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Abstract

We presenta new methodfor determiningthe consensus
sequencen DNA fragmentassembliesThe new method,
Trace-Evidence, directly incorporatesaligned ABI trace
informationinto consensusalculationsvia our previously
describedrepresentationfrace-Data Classifications. The
new methodextractsand sumsevidenceindicatedby the
representatioio determineconsensugalls. Using the
Trace-Evidence methodresultsin automaticallyproduced
consensusequenceghat are more accurateand less
ambiguousthan those producedwith standardmajority-
voting methods.Additionally, theseimprovementsare
achievedvith lesscoveragehanrequiredby the standard
methods- using Trace-Evidence and a coverageof only
three,errorratesareaslow asthosewith a coverageof over
ten sequences.

I ntroduction

Our goal is to improvethe quality and efficiency of
automaticDNA sequencingdetermininghe sequencef
basesin DNA molecules).One importanttask in the
sequencingrocesss to establishthe consensusequence
for alignedfragmentsof DNA. This task,oftenreferredto
asconsensus calling, is the focus of this paper

Theusualmethodo accomplistconsensusallingrelies
on the fragments’representatioms sequence®f base
calls. Before alignment,the base-callsequencesre
determinedby computeranalysisof the fluorescent-dye
intensity signal, called trace data, that is output by
automaticsequencersuchasthe Applied Biosystemsnc.
(ABI) 377.The basecallsare usedto align thesequences
andthen a majority-votingschemes commonlyusedto
identify the consensufor eachalignedcolumnof bases.
We believe,and haveshownwith anearliercasestudyin
sequencdrimming (Allex et al. 1996),that automatic

sequencingrocessesanbeimprovedby incorporationof
descriptive fluorescent trace information.

The new methodwe have developedfor automatic
consensusalling, Trace-Evidence, incorporate#\BI trace
informationvia the Trace-Data Classifications we definec
in prior work (Allex et al. 1996). The use of this
representatiois the keyto theimprovementsve seewhen
usingour new method.Previousmethodsuseonly a very
simplified representatiomf tracedata: the sequenceof
basecalls. The representationve use is much more
descriptive;it capturesshape and intensity visual
characteristics of traces.

Our Trace-Evidence methodresultsin automaticall
producedcconsensusequencethataremoreaccurateanc
lessambiguousln addition,it attainstheseimprovement
with fewer aligned sequenceq.The numberof alignec
sequenceis known asthe coverage.) Bothanincreasen
accuracyand a reductionin the coverageneededare
significant results.

Higher accuracyusing Trace-Evidence consensu
calling mitigateshe problemof errorsin DNA sequence:
The error rate for sequencesn GenBankhas beer
estimatedo befrom 0.3to 0.03%(Lawrence& Solovyev
1994).If theDNA is translatednto protein,theresultsare
potentialerrorsin 0.1to 0.01%of the aminoacids.The
mutationof a single amino acid can have substantis
adverseeffectson protein-relatedesearchFurthermore
thechangedeletionor insertionof a singlebasecanlead
to frameshiftsand/ortheinability to identify openreading
frames.Sequencingaccuracyis significantly depender
uponcarefulhumanexaminatiorandediting of consensu
sequencem fragmentassembliesThe handprocessis
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time-consumingexpensive and error-prone Automatic
assembliesvith improvedconsensusccuracieslleviate
these problems.

Reducingthe needeccoveragdor accuratesequencing
by using Trace-Evidence meansa reductionin overall
sequencingcosts. Fragmentpreparationrepresentsa
substantiaportion of the expenseof sequencingln large
sequencingrojects,it is typical to producea coverageof
at leastsix to ensureaccurateresults.We show in this
work that equivalentaccuracycan be achievedwith as
little coverage as three sequences.

We have implementedour new Trace-Evidence
consensusalling (aswell as previouslydescribedlrace-
Class sequencgrimming) in the DNAStarInc. SegMan Il
fragmentassemblyprogram. Among numerousother
softwarepackagesvailableto facilitate sequencingforts
are:GCG Fragment Assembly System (Dolz 1994),TIGR
Assembler (Suttonetal. 1995),Saden Package (Bonfield
et al. 1995), PHRED and PHRAP (the University of
Washington)and Sequencher (GeneCodesCorporation).
In contrastto thesesystemspur approachignoresbase
calls and derivesthe consensuslirectly from the trace
data.

The remainderof this paperfirst describesa common
previousmethodfor consensusalling, followed by a
detaileddescriptionof our new Trace-Evidence method.
We thenpresenempiricalevidenceof the effectivenessf
using Trace-Evidence A discussionof future work and
conclusionscompletethe paper For readerswho are
unfamiliarwith DNA sequencingan appendixprovidesa
brief background.

We makeliberal useof figuresto illustrate our points
throughoutthis paper In thesefigures,all trace data
displayedare representationsf actual sequencinglata
suppliedby the E. coli GenomeProjectatthe University
of Wisconsin.

