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Abstract

As advances in technology result in the production of increasing amounts of DNA sequencing

data in decreasing amounts of time, it is imperative that computational methods are developed

that allow data analysis to keep pace. In this dissertation, I present methods that improve the

speed and accuracy of DNA fragment assembly.

One critical characteristic of automatic methods for fragment assembly is that they must be

accurate. Currently, to ensure accurate sequences, the data that underlies questionable base

calls must be examined by human editors so that the correct base call can be determined. This

manual process is both error-prone and time-consuming. Automatic methods that yield high

accuracy and few questionable calls can reduce errors and lessen the need for manual

inspections. In my work, I developed a method, Trace-Evidence, that automatically produces

highly accurate consensus sequences, even with few aligned sequences. 

Most assembly programs analyze only base calls when determining a consensus sequence.

The key to the high accuracy is that I incorporate morphological information about the

underlying ABI trace data. This is accomplished through a new representation of traces, Trace-

Class, that characterizes the height and shape of traces. The new representation not only yields

high accuracy when used in consensus-calling methods, but also produces improved results

when used in removing poor-quality data, and when used as inputs for neural networks for

consensus determination.

The need for fast processing is becoming more important as the size of sequencing projects

increases. Almost all existing fragment assembly programs perform pairwise comparisons of
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reads, resulting in execution times proportional to n2, where n is the number of reads. I

describe a new algorithm for fragment layout, SLIC, that runs in time proportional to n. SLIC

relies on subsequences of bases that occur in overlapping regions of fragment reads.

Subsequences that are common to two or more fragment reads are aligned to determine the

overall layout of reads.

The work I present provides improvements to currently available computational methods

for DNA sequencing that can serve as a foundation for further study in developing better

solutions to problems in fragment assembly.
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Chapter 1

Introduction

Are you a man or a mouse?

Actually, if you look deep down inside, at genomes residing in the depths of cells,  you will

find that the answer is not as obvious as you might guess. Human genomes, mouse genomes,

and, for that matter, the genomes of all organisms share a surprising similarity. As a matter of

fact, human genes for cell cycle and growth can be swapped without harm with those of an

extremely distant cousin, yeast (Green & Waterston 1991).

Genomes carry the totality of the genetic material for an organism. They are one or more

molecules of deoxyribonucleicacid, commonly known as DNA. Sequences composed of four

types of deoxynucleotide bases form DNA molecules. The four bases are: adenine (A),

cytosine (C), guanine (G), and thymine (T). Encoded in the base sequences are genes– the

blueprints for proteins that are responsible for the functions that enable us to grow and exist.

1.1 The Human Genome Project

Finding all the genes and discovering the functions of their proteins represent the Holy Grail of

knowledge for human life and health. Over 10 years ago, the United States, along with several

other countries, embarked on the search for this Holy Grail, christening it the Human Genome

Project (HGP). The task is ambitious; there are over three billion base pairs in the human

genome that embed approximately 100,000 genes. For fiscal year 1990, near the beginning of

1



the endeavor, the National Institutes of Health (NIH) and Department of Energy (DOE)

budgeted almost $90 million for the project, estimating that to reach their goal would

eventually require 15 years and about $3 billion (Goodman 1990).

From the start of the project, funding agencies recognized the need for computational

approaches to problems. Initially, twenty percent of monies budgeted for the HGP were

earmarked for research into bioinformatics and a Joint Informatics Task Force was formed

(Frenkel 1991). The purpose of the task force was to identify user needs, set goals, establish

research and development priorities, and to enhance the effectiveness of computational

solutions to genome informatics problems.

Clearly, computational solutions to problems in genomics are crucial to the success of the

HGP. Back in the early 1970s, it was a laborious task to determine the sequence of even a 25

base-pair sequence with confidence. After 1977, with the introduction of gel electrophoresis-

based sequencing technology (Maxam & Gilbert 1977, Sanger, Nicklen & Coulson 1977),

finding the sequence of several hundred base pairs became routine. Fast-forward to the present

and you will find that we now have the complete sequences of a number of organisms – C.

elegans(Wilson 1999), E. coli (Blattner et al. 1997), and Haemophilusinfuenzae(Sutton et

al. 1995), among them. In 1998, Dr. J. Craig Venter, Perkin-Elmer Corporation, and the

Institute for Genomic Research (TIGR), proposed to launch a joint venture that would

sequence the entire human genome inthreeyears(Marshall 1999). Inspired by this declaration,

the National Human Genome Research Institute moved up its target for completing the human

genome sequence by two years, to 2003 (Wade 1998).

Given the size and quantity of sequencing efforts and goals, the amount of data that must

be stored and analyzed is tremendous. Sequence data is stored in public and private databases

throughout the world. A public repository for annotated DNA sequence data is GenBank,

administered by the NIH (Benson et al. 1998). As of April 1999, GenBank alone contained

sequence data on over 2.5 billion bases (NCBI 1999); the thought of analyzing this much data

by hand is inconceivable.

Computational genomic data analysis tools have matured dramatically since their debut. In

the early years, methods to align DNA sequences were developed that became the necessary

cores of automatic sequence analysis. The goal of DNA sequence alignment is to align the
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bases in two or more sequences such that the number of mismatches is minimized.

Needleman-Wunschwas one of the original methods that made its appearance in 1970

(Needleman & Wunsch 1970). This technique uses dynamic programming to find an optimal

alignment for a pair of sequences. Since Needleman-Wunschwas introduced, a number of

refined and new alignment methods have emerged (Vogt, Etzold, & Argos 1995, Huang 1994,

Brutlag et al. 1993, Streletc et al. 1992, Berger & Munson 1991, Subbiah & Harrison 1989,

Johnson & Doolittle 1986, Boswell & McLachlan 1984, Fickett 1984, Smith & Waterman

1980).

Of course, aligning sequences is only one problem in genomics. Myriad other problems

must also be addressed. Among them are: base calling (e.g. Tibbetts, Bowling & Golden

1994), finding protein coding regions (e.g. Uberbacher & Mural 1991), differentiating exons

from introns (e.g. Chen & Zhang 1998), predicting protein structure (e.g. Rost & Sander

1993), identifying motifs (e.g. Sun et al. 1996), finding sequence homologies (e.g. Karplus,

Barrett & Hughey 1998), searching databases (e.g. Lavorgna et al. 1999), detecting protein

binding sites (e.g. Heumann, Lapedes & Stormo 1994), and finding RNA polymerase binding

sites (e.g. Pedersen & Engelbrecht 1995).

1.2 DNA Sequencing

Specific to my work, DNA sequencing presents numerous computational challenges since

segments of DNA longer than about a thousand bases cannot be sequenced directly. First,

smaller overlapping fragments of the DNA are sequenced. The overlapping regions of the

sequences are aligned and their consensusis the sequence of the original fragment. This

process is called fragmentassembly and is described in greater detail in Chapters 2 and 8.

Major steps in fragment assembly include: basecalling (interpreting output from sequencing

machines to call the sequence of bases), sequence layout (aligning overlapping base

sequences), and consensuscalling (determining the consensus of the aligned sequences).

Figure 1-1 illustrates an overview of the process of DNA sequencing.
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1. Duplicate

2. Sonicate

3. Sequence

✃

DNA

5. Layout

4. Call Bases

6. Call Consensus

GATTGC

A C T T T C G A A G T C GA G T T T C C A C G C C C
C G A A G T C G C T G CC C A C G C C C C G A C G
C T G C G AC G A C G G T C GC C T CC

A C T T T C G A A G T C GA G T T T C C A C G C C C
C G A A G T C G C T G CC C A C G C C C C G A C G

C T G C G AC G A C G G T C GC C T CC

A C T T T C G A A G T C GA G T T T C C A C G C C C
C G A A G T C G C T G CC C A C G C C C C G A C G

C T G C G AC G A C G G T C GC C T CC

A C T T T C G A A G T C GA G T T T C C A C G C C C C T G C G AC G A C G G T C GC C T CC

Figure 1-1. DNA Sequencing. The first three steps in DNA sequencing occur in
the laboratory where large fragments of DNA are duplicated and then broken into

smaller fragments that are sequenced individually. Computational methods are used in
steps 4 to 6. First the sequence of bases in the individual fragments is determined. The

base-call sequence of the individual fragments are overlapped and aligned and their
consensus is the sequence of the original fragment of DNA.
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A number of characteristics inherent in DNA and limitations in the chemistry of sequencing

reactions can hinder the completion of these steps. One problem is noise in the data; the data

output from a sequencing machine is not perfect, leading to miscalled bases, insertions, and

deletions in the base-call sequence. In addition, the fragments of DNA may still have vector

sequence (a fragment of DNA used to carry and replicate the fragment of interest)  at their ends

or even whole contaminant fragments not from the target of interest may be mixed in. One

significant problem that has yet to be effectively addressed is the occurrence of repeated

regions in genomes. All of these lead to difficulties in aligning the overlapping portions of

sequences and in determining the consensus sequence (Chapter 8).

An additional layer of complexity is added to problems in DNA sequencing as technology

produces not only much higher throughput from machines, but also allows the sequencing of

much larger fragments of DNA. As it becomes possible, the goal for many researchers

expands to sequencing larger fragments, and even whole genomes of DNA (Weber & Myers

1997). The amount of data that must be processed may be getting too large for current

software to handle in reasonable amounts of time. 

1.3 New Methods

In my work, I develop software for DNA sequencing directed at making DNA fragment

assembly fast and accurate. The need for fast processing is becoming more important as the

size of sequencing projects increases. Almost all existing programs perform pairwise

comparisons of fragment reads, resulting in execution times proportional to n2, where n is the

number of reads. With an n2 method, the assembly time may take years for a large project. In

this dissertation, I describe a new algorithm I developed for sequence layout, SLIC (Sequence

Layout into Contigs), that, in practice, runs in linear time with respect the the number of reads.

The SLIC layout algorithm relies on subsequences of bases, or mers, that occur in

overlapping regions of fragment reads. Mers that are common to two or more fragment reads

are aligned to determine the overall layout of reads. The premise is that large DNA fragments

contain many mers that occur only once (or infrequently) and that can be used to tag a relative

positions of fragment reads (Jain and Myers 1997).
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Another critical characteristic of automatic methods for fragment assembly is that they must

be accurate. Inaccurate sequences can lead to serious problems; the change, insertion, or

deletion of even a single base can result in a translated protein of dramatically different nature

than the true protein. Often, questionable sequence bases can be identified by computer

software. Human sequence-editors then visually inspect the underlying data for each of these

questionable calls and determine the correct base call. This manual editing is a real bottleneck

in the sequencing process. An even worse case is when a call that is incorrect is not identified

as suspicious. The sequence with the incorrect call is analyzed or deposited in a database while

containing the error. Automatic methods that yield high accuracy can greatly diminish the

number of errors and lessen the need for expensive manual inspections. The cost of

sequencing can also be reduced by the use of a consensus-calling method that is highly

accurate with fewer sequences. In my work, I developed a method, Trace-Evidence(Chapter

6), refined as Trace-EvidenceII(Chapter 8), that automatically produces highly accurate

consensus sequences, even with few aligned sequences. 

Most assembly programs analyze only the sequence of bases when determining the

consensus sequence for an alignment of fragment reads. The key to the high accuracy I realize

with the Trace-Evidencemethod is that I look beyond the base calls to the underlying data of

the sequence. As shown in Figure 1-2, the underlying data is in the form of a set of four

sequences of fluorescent-dye intensities, known as traces. The traces are output from

sequencing machines (such as the Perkin-Elmer Applied Bioysystems Inc. (ABI) 3700) and

are used for determining the base call sequences. As input to the Trace-Evidencemethod, I

have developed and refined a new representation of the traces, Trace-Class, that I use to

improve the accuracy of consensus sequences (Chapter 3).

The Trace-Classrepresentation and its various refinements are also useful in other

fragment-assembly tasks. For example, I obtain better quality assemblies when I use the

Trace-Classrepresentation in trimming poor quality data from the ends of sequences before

assembly (Chapter 4). This helps to eliminate some problems caused by noisy data containing

incorrect base calls. Also, when used as inputs for neural networks for consensus

determination, the Trace-Classrepresentation produces more accurate sequences than networks

that use only base calls as inputs (Chapter 7). In every problem for which I incorporated trace
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information via the Trace-Classrepresentation or one of its variants, I find improvement in the

results I obtain.

A TTTT CCCC A A TTTT TTTT G CCCC CCCC A TTTT CCCC TTTT CCCC CCCC G G TTTT A G TTTT CCCC CCCC CCCC A G CCCC TTTT G CCCC TTTT G CCCC A TTTT A

Figure 1-2. Fluorescent Trace Data. Sequences of fluorescent-dye intensities are

used to call the sequence of bases for a fragment of DNA. (Actual data shown.)

1.4 Thesis Statement

In this dissertation, I describe novel computational approaches to problems in DNA fragment

assembly. The hypothesis I put forward is that the accuracy and speed of DNA fragment

assembly may be increased by computational methods that incorporate fluorescent trace

information, and by the use of a fragment read layout algorithm that identifies and aligns

probable unique subsequences that are common to two or more fragment reads. In practice, the

layout algorithm executes in linear time with respect to the number of fragment reads.

