statistics only
for those columns with a coverage of three sequences. The
exception is that the statistics for the assembly with the
desired coverage of ten include all columns with coverage
of ten or greater (rather than just those with exactly ten)
since results tend to remain constant with such high
coverage. Table 1 lists the number of consensus calls used
for each set of results.
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(a)
S1 GATCGGCTACATCTTACATCACCGTT
S2 CTACATCTTACATCACC
S3 CGGATCGGCTACATCTTACATCACCGTTGA
S4 ATCGGCTACATCTTAC
S5 ATCTTACATCACC
S6 CGGCTACATCTTACATCACCGT

(b)

Pass S L

0 {S1, S2 , S3 , S4 , S5, S6 } {(S1, 2), (S2 , 5), (S3 , 1),

(S4 , 3), (S5 , 5), (S6 , 3)}

1 {S1 , S2, S3 , S4 , S6 } {(S2 , 4), (S4 , 3), (S6 , 3)}

2 {S1 , S3, S4 , S6 } {(S4 , 3), (S6 , 3)}

3 {S1 , S3 , S6 } {(S6 , 3)}

4 {S1 , S3 } {   }

Figure 9: Minimize Coverage Example. (a) Six sequences, S1
to S6, are aligned in a fragment assembly. The sequences in bold,
S1 andS3, provide the optimal minimization when the threshold
is set to two. With these two sequences in the assembly, no
column has fewer than two sequences (except those that already
had fewer in the original assembly). In addition, neither sequence
can be removed without causing coverage to fall below the
minimum. (b) The algorithm to reduce coverage on the assembly
completes after 4 passes. At the outset, all sequences are in S and
L. The first pass removes S5 from both lists since it is the shorter
of two sequences with the highest low-coverage (5 sequences).
Also, S1 andS3 are removed from L in the first pass since their
low-coverage is at or below threshold – these sequences cannot
be taken out. At the end of four passes, L is empty and the two
desired sequences, S1 andS3, remain in the assembly.

Results

We report results that compare correct consensus calls to
those made by Trace-Evidence and Majority for coverage
from two to ten or more sequences. The threshold is set to
the SeqMan II default value of 75% for Majority and to
50% for Trace-Evidence. Graphs in Figure 10 display the
number of correct calls, incorrect calls, and ambiguous
calls per kb for  the two methods.

The results show a significant improvement with the
Trace-Evidence method, especially at lower coverages.
With a coverage of only three, using Trace-Evidence we
see a leveling of the number of incorrect calls and a large
improvement over the Majority method in the number of
correct and ambiguous calls. With a coverage of four, the

number of ambiguous calls has fallen to nominal values
with Trace-Evidence.

Discussion and Future Work

We observe striking examples of the utility of the Trace-
Evidence method when base calls in a column are
systematically incorrect. In some instances, a well-defined
peak is hidden below a high-intensity valley. The base is
often incorrectly called as the one associated with the
high-intensity valley. Majority methods incorrectly call the
consensus as this base. Our new Trace-Evidence makes the
correct consensus call even when all or most of the bases
have been called incorrectly. Figure 11 contains an
example of this occurrence.

Table 1: Number of Consensus Calls in Test Results. For each
coverage from two sequences to ten or more, the number of
consensus calls included in test results is listed.

Coverage Number of
Consensus Calls

2 67,860

3 57,092

4 45,394

5 39,556

6 34,011

7 26,716

8 22,479

9 20,326

≥ 10 47,239

We have identified three situations in which Trace-
Evidence can make incorrect calls. Overwhelmingly, most
problems involve gaps. In rarer cases we have difficulties
with low evidence sums or poor-quality data. Next, we
briefly describe these three sources of incorrect calls.

In the results reported here, all of the incorrect calls at
coverages above three and at least half of those for
coverages of two or three involve gaps in the column. The
method for determining whether a gap should be inserted
in the consensus consists of a simple comparison of gap
vs. non-gap sums of the quality of the traces in the
column. However, the insertion of a gap affects not only
the column it occurs in, but also the columns to either side.
When determining a gap call, it is probably necessary to
consider more context and examine the data on either side
of the base of interest. Finding a solution to calling the
consensus when gaps are in the alignment would virtually
eliminate incorrect calls made with the Trace-Evidence
method with a coverage of at least four.

Copyright (c) 1997, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.



Trace-Evidence

Majority

2 3 4 5 6 7 8 9 10+
986

988

990

992

994

996

998

1000

Calls
per kb

Coverage

Correct Calls

2 3 4 5 6 7 8 9 10+
0

1

2

3

Calls
per kb

Coverage

Incorrect Calls

2 3 4 5 6 7 8 9 10+
0

2

4

6

8

10

Calls
per kb

Coverage

Ambiguous Calls

Figure 10: Test Results. Results for calls per kb vs. amount of
coverage are graphed. Each data point is based on 20,000-68,000
consensus calls. The new Trace-Evidence method produces more
correct calls and fewer incorrect and ambiguous calls, especially
at low coverages.