Previous M ethod: Majority

A common,simple methodto calculatethe consensus
countsthe numberof calls of eachbasein an aligned
column(Staden1982).If the majority basecountis above
a givenfractionalthresholdof the total count,thatbaseis
called unambiguouslyA, C, G, or T); otherwisethe
consensusis called as the appropriateambiguity
(combinationof A, C, G, and/orT). We refer to this
methodas Majority. Figurel containsan exampleof
calculating the consensus bigjority.

Sincethe Majority approachexamineonly the base
callsandnottheunderlyingtracedata,it is proneto errors.
Majority alsorequiresa minimumnumberof sequenceto

makean unambiguousall whena columnof basecallsis
notin totalagreementMethodsthat directly analyzethe
trace data help to avoid these problems.

(a)
consensu .. AAGAAGCACTWAGGATTTGC
... AAGAGGCACTAAGGATTTGG
Aligned ... AAGAAGCACTTAGGATTTGG
Fragments ... AAGAAGCACTAAGGATTTGG
.. AAGAAGCACTTAGGATTTGG
5 11 17
(b)
Majority 0 Consensus
Column Base(s) % call
5 A 75 A
1 AT 50 W (AorT)
17 T 100 T

Figure 1: Majority ConsensusCalls. (a) Four sequencesre
alignedandthe consensusomputedusingMajority. (b) In this
example the thresholdis set at 75%. The consensusgall for
column5 isanA sincethreeof four (atleast75%)of thecallsare
A Incolumn1l, 50%ofthe callsareA and50%are T; the callis
W (A or T) sinceboth percentageare belowthe threshold.In
column 17, all calls arfg, resulting in a consensus callTf

New Method: Trace-Evidence

We improvethe quality of automaticconsensusalling by
emulating human analysisof trace data. When an
ambiguousconsensu<all is made by an assembl
program humaneditorsattemptto resolvethe ambiguity
by a visual examinationof the fluorescenttrace data
Figure2 describesan exampleof resolvingan ambiguity
by hand. While watchingeditorsworking, we observe!
thatmany, if not most,of the decisionsthey make are
straight-forwardWe believedthat we could programa
computerto capturethe visual characteristicshat are
relevantto humaneditorsin their work and use this
information to improve automatic consensus-calling.

Overview

The new methodwe have developedor computinga
consensusdirectly incorporates ABI trace-dat
information via the Trace-Data Classifications we
developedand describedin earlier work (Allex et al.
1996).Figure 3 containsa brief reviewof our Trace-Data
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Classifications. The new methodfor consensugalling
sums the evidencesupplied for each base by the
classificationscoresWe will referto the newmethodas
the Trace-Evidence consensus method.

The Trace-Evidence methodis basedon theidea that
eachof the six scoresfor the Trace-Data Classifications
suppliesan amountof evidencethatthe associatedase
shouldbe assignedn the consensudsHigh strong peak
(SP) scoressupplythegreatesamountof evidence high
medium peak (MP) scoressupplythe nextgreatesamount
of evidence,followed by high weak peak (WP), weak,
medium, andstrong valley (WV, MV, andSV) scoresin
decreasingorder In fact, a high valley scoreactually
provides counter-evidencdor its base. Figure 4
demonstrates the evidence idea.

= Alignment of Contig 8
886 —> 886 =1 2, 184kb

880 890 900

R ISE e O (S S IV o e WO T WA AT Y TR 0 ] O

‘% TATTGCAGGTGGAGCCAYTAAACGATACCGAAA
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D Star Inc. SeqMan 1

Figure 2: Human Editing. The ambiguityin the highlighted
column must be resolvedto A, C, G, or T. Human editors
examinethe tracesand observethat the the first two sequences
areof goodquality andexhibitsharpwell-definedpeaksn theC
trace.Thethird sequencealthoughof poorerquality, alsoshows
asmall, discerniblepeakin theC trace,eventhoughthebasehas
been miscalledas a T. Human editors determinethat the
consensus should beCa

To determinethe consensu$or a columnof aligned
bases,we sum the evidence,basedon Trace-Data
Classification scores,for eachof the four bases.The
evidenceor eachbaseis weightedby the quality of the
tracedatain a localareaithe quality is alsodeterminedy
examining Trace-Data Classification scores.The base
with the highestevidencesumis identifiedasthe leader
and its evidencesumis the leading evidence. The other
threebasesare competitors, and their evidencesumsare

competing evidence. A thresholdbetween0 and 1 is
specifiedthat determinesthe ignorable fraction of
competing evidence to leading evidence. If the leader has
no competitors with competing evidence greaterthanthe
thresholdthe leader is assignedas the consensusilf
competing evidence for any basessurpassethethreshold
thenthosebasesreincludedin determininganambiguou:
call.