1.5 Dissertation Organization

After background information on DNA sequencing is given in Chapter 2, the core of this

dissertation is organized into three broad sections: 1) definition of the new fluorescent trace

representation, 2) case studies utilizing the trace representation, and 3) methods for fragment

assembly. In Chapter 3 I define Trace-Class, the new representation of trace data. Next, a case

study applying it to trimming of low-quality sequence ends is covered in Chapter 4, and case

studies in consensus calling are in Chapters 5 through 7. In Chapter 5, the consensus calling

problem is defined, Chapter 6 describes an algorithmic technique, and Chapter 7 details a

neural network approach. Finally, the last section, spread among Chapters 8 to 11, describes

methods for fragment assembly. Chapter 8 defines fragment assembly, existing methods, and
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describes my new linear-time layout algorithm, SLIC, and its ancillary methods for fragment

assembly. In Chapter 9, I evaluate the effectiveness of SLIC and its companion methods by

comparing it to Phrap from the University of Washington and DNASTAR Inc.’s SeqManII.

Chapter 10 analyzes the computational complexity of SLIC. I then report additional related

research in Chapter 11, and outline conclusions and future work in Chapter 12. The chapters

are followed by four appendices: A is a glossary of biological terms, B contains pseudocode

for trimming algorithms, C lists pseudocode for assigning Trace-Class scores, and D is a

detailed definition of the SLIC algorithm. Finally, a list of references completes the

dissertation.
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Chapter 2

DNA-Sequencing Background

The focus of my research is computational methods for DNA sequencing – determining the

sequence of bases (A, C, G, and T) in DNA molecules. State-of-the-art sequencing systems,

such as the Perkin-Elmer Applied Biosystems Inc. (ABI) 3700, use fluorescent-dye labeling of

DNA fragments in their processes (Ansorge et al. 1986, Smith et al. 1986). Fluorescent-dye

sequencing technology will be described in this chapter. 

The goal of a sequencing effort may be as modest as determining the sequence of a small

fragment of DNA less than a kilobase (kb) long or as ambitious as sequencing an entire

genome. The sizes of genomes vary widely; a small genome is about a million bases long, the

sequence of a typical bacterial genome is millions of bases long, and there are over 3 billion

bases in the human genome. For clarity in this chapter, I will assume that the goal is to

sequence an entire genome with the understanding that genomemay refer to any large DNA

segment of interest. In brief, the sequencing procedure consists of producing overlapping

short fragments of the genome, sequencing each fragment, and finally aligning the overlapping

areas of the fragments to determine the overall sequence of the genome. The procedure of

breaking the genome and sequencing the smaller fragments is necessary because modern

technology only allows the sequencing fragments that are usually less than one kb long and the

segments of interest are generally much longer.
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2.1 Fragment Sequencing

Genomes consist of two strands of DNA that intertwine to form a double helix. The two

strands are held together by bonds between pairs of bases. Each of the four bases forms a pair

with a specific complementarybase: A pairs with T and C pairs with G. In a double helix, one

strand of DNA is the complement of the other and when DNA is replicated, the strands are

used as a templates for synthesizing complementary strands. Figure 2-1 illustrates a double

strand of DNA and its replication.

To sequence an individual fragment, first a set of sub-fragments needs to be produced.

Building upon primer fragments (short fragments of DNA used to prime replication), the set is

generated through DNA replication. At each replication step, deoxynucleotides (A, G, C, and

T) and dideoxynucleotides (A*, G*, C*, and T*) compete for addition to a growing sequence.

Deoxynucleotides permit elongation whereas dideoxynucleotides terminate replication (Prober

et al. 1987). The result is a set of sub-fragments that encompasses all possible lengths (except

those of the initial primer).

Each dideoxynucleotide that terminates a sub-fragment is labeled with a fluorescent dye.

Since a different dye labels each of the the four bases, all sub-fragments of a given length are

labeled with the same dye. (A dye-primer labeling method also exists, but will not be described

here (Ansorge et al. 1986).) Figure 2-2 shows an example of a fragment sequence and its

corresponding set of sub-fragments.

The set of labeled sub-fragments is placed on a plate of polyacrylamide gel and a voltage is

applied. The current induces the migration of sub-fragments through the gel. Since smaller

pieces of DNA migrate more quickly than larger ones, the sub-fragments become separated by

size. The fluorescent labeling then provides the means for determining the fragment sequence.
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Figure 2-1. DNA Replication. DNA forms a double helix where each base pairs

with its complement: T bonds with A and C bonds with G. Each strand serves as a
template during replication.
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Fragment: CTTGCTACCCTTCGGA

+ Primer: GAACG

+ Deoxynucleotides: A, G, C, and T

+ Dideoxynucleotides: A*, G*, C*, and T*

Yields   ➔

Complementary sub-fragments:
GAACGA*

GAACGAT*

GAACGATG*

GAACGATGG*

GAACGATGGG*

GAACGATGGGA*

GAACGATGGGAA*

GAACGATGGGAAG*

GAACGATGGGAAGC*

GAACGATGGGAAGCC*

GAACGATGGGAAGCCT*

Figure 2-2. DNA Sub-Fragments. Quantities of deoxynucleotides, and dye-

labeled dideoxynucleotide terminators are added to copies of a fragment to produce a
set of sub-fragments. The asterisks designate fluorescently labeled dideoxynucleotide

terminators.

A detection device in the sequencing machine reads the intensity trace of each of the four

fluorescent dyes as the sub-fragments migrate past. This process is called reading the trace,

and the data produced are called traces. There is one set of trace data for each of the four

fluorescent dyes. Although each trace is composed of discrete measurements, the points can be

interpolated to form a continuous curve. A simplified diagram of an automated DNA sequencer

is in Figure 2-3.
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Volt +

Volt -

detector

A*

C*

G*

T*

sub-fragments

polyacrylamide gel

computer data storage

Figure 2-3. DNA Sequencer. DNA sub-fragments are placed on a plate of

polyacrylamide gel and an electric current is applied. Fragments in order from smallest
to largest migrate past a detection device. The detector reads the fluorescent intensity of

each of the four dyes. A computer records the sequence of intensities that are
subsequently used for determining the base call sequence of the fragment.

2.2 Base Calling

The traces are used by base-calling software to determine the sequence of bases in the

fragment; this is referred to as base calling. The four sets of traces are kept synchronized as

they are scanned during base calling. The base caller expects to call a base at fairly regular

intervals and calls one base for each of these intervals in a trace (Perkin-Elmer 1995). There

are usually about 10 to 15 trace data points per interval, and a record is kept of the points at

which the calls are made.

A sequence of base calls and corresponding trace graphs and sequence of intensities are

depicted in Figure 2-4. The sequencer calls the bases in order from the beginning (called the

5’ end) to the end (3’ end) of the sequence. Calls are made by examining the values of the
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traces. Ideally, the trace values for only one base form a distinct peak. In this case, the base

corresponding to that trace is the one that is called. Sometimes the traces for two or more bases

form similar peaks. In this case, the sequencer makes a no-calland labels the base with an N.

The goal is to obtain the exact sequence of bases that is the complement of the fragment. In

practice, the accuracy of the base calls made by sequencers is 98-99% for the first several

hundred bases (Chen 1994, Kelley 1994). (In personal observations, I see that in many

sequencing runs, the first 0 to 50base calls also have lower accuracy.)

Trace Graphs

AAAA T AAAA AAAA CCCC CCCC AAAA T T AAAA T G AAAA CCCC AAAA AAAA T AAAA NNNN AAAA AAAA AAAA AAAA AAAA CCCC AAAA CCCC G AAAA AAAA AAAA G

Base Calls

Trace intensities
A: 344 89 50 199 420 633 389 167 40 23 11 2 0 0 0 0 0 0 0 0 …
C: 0 12 34 39 42 45 33 12 180 404 654 920 789 670 556 887…
G: 87 50 35 23 12 3 25 49 106 208 324 207 135 88 47 18 6 10…
T: 12 4 33 77 10 6 2 0 0 4 23 26 22 5 5 3 1 0 0 0 0 0 0 0 0 0 0…

Figure 2-4. Trace Graphs, Base Calls, and Intensities. Automatic base

callers scan sequences of intensities, calling the base that is associated with the trace
with the highest peak intensity. The shaded base is a no-call labeled with an N since

two peaks are similar and the correct call is not obvious. (Actual trace graphs and base
calls shown.)

2.3 Fragment Assembly

Once all the fragments of the original genome have been sequenced, the fragments are

assembledinto larger segments (McCombie & Martin-Gallardo 1994, Myers 1994, Rowen &

Koop 1994). The fragments overlap, so an assembly is produced by aligning the overlapping
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regions of the sequences. The goal of DNA sequence alignment is to align the bases in two or

more sequences such that the number of mismatched bases in a column is minimized. Both the

commonly used Needleman-Wunsch(Needleman & Wunsch 1970) and Smith-Waterman

(Smith & Waterman 1980) alignment methods use dynamic programming to find an alignment

between two sequences. In an alignment, the bases aligned in a column are used to determine

the consensuscall of the column. Ordered by columns, the consensus base calls for the

columns form the overall consensus sequence for an alignment (see Figure 2-5). To make a

multiple alignment, a greedy approach may be used in which sequence reads are added one at a

time to a growing alignment. To add a read, a pairwise alignment is formed between the read

and the consensus sequence of the alignment. When all sequences have been overlapped and

aligned, the alignment forms a contiguous sequence of DNA that is known as a contig(Staden

1980). The base call sequence of a contig is its consensus sequence. 

Consensus: ACGAGCGGGCAGACAGCATTCGACACGCCCATGTACGCCAATGGGT
_________________________________________________________________________________________________________________________________________________________________

ACGAGCGGGCAGACAGCATTCGACACGCC

AGACAGCATTCGACACGCCCATGTAC

ACACGCCCATGTACGCCAATGGGT

Figure 2 - 5 . Column Consensus Calls. Three sequences in a multiple alignment

are listed horizontally. The consensus sequence is computed by making a consensus
call for each column in the alignment. 

When sequences are assembled that contain errors, there are base locations where

sequences align but do not agree completely (McCombie & Martin-Gallardo 1994). A

consensus base call in these cases may be assigned one of 12 ambiguitycodesas listed in

Table 2-1. (An ambiguityis any call that is not A, G, C, nor T.) In some cases, it is necessary

to insert a gap (indicated by a hyphen) in a sequence to optimize the alignment. A gap indicates

that either a base is missing from the sequence of base calls (a deletion) or that a false base has

been called in one or more of the aligned sequences (an insertion). Figure 2-6 portrays a

multiple sequence alignment of overlapping fragment reads containing some gaps and

ambiguities.
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Table 2-1. Base Ambiguity Codes.

Base Code Base Code

A or G R C or T V

A or T W not A B

A or C M not C D

G or T K not G H

G or C S not T V

In an ideal assembly where the data is flawless and available, the sequences align to form

one contig and each consensus base call is A, G, C, or T. In fact, this is rarely the case.

Difficulties inherent in the preparation and sequencing of fragments lead to incorrect base calls.

Also, the quality of the traces becomes progressively worse near the end of the fragment.

Many more incorrect calls and no-calls are in this region (Kelley 1994, Perkin-Elmer 1995).

Consensus: CACATACTTACGGCGRGGACAGCATTCGACAGBCCATGACGGATTTT
_____________________________________________________________________________________________________________________________________________________________________

CACATACTTACGCCCGGGACAGCATTCGAC-GGCCATGACGGATTTT

CGGCGAGG-CAGCATTCGACAGTCC-TGACGGATTT

TACTTACGGCGAGGACAGCCTTCGACACCCCATG-CGGAT

CATAC-TACGGGGGGGACAGCAT-CGACAGCCCATGA

Figure 2-6. DNA Sequence Alignment. Four overlapping fragments are aligned
and gapped to determine the sequence of a segment of DNA. Ambiguous calls occur in

the consensus for columns (in gray) that are not in total agreement. The base sequence
of this contig is the consensus of the aligned fragments.

A particularly difficult problem is introduced into the assembly process by subsequences

that occur more than once in a genome. These subsequences are called repeatsor repetitive
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elements. When fragment sequences contain repeated elements, their placement in a contig is

not clearly defined. Figure 2-7 illustrates this problem. Some repeats are exact duplicates of

others, while others contains some variance. Repeats vary both in length and in number of

tandem occurrences. Those that are less than a fragment read in length are fairly straight

forward to handle, since flanking sequences can be used to position overlaps. Longer repeats

make finding correct overlaps far more difficult. Although most established assembly

programs address repeats with varying amounts of sophistication and success, the problem is

far from solved.

TTTT CCCCTTTT CCCCTTTT GGGG CCCCTTTT GGGGAAAACCCCTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTTGGGGTTTTCCCCTTTTTTTT GGGG CCCCTTTT TTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTT

TTTTTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTTGGGGTTTTCCCCTTTTTTTT
TTTTAAAACCCCTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTT GGGG CCCCTTTT

TTTTCCCCGGGG CCCCTTTT TTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTTAAAA
TTTT CCCCTTTT CCCCTTTT GGGG CCCCGGGGTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTT

TTTTTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTTGGGGTTTTCCCCTTTTTTTT
TTTTAAAACCCCTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTT GGGG CCCCTTTT

TTTTCCCCGGGG CCCCTTTT TTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTTAAAA
TTTT CCCCTTTT CCCCTTTT GGGG CCCCGGGGTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTT

TTTTAAAACCCCTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTT GGGG CCCCTTTT
TTTTCCCCGGGG CCCCTTTT TTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTTAAAA

TTTTTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTTGGGGTTTTCCCCTTTTTTTT
TTTT CCCCTTTT CCCCTTTT GGGG CCCCGGGGTTTTGGGG AAAACCCCTTTTGGGG AAAACCCCTTTT

Genome

Sequence Reads

Layout

or

Figure 2-7. Repeated Subsequences. A fictitious genome contains a
subsequence that is repeated (shown in gray). Two layouts are possible when

overlapping the repeated regions in the sequence reads. One layout results in a single
contig (the correct layout), and the other in two contigs. 