In some instances, incorrect calls can be associated with
extremely low evidence sums. When the sums are quite
low, even the maximum evidence is often not indicative of
the correct call. One solution is to label the consensus as
an ambiguous N and defer consensus determination to
human editors. For the results reported in this paper, this is
the solution used (ie. low evidence calls are counted in the
ambiguous category). To circumvent the low-evidence
problem in the commercial version of SeqMan II,
consensus calling reverts to Majority when the maximum
evidence is less than ten. (This number was chosen as one
that works well in practice.) 

Correct Call: 

Majority Call:	

Trace-Evidence Call:

T  G T C  T  G A

T G T  T T  G A

T G T  T T  G A

T G T  T T  G A

C

T

C

A

T
G
C

Figure 11: Trace-Evidence vs. Majority Consensus. In the
shaded column, three bases have been incorrectly called as a T
and one correctly as a C. With a 75% threshold, the Majority
method incorrectly computes the consensus as a T. The Trace-
Evidence method detects no evidence for a T, ample evidence for
a C, and calls the correct consensus. With Majority this situation
would be even more troublesome if the fourth sequence were not
in the assembly. In that case, the call would have no conflicting
base calls and would likely go unquestioned during hand-editing.
In contrast, Trace-Evidence correctly computes a C, even in the
absence of the fourth sequence.
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A few incorrect calls occur in cases that are difficult for
both Majority and Trace-Evidence. These are usually in
regions of poorer-quality trace data where peaks are
overlapping and ill-defined. The obstacle for Majority is
that one or more of the base calls is likely to be incorrect
in such regions. For Trace-Evidence the difficulty lies in
the relative locations of the trace peaks. Often the peak
associated with the correct base call is significantly offset
from the base-call location. The result is that when the
Trace-Data Classifications are computed, a peak is either
not detected or is given a low score due to its distance
from the base-call location. Another of the traces may
exhibit a small, distinct peak near the base-call location
that is scored relatively higher. Trace-Evidence then has
more evidence associated with the small peak than with
the correct trace and calls the consensus incorrectly. This
case is illustrated in Figure 12.

T T A

T - C A

T A A A

Correct Call:

Majority Call:

Trace-Evidence Call:

G

G

GG

C

H

T

A

T
G
C

Figure 12: Difficult Consensus Call. Three sequences have
been aligned; the correct call for the shaded column is C.
Majority calls an ambiguous H for the consensus since the
column includes conflicting base calls of T, C, and A. The Trace-
Evidence method assigns negligible strong peak scores to the
offset peaks associated with the C traces and a high strong peak
score for the T trace in the first sequence. The scores incorrectly
sum to adequate evidence for a T and insufficient evidence for C.

In addition to the occurrence of incorrect calls in the
three situations just described, we believe that some errors
may be due to the weight vector we chose. The weight
vector we used for the calculations in our work
(W = |1 .67 .33 0 0 0|) was chosen empirically from among
those listed in Table 2. These vectors conform to the
restriction1 ≥ WSP≥ WMP ≥ WWP ≥ WWV ≥ WMV ≥ WSV ≥ 0,
while varying the emphasis on the scores for different
classes. Two of the vectors, described in the table as linear
peaks and parabolic peaks, assign zero values to the three
valley classes (W3, W4, and W5). We found that these
vectors greatly outperformed the others. This observation
contradicts the premise that valley scores contain useful
information. One explanation that reconciles the opposing
observation and premise is that these simple functions are
not sensitive enough to make use of the information in the
valley scores. A better approach to finding the weight
vector may be a statistical method such as multiple linear
regression. In the future, we will compare vectors
determined by more rigorous methods such as this to the
one we chose empirically.

Table 2: Weight Vectors. Five functions used to generate
possible weight vectors are listed. Two of the functions are
linear, two are parabolic and one is trigonometric. In two cases,
linear peaks and parabolic peaks, the values for the valley
classes are all zero. Of the five functions, these two are observed
to produce the best fragment assemblies.

Description Function |W0 W1W2 W3W4 W5 |

linear   Wi = 5 – i
5 | 1 .8 .6 .4 .2 0|

linear
peaks

  Wi = max 0, 3 – i
3 | 1 .67 .33 0 0 0|

parabolic   Wi = 5 – i
5

2
| 1 .64 .36 .16 .04 0|

parabolic
peaks

  
Wi = max 0, 3 – i

3

2

| 1 .44 .11 0 0 0|

trigonometric    
Wi =

cos π
5 i + 1

2
| 1 .9 .65 .35 .1 0|
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As well as improving our algorithmic approaches to
sequencing problems, we plan to shift the direction of our
research to solutions that involve machine learning. In
particular, we plan to use artificial neural networks with
Trace-Data Classifications to aid in consensus calling and
basecalling. In recent years, success in developing neural
network solutions for problems in molecular biology has
surged. A sampling includes: protein-structure prediction
(Rost & Sander 1993), DNA sequence determination
(Tibbetts, Bowling & Golden 1994), finding protein
binding sites (Heumann, Lapedes & Stormo 1994), and
detection of protein-coding regions (Uberbacher & Mural
1991). Neural networks often provide a good solution to
biological problems such as these since they involve
intricate interactions, and the strength of neural networks
lies in their ability to learn to recognize complex patterns.