(a) Definition

Strong Medium Weak
sign change  shoulder with  otherwist
in slope zero slope

Peak
negative
curvature

Valley
positive
curvature
(b) Example
Peak Valley
Strong 57 Strong 19
Medium 43 Medium 7
Weak 0 Weak 0

Figure 3: Trace-Data Classifications. The Trace-Data
Classification representatioruses shape and intensity to
categorizehe tracedatafor a singlebasecall. (a) The classe
andthe criteriausedto distinguishamongthem are listed and
illustrated.A scorefrom 0 to 100 is assignedor eachof six
classeghat reflectsthe amountof strong, medium, and weak
peak andvalley characteristithatis exhibitedby the data.Both
the peak and valley nearestthe basecall are identified and
scored Gray lines showthe locationof the basecall. (b) For
somecalculationsve needthe classificationdor all four setsof
tracedatawhilefor otherswe needonly theclassificationof the
traceassociatedith the basehatis called.In this examplepne
of the four setsof tracedatais shown.The scoresfor the trace
indicatea combinationstrong-medium peak at the base-cal
locationanda strong-mediumvalley distancedrom thebase-cal
location.Scoresareadjustedo reflectthe distanceof thepeak or
valley from thebase-callocationas well astheintensityrelative
to the other three traces.
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Algorithmic Details

To determinghe consensufr acolumnof alignedbases,
two typesof valuesmustbe calculatedor eachsequence
in the column:the Trace-Data Classification scoresanda
measureof the quality of the data.We usethe quality of
thetracedatato weightthe evidencesuppliedby eachset
of classificationscoresThat way, more credible,higher
quality tracedatasuppliesmoreevidencethantracedata
of lower quality

Whengapsoccurin a column,a qualitymeasuras also
usedto decideif the consensushouldbe calledasa gap.
To do this, we sum the quality measuredgor sequences
with agapin thecolumnand comparghem with the sum
of the quality measuresf sequencewithoutagap.If the
gapquality sum exceedshe non-gapsum,the consensus
is calledas a gap. The problemof calling the consensus
whengapsareinvolvedis not alwaysassimply solvedas
this. We will discussthis furtherin the Discussion and
Future Work section.

- JLMN;

Figure 4: Evidencein Traces. Considerthe evidencdoundin

thefour tracesin the shadedegion. The C tracewill producea
high strong peak (SP) score,the T tracewill yield a relatively
smallerSP score,andboththeA andG traceswill producevalley
scoresA visual examinatiorof the tracessupportshe premise
thatthe vast majority of the evidencds for abasecall of C and
that there is counter-evidence for a base cal afG.

The stepsusedin theconsensusalculationfor a single
aligned column appearbelow Details of calculations
mentioned follow the algorithm.

Trace-Evidence Consensus Algorithm
For a single aligned column

1. For each sequence, find the quality of trace
data, Q, within a small window centered on
the column.

2. Sum Q for each sequence with a gap in the
column and compare it to the sum of Q for
the remaining sequences. If the gap sum
exceeds the non-gap sum, return gap.

3. Determine S, the 4 x 6 (six scores for each of
four traces) matrix of Trace-Data
Classification scores for each sequence.

4. Reduce each S to a vector, E, of four values
that summarize the evidence for each trace.

5. Multiply each value in E by its corresponding
Q to produce a vector E' that has been
adjusted by data quality.

6. Sum each of the corresponding E’ s to
produce a vector, T, of the total evidence for
each of the four bases.

7. Find the highest evidence (leading evidence)
in T ; its corresponding base is the leader.

8. Multiply leading evidence by the threshold to
compute the maximum ignorable competing
evidence.

9. Compare leading evidence to each competing
evidence. If no competing evidence surpasses
the maximum ignorable, then return leader as
the consensus call, otherwise use all
competitors who surpass the maximum to
determine and return an ambiguity.

We usethe Trace-Data Classifications asindicatorsof
tracedataquality. Theideais similarto that describei
earlierfor establishingevidenceBasecallsthatarehighly
reliablearemadefrom trace-datgpeakghat aresharpanc
well-defined- thosethat classifyas strong peaks. Base
callsmadefrom tracedatathat classifyas medium peaks
are lessreliable,and those made from weak peaks or
valleys are increasinglyless reliable. Therefore,to
determine quality, we examine the Trace-Data
Classification scoresfor the tracesassociatedvith the
calledbases.(For examplejf the sequencef baseshas
been called as GGTACG, only the Trace-Data
Classifications for the correspondings, G, T, A, C, andG
tracesarecalculated.)f the strong peak scoresarehigh, it
is likely thatthe datais of good quality —the higherthe
scoresthe betterthe quality of the data.On the other
hand,f thebaseshavebeencalledwith low peak scoresor
non-trivialvalley scoresthebasecallsare not asobvious
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and the datais likely to be lessreliableand of lower
quality. Figure5 compareghe relative quality of some
trace data.