2.4 Manual Editing
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In general, after assembly human editors resolve ambiguous calls to one of the four bases

before analysis or submission to GenBank. Ambiguous calls serve to focus editors’ attention

on areas in the consensus that warrant closer examination. Manual editing is a time-consuming

task performed by human sequence-editors that entails visual analysis of the assembly and data

(Rowen & Koop 1994). 

As an example of manual editing decisions, in Figure 2-8, three sequences have been

aligned and the consensus computed. In the shaded column the first and third sequence have

been called as a T and the second as a C, resulting in an ambiguous consensus call of Y (C or

T). An editor examines the traces associated with the sequences and observes not only that

overall the trace is quite good for the first and third sequences, but also that the T peaks in the

column are sharp and well-defined. In contrast, the trace for the second sequence is not as

good and furthermore, the C peak is not well-defined. Given this evidence, an editor is likely

to assign a T to the consensus call in this column. As the size of sequencing projects

continually grows, it becomes increasingly important to reduce the need for these kinds of

costly manual operations (McCombie & Martin-Gallardo 1994, Rowen & Koop 1994).

2.5 Summary

Modern sequencing machines can only determine the sequence of DNA fragments of at most

one kb. The machine produces a trace of the dye intensities for each of the four bases while

scanning fluorescent-dye labeled sub-fragments as they migrate past a detection device. Base-

calling software scans the four traces in unison to detect high-intensity peaks. Processed in

order of migration time, the bases associated with the peaks form the sequence of bases in a

fragment. This process is known as basecalling. The fragment reads are joined into larger

contiguous segments of DNA (contigs) by aligning overlapping regions of the reads. The

sequence of a contig is the consensusof its aligned reads. Some difficulties in aligning and

determining the consensus sequence are introduced by errors in base calling. Unless reliable

automatic methods are available, these and other difficulties discussed in later chapters must be

corrected by human editors. Since manual editing is time-consuming and error-prone, a

worthwhile task is to develop useful automatic methods.
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Screen shot from DNASTAR Inc.’s SeqManII

Figure 2-8. Manual Editing. Three sequences have been aligned. The shaded

column contains conflicting base calls resulting in an ambiguous consensus. Human
editors examine the traces and resolve the ambiguity.
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Chapter 3

DNA Fluorescent-Trace Representation

One of my important goals is to reduce the expense and increase the accuracy of sequencing by

improving the quality of automatic assemblies. I believe that this may be accomplished by the

direct incorporation of fluorescent-dye trace information into automatic processes. This

solution requires an appropriate representation of the traces. Since existing representations

were inadequate for this purpose, the focus of this portion of my research is to develop a

representation of trace data that is descriptive, yet easy to incorporate into automatic

sequencing tasks.

3.1 Existing Representations

Three fundamental tasks in DNA sequencing utilize traces; each uses a different representation

of the traces. The tasks are: base calling, fragment assembly, and manual editing. A brief

overview of each task follows.

A detailed representation of trace data is as a sequence of fluorescent-dye intensities. The

sequence for each base call lists about 10 to 15 intensity values. The sequence of intensities is

the representation used in base calling. Base calling is a straightforward task with traces that

contain peaks that are well-defined and scaled high. The base caller can simply call the bases

(A, C, G, or T) that are associated with the highest peak intensities. In cases where a call must

be made, but two or more peaks are similar, the base caller makes a no-calland labels the base
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with an N.

A second representation of trace data is a sequences of base calls. This forms a much

simplified representation that is used in automatic fragment assembly programs. Virtually all

assembly programs align sequences of bases so that their consensus can be computed. Figure

3-1 shows an example of sequences aligned in an assembly.

Screen shot from DNASTAR Inc.’s SeqManII

Figure 3-1. DNA Fragment Assembly. Automatic fragment assembly programs
align overlapping sequences and compute their consensus. In this example, 11

sequences have been aligned and their consensus appears across the top.

The third representation of traces is as 2-D graphs made by interpolating the sequence of

trace intensities. The graphs are studied by human editors to assist in resolving ambiguous

calls, fine-tuning alignments, and merging contigs (Rowen & Koop 1994). The trace data

output from an ABI DNA sequencer is found in the data files of the ABI Analysisprogram.

There are four sets of data for a fragment of DNA – one for each of the four fluorescent dyes.

The traces appear in two forms; one is a sequence of raw intensities, and in the other, the data

has been processed via a proprietary algorithm such that trace peaks are more distinct and

uniform. It is the processed data that is used to produce the graphs that are made available to

users of fragment assembly programs such as DNASTAR Inc.’s SeqmanII, Gene Codes’s
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Sequencher, and PhrapViewfrom the University of Washington.

The goal is to reduce the need for time-consuming and expensive manual editing processes.

My premise is that this can be accomplished by the direct analysis of trace characteristics in

automatic processes. I examined the decisions made by human editors and observed that most

of their decisions are quite straightforward. I believe that with proper input representations,

many such decisions can be made automatically. The problem is that current representations

are inadequate for incorporation into automatic processes. Sequences of intensities are

cumbersome and undescriptive, sequences of base calls are too coarse and crucial information

is lost, and 2-D graphs are extremely complex to incorporate directly. My approach is to define

a new representation that captures the same information used by editors in their work in such a

way that it can be easily incorporated into automated tasks.

3.2 Trace-Class

My personal observation is that while studying traces, human editors pay particular attention to

the relative intensities and characteristic shapes of trace data. It is a measure of these shapes

and relative intensities found in the 2-D graphs of processed ABI data that I describe in my

new representation. By representing this information, I can make available to an assembly

program the same information that is available to editors. I call the new representation Trace-

Class(Allex et al.1996).

For my new Trace-Classrepresentation, I am interested in classifying the shape and

intensity of the local trace data that is used for each particular base call. I define this local trace

data to be the data from midway between the previous call and the current call to the data

midway between the current call and the next call (Figure 3-2). I will refer to each of these

intervals of data as base trace-data. Each set of base trace-data is composed of about 10 to 15

data points representing the intensities of the fluorescent dyes.

In examining the discrete regions of data associated with a single base call, I observe six

basic shapes. For the Trace-Class representation, I classify base trace-data according to these

six shapes. Figure 3-3 illustrates the six classes and the criteria used to distinguish among

them. There are three peakclasses and three valley classes defined by curvature. At the base
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call location, peaks have negative curvature and valleys have positive curvature. Peak and

valley classes each come in three varieties: strong, medium, and weak. Whereas peaks and

valleys are differentiated by curvature, slope distinguishes among strong, medium, and weak

character. Strong is characterized by a change in the sign of the slope, medium is characterized

by the occurrence of a shoulder with a slope of zero, and weak has neither a change in sign nor

an area of zero slope.

GGGGGGGG T

AAAA
C
GGGG
T

Figure 3-2. Base Trace-Data. The new Trace-Classrepresentation is designed to

capture the visual characteristics of the trace data for a single base call as shown in the
shaded region.

Peak
negative
curvature

Valley
positive

curvature

change in 
sign of slope

Strong
otherwise

Weak
shoulder with 

zero slope

Medium

Figure 3-3. Stereotypical Trace-Classes. Peaksand valleys are defined by
curvature, and strong, medium, and weakclasses are defined by slope. The gray line

indicates the location of the base call.

I believe that too much information would be lost by simply assigning to base trace-data the

single class that best characterizes it. Rather, to each of the six classes I assign a score from 0
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to 100 that reflects the amount of character of that class that is exhibited by the data. Figure 3-4

presents examples of scores that are assigned to various peak shapes (valley scores are omitted

for clarity). The scores are on a continuum, so that any pair of adjacent scores that sum to 100

is possible. In fact, the scores may sum to less than 100 since they are also adjusted to reflect

the distance from the base call location and intensity relative to the other three traces.

Strong

Med

Weak

100

0

0

50

50

0

0

50

50

0

0

100

Shape

Class

0

100

0

Figure 3-4. Peak Score Examples. As the descending slope increases, the scores

change from 100% strong to 50/50% strong/medium, to 100% medium, and so on.

The trace data associated with a single base may contain a peak, or a valley, or both a peak

and a valley. The base is called at a particular point in the trace data – I assign scores for both

the peak and the valley that are the closest to this location. The class scores are weighted by

proximity to the base-call location. Peaks or valleys that are closer to where the base is called

have a relatively higher score than those that are further away.

Sometimes I may need to make comparisons among the four sets of trace data associated

with a single base call. For this situation, the class scores are adjusted to reflect the relative

differences among the intensities (heights) of the A, C, G, and T peaks or valleys; higher

peaks score higher than lower peaks, and lower valleys score higher than higher valleys.
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3 . 2 . 1 Algorithmic Details

The sequence of trace data points is scanned for strong peaks and valleys, then for medium

peaks and valleys, and finally, if neither of these is found, a weak peak or valley is assumed.

These steps are summarized next and in Appendix B. 

Assign Trace-Class Scores

Assign Strong and Medium Scores

If no scores assigned then

Assign Medium and Weak Scores

If no scores assigned then

Assign Weak Scores

Since multiple peaks or valleys may exist in the data, at each step, I look for the peak and

valley that are the closest to the point where the base was called. Scores are assigned based on

proximity to the base-call location, relative intensity, and on the amount of strong, medium,

and weak character exhibited. 

Each class score is adjusted as it is computed to reflect the proximity of a peak or valley to

the location where the base is called. The scores are adjusted as follows.

Snew =  Sold * (1 - |E - B | / N)

where
S is aTrace-Class score

E is the location of the peak or valley
B is the locationof the base call

N is the numberof base trace-data points

Peaks and valleys that are closer to where the base is called get higher scores since they are the

ones that are most likely to have been detected by the base calling software.

After the Trace-Classscores have been computed for all four sets of trace data for a base,

the scores are modified to account for the relative intensity differences among them. The

following formulas accomplish this.

Pnew = Pold * (P / max(T))

Vnew = Vold* (1 - V / max(T))
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where

P is a strong, medium, or weak peak score

V is a strong, medium, or weak valley score

T is the set of four base trace-data values

Higher peaks and lower valleys get higher scores.

I first examine the data for strong peaks or valleys. An overview of the algorithm is given

next; pseudocode details are contained in Appendix B. 

Assign Strong and Medium Scores

For each trace data point

Compare previous slope to current slope

If the slope goes from positive to negative, a peak is found then

If this peak is closer to base call location than any previous then

Save this peak

Else if the slope goes from negative to positive, a valley is found then

If this valley is closer to base call location than any previous then

Save this valley

If a peak was found then

Assign SP and MP scores

Adjust scores for peak distance from base call location

If a valley was found then

Assign SV and MV scores

Adjust scores for valley distance from base call location

A strong peak is detected when there is a change from a positive to a negative slope, and

likewise, a strong valley is detected when there is a change from a negative to a positive slope.

The slopes are measured as the change in intensity from one data point to the next. In my

observations, this sensitive measure of change in direction works well since the ABI data has

been smoothed during processing; insignificant changes in the direction of the slope rarely

occur. If a strong peak or valley is found, it must be checked for amount of strong and

medium character. Peaks that start at the baseline (zero intensity) and return to the baseline are
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scored as 100% strong and 0% medium. The same is true for valleys that start at the maximum

intensity, descend to the baseline, and return to the maximum intensity. Any other peaks or

valleys found in this step possess a combination of strong and medium strengths.

To calculate the strong and medium scores, I measure the local size of the peaks and

valleys. I do this by looking on either side of the peak or valley to find extremes where the

slopes again change directions (changing from positive to negative or vice-versa). If there is no

change on one or both sides, the first and/or last intensity value(s) are used. The intensities at

the extreme locations are used in determining the fraction of the total height of the local area

that is the peak or valley. Three local extremes are thus used in the calculation: one at the center

of the peak or valley, and one to each side. The scores for strong and medium classes are

computed as follows.

SP = 100 * (E - (L + R) / 2) / E 

MP = 100 - SP
SV = 100 * ((L + R) / 2 - E) / (L + R) / 2 

MV = 100 - S V
where 

SP is a strong peak score
MP is a medium peak score

S V is a strong valley score
MV is a medium valley score

E is the value at the peak or valley location
L is the value of the extreme to the left of the E location

R is the value of the extreme to the right ofthe E location

An example of some data and strong and medium scores are shown in Figure 3-5. In the

new Trace-Class representation, a peak that is 82% strong and 18% medium is at the base-call

location. A valley with 40% strong and 42% medium strength has been detected to the left of

where the base was called. The valley scores have been adjusted to reflect that the valley is

offset from the base-call location.
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Location Value
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Strong Peak  82

Medium Peak  18

Strong Valley  40  (49)

Medium Valley  42  (51)

PL        

VR 

VE  

VL         PE  peak extreme
PL  peak left extreme
PR  peak right extreme
VE  valley extreme
VL  valley left extreme
VR  valley right extreme

Figure 3-5. Trace-ClassStrong/Medium Scores. A base has been called at

point 7 (at the gray line). A strong peak is detected at that point and its left extreme is at
point 5 where the slope changes direction. Since there is no change in the slope

direction to the right of the peak, the last point, 11, is the location of the right extreme.
(The peak at point 4 is not scored since the peak at 7 is closer to the base call location.)

The peak scores are calculated as:

SP= 100 * (1536 - (528 + 31)/2)/1536 = 82

MP = 100 - 82 = 18

Since the peak is located where the base is called, the scores are not adjusted for

distance.