Conclusions
The overall goal of our work is to improve the quality and
efficiency of automatic fragment assemblies. Toward this
goal, we have developed a new method for consensus
calling, Trace-Evidence, that produces more accurate
consensus sequences, thereby reducing hand-editing and
decreasing the amount of coverage needed. We
accomplished this by direct incorporation of trace
information into automatic consensus calling via the
Trace-Data Classifications developed in prior work. In
contrast to our new method, less accurate methods use
only a limited representation of trace data – base calls – to
determine the consensus.
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Appendix: Sequencing Background
To determine the sequence of bases in a large segment of
DNA, a scientist must first produce small, overlapping
fragments of the segment, sequence each of the small
fragments, and finally align the overlapping regions of the
small fragments to establish the overall sequence of the
large segment. (The large segment must be broken into
smaller fragments since instruments can sequence only
fragments of less than one kilo base (kb) in length and the
large segments are generally much longer.)

With the Applied Biosystems Inc. (ABI) 377 and other
modern sequencers, determining the sequence of the small

fragments is made possible by fluorescent-dye labeling
(Ansorge et al. 1986, Smith et al. 1986). Fragments of
DNA are labeled with one of four dyes (one for each base)
that identifies the 3' base in a fragment.

A T G A C A A T A N A A A A A C A C G A A
3’5’

A

T
G
C

time

in
te

ns
ity

Figure A1: Fluorescent Trace Data. The intensities in four sets
of trace data as they vary with time are graphed. Below each
peak in intensity is the corresponding base call made by a
basecalling program. In general, the base call corresponds to the
trace with the highest intensity. Near the center of the graph is an
instance where more than one intensity is relatively high – this
base is labeled as an N.

To prepare to sequence a fragment, sets of labeled sub-
fragments are produced such that the 5' ends are identical
to the 5' end of the fragment and the 3' ends vary so that
all possible sub-lengths of the fragment are represented.
The sets of sub-fragments are placed on one end of a gel
and an electric current is applied. The current causes the
(nearly) linear migration of the DNA across the gel. The
sequencing machine scans and records in a computer file
the intensities of each of the four dyes as the sub-
fragments migrate past the other end of the gel. Since
shorter fragments migrate faster than longer ones, the
intensities are recorded in the 5' to 3' sequence order of
the original small fragment.

A computer program processes the file of intensity data
(called trace data) to determine the sequence of bases in
the original fragment. This process is called basecalling .
In the simplest case, at any one time the intensity for one
particular dye is relatively high, and this identifies the
base. If more than one intensity is high, the base is
unknown and is labeled with an N for no-call. Figure A1
contains an example of the 2-D graphs of four sets of trace
data and the corresponding base calls.
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Table A1: Possible Consensus Calls. A consensus call may be
one of the four bases, a gap, or one of 11 ambiguities
(combinations of A, C, G, and T).

A adenine R G or A H not G

C cytosine Y T or C B not A

G guanine M A or C V not T

T thymine S C or G D not C

K G or T

N A, C, G, or T W T or A - gap

When the small fragments have been sequenced, their
overlapping regions are aligned in a fragment assembly.
The sequence for the original segment of interest is the
consensus of the aligned small fragments. The problem of
determining the consensus for each column in the
fragment assembly is called consensus calling. In an
aligned column, there may be total agreement of base calls
or some calls may conflict with the others. A decision
must be made to call the consensus as a base (A, C, G, T),
as a gap (indicating an insertion in one of the sequences),
or as one of 11 ambiguities (combinations of A , C, G, and
T). Table A1 lists possible consensus calls and Figure A2
illustrates an alignment of fragments and a corresponding
consensus sequence.

…TGCMACGATCTATTGGK-TAAG…
	
…TGCCACGATCT
…TGCAACGATCTATTGGT-TAAG…
…TGCAACGATCTATTGGT-TAAG…
      CGATCTATTGGGNTAAG…

Consensus

Aligned
Fragments

Figure A2: Consensus Calling. Four fragments are aligned by
their overlapping regions. Across the top is the consensus that
has been computed for the fragments. In addition to A, C, G, and
T calls, two ambiguous calls (M and K) and a gap call have been
made.
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