C GG GGGG

C C" GGGGN

Figure5: Quality of Trace Data. In thetop sequencethetrace
associateavith eachcalledbaseexhibitsa sharpwell-defined
peak.The correspondindrace-Data Classifications all show
high strong peak scores.n contrastthe tracesin the bottom
sequenceare flattenedand overlapping;correspondingtrong
peak scoresare generallynominal. The top sequencés much
more reliableand is of high quality. We want to give the
evidence it supplies more weight in consensus calculations.

For usein our calculationsof quality, we predefinea
constantweightvector W, suchthatclasseqsuchas SP)
thatimply better-qualitydatafor a baseare given higher
valuesthan those(such as SV) that imply lower-quality
data. The definition follows.

Let

W = |Wsp Wyp Wywp Wiy Wyy Wsy |
where

W, is the weight for class i

and
1>Wgp 2Wyp =Wyp Wy 2Wpy =Wgy =0

Usingtheweightvector, the qualityof thedatafor each
sequence in a column is calculated as follows.

1. For each base, i, in a window of size n
centered on the column of interest, calculate
the vector of Trace-Data Classification scores,
S, for the trace associated with the base that
has been called (details of the calculation of S
appear in Allex et al. 1996):

S,=[SP; MP; WP, WV; MV, SV,|

2. The dot product of S; and W U (W-transpose)
produces a scalar quality measure, Q; , for
basei:

QI:SI th

3. Average the measures to produce an overall
quality score, Q, for the base at the center of
the window:

Q=(Q1+Q+..+Qp) /' n

In our work, we foundthatW= |1 .67.330 0 0] yields
goodresults.Using this definition, the quality measures
Q, arebetween0 and 100sincepeak classificationscore:
sumto 100 or less. (Other possibledefinitionsof the
weightvectorarediscussedn the Discussion and Future
Work section.)Figure 6 containsan examplecalculatior
of a quality score.

For the center bas€) = 68.

C C
SP MP WP W MV SV | s.wt
C 0 59 41 2 8 0 53
83 17 0 1 5 0 94
T 43 21 0 0 2 7 57
Total 204
Total / 3 68

Figure6: Quality Score. In thisexample thewindow size,n, is
3 basesWe wantto calculateahe quality score,Q, for the centel
baseC. Threesetsof Trace-Data Classification scoresS, have
beencalculatedonefor eachof theC tracescorrespondingo the
first two C basecalls, anda third for theT tracedataassociate
with the T call. Thedot productof eachset of scoreswith the
weightvector(|1.67.330 00 |) is computedThe averagef the
threeis the quality scorefor the C basein the centerof the
window

Copyright (c) 1997, American Association for Artificial Intelligence (waaai.org). All rights reserved.



We usethe sameweightvector, W, in asimilar manner
to summarizehe Trace-Data Classification scoreduring
consensusomputation.Multiplication by the weight
vector ensureghat scoressupplyingthe mostevidence
(suchas thosewith high SP scoreskare giventhe more
weight than thosethat supply less evidence.Figure 7
demonstrates this idea.

For eachsequencén a column,avector, E, summarizes
the evidencefor eachpossiblebase(A, C, G, andT). For
eachbase,the computedvalue reflectsthe amountof
evidencethatthe call shouldbe thatbase.The vectoris
computed as follows.

1. Form a 4x6 matrix of Trace-Data
Classification scores, S, by computing the
scores for each trace:

SPa  MPa WPA WVaA MVay  SVa
SPc  MPc WPe: WVe MVe  SVg
SPg MPg WPg; WVg MVg SVg
SPT MPT  WPT WVT MVT SVt

2. The transpose of the matrix multiplication of S
andw! produces a vector of evidence values,
E, for the possible bases:

E=(SxWHl=|Ep Ec Eg Er|

3. Multiply E by the quality of the local trace
data, Q, to produce evidence values, E' , that
have been adjusted by the quality of the data:

E =ExQ

Finally, we sumtheevidencdor eachbasein analigned
column as described next.

Sum corresponding E’ values to produce the total
evidence, T; , for each possible base i, where n is
number of sequences in the column:

TA = BEar + BEa2 * ..+ Epp
Tc = Ecp' + Ecp + ...+ Ecp
Tg = Eg; * Egy + ..+ Eg,
Tr = Erf + Epp + ..+ Eqpy

Once T hasbeen calculatedconsensugalling can be
completedasdescribedn steps7-9 of the Trace-Evidence
Consensudilgorithm. An exampledeterminationof a
consensus base call appears in Figure 8.