A valley and its right and left extremes are at points 5, 4, and 7, respectively. The

valley scores are calculated as:

S V= 100 * ((551 + 1536)/2 - 528)/(551 + 1536) /2 = 49

MV = 100 - 49 = 51

The valley scores have been adjusted to reflect the distance of the valley from the point

where the base was called. (The scores prior to adjustment are in parentheses.) The
adjustment calculation is:

S V= 49 * (1 - |5 - 7| /11) = 40

MV = 51 * (1 - |5 - 7| /11) = 42

28



If no strong peaks or valleys are found, the data is scanned for peaks or valleys of medium

strength. An overview of the algorithm is listed next; pseudocode detailing the calculations is

contained in Appendix B.

Assign Medium and Weak Scores

For each trace data point

Compare previous slope and current slope

If the slope decreases (a peak is found) then

If an increasing slope (a valley) was previously found then

If the peak is closer to base call location than any previous then

Save this peak

If the previous increasing slope is closer to base call location

than any previous valley then

Save the increasing slope location as a valley

Else if slope increases (a valley is found) then

If a decreasing slope (a peak) was previously found then

If the valley is closer to base call location than any previous then

Save this valley

If the previous decreasing slope is closer to base call location

than any previous peak then

Save the decreasing slope location as a peak

If a peak was found then

Assign WP and MP scores

Adjust scores for peak distance from base call location

If a valley was found then

Assign WV and MV scores

Adjust scores for valley distance from base call location

A medium peak is found when a decreasing slope is found that is either preceded or

followed by an increasing slope (a valley). The peak is located at the point where the largest

change in slope occurs in the decreasing slope. Likewise, if an increasing slope is preceded or

followed by a decreasing slope (a peak), a valley is identified. The location of the valley is at
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the point where the largest change in slope occurs in the increasing slope.

If a medium peak or valley is found, the amount of medium and weak character is

computed. To assign medium and weak strengths I determine the fraction of the overall height

of the local area that is the peak or valley. I do this by first finding the locations of the

preceding or following peak (for valley scores) or valley (for peak scores). Often, there is not

both a preceding and following peak or valley. In this case, the first or last data point location

is used. The intensities at these locations and that of the peak or valley are the three locations

used in the following calculation of medium and weak scores.

WP = 100 * (max(L,R) - E) / max(L,R) 

MP = 100 - WP
W V = 100 * (E - min(L,R)) / E 

MV = 100 - WV
where 

MP is a medium peak score
WP is a weak peak score

MV is a medium valley score
W V is a weak valley score

E is the value at the peak or valley location
L is the value at the increasing or decreasing slope to the left ofthe E location

R is the value at the increasing or decreasing slope to the right ofthe E location

The computation of the medium class scores defined here do not conflict with the

computation given for assigning strong and medium scores since medium and weak scores

will not be calculated if strong and medium scores were already calculated in the previous step. 

An example of the medium and weak scores calculated for some data is shown in Figure 3-

6. A peak that is 85% medium and 5% weak is detected at the left of the base-call location. A

valley with 77% medium and 5% weak strength has been detected to the right of where the

base was called. The peak and valley scores have been adjusted to reflect that they are offset

from the base-call location.
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Figure 3-6. Trace-Class Medium/Weak Scores. A base has been called at
point 7 (at the gray line). A medium peak is detected at point 6 and the locations of its

left and right slope extremes are points 3 and 9 respectively. The peak scores are
calculated as:

WP= 100 * (max(250, 911) - 852)/max(250, 911) = 6

MP = 100 - 6 = 94

A medium valley is detected at point 9 and its left extreme is at point 6 where a
decreasing slope (peak) is found. Since there is no decreasing slope (peak) to the right

of the valley, the last point, 11, is the location of the right extreme.

W V= 100 * (911- min(852, 1588))/911 = 6

MV = 100 - 6 = 94

Both the peak and the valley scores have been adjusted to reflect their distances

from the point where the base was called. (The scores prior to adjustment are in
parentheses.) The scores are adjusted as:

WP= 6 * (1 - |6 - 7| /11) = 5

MP = 94 * (1 - |6 - 7| /11) = 85

WP= 6 * (1 - |9 - 7| /11) = 5

MP = 94 * (1 - |9 - 7| /11) = 77
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Finally, if the data has not yet been classified in the strong or medium assignment steps, a

weak peak or valley is assumed and assigned a 100% weak score. The algorithm is listed next;

detailed pseudocode is in Appendix B. 

Assign Weak Scores

Compare slopes preceding and succeeding the base call location

If previous slope is greater than succeeding slope, a peak is found then

Assign WP score

Else if previous slope is less than succeeding slope, a valley is found then

Assign WV score

Partial weak and medium scores are not assigned here since that would have been done in

the previous step. Figure 3-7 illustrates the assignment of weak scores to sample data.
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Weak Peak  100

Weak Valley  0

Figure 3-7. Trace-ClassWeak Scores. A base has been called at point 6 (at the

gray line). The trace has a decreasing slope at point 6, so a weak peak score of 100% is
assigned.

Each class in the Trace-Classrepresentation is now assigned a score between 0 and 100.

For some applications, I may need to use a simpler representation of a Trace-Class. For these
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cases I choose the single class that best characterizes the data. This class, the characteristic

class,is assigned by first selecting peak or valley according to which has the higher sum of

scores, and then strong, medium, or weak according to which has the highest score. For

example, if a set of trace data is assigned scores of SP=75, MP=14, WP=0, SV=0, MV=11,

and WV=3, peak has the higher sum of scores (75 + 14 + 0 = 89) compared to valley (0 + 11

+ 3 = 14), and the highest scoring class is strong (75). Given this, the single characteristic

class is strong peak. 

3.2.2 Base-Call Weights
One of my uses for Trace-Classscores is to aid in determining the local quality of the trace

surrounding each base. The quality of traces can vary widely both among and within traces.

Since I incorporate trace information into automatic processes, it is important that I take these

quality differences into consideration. In making decisions, I want to give more weight to

information that comes from more reliable (higher quality) traces. To facilitate this goal, I

assign a weight score to each base call that reflects the quality of the trace in the locality of the

base.

I use the Trace-Classscores as an indicator of trace quality. My premise is that base calls

that are highly reliable are made from trace peaks that are sharp and well-defined – those that

classify as strong peaks. Base calls made from base trace-data that classify as medium peaks

are less reliable, and those made from weak peaks or valleys are even less reliable. Therefore,

to determine quality, I examine the Trace-Classscores for the traces associated with the called

bases. (For example, if the sequence of bases has been called as GGTACG, only the Trace-

Classscores for the corresponding G, G, T, A, C, and G traces are calculated.) If the strong

peak scores are high, it is likely that the trace is of good quality – the higher the scores, the

better the quality of the data. On the other hand, if the bases have been called with low peak

scores or valley scores, the base calls are not as obvious and the data is likely to be less reliable

and of lower quality. Figure 3-8 compares the relative quality of some traces.
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CCCC A A A TTTT TTTT CCCC AAAA G G G G NA TTTT TTTT TTTT TTTT CCCC G G TTTT G G G G

CCCC A A A TTTT TTTT CCCC AAAA G TTTT G G TTTT A CCCC TTTT TTTT TTTT CCCC G G TTTT CCCC G TTTT G

A

CCCC

G
TTTT

Figure 3-8. Quality of Trace Data. In the top sequence, the trace associated with

each called base exhibits a sharp well-defined peak. The corresponding Trace-Class
scores all show high strong peak scores. In contrast, the traces in the bottom sequence

are flattened and overlapping; corresponding strong peak scores are generally much
lower. The top sequence is much more reliable and is of high quality. (Actual data

shown.)

For use in my calculations of weights, I define a constant summary vector, V, so that

classes (such as SP) that imply better-quality data for a base are given higher values than those

(such as S V) that imply lower-quality data. The definition follows.

Let

V =  [VSP VMP VWP VWV VMV VSV ]

where

Vi is the multiplier for class i 

and

1  ≥  VSP ≥  VMP ≥  VWP ≥  VWV ≥  VMV ≥  VSV ≥  0

In upcoming sections I describe work that uses weights. While performing tests for the

work, I find that V = [1 .67 .33 0 0 0] yields good results. Using this definition, the weights,

W, are between 0 and 100 since peak classification scores sum to 100 or less. I chose this

summary vector from among those listed in Table 3-1. I chose these vectors for evaluation
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because they all conform to the restriction1 ≥ VSP ≥ VMP ≥ VWP≥ VW V≥ VM V ≥ VS V ≥ 0,

while varying the emphasis on the scores for different classes. Two of the vectors, described

in the table as Linear Peaksand Parabolic Peaks, assign zero values to the three valley classes.

I find that these vectors consistently outperformed the others (results not reported). This

indicates that not only do peak scores contain sufficient information, but also that valleys in a

trace rarely or never suggest a base call corresponding to the trace.

Once a summary vector has been set, a weight for each base can be determined. Rather

than assigning a score that only reflects the quality of a single base, I set scores that indicate

the quality of the trace in the local area surrounding a base. To do this, I calculate values for

each individual base in a window surrounding the base of interest and then average the values.

Specifically, the weight of the data for each sequence in a column is calculated as follows.

1. For each base, i, in a window of size n centered on the base of interest,

calculate the vector of Trace-Class scores, Si , for the trace associated with

the base that has been called:

Si = [SPi MPi WPi WVi MVi SVi ]

2. The dot product of Si and V produces a quality measure, Wi , for base i :

Wi = Si • V

3. Average the measures to produce an overall quality score, W, for the base at

the center of the window:

W   =  (W1 + W2 + … + Wn)  /   n

Figure 3-9 contains an example calculation of a weight for a window size,n, of 3.
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Table 3-1. Potential Summary Vectors.

Description Function Graph V
(summary vector)

Linear   V i = 5 – i
5

SP MPWPWVMVSV

[ 1 .8 .6 .4 .2 0 ]

Linear Peaks   
V i = max 0,3 – i

3

SVSP MPWPWVMV

[ 1 .67 .33 0 0 0 ]

Parabolic
  

V i = 5 – i
5

2

SP SVMPWPWVMV

[ 1 .64 .36 .16 .04 0 ]

Parabolic
Peaks

  
V i = max 0,3 – i

3

2

SPMP WPWVMVSV

[ 1 .44 .11 0 0 0 ]

Trigonometric      
V i =

cos π
5

i + 1

2

SPMPWPWVMVSV

[ 1 .9 .65 .35 .1 0 ]
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For the center base, 
W = 68.

Total   
W   68

204

SP MP WP WV MV SV

CCCC 0 59 41 2 8 0 53

CCCC 83 17 0 1 5 0 94

TTTT 43 21 0 0 2 7 57

S •V 

CCCC    CCCC    TTTT    

TTTT
CCCC

Figure 3-9. Weight Calculation. In this example, the window size, n, is 3 bases.

(The actual value of n in my work is 21, a value found to work well in experiments –
results unreported.) I want to calculate the weight score, W, for the center base, C.

Three sets of Trace-Class scores, S, have been calculated: one for each of the C traces
corresponding to the first two C base calls, and a third for the T trace data associated

with the T call. The dot product of each set of scores with the summary vector ([1 .67
.33 0 0 0 ]) is computed. The average of the three is the weight for the C base in the

center of the window.

Figure 3-10 graphs an actual example of the computed weight values of data as a function of

base position. The graph shows a fast increase to a high quality region followed by a slow

decrease in quality. The pattern is as expected in ABI sequences (Chen & Hunkapillar 1992).
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Figure 3-10. Quality of Traces. Weight as a function of position averaged over
the first 700 base calls of 116 actual sequences is graphed. Base calls made by ABI

sequencers are highly reliable out to several hundred bases. Reliability slowly

decreases to the 3' end of the sequence.

3.3 Summary

Virtually all large-scale sequencing projects use automatic sequence-assembly programs to aid

in the determination of DNA sequences. The computer-generated assemblies require

substantial manual editing to transform them into submissions for GenBank. As the size of

sequencing projects increases, it becomes essential to improve the quality of the automated

assemblies so that this time-consuming manual editing may be reduced. Current ABI

sequencing technology uses base calls made from fluorescently-labeled DNA fragments run on

gels. I present a new representation, Trace-Class, for the fluorescent trace data associated with

individual base calls. In summary, I define a Trace-Classrepresentation of base trace-dataas

follows:

• Three peakand three valleyclasses are defined as follows.

Peaks: negative curvature
Valleys: positive curvature

• Peak and valleys are divided into strong, medium,and weak classes that are defined as
follows.
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Strong: change of sign in slope

Medium: shoulder with zero slope
Weak: otherwise

• Scores reflect the amount of strong, medium, or weak peak and valley character exhibited.

• Scores reflect the proximity of peaks and valleys to the base-call location.

• Scores reflect relative intensity to corresponding traces.

• A single class (the characteristic class) may be assigned that best characterizes the data.

In Figure 3-11, the new Trace-Classrepresentation of trace data as six Trace-Classscores

based on the shape and intensity of trace data is contrasted with the previous representations of

trace data as sequences of discrete intensity values, 2-D graphs, and a base call.
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Trace-Class

Peak
79

21

0

Strong

Medium

Weak

Valley
44Strong

56Medium

0Weak

Characteristic Class:
Strong Peak

Sequence of Intensities

0, 108, 304, 598, 889, 1236, 1045, 856, 678, 523, 624 

2-D Graph Base Call

A

Figure 3-11. Comparison of Trace-Data Representations. Shown in this

figure are four representations of a single fluorescent trace (the A trace). One
representation of trace data is a sequence of intensitiesassociated with a base call. A 2-

D graph of the trace data shown as a curve interpolated from the data points is a second
representation. A much simplified representation is the base call made from the four

traces. The new Trace-Classrepresentation is a classification of the trace data based on
the visual shape and intensity of the trace data. A score from 0 to 100 is assigned for

each of six classes that reflects the amount of strong, medium, and weak peak and
valley characteristic that is exhibited by the data. A single characteristic class is

assigned that best characterizes the data.
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Chapter 4

Sequence End-Trimming Case Study

In Chapter 3 I defined a new representation for trace data, and the question is: Does it

effectively capture characteristics of trace data such that it can be used to improve the quality of

automatic assemblies?To answer this question, I incorporated the trace-data information via

the new Trace Classrepresentation into two processes in automatic assembly: end-trimmingof

sub optimal data before assembly and calling the consensusof aligned sequences. The end-

trimming experiments are described in this chapter; work on consensus calling is covered in

Chapters 5 through 7. For these studies, I use modifications of DNASTAR Inc.’s SeqMan

fragment-assembly software.