F A

SP MP WP W MV SV |s.wt

A 0 4 30 8 1 0 13
C 89 11 0 0 0 0 96
G 3 1 0 0 0 0 4
T 0 0 0 0 13 76 0

Figure7: Summarizing Trace-Data Classification Scores. The
Trace-Data Classification scoresfor eachof the four tracesis
computedWhendottedwith theweightvector(]1.67.33000 |),
theresultis a highvaluefor the C trace— the traceexhibiting
highestevidenceThevaluesfor the A, G, andT tracesare all
low. When these summarizedvaluesare used to provide
evidencethe C traceappropriatelyhasthe highestvalue. Note
thatin this calculation the Trace-Data Classification scoresare
computedor eachof the fourtracesn contrasto the calculatior
ofthe qualitymeasurgFigure6)in whichonly thescoredor the
traceassociatedvith the called baseare computedHere, we
need to know how much evidence each trace supplies.

Testing

All codefor testingthe new consensusalling methodwas
incorporatednto anexperimentaversionof the DNAStar
Inc. SegMan fragmentassemblyprogramfor the Apple
Macintosh PowerPC. SegMan uses the Majority
consensugalling method. (SegMan has since beer
supersedelly SeqMan I, a more powerfulversionthat
incorporatedrace analysisas describedin this and a
previous paper (Allex et al. 1996).)

Method

Fragmentssembliesor a 124 kb sectionof E. coli are
usedto comparecorrectcalls to Majority and Trace-
Evidence calls. The data and correctcalls for the
assembliesveresuppliedby the E. coli GenomeProjectat
the University of Wisconsin.The original assemblyof
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2221 ABI sequencesangedin coveraggrom one to 45

sequencesn orderto generatenabundancef testcases
with varying amountsof coveragewe developedand

applieda minimizationalgorithm,Minimize Coverage, to

the assembly

E E
Sequence| Q Qx

Q\\_ 51 (0 0 52 0| O 0 265 O
-]
G G

82 |0 0 73 0| O 0 599 O

26 [0 0 21 5| 0 0 54 13

Total 0 0 918 13

Figure8: Trace-Evidence Consensus Example. The consensus
basefor the centercolumnof threealignedsequencemustbe
called. For each sequencethe evidencefor each baseis
multiplied by the correspondingjuality score. When these
productsaresummedfor thethreesequenceshe evidencefor A
andC is 0, for G is91.8andfor Tis 1.3.If thethresholds .50,G
will be called unambiguouslysince no competingevidence
surpasse45.9(91.8x .50).1n contrastthe Majority methodwith
a 75% threshold would make an ambiguous cal ¢F or G).

With Minimize Coverage, sequencefragmentsare
removedrom anassemblysuchthatthe coveragdor any
single columndoesnot fall below a specifiedcoverage
(unlessthe coverages alreadybelowthethreshold).The
ideafor the Minimize Coverage algorithmis simple. At
eachpassthroughthe assembly for eachsequenceve
determinethe lowest coverage,low-coverage, of any

columnin whichthe sequenceccurs We thenremovethe
sequenceavith the highestlow-coverage, providedthat
low-coverage is notat or belowthethresholdIf morethan
onesequencédasthe samelow-coverage, theshorterone
isremovedPassesvertheassemblarerepeatedintil no
more sequencesan be removedwithout violating the
coveragethresholdrestriction. At completion, some
columnswill havemorethanthedesiredcoveragddueto
the restriction) and some less. The algorithm is
summarized next.

Minimize Coverage Algorithm

Let S be the list of all n sequences, S;, in the
assembly.

S={Sy, ..., Sp}

Let L be the list of all n sequences considered for
removal. Each sequence, S;is paired with its low-
coverage, LCq.

L={(S1,LCg1), ---, (Sp, LCg )}

While not_empty(L)

1. Remove from L sequences whose low-
coverage is at or below the threshold.

2. Remove from S and L the shortest
sequence with the highest low-coverage.

3. Update low-coverage values.

Figure9 stepsthroughan example executionof the
Minimize Coverage algorithm.

We repeatedhyappliedthe Minimize Coverage algorithm
to the original assemblyfor the range of coverag:
threshold$rom two toten. This producechineassemblie
with differing coveragesgachwith an abundanceof
aligned columnswhose coveragecorrespondedo its
threshold.For testing,from eachof the nine minimized
assembliesye extractedthe statisticsfor consensu
callingonly for columnsthatcorrespondetb the coverag:
thresholdFor example for the assemblyith a minimum
coverageahresholdof three,we compiledstatisticsonly
for thosecolumnswith acoverageof threesequencedhe
exceptionis thatthe statisticsfor the assemblywith the
desireccoverageof tenincludeall columnswith coverag:
of ten or greater(ratherthanjust thosewith exactlyten)
sinceresultstend to remain constantwith such high
coverageTable 1 liststhe numberof consensusalls usec
for each set of results.
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(@)
GATCGGCTACATCTTACATCACCGIT
CTACATCTTACATCACC
CGGATCGGECTACATCTTACATCACCGTTGA
ATCGGCTACATCTTAC
ATCTTACATCACC
CGGCTACATCTTACATCACCGT

P »

(b)
Pass S L

0 {%‘%’%’54‘55'%} {(%_12)!(%15)1(3311)1
(%, 3), (%, 9), (S5, 3)}

{($.4. (5,3, (%, 3)}

1 58:%%5 %!

2 | {8158 %} {(54.3). (5, 3)
3 (S8, &) {(Ss. 3}
4 {S. S} {}

Figure 9: Minimize Coverage Example. (a) Six sequences;
to Sg, arealignedin afragmentassemblyThesequences bold,
S and S3, providethe optimalminimizationwhenthe threshold
is set to two. With thesetwo sequence# the assembly no
columnhasfewerthantwo sequenceg@xceptthosethatalready
hadfewerin theoriginalassembly)ln addition,neithersequence
can be removedwithout causingcoverageto fall below the
minimum.(b) Thealgorithmto reducecoveragenthe assembly
completesfter4 passesAt theoutsetall sequencearein Sand
L. Thefirst passremovesSg from bothlists sinceit is the shorter

of two sequencewith the highestiow-coverage (5 sequences).

Also, S and Sg areremovedrom L in thefirst passsincetheir
low-coverageis at or belowthreshold- thesesequencesannot
be takenout. At theendof four passesl. is emptyandthe two
desired sequences; and S3, remain in the assembly

Results

We reportresultsthat comparecorrectconsensugalls to
thosemadeby Trace-Evidence andMajority for coverage
from two to tenor moresequenceshethresholds setto
the SeqMan Il defaultvalue of 75% for Majority and to
50% for Trace-Evidence. Graphsin Figure 10 displaythe
numberof correctcalls, incorrectcalls,and ambiguous
calls per kb for the two methods.

The resultsshow a significantimprovementwith the
Trace-Evidence method,especiallyat lower coverages.
With a coverageof only three,using Trace-Evidence we
seea levelingof the numberof incorrectcallsanda large
improvemenbverthe Majority methodin the numberof
correctand ambiguouscalls. With a coverageof four, the

numberof ambiguouscallshasfallen to nominalvalues
with Trace-Evidence.

Discussion and Future Work

We observestriking examplesof the utility of the Trace-
Evidence method when base calls in a column are
systematicallyncorrect.In someinstancesa well-defined
peakis hiddenbelowa high-intensityvalley. The baseis
oftenincorrectly called as the one associatedvith the
high-intensityvalley. Majority methodsncorrectlycall the
consensuasthis base Our new Trace-Evidence makeshe
correctconsensusall evenwhenall or mostof the base:
have been called incorrectly Figure 11 containsan
example of this occurrence.

Table1: Number of ConsensusCallsin Test Results. For eact
coveragdrom two sequences$o ten or more,the numberof
consensus calls included in test results is listed.

Number of
Consensus Calls

67,860
57,092
45,394
39,556
34,01
26,716
22,479
20,326
47,239

Coverage

© 0o N o 0o b~ W N

v
[y
o

We have identified three situationsin which Trace-
Evidence canmakeincorrectcalls. Overwhelmingly most
problemsnvolve gaps.In rarercaseswe havedifficulties
with low evidencesumsor poor-qualitydata. Next, we
briefly describe these three sources of incorrect calls.

In the resultsreportedhere,all of the incorrectcalls at
coveragesabovethree and at least half of thosefor
coveragesf twoor threeinvolve gapsin thecolumn.The
methodfor determiningwhetheragap shouldbe insertec
in the consensugonsistof a simple comparisorof gar
vs. non-gapsumsof the quality of the tracesin the
column.However the insertionof a gapaffects notonly
thecolumnit occursin, but alsothe columnsto eitherside.
Whendetermininga gap call, it is probablynecessarjo
considemore contextand examinethe dataon eitherside
of the baseof interest.Findinga solutionto calling the
consensuwhengapsare in thealignmentwould virtually
eliminateincorrectcalls madewith the Trace-Evidence
method with a coverage of at least four
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Figure 10: Test Results. Resultsfor calls perkb vs.amountof
coveragearegraphedEachdatapointis basedn 20,000-68,000
consensusalls.The newTrace-Evidencemethodproducesnore
correctcallsandfewerincorrectandambiguousalls, especially
at low coverages.

In someinstancesincorrectcallscanbeassociateavith
extremelylow evidencesums.Whenthe sumsare quite
low, eventhe maximumevidences oftennot indicativeof
thecorrectcall. Onesolutionis to labelthe consensuas
an ambiguousN and defer consensusgleterminationo
humareditors.Fortheresultsreportedn this paper thisis
the solutionused(ie. low evidencecallsarecountedn the
ambiguouscategory).To circumventthe low-evidence
problemin the commercialversion of SeqMan II,
consensusallingrevertsto Majority whenthe maximum
evidencas lessthanten.(This numbemwaschoseras one
that works well in practice.)