The first problem I addressed is how to remove poor quality data before assembly (Allex et

al. 1996). In general, as a sequencing run progresses, the quality of the trace data deteriorates

(Kelley 1994). This idea is illustrated in Figure 4-1. Near the 5' (beginning) end, the data

quality is high – peaks are sharp and well-defined (Perkin-Elmer 1995), but near the 3' end

(end), the data is erratic and contains several no-calls (Ns). The use of poor quality data like

that near the 3' end tends to produce a poor quality assembly that requires extensive manual

editing. One solution is to remove the poor quality data before assembly (Seto, Koop & Hood

1993, McCombie & Martin-Gallardo 1994, Rowen & Koop 1994). This is the approach I

explored in my work, with the goal of reducing the amount of poor quality data by a direct,

automatic examination of trace data.
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Figure 4-1. Deterioration of Trace Data. Trace data becomes progressively

lower in quality as a gel is read. (Actual data shown.)

4.1 Existing Method

A scheme that uses sequence-specific information to trim poor quality data is N-Trim, an

adaptation of the End-Clip method (Seto, Koop, & Hood 1993). N-Trim relies on the

assumption that as trace data deteriorates, the number of no-calls increases. The idea is that the

number of Ns can be used as an indication of trace quality. With this procedure, bases are

scanned in a sliding window starting at the 3' end, and a count is kept of the number of Ns

that occur in the window. When the number of Ns is sufficiently few, the poor quality data

from that window to the 3' end of the sequence is trimmed off. In the example in Figure 4-2,

window_size is set to 20 and the max_Ns allowed in a window is two. Scanning from the

3' end of the sequence, the boxed window is the first one that contains two or fewer Ns. The

data to the 3' end of this window is considered poor quality and is trimmed off.

3'5'

A T G C T C A G A A A G G G G C CG N N N T N C C G GC

trim

scan

bases A

Figure 4-2. N-Trim. The window_size is 20 and max_Ns is two. When

scanning from the 3' end, the boxed window is the first to contain two or fewer Ns
and data in the shaded region is trimmed.

My method for end-trimming that incorporates trace data via Trace-Classscores is called

Trace-Class Trim. This method also scans data in windows. As it scans, it assigns the

characteristic class associated with the called base. The classes can be used to indicate the
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quality of data. Base calls that are highly reliable are made from peaks that are sharp and well-

defined – the kind of data classified as strong peaks. Base calls made from trace data classified

as medium peaks are less reliable, and those made from weak peaks or valleys are

correspondingly less reliable.

4.2 Algorithmic Details

Trace-Class Trim consists of scanning the window from the 3' end as in N-Trim, but rather

than keeping track of the number of Ns, it counts the number of poor classes associated with

the called base. When the number of poor classes is sufficiently few, I trim the data from that

window to the 3' end of the sequence. In addition to window_size and

max_poor_classes allowed, I must also define poor_classes . Figure 4-3 shows an

example in which poor_classes is defined to be all classes except strong and medium

peaks (SP and MP). The window_size is again set to 20 and max_poor_classes

allowed in the window is two. When the sequence has been scanned as far as the boxed

window, the number of poor classes is sufficiently few and data from the window to the 3'

end is trimmed. Appendix C contains pseudocode for Trace-Class Trim.
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Figure 4-3. Trace-Class Trim. In this example, characteristic class for theA trace
data associated with this leftmost base call is strong peak(SP), the characteristic class

for T trace data associated with the next base is also SP, and so on. Here,

poor_classes are defined as all but strong and medium peaks (SPand MP). The

window_size is 20 and max_poor_classes is two. When scanning from the 3'

end, the boxed window is the first to contain two or fewer poor classes and data in the

shaded region is trimmed.
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4.3 Evaluation

I empirically evaluate Trace-Class Trim and compare it to N-Trim by optimizing the parameters

for each method over one set of data and then testing the best parameters on a second set of

data. I used data from the E. coli Genome Project at the University of Wisconsin that was

gathered for an assembly of a 243 kb fragment of E. coli (Blattner et al. 1997). Data sets were

formed in the following way. The 2021 sequences in the set of data for the assembly were

trimmed extensively such that only bases from locations 50 to 200 remained in each sequence.

To this set, I added longer E. coli sequences from GenBank that were believed to fall in the

243 kb section of the E. coli genome. The sequences were then automatically assembled. In

this way, only the very best data was used and contigs were formed with sequences that

should align (given the nearly ideal data).

All contigs containing ten or more sequences were chosen for inclusion in data sets. In these

contigs, the GenBank sequences were removed and the full untrimmed length of sequences

was reinstated. Each set of sequences in a contig formed a separate data set, called a project,

that could be independently assembled. The result was 20 projects for evaluating trimming

methods. Ten projects form a training setused to optimize parameters and the other ten sets

form a test set used to test the quality of subsequent assemblies using the optimized

parameters. Training and test sets were chosen such that the number of projects is equal and

the total contig lengths and total numbers of sequences and contigs are similar.

For use in my evaluations, I estimated the expected number of contigs and total contig

length for each project. Although each project is formed from a single contig, in some cases,

the expected number of contigs is greater than one because regions in the contig were bridged

by (now removed) GenBank sequences. To estimate the expected total contig length, I simply

use the length of the contigs after they have been extended with complete, untrimmed

sequences. The data sets are described in Table 4-1.
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Table 4-1. End Trimming Data Sets. The number of sequences is the actual

number and the number of contigs and the contig length are the expected values for the
project.

(a) Training Set

Project Number
Sequences

Number
Contigs

Contig
Length

1 11 2 2235
2 14 1 1715
3 15 1 2364
4 18 1 3352
5 20 2 5229
6 22 1 1473
7 26 1 824
8 32 3 7067
9 69 3 11,088

10 37 3 9050
Total 264 18 44,397

(b) Test Set

Project Number
Sequences

Number
Contigs

Contig
Length

1 20 2 2810
2 16 1 1221
3 18 3 4271
4 24 3 6221
5 27 2 4503
6 35 2 6696
7 38 1 776
8 13 2 3010
9 15 1 3408

10 57 3 11,382

Total 263 20 44,298
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In addition to the projects in the test set, I evaluated my system with an unrelated set of

sequences. These are from a 7 kb segment of human DNA. This project has reached

completion so the number of contigs and contig length is known. Table 4-2 describes this set.

Table 4-2. Human DNA Data Set.

Project Sequences Number Contigs Contig Length

Human 98 2 7257

I optimized parameters for the Trace-Class Trim method and separately for N-Trim. For N-

Trim, I varied window_size from 10 to 50 in increments of five and max_Ns allowed in a

window from zero to five. For Trace-Class Trim, I varied the window_size from 10 to 50,

max_poor_classes to be allowed from zero to five, and the poor_classes cutoffs over

strong peaks, medium peaks, and weak peaks. Valleys were always included in

poor_classes . Each project in the training set was assembled with every combination of

parameters and the quality of assemblies was evaluated.

The goal of end-trimming is to produce better-quality automated assemblies of DNA

fragments. I used three metrics to measure the quality of assemblies. One is the number of

contigs. In general, I want a group of sequences to assemble into a small number of contigs

(the ultimate goal is to have only a single contig). The second metric is the number of

ambiguities in the consensus sequence. Fewer ambiguities means not only that the sequences

align well, but also that less manual work is needed. The third measure is the total length of the

contigs. Contigs should be as long as possible without incorporating too many ambiguities.

I measure the number of contigs as the number in excess of the expected number, and

contig length as the absolute deviation from the expected length. The number of ambiguities

are measured as the average number of ambiguous calls per kb. To score each set of

parameters, I normalize and individually sum the three metrics across all data sets for each set

of parameters. The overall score, Si, for parameter set i is

Si = α Ci + β Ti + γ Ai
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where Ci, Ti, andAi are the normalized sums of the number of contigs, total length of contigs,

and number of ambiguities metrics, respectively; α, β , and γ are constants. I believe that the

order of importance of the metrics is: 1) number of contigs, 2) number of ambiguities, and 3)

total length of contigs. Consequently, I set α =3, β =1, and γ =2 to weight the metrics.

Using the scheme described above, I scored and sorted the parameter sets. I found that, in

general, the best Trace-Class Trim assemblies resulted when the window_size was large

(40 to 50 bases), the cutoff defined all but strong and medium peaks as poor_classes , and

the max_poor_classes to be allowed was between 5% and 10% of the window size. The

best N-Trim assemblies resulted when the window_size was large (40 to 50 bases), and the

max_Ns allowed was small (0 to 2). 

The ten minimum scoring parameter sets for N-Trim and for Trace-Class Trimwere chosen

as optimal parameter settings. Next, test set projects were assembled using each of the top ten

parameter settings for N-Trim and Trace-Class Trim settings. The human DNA project was

assembled using only the top-scoring parameter sets. As a baseline, the projects were also

assembled with no trimming.

4.4 Discussion

I compare assemblies resulting from Trace-Class Trim to those performed after N-Trim and no

trimming. Figure 4-4 graphs the results for the ten test-set projects. With one exception, I find

that in all 10 sets by all three metrics, trimming with the Trace-Class Trim method results in

assemblies superior to those produced after N-Trim or no trimming. In each column, lower

values are better, and a significant reduction between the results for Trace-Class Trim and the

others is seen. Differences for all three measures are statistically significant using a paired one-

tailed t-test at the 95% confidence level.
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Figure 4-4. End-Trimming Results. Results for the 10 test sets are shown. On
average, about a 50% reduction from N-Trim to Trace-Class Trim is seen for excess

contigs and ambiguities per kb. Deviation from contig length falls by over 75%.
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On average over the test-set projects, the absolute deviation from the expected length of

contigs falls by over 75% and both the excess beyond the expected number of contigs and the

number of ambiguities per kb falls by about 50% from assemblies using N-Trim to those using

Trace-Class Trim. The decrease in the number of ambiguities represents a significant decrease

in the amount of manual editing that would need to be done on assembled projects. For

example, in a 243 kb project, the number of ambiguities to be resolved would decrease from

nearly 10,000 bases using N-Trim to fewer than 5000 using Trace-Class Trim. These results

demonstrate a clear improvement when trace-data information is included in end-trimming via

the new Trace-Classrepresentation.

With the human DNA project, I again see a significant improvement in the assembly done

after Trace-Class Trim over the assemblies done after N-Trim or no trimming. Table 4-3

contains the results for the human DNA project. After Trace-Class Trim, the assembly

produces three contigs, compared to five contigs with N-Trim (the expected number is two). It

also results in a 40% reduction in the number of ambiguities per kb over the assembly done

after N-Trim.

Table 4-3. Human DNA Project Test Results. Trace-Class Trim yields an
assembly with one more than the expected number of contigs compared to three more

with N-Trim. The Trace-Class Trim assembly had 40% fewer ambiguities than the
assembly done with N-Trim.

Trimming
Method

Excess
Number of

Contigs

Contig
Length

Deviation

Ambiguities
per kb

Trace-Class 1 576 32

N 3 3113 54

None 13 12,818 149
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4.5 Summary

The key to the success of Trace-ClassTrim is that it uses the information contained in trace

data in the form of base Trace-Classrepresentation defined in Chapter 3. These classifications

directly reflect the morphology of trace data, and are good indicators of the accuracy of the

associated base calls. The N-Trim method does not use trace data, rather it examines only the

sequence of bases for no-calls. Since modern sequencers make base calls even when the trace

data is erratic, searching for no-calls as done in N-Trim is no longer as useful for assessing the

accuracy of base calls.

I incorporated the Trace-Class Trim method into the SeqManIIsequence assembly package

that is part of the Lasergenesuite of applications developed by DNASTAR Inc. The previous

version, SeqMan, offered the N-Trim method. The new Trace-Class Trim method was

commercially available until it superseded in Lasergene99by the Trace-Quality Trim method

that I developed (described in Chapter 8).
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Chapter 5

Consensus-Calling Case Studies

The second problem I addressed with the incorporation of Trace-Classscores is consensus

calling (Allex, Shavlik, & Blattner 1999, Allex et al. 1997). For these case studies I developed

both an algorithmic and a neural network solution. The algorithmic solution is described in

Chapter 6 and the neural network approach is covered in Chapter 7. In the current chapter I

define the consensus calling problem and describe the development of the data sets used in the

studies.

Accuracy in consensus sequences is an important concern – TheNational Human Genome

Research Institute (NHGRI) set a standard for sequencing accuracy of 99.99% (NHGRI

1998). Unfortunately, the error rate for sequences in GenBank has been estimated to be from

0.3 to 0.03% (Lawrence & Solovyev 1994) – much higher than the standard. When imperfect

DNA sequences are translated, the effect on the resulting protein sequence can be substantial.

Even the mutation of a single base can cause critical changes in the character of a predicted

protein. Furthermore, the deletion or insertion of bases can result in incorrect translation into

protein and the failure to recognize regions that code for genes.