G G
C —
G —
r
LAY
G G
Correct Call: C
8 Majority Call: T
LAALY
G G Trace-Evidence Call: C

Figure 11: Trace-Evidence vs. Majority Consensus. In the
shadedcolumn,threebaseshavebeenincorrectlycalledasa T
andone correctlyasa C. With a 75% threshold,the Majority
methodincorrectlycomputeghe consensugasa T. The Trace-
Evidence methoddetectsnoevidencefor aT, ampleevidencefor
aC, andcallsthe correctconsensusith Majority this situatior
would be evenmoretroublesoméf the fourthsequenceverenot
in the assembly In that case the call would haveno conflicting
basecallsandwouldlikely go unquestioneduringhand-editing
In contrast,Trace-Evidence correctlycomputes C, evenin the
absence of the fourth sequence.
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A few incorrectcalls occurin caseghataredifficult for
both Majority and Trace-Evidence Theseareusuallyin
regionsof poorer-qualitytrace data where peaksare
overlappingandill-defined. The obstaclefor Majority is
thatone or moreof the basecallsis likely to be incorrect
in suchregions.For Trace-Evidence the difficulty lies in
the relativelocationsof the tracepeaks.Often the peak
associatedvith the correctbasecall is significantlyoffset
from the base-callocation.The resultis that whenthe
Trace-Data Classifications arecomputeda peakis either
not detectedor is givena low scoredueto its distance
from the base-callocation. Another of the tracesmay
exhibita small,distinct peaknearthe base-callocation
thatis scoredrelatively higher Trace-Evidence thenhas
more evidenceassociatedvith the small peakthan with
the correcttraceand calls the consensuscorrectly This
case is illustrated in Figure 12.

—

N
S—L_y\_ C =

G G —

|

Correct Call: C
\ \/\_&L
AL/
- C G Majority Call: H
Trace-Evidence Call: T
XQQL\
G

Figure 12: Difficult Consensus Call. Three sequencehave
beenaligned; the correctcall for the shadedcolumnis C.
Majority calls an ambiguousH for the consensusince the
columnincludesconflictingbasecallsof T, C, andA. The Trace-
Evidence methodassignsnegligiblestrong peak scoreso the
offset peaksassociatedith the C tracesanda high strong peak
scorefor the T tracein thefirst sequenceThescoresincorrectly
sum to adequate evidence fof and insuficient evidence fo€.

In addition to the occurrenceof incorrectcalls in the
threesituationsjustdescribedyve believethatsomeerrors
may be due to the weight vectorwe chose.The weight
vector we used for the calculationsin our work
(W=11.67.3300 0]) waschoserempiricallyfrom amonc
thoselisted in Table 2. Thesevectorsconformto the
restrictionl >Wgp > Wyp 2Wp =Wy =Wy = Wg, 20,
while varying the emphasison the scoresfor different
classesTwo of thevectors describedn thetableaslinear
peaks and parabolic peaks assigrzerovaluesto thethree
valley classes(Ws W,, and Ws). We found that these
vectorsgreatlyoutperformedhe others.This observatiol
contradictghe premisethat valley scorescontainusefu
information.One explanatiorthatreconcileghe opposing
observatiorand premiseis thatthesesimplefunctionsare
notsensitiveenoughto makeuseof theinformationin the
valley scores.A betterapproachto finding the weight
vectormaybe a statisticalmethodsuchas multiplelinear
regressionln the future, we will comparevectors
determinedy morerigorousmethodssuchasthis to the
one we chose empirically

Table 2: Weight Vectors. Five functionsused to generat
possibleweight vectorsare listed. Two of the functionsare
linear two areparabolicandoneis trigonometric.In two cases
linear peaks and parabolic peaks, the valuesfor the valley
classesireall zero.Of thefive functions thesetwo are observel
to produce the best fragment assemblies.

Description Function o W W5 W W W |
linear w =551 |1.8.6.4.24
linear - 3—i
pecks V\/i—max(O, 3) |1.67.3300¢

: 2
parabolic W, = (%) |1.64.36.16 .04 ¢
. 2
parabolic _ ( 3—i)
besles V\/,-(max 0,23 |1.44.1000]|
. . T[
trigonometric C05(5')+1 |1.9.65.35.1¢
w=— ol .9.65.35.
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As well as improvingour algorithmicapproachego
sequencingroblemswe planto shift thedirectionof our
researchto solutionsthat involve machinelearning.In
particular we plan to use artificial neuralnetworkswith
Trace-Data Classifications to aid in consensusallingand
basecallingln recentyears successn developingneural
network solutionsfor problemsin molecularbiology has
surged A samplingincludes:protein-structurerediction
(Rost & Sander1993), DNA sequenceadetermination
(Tibbetts, Bowling & Golden 1994), finding protein
binding sites (HeumannLapedes& Stormo1994),and
detectionof protein-codingegions(Uberbache& Mural
1991). Neuralnetworksoften providea good solutionto
biological problemssuch as thesesince they involve
intricateinteractionsandthe strengthof neuralnetworks

lies in their ability to learn to recognize complex patterns.