Currently, sequencing accuracy is significantly dependent upon careful human examination

and editing of consensus sequences in fragment assemblies. The hand process is time-

consuming, expensive, and error-prone, making it unsuitable for large-scale sequencing

projects. Automatic methods that produce highly accurate consensus calls reduce errors and
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alleviate the need for manual editing.

5.1 Existing Method

A common, simple method to calculate the consensus counts the number of calls of each base

in an aligned column (Staden 1982a). If the majority base count is above a given fractional

threshold of the total count, that base is called unambiguously (A, C, G, or T); otherwise the

consensus is called as the appropriate ambiguity (combination of A, C, G, and/or T). We refer

to this method as Majority. Figure 5-1 contains an example of calculating the consensus by

Majority.

Since the Majority approach examines only the base calls and not the underlying trace data,

it is prone to errors. There is no distinction between base calls made with well-defined peaks

and those made with indefinite peaks. Majority also requires a minimum number of sequences

to make an unambiguous call when a column of base calls is not in total agreement. Methods

that directly analyze the trace data help to avoid these problems.

AA GA G TA G TA G TA G C TA G C T W

AA GA G TG G TA G TA G C TA G C T A

AA GA G TA G TA G TA G C TA G C T T

AA GA G TA G TA G TA G C TA G C T A

AA GA G TA G TA G TA G C TA G C T T

…

…
…

…

… …

…

…
…

…Consensus

Aligned
Reads

Figure 5-1. Majority Consensus Calls. Four sequences are aligned and the
consensus is computed using Majority. In this example, the threshold is set at 75%.

The consensus call for left shaded column is an A since three of four (at least 75%) of
the calls are A. In the middle shaded column, 50% of the calls are A and 50% are T; the

call is W (A or T) since both percentages are below the threshold. In the right shaded
column, all calls are T, resulting in a consensus call of T.

5.2 Test Data Sets

I test the effectiveness of consensus calling methods by comparing their accuracies with

different distinct amounts of coverage(number of aligned sequences). Since almost any
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reasonable algorithm can make correct calls when the coverage is high, I believe that one

criterion that can be used to identify a superior method is its accuracy even when the coverage

is low. In addition, since every step required to sequence a fragment adds to the overall

expense of sequencing, reducing the needed coverage means a decrease in sequencing costs.

In large sequencing projects, it is typical to produce a coverage of six to ten to ensure accurate

results (Li et al. 1997) This much coverage is not needed when using a method that is highly

accurate with fewer aligned sequences. 

Fragment assemblies for a 124 kb section of E. coli are used to compare consensus calling

methods. The data for the assemblies are supplied by the E. coli Genome Project at the

University of Wisconsin (Blattner et al. 1997). Correct consensus calls are taken from E. coli

sequences submitted to GenBank. The original assembly of 2221 ABI sequences ranges in

coverage from 1 to 45 sequences. The assemblies were created with DNASTAR Inc.’s

SeqManII fragment-assembly program. Although most of the data and alignments in the

assemblies are quite good, sequence traces do vary in quality and some areas present more of a

challenge for consensus calling. Figure 5-2 contains an example of an aligned region in one of

the test assemblies that contains a fair amount of discrepancies, indicating imperfect underlying

trace data and difficulties for consensus calling.

GCAANTAAAAANTGTTCCTTTGGGGTGAANANCCAAANATN-CCCNGCTGGGT

GCAATGAAATACTGTGCGT-- GGGGTGAG-AGGCGAACATT-CCCGGCTGG--

GCAATGAAATATTATGCGN-- GGGGTGAGAGGGCGAACATTCCCCGGCTGG--

GCAATGAAATACTGTNCGTN-GGGNTAAA-AGGC- AANNNTCCCCGGNNGG--

??   ? ? ? ? ????   ? ? ????? ?  ?????   ? ??  ??

Figure 5-2. Test Assembly Alignment. The data used for testing is of varying

quality. Displayed here is a region with four aligned sequences from one of the test
assemblies. Columns whose base calls are not in total agreement are marked with a ‘?.’

There is a fair amount of disagreement among the base calls, implying poorer-quality
underlying trace data. Consensus calling in this region is more difficult than in areas

with near-perfect data.
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In order to generate an abundance of test cases with various amounts of coverage, I

developed and applied a greedy minimization algorithm, Minimize Coverage, to the assembly.

With Minimize Coverage, sequence fragments are removed from an assembly as long as the

coverage for any single column does not fall below a specified coverage (unless the coverage

is already below the threshold). The idea for the Minimize Coveragealgorithm is simple. At

each pass through the assembly, for each sequence I determine the lowest coverage, low-

coverage , of any column in which the sequence occurs. I then remove the sequence with the

highest low-coverage , provided that low-coverage is not at or below the threshold. If

more than one sequence has the same low-coverage , the shorter one is removed. Passes

over the assembly are repeated until no more sequences can be removed without violating the

coverage threshold restriction. At completion, some columns will have more than the desired

coverage (due to the restriction) and some less. The algorithm is summarized next.

Minimize Coverage Algorithm

Let S be the list of all n sequences, S i, in the assembly.

S = {S1, …, Sn }

Let L be the list of all n sequences considered for removal. Each sequence, S i is

paired with its low-coverage , LCSi.

L = {(S1, LCS1), …, (Sn, LCSn )}

While not_empty(L)

1. Remove from L sequences whose low-coverage is at or below the

threshold.

2. Remove from S and L the shortest sequence with the highest 

low-coverage .

3. Update low-coverage values.

Figure 5-3 steps through an execution of the Minimize Coveragealgorithm.
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(a)

S1 GAT CGGCT ACAT CT T ACAT CACCGT T

S2 CT ACAT CT T ACAT CACC

S3 CGGAT CGGCT ACAT CT T ACAT CACCGT T GA

S4 AT CGGCT ACAT CT T AC

S5 AT CT T ACAT CACC

S6 CGGCT ACAT CT T ACAT CACCGT

(b)

Pass S L

0 {S1 , S2 , S3 , S4 , S5 , S6 }
{(S1 , 2), (S2 , 5), (S3 , 1),

(S4 , 3), (S5 , 5), (S6 , 3)}

1 {S1 , S2 , S3 , S4 , S6 } {(S2 , 4), (S4 , 3), (S6 , 3)}

2 {S1 , S3 , S4 , S6 } {(S4 , 3), (S6 , 3)}

3 {S1 , S3 , S6 } {(S6 , 3)}

4 {S1 , S3 } {   }

Figure 5-3. Minimize CoverageExample. (a) Six sequences, S1 to S6, are

aligned in a fragment assembly. The sequences in bold, S1 andS3, provide the optimal
minimization when the threshold is set to two. With these two sequences in the

assembly, no column has fewer than two sequences (except those that already had
fewer in the original assembly). In addition, neither sequence can be removed without

causing coverage to fall below the minimum. (b) The algorithm to reduce coverage on
the assembly completes after 4 passes. At the outset, all sequences are in S and L. The

first pass removes S5 from both lists since it is the shorter of two sequences with the

highest low-coverage (5 sequences). Also, S1 andS3 are removed from L in the

first pass since their low-coverage is at or below threshold – these sequences
cannot be taken out. At the end of four passes, L is empty and the two desired

sequences, S1 andS3, remain in the assembly.
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I repeatedly applied the Minimize Coveragealgorithm to the original assembly for the range

of coverage thresholds from two to ten. This produced nine assemblies with differing

coverages, each with an abundance of aligned columns whose coverage corresponded to its

threshold. For testing, from each of the nine minimized assemblies, I extracted the statistics for

consensus calling only for columns that corresponded to the coverage threshold. For example,

for the assembly with a minimum coverage threshold of three, I compiled statistics only for

those columns with a coverage of three sequences. The exception is that the statistics for the

assembly with the desired coverage of ten include all columns with coverage of ten or greater

(rather than just those with exactly ten) since results tend to remain constant with such high

coverage. Table 5-1 lists the number of consensus calls used for each set of results.

Table 5-1. Consensus Calling Data Sets . For each coverage from two
sequences to ten or more, the number of consensus calls included in test results is

listed.

Coverage
Number of

Consensus Calls

2 67,860

3 57,092

4 45,394

5 39,556

6 34,011

7 26,716

8 22,479

9 20,326

≥ 10 47,239
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5.3 Summary

The simplest approach to consensuscalling is to count the number of base calls of each type in

an aligned column. This method is referred to as Majority. With this method, if the count of

the most commonly occurring base is above a threshold fraction of the total calls, the

consensus is called as a base. If the fraction is below the threshold, an ambiguity code (as in

Table 2-1) is used to call the consensus.

One limitation is the Majority method is that it relies entirely upon the correctness of base

calls. In the next two chapters I introduce highly accurate methods that look at the underlying

trace data in determining the consensus. I confirm the effectiveness of the new methods by

comparing their consensus accuracies for a range of coverages(number of aligned sequences).

To accumulate an adequate amount of data for testing at each coverage, I developed and

implemented a new algorithm, Minimize Coverage, that systematically reduces the

predominant coverage in an assembly to a specified level. Repeatedly applying the technique to

an assembly of E. coli data produced abundant data for testing at coverages from two to ten

and over. Accuracy at low coverages is one criterion that can be used to evaluate consensus

calling approaches; high accuracy at even low coverages identifies a superior technique. In

addition, methods that are highly accurate at low coverages can reduce the cost of sequencing

by lowering the required number of sequences in an assembly.
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Chapter 6

Trace-EvidenceConsensus

The first approach to the consensus calling problem that I investigated is an algorithmic method

that directly incorporates ABI trace-data information via peak scores from the Trace-Class

representation (Chapter 3). I refer to the new method as the Trace-Evidence Consensusmethod

(Allex et al.1997).

The Trace-Evidencemethod is based on the idea that each of the three peak Trace-Class

scores supplies an amount of evidence that the associated base should be assigned in the

consensus. High strong-peak (SP) scores supply the greatest amount of evidence, high

medium-peak (MP) scores supply the next greatest amount of evidence, and high weak-peak

(WP) scores provide the least. Figure 6-1 demonstrates the evidence idea.

6.1 Algorithmic Details

To determine the consensus for a column of aligned bases, I sum the evidence, E, based on

Trace-Class scores for each of the four bases. The evidence for each base is multiplied by the

weight values described in Section 3.2.2. The base with the highest evidence sum is identified

as the leader and its evidence sum is the leading-evidence . The other three bases are

competitors , and their evidence sums are competing-evidence . A threshold between

0 and 1 is specified that determines the ignorable fraction of competing-evidence to

leading-evidence . If the leader has no competitors with competing-
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evidence greater than the threshold, the leader is assigned as the consensus. If

competing-evidence for any bases surpasses the threshold, then those bases are

included in determining an ambiguous call.

To determine the consensus for a column of aligned bases, two types of values must be

calculated for each sequence in the column: the Trace-Classscores and a measure of the weight

(quality) of the data. I use the weight scores to apply appropriate emphasis to the evidence

supplied by each set of classification scores. That way, more reliable, higher quality trace data

supplies more evidence than trace data of lower quality.

When gaps occur in a column, the weight scores are also used to decide if the consensus

should be called as a gap. To do this, I sum the weights for sequences with a gap in the

column and compare them with the sum of the weights of sequences without a gap. If the gap

weight sum exceeds the non-gap sum, the consensus is called as a gap.

TTTT

G

CCCC

A

Figure 6-1. Evidence in Traces. Consider the evidence found in the four traces in

the shaded region. The C trace will produce a high strong peak (SP) score, the T trace
will yield a relatively smaller SPscore, and both the A and G traces will produce peak

scores of 0. A visual examination of the traces supports the premise that the vast
majority of the evidence is for a base call of C and that there is essentially no evidence

for a base call of A or G. (Actual data shown.)
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The steps used in the consensus calculation for a single aligned column appear next. Details

of the calculations mentioned follow the algorithm.

Trace-Evidence Consensus Algorithm

For a single aligned column

1. For each sequence, find the quality of trace data, W, within a small window

centered on the column.

2. Sum W for each sequence with a gap in the column and compare it to the

sum of W for the remaining sequences. If the gap sum exceeds the non-gap

sum, return gap.

3. Determine S, the 6x4 (six scores for each of four traces) matrix of Trace-

Class scores for each sequence.

4. Reduce each S to a vector, E, of four values that summarize the evidence for

each trace.

5. Multiply each value in E by its corresponding W to produce a vector E’ that

has been adjusted by data quality.

6. Sum each of the corresponding E’ s to produce a vector, T, of the total

evidence for each of the four bases.

7. Find the highest evidence (leading-evidence ) in T; its corresponding

base is the leader .

8. Multiply leading-evidence by the threshold to compute the maximum

ignorable competing-evidence .

9. Compare leading-evidence to each competing-evidence . If no

competing-evidence surpasses the maximum ignorable, then return
leader as the consensus call, otherwise use all competitors who surpass
the maximum to determine and return an ambiguity.
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I use the same summary vector, V, used for weight calculations, and defined in Section

3.2.2, to summarize the Trace-Class scores during consensus computation. Multiplication by

V ensures that scores supplying the most evidence (such as those with high SP scores) are

given more credence than those that supply less evidence. Figure 6-2 demonstrates this idea.

S  • V

A 0 4 30 8 1 0 13

C 89 11 0 0 0 0 96

G 3 1 0 0 0 0 4

T 0 0 0 0 13 76 0

SP WV MV SVWPMP

CCCC
G
TTTT

A

Figure 6-2. Summarizing Trace-Class Scores. The Trace-Class scores, S, for

each of the four traces are computed. When the dot product of S and V ([1 .67 .33 0 0
0 ]) is computed, the result is a high value for the C trace – the trace exhibiting highest

evidence. The values for the A, G, and T traces are all low. When these summarized
values are used to provide evidence, the C trace appropriately has the highest value.

Note that in this calculation, the Trace-Class scores are computed for each of the four
traces in contrast to the calculation of the weight measure in which only the scores for

the trace associated with the called base are computed. Here, I need to know how much
evidence each trace supplies.
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For each sequence in a column, a vector, E, summarizes the evidence for each possible

base (A, C, G, andT). For each base, the computed value reflects the amount of evidence that

the call should be that base. The vector is computed as follows.

1. Form a 6x4 matrix of Trace-Class scores, S, by computing the scores for

each trace:

S =

SPA
MPA
WPA
WVA
MVA
SVA

SPT
MPT
WPT
WVT
MVT
SVT

SPG
MPG
WPG
WVG
MVG
SVG

SPC
MPC
WPC
WVC
MVC
SVC

2. The matrix multiplication of V and S produces a vector of evidence values,

E, for the possible bases:

E  = V x S  = [ EA EC EG ET ]

3. Multiply E by the quality of the local trace data, W, to produce evidence

values, E’ , that have been adjusted by the quality of the data:

E’ = E  x   W

Finally, I sum the evidence for each base in an aligned column as described next.

Sum corresponding E’ values to produce the total evidence, Ti , for each

possible base i, where n is the number of sequences in the column:

TA = EA1’ + EA2’ +  … + EAn’

TC = EC1’ + EC2’ +  … + ECn’

TG = EG1’ + EG2’ +  … + EGn’

TT = ET1’ + ET2’ +  … + ETn’
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Once T has been calculated, consensus calling can be completed as described in steps 7-9

of the Trace-Evidence Consensusalgorithm. An example determination of a consensus base

call appears in Figure 6-3.

G G TTTT

G G TTTT

G TTTT TTTT

Seq
W  x  E

W

.51

.82

.26

E

GGGG TTTTCCCCAAAA

52 000

73 000

21 500

GGGG

26.5

59.9

5.4

91.8

TTTT

0

0

1.3

1.3

CCCC

0

0

0

0

AAAA

0

0

0

0Total

Figure 6-3. Trace-EvidenceConsensusExample. The consensus base for the

center column of three aligned sequences must be called. For each sequence, the
evidence, E, for each base is multiplied by the corresponding weight, W, When these

products are summed for the three sequences, the evidence for A and C is 0, for G is
91.8, and for T is 1.3. If the threshold is .50, G will be called unambiguously since no

competing-evidence surpasses 45.9 (91.8 x .50). In contrast, the Majority
method with a 75% threshold would make an ambiguous call of K (T or G).
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6.2 Evaluation

All code for testing the new consensus calling method was incorporated into an experimental

version of the DNASTAR Inc.’s SeqMan fragment assembly program for the Apple

Macintosh PowerPC. SeqManuses the Majority consensus calling method. (SeqMan has since

been superseded by SeqManII, a more powerful, commercially available, version that

incorporates trace analysis as described in this dissertation.)

Fragment assemblies as described in Chapter 5 are used to compare correct calls to

Majority and Trace-Evidence calls. I report results for consensus calls made with coverages

from two to ten or more aligned sequences. The threshold is set to the SeqMandefault value of

75% for Majority and to 50% for Trace-Evidence. Graphs in Figure 6-4 display the number of

correct calls, incorrect calls, and ambiguous calls per kb for the two methods.

The results show a significant improvement with the Trace-Evidencemethod, especially at

lower coverages (number of aligned sequences). Differences are statistically significant using a

paired one-tailed t-test at the 95% confidence level. With a coverage of only three, using

Trace-Evidence, I see a leveling of the number of incorrect calls and a large improvement over

the Majority method in the number of correct and ambiguous calls. With a coverage of four,

the number of ambiguous calls has fallen to nominal values with Trace-Evidence.

6.3 Discussion

I observe striking examples of the utility of the Trace-Evidencemethod when base calls in a

column are systematically incorrect. In some instances, a well-defined peak is hidden below a

high-intensity valley. The base is often incorrectly called as the one associated with the high-

intensity valley. Majority methods incorrectly call the consensus as this base. My new Trace-

Evidencemakes the correct consensus call even when all or most of the bases have been called

incorrectly. Figure 6-5 contains an actual example of this occurrence.

I have identified three situations in which Trace-Evidencecan make incorrect calls.

Overwhelmingly, most problems involve gaps. In rarer cases I have difficulties with low

evidence sums or poor-quality data. Next, I briefly describe these three sources of incorrect

calls.
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In the results reported here, all of the incorrect calls at coverages above three and at least

half of those for coverages of two or three involve gaps in the column. The method for

determining whether a gap should be inserted in the consensus consists of a simple

comparison of gap versus non-gap sums of the weights of the traces in the column. However,

the insertion of a gap affects not only the column in which it occurs, but also the columns to

either side. When determining a gap call, it is probably necessary to consider more context and

examine the data on either side of the base of interest. Finding a solution to calling the

consensus when gaps are in the alignment would virtually eliminate incorrect calls made with

the Trace-Evidencemethod with a coverage of at least four.

In some instances, incorrect calls can be associated with extremely low evidence sums.

When the sums are quite low, even the maximum evidence is often not indicative of the correct

call. One solution is to label the consensus as an ambiguous N and defer consensus

determination to human editors. For the results reported in this chapter, this is the solution

used (i.e. low-evidence calls are counted in the ambiguous category). To circumvent the low-

evidence problem in the commercial version of SeqManII, consensus calling reverts to

Majority when the maximum evidence is less than ten. (This number was chosen as one that

works well in practice.) 

A few incorrect calls occur in cases that are difficult for both Majority and Trace-Evidence.

These are usually in regions of poorer-quality trace data where peaks are overlapping and ill-

defined. The obstacle for Majority is that one or more of the base calls is likely to be incorrect

in such regions. For Trace-Evidencethe difficulty lies in the relative locations of the trace

peaks. Often the peak associated with the correct base call is significantly offset from the base-

call location. The result is that when the Trace-Classscores are computed, a peak is either not

detected or is given a low score due to its distance from the base-call location. Another of the

traces may exhibit a small, distinct peak near the base-call location that is scored relatively

higher. Trace-Evidencethen has more evidence associated with the small peak than with the

correct trace and calls the consensus incorrectly. This case is illustrated in Figure 6-6.
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988

990

992

994

996

998

1000
Calls per kb

Correct  

2 3 4 5 6 7 8 9 10+
0

2

4

6

8

10

Ambiguous

Coverage

0

1

2

3

Incorrect  

Trace-Evidence 

Majority 

Figure 6-4. Trace-EvidenceTest Results. Accuracy results by amount of

coverage are graphed. Each data point is based on 20 - 68 kb consensus calls (Table 5-
1). The new Trace-Evidence method produces more correct calls and fewer incorrect

and ambiguous calls.
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TTTTGTTTTCCCCTTTTGA

TTTTGTTTTTTTTTTTTGA

TTTTGTTTTTTTTTTTTGA

TTTTGTTTTTTTTTTTTGA

Correct Call: 

Majority  Call:  

Trace-Evidence  Call:

C

T

C

CCCC

TTTT
G

A

Figure 6-5. Trace-Evidence versus Majority Consensus. In the shaded

column, three bases have been incorrectly called as a T and one correctly as a C. With a
75% threshold, the Majority method incorrectly computes the consensus as a T. The

Trace-Evidencemethod detects no evidence for a T, ample evidence for a C, and calls
the correct consensus. With Majority this situation would be even more troublesome if

the fourth sequence were not in the assembly. In that case, the call would have no
conflicting base calls and would likely go unquestioned during manual editing. In

contrast, Trace-Evidencecorrectly computes a C, even in the absence of the fourth
sequence. (Actual data shown.)
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TTTT TTTT A

TTTT - CCCC A

TTTT A A A G

G

GG

CCCC

TTTT
G

A

Correct Call: 

Majority  Call:  

Trace-Evidence  Call:

C

H

T

Figure 6-6. Difficult Consensus Call. Three sequences have been aligned; the

correct call for the shaded column is C. Majority calls an ambiguous H for the
consensus since the column includes conflicting base calls of T, C, and A. The Trace-

Evidencemethod assigns negligible strong peak scores to the offset peaks associated
with the C traces and a high strong peak score for the T trace in the first sequence. The

scores incorrectly sum to adequate evidence for a T and insufficient evidence for C.
(Actual data shown.)

6.4 Summary

The overall goal of my work is to improve the quality and efficiency of automatic fragment

assemblies. Toward this goal, I have developed a new method for consensus calling, Trace-

Evidence, that produces increased consensus accuracy, thereby reducing manual editing and

decreasing the amount of coverage needed. Using the Trace-Evidencemethod results in

automatically produced consensus sequences that are more accurate and less ambiguous than
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those produced with standard a majority-voting method. Additionally, these improvements are

achieved with less coverage than required by the standard methods – using Trace-Evidenceand

a coverage of only three, error rates are as low as those with a coverage of over ten sequences.

I accomplished this by direct incorporation of trace information into automatic consensus

calling via the Trace-Classrepresentation of trace data. In contrast to my new method, less

accurate methods use only a limited representation of trace data – base calls – to determine the

consensus.

I implemented the Trace-Evidencemethod for consensus calling in the commercially

available version of DNASTAR Inc.’s SeqManIIfragment assembly program. The previous

version, SeqMan, used the Majority method to make consensus calls. In the latest version of

SeqManII, available as part of the Lasergene99 suite of applications, Trace-Evidencehas been

updated to the Trace-EvidenceIImethod described in Chapter 8.
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Chapter 7

Neural-Network Consensus

The second approach to computing a consensus that I investigated uses neural networks to

process trace data (Allex, Shavlik, & Blattner 1999). Given inputs extracted from an aligned

column of DNA bases and the underlying Perkin-Elmer Applied Biosystems (ABI)

fluorescent traces, my goal is to train a neural network to correctly determine the consensus

base for the column. Choosing an appropriate network input representation is critical to

success in this task (Baldi & Brunak 1998, Craven & Shavlik 1993). I empirically compare

five representations; one uses only base calls and the others include trace information.

One significant way that my system for consensus calling differs from most existing

methods is that it directly processes information on the shape and intensity of ABI fluorescent

traces. Other methods, such as those in the TIGR Assembler(Sutton et al. 1995), and GAP

(Bonfield et al. 1995), examine only previously determined base calls when calculating the

consensus.

Two existing assemblers that do consider trace characteristics are Phrap (Green 1997b,

Phrap source code documentation) and DNASTAR Inc.’s SeqManII.To make a consensus

call, Phrap chooses the base call in an aligned column with the highest-quality trace as

determined by its companion base-calling program, Phred (Ewing et al. 1998, Ewing & Green

1998). The method used in SeqManIIis described in Chapters 6 and 8. It extracts and sums

information about the shape and intensity of the traces in an alignment. The sums are used as
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evidence in determining the most likely consensus call.

Another difference between my system and others is the use of neural networks. Since

their introduction in the 1940s (McCulloch & Pitts 1943), artificial neural networks have

emerged from the realm of pure academic research into practical solutions for a plenitude of

problems (Widrow, Rumelhart & Lehr 1994). In recent years, interest in developing neural

network solutions for problems in molecular biology has surged. A sampling includes:

• protein-structure prediction (Rost & Sander 1993, Stolorz, Lapedes & Xia 1992, Qian

& Sejnowski 1988),

• DNA base calling (Tibbetts, Bowling & Golden 1994),

• finding protein binding sites (Heumann, Lapedes & Stormo 1994),

• detection of protein-coding regions (Craven & Shavlik 1993, Snyder & Stormo 1993,

Uberbacher & Mural 1991, Noordewier, Towell & Shavlik 1991), and

• identifying RNA polymerase binding sites (Pedersen & Engelbrecht 1995, Towell,

Shavlik & Noordewier 1990).

Neural networks often provide a good solution to biological problems such as these since

the problems involve intricate interactions, and the strength of neural networks lies in their

ability to learn to recognize complex patterns. Given their success in the computational

research community, neural networks have the potential to be a powerful tool for data analysis

in biological research labs. Despite this, the use of neural networks for tasks in DNA

sequencing has been scarcely explored. In one promising example, neural networks are used

to make base calls in individual DNA sequences (Golden, Torgersen, and Tibbetts 1993).

Note that Golden’s work calls bases in single sequences whereas the work I describe

determines the consensus for multiple aligned sequences.

Figure 7-1 contains a brief description of the operation of neural networks; details can be

found in McClelland and Rumelhart (1986). 
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Categorized Examples

example 1:

example n:
…
example 2:

.32

.05

.38

.01

0

.01

0

.01

.04

.03

.35

0

Inputs

0

0

0

0

0

0

0

0

10

1

1

Desired Outputs

weighted connections

inputs
(average peak intensities)

outputs
(consensus call)

hidden units

CG A T

CG A T

Inputs:
 Outputs:

Average relative G, A, T, and C trace peak intensities

A consensus call for the aligned column

Figure 7-1. Neural Networks. A feed-forwardbackpropagationneural network
learns to categorize patterns of inputs. Inputsare numerical representations of features

of a problem. Typically, there is one output for each category of the problem; the
desiredoutput is 1 for the correct category and is 0 otherwise. First the network is

trained by processing a set of categorized examples (a training set). A categorized
exampleis an instance of the problem that includes its inputs and desired outputs.