Conclusions

Theoverallgoalof our work s to improvethe quality and
efficiency of automatidragmentassembliesTowardthis
goal, we have developeda new methodfor consensus
calling, Trace-Evidence, that producesmore accurate
consensusequencegherebyreducinghand-editingand
decreasingthe amount of coverage needed.We
accomplishedthis by direct incorporationof trace
informationinto automaticconsensu<alling via the
Trace-Data Classifications developedn prior work. In
contrastto our new method,less accuratemethodsuse
only alimited representatioof tracedata— basecalls—to
determine the consensus.
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Appendix: Sequencing Background

To determinghesequenc®f basedn a largesegmenbf
DNA, a scientistmustfirst producesmall, overlapping
fragmentsof the segmentsequencesach of the small
fragmentsandfinally alignthe overlappingregionsof the
small fragmentgo establishthe overall sequencef the
large segment(The large segmentmust be brokeninto
smaller fragmentssince instrumentscan sequencenly
fragmentsf lessthanonekilo base(kb) in lengthandthe
large segments are generally much longer

With the Applied Biosystemsdnc. (ABI) 377 andother
modernsequencersjetermininghe sequencef the small

fragmentsis made possibleby fluorescent-dydabeling
(Ansorgeet al. 1986, Smith et al. 1986). Fragmentsof
DNA arelabeledwith one of four dyes(onefor eachbase
that identifies the'3base in a fragment.

[%2]
2 WA
C
= RN A A m AR L
G C N c CG
5 time ——» 3

Figure Al: Fluorescent Trace Data. Theintensitiesn four sets
of tracedataas theyvary with time are graphedBelow eact
peakin intensityis the correspondingasecall madeby a
basecallingorogramIn generalthe basecall correspondto the
tracewith thehighestintensity Nearthecenterof thegraphis an
instancevheremore thanone intensityis relatively high — this
base is labeled as &h

To prepardo sequenceafragment,setsof labeledsub-
fragmentareproducedsuchthatthe 5' endsareidentica
tothe5 endof thefragmentandthe3' endsvarysothat
all possiblesub-length®f the fragmentarerepresentes
The setsof sub-fragmentare placedon oneendof a gel
andan electriccurrentis applied.The currentcauseghe
(nearly)linearmigrationof the DNA acrossthe gel. The
sequencingnachinescansandrecordsin a computerfile
the intensitiesof eachof the four dyesas the sub-
fragmentsmigratepastthe other end of the gel. Since
shorterfragmentsmigrate faster than longer ones, the
intensitiesarerecordedn the5' to 3' sequencerder of
the original small fragment.

A computemprogramprocessethe file of intensitydata
(calledtrace data)to determinethe sequencef basesn
the original fragment.This processs calledbasecalling.
In the simplesttase at any onetime the intensityfor one
particulardye is relatively high, and this identifies the
base.If more than one intensity is high, the baseis
unknownandis labeledwith an N for no-call. Figure Al
containsan exampleof the 2-D graphsof four setsof trace
data and the corresponding base calls.
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Table Al: Possible ConsensusCalls. A consensusall may be
one of the four bases,a gap, or one of 11 ambiguities
(combinations oA\, C, G, andT).

A adenine R GorA H notG

C cytosine Y TorC B notA

G guanine M AorC V notT

T thymine S Cor G D notC
K GorT

N ACGoT W TorA - gap

Whenthe smallfragmentshavebeensequencedheir
overlappingregionsarealignedin a fragment assembly.
The sequencédor the original segmenibf interestis the
consensusf thealignedsmallfragmentsThe problemof
determiningthe consensudor each column in the
fragmentassemblyis called consensus calling. In an
alignedcolumn theremaybetotalagreemenof basecalls
or somecalls may conflict with the others.A decision
mustbe madeto callthe consensuasa basgA, C, G, T),
asagap (indicatingan insertionin one of thesequences),
orasoneof 11 ambiguitiescombination®f A, C, G, and
T). TableAl lists possibleconsensusalls and FigureA2
illustratesan alignmentof fragmentsanda corresponding
consensus sequence.

Consensus  ...TGCMACGATCTATTGGK-TAAG.
... TGCCACGATCT

Aligned ... TGCAACGATCTATTGGT-TAAG..

Fragments .. TGCAACGATCTATTGGT-TAAG..

CGATCTATTGGGNTAAG...

Figure A2: Consensus Calling. Fourfragmentsare alignedby
their overlappingregions.Acrossthe top is the consensughat
hasbeencomputedor the fragmentsln additionto A, C, G, and
T calls,two ambiguougalls(M andK) andagap call havebeen
made.
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