During training, weighted connections in the network are adjusted so that the error in
the actual output is reduced. Hidden units in the network aid by allowing the input

representation to be transformed. When the difference between the desired and actual
inputs is sufficiently low, training is halted and the network can be used to categorize

previously unseen instances of the problem. Future accuracy of the trained network is
estimated by measuring a trained network's performance on a disjoint set of testing

examples.
In this figure, I have an example of a simple neural network whose function is to

call the consensus for a single aligned column of DNA bases when given inputs
extracted from fluorescent traces. The network is given four inputs (the relative G, A,

T, and C trace intensity averages), and outputs a consensus call (G, A, T, or C).
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7.1 Algorithmic Details

The ability of a neural network to correctly categorize instances of a problem is critically

dependent upon the input representation (Baldi & Brunak 1998, Craven & Shavlik 1993). For

my work, this problem can be expressed as follows.

Given: An aligned column of base calls and traces

Do: Represent the column as numerical inputs

I define four features of an aligned column that can be used singly or in combination to

form input representations for a neural network. Two of the features use information extracted

from fluorescent traces. I believe that much valuable information is lost when the traces are

reduced to base calls. My hypothesis is that a neural network can exploit the trace information

to make consensus calls that are more accurate than those made with networks that use only

base calls as inputs.

The inputs that use trace information are multiplied by the weight (quality) of the trace so

that more emphasis is given to better data. A description of the calculation of the weight values

I use appears in Chapter 3. One of the input features that uses fluorescent trace information

captures the shape of the traces. To do this, I employ Trace-Class scores as described in

Chapter 3. 

The four input features I defined for an aligned column are listed next.

• Base Call Fraction

The fraction of occurrences of G, A, T, and C.

• Gap Fraction

The fraction of occurrences of gaps.

• Trace Peak Intensities

For each base, the trace peak intensity multiplied by its weight and averaged

over the number of aligned sequences.

• Trace Peak Shapes

For each base, the strong (S) and medium (M) Trace-Class peak scores

multiplied by its weight and averaged over the number of aligned sequences.
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Figures 7-2 to 7-5 contain the details of calculating the numerical inputs for these features.

0.25   0   0   0.54 Inputs:

GAC A A AT T A-… …
GAC A A AT T AC… …
GAC A A AT T AC… …
GAC A A ATTTTTTTT TTTTTTTT AG… …

Figure 7-2. Base Call Fraction. There are four aligned sequences in the shaded
column in this example. For each of the four bases I divide the number of its

occurrences by the number of sequences. The G base call occurs once in four
sequences, so its input is set to 0.25. Likewise, the inputs for A, T, and C are 0, 0,

and 0.5 (2 of 4), respectively.

0.251 Input:

G AC A A AT T A-… …
G AC A A AT T AC… …
G AC A A AT T AC… …
G AC A A ATTTTTTTT TTTTTTTT AG… …

Figure 7-3. Gap Fraction. For this example, I again have four aligned sequences
in the shaded column. For this input, I am only interested in gaps, so the single input is

the number of gap occurrences divided by the number of sequences. Since a gap occurs
once in the four sequences, the input is 0.25.
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4 Inputs: 0    0.01   0.13   0

 Maximum intensity = 1600

Aligned column Weight

Weighted Average

 Peak Intensity
(relative to maximum)

TAAAATTAAAATTCCCCTCCCCAAAACCCC

TAAAAT TAAAATTCCCCTCCCCAAAACCCC

TAAAATTAAAATTCCCCTCCCCAAAACCCC

A

0.01

G

0

C

0

T

0.13

0.37 0.11
(0.04)

0
(0)

0
(0)

0.69
(0.26)

0.42 0
(0)

0
(0)

0
(0)

0.18
(0.08)

0.40 0
(0)

0
(0)

0.01
(0)

0.15
(0.06)

Figure 7-4. Trace Peak Intensities. Three sequences are aligned in the shaded

column. For each of the four bases in each sequence, the intensity (value at the center
of the column) of the trace is divided by the maximum possible trace value. This

fraction is then multiplied by the weight assigned to the base. The average over the
weighted values forms the input for each base. In this example, the maximum trace

value is 1600 (a typical value for ABI traces). In the first sequence, the intensity of the
T trace is 1104 and its intensity relative to the maximum is 0.69 (1104/1600). Values

for all other bases in each sequence are calculated in the same way. The values are then
multiplied by their corresponding weights and the results are given in parentheses

below each relative intensity. When averaged, the values yield the inputs 0, 0.01, 0.13,
and 0. (When averaged over three sequences, the 0.01 sum for C rounds to 0.)
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8 Inputs: 0       0       0       0       0.09       0.07       0       0

Aligned column

Trace-Class Scores

Weight

Weighted Average

G

0

S M

0

A
M

0

S

0

T
S

0.09

M

0.07

C

0

S M

0

0.42 0
(0)

0
(0)

0
(0)

0
(0)

0.25
(0.11)

0.20
(0.08)

0
(0)

0
(0)

0.40 0
(0)

0
(0)

0
(0)

0
(0)

0.15
(0.06)

0.10
(0.04)

0
(0)

0
(0)

TAAAATTAAAATTCCCCTCCCCAAAACCCC

TAAAAT TAAAATTCCCCTCCCCAAAACCCC

TAAAATTAAAATTCCCCTCCCCAAAACCCC

0.37 0
(0)

0
(0)

0.03
(0.01)

0.04
(0.01)

0.28
(0.10)

0.22
(0.08)

0
(0)

0
(0)

Figure 7-5. Trace Peak Shapes.To form the inputs for the three aligned

sequences in the shaded column, I extract trace information using Trace-Classscores. I
first compute the strong (S) and medium (M) peak scores for each of the four traces in

each sequence. (I found weak scores to be irrelevant and do not use them.) Each score
is then multiplied by the weight for its base. The weighted scores are given in

parentheses below the scores. There are two inputs for each base: the average over all
the sequences of the weighted strong scores and the average of the weighted medium

scores. (When averaged over three sequences, the 0.01 sum for A-S rounds to 0.)
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I tested five network topologies. Each has five hidden units and five outputs. The desired

outputs for the networks always consist of four 0s and a single 1 that represents either one of

the four bases or a gap. The input representations use combinations of the four possible input

features described above. The simplest network, referred to as Base Call, uses an input

representation that consists of the Base Call Fraction and the GapFraction features. The Base

Call network is used as the control in testing my hypothesis that inputs that include trace

information produce more accurate results than those that only consider base calls.

A second network, called Trace Shape, uses nine inputs that include the Trace Peak Shapes

and Gap Fraction input features. A third network, Trace Intensity, has five inputs that use

Trace Peak Intensitiesand Gap Fraction input features. The fourth network, referred to as

Trace Shape and Intensity, uses both the Trace Peak Intensitiesand the Trace Peak Shapesas

well as the Gap Fraction features in its thirteen inputs. Finally, I tested one network that

included all the possible input features: Base Call, Trace Peak Intensities, Trace Peak Shapes,

and Gap Fraction.

The five network topologies are summarized in Table 7-1. To make a consensus call with

one of these networks, I find the highest output value and its corresponding base or gap is the

consensus call. Ambiguous calls may also be made by setting a threshold; if more than one

output exceeds the threshold, then the appropriate ambiguous call is made. If only one output

is above threshold, the call is unambiguous.
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Table 7-1. Neural Network Topologies. Each of the five networks has five

hidden units and five outputs. The number of inputs range from 5 to 17.

Neural
Network Name

Number of
Inputs Input Features

Base Call 5
• Base Call Fraction
•  Gap Fraction

Trace Shape 9
• Trace Peak Shapes
•  Gap Fraction

Trace Intensity 5
• Trace Peak Intensities
•  Gap Fraction

Trace Shape
and Intensity

13
•  Trace Peak Shapes
• Trace Peak Intensities
•  Gap Fraction

All 17

•  Base Call Fraction
•  Trace Peak Shapes
• Trace Peak Intensities
•  Gap Fraction

7.2 Evaluation

I used the assemblies produced with the Minimize Coveragemethod as described in Section

5.2 to construct training and test sets to analyze the effectiveness of the networks. I created

example sets in which all of the examples for a particular set have the same coverage(number

of aligned sequences). I chose examples with coverages of two, three, four, five, and six to

form five sets. Each set contains 20,000 examples of categorized data. Ten training and test

sets are constructed from each example set such that each network is trained on 18,000

examples and tested on the remaining 2000. Each example occurs in exactly one test set and

nine training sets disjoint from the test set. In these sets, examples with a desired output of gap

are far outnumbered by examples with desired outputs of G, A, T, or C. To enable the

networks to learn to recognize gaps, gap examples are duplicated in the training sets so that

they occur with about the same frequency as examples for each base. (Note that gapexamples
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are not duplicated in test sets.)

NeuralWare Inc.’s NeuralWorks Professional II software was used for all neural network

tests. I ran this software on an HP Pentium Pro 6/200 running Windows NT. 

I trained and tested each of the neural network topologies with the five examples sets. For

each coverage, I used 10-fold cross-validation and report accuracies averaged over the 10 test

sets. During the training phase, each example in a training set was processed only once since

accuracy fails to improve with more iterations. 

Accuracy results for the five topologies are graphed in Figure 7-6. Of the five networks, I

find that Trace Shape & Intensityproduces the most accurate consensus calls. With a coverage

of six, it makes only three errors in 20,000 calls. The range of accuracies is from 99.26% for a

coverage of two to over 99.98% with a coverage of six.

2 3 4 5 6
98.7

98.8

98.9

99.0

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100.0

Base Call

Trace Intensity

Trace Shape
All

Trace Shape & Intensity

Coverage

% Accuracy

Figure 7-6. Neural Network Consensus Results. The Trace Shape &

Intensity network produces the most accurate results at every coverage. With a
coverage of four or more, the accuracies for all networks that use trace information are

above 99.9%.
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The network that uses only base-call information in inputs, Base Call, has the lowest

accuracies at every coverage except five. At a coverage of five, the other network that

incorporates base calls, All, has the lowest accuracy. With two or three aligned sequences, this

network has substantially poorer results than any of the other four networks. Except when the

coverage is four sequences, differences between the Base Call and the Trace Shape & Intensity

networks are statistically significant using a paired one-tailed t-test at the 95% confidence level.

As with the other networks, the best results using the BaseCall network are achieved when the

coverage is six. With six aligned sequences, the error rate is eight in 20 kb – more than double

that of the best network that uses trace information.

I also compared the performance of the most accurate neural network, the Trace Shape &

Intensity network, to the algorithmic Trace-Evidencemethod I developed. Here I report on

results using the refined version of Trace-Evidence, Trace-EvidenceII, that is described in

Chapter 8.2.1. Figure 7-7 graphs the accuracies of about 20 kb consensus calls output by the

Trace Shape & Intensity network with the accuracies of about 680 kb consensus calls made by

Trace-EvidenceII. The neural network data set is described in Chapter 5 and the data set used

to test Trace-EvidenceIIis described in Chapter 9.1. The Trace-EvidenceIIconsensus calls are

more accurate than the neural network at all coverages.

2 3 4 5 6
99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100.0

Trace-EvidenceII 
    (Chapter 8.2)

Trace Shape & Intensity
    (Neural Network)

Coverage

% Accuracy

Figure 7-7. Trace-Shape & Intensityversus Trace-EvidenceIIAccuracy.
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7.3 Discussion

In additional (unreported) tests, I experimented with alternative plausible input representations.

In one experiment, I extracted inputs from a broader context than a single column. My premise

was that the accuracy of the consensus calls could be increased by extending the inputs to

include trace information for one or more bases 5' to the base of interest. Parker et al. (1995)

and Golden, Torgersen, and Tibbetts (1993) have reported that intensity values for a base are

affected by 5' adjacent bases. For example, Parker et al. show that the intensity of a C peak

following a G is relatively low. Several patterns such as these are described for fluorescent-

dye labeled data (Perkin-Elmer 1995, Parker et al. 1995). I believed that the neural networks

could be trained to recognize these patterns, but in practice found no improvement in accuracy

with the extended inputs. 

In another experiment, I provided not just a single intensity input for each trace, but rather

the intensities in a window surrounding the center of the base peaks. These are the same values

that I use in calculating Trace-Class scores, but rather than transforming them algorithmically,

I allow the network to process them. The network using this alternate input representation

required more inputs but yielded results very similar to the Trace Shape & Intensitynetwork

(results not reported).

7.4 Summary

Given inputs extracted from an aligned column of DNA bases and the underlying ABI

fluorescent traces, I trained neural networks to determine the consensus base for the column.

Choosing an effective input representation was the focus of this work. I compared five

representations and found that networks trained with inputs incorporating fluorescent trace

information are highly accurate. Based on estimates derived from using 10-fold cross-

validation, the best network topology produces consensus accuracies ranging from 99.26% to

over 99.98% for coverages from two to six aligned sequences. With a coverage of six, it

makes only three errors in 20,000 consensus calls. In contrast, the network that only uses base

calls in its input representation has over double that error rate – eight errors in 20,000

consensus calls. This represents a reduction in the need for manual editing. However, I find
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that when I compare the accuracies of the most accurate network, Trace-Shape & Intensity,

with the best algorithmic consensus calling approach I have developed, Trace-EvidenceII, I

find that the algorithmic method outperforms the network at every coverage.
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Chapter 8

SLIC Fragment Assembly

In this chapter I introduce a new system for fragment assembly, the SLIC Assembler, that is

another emphasis of my thesis research. First, recall from the discussion in Chapter 2, that to

determine the sequence of bases in a genome or large segment of DNA, researchers first

produce and sequence small, overlapping fragments of the genome. The base-call sequences of

the small fragments are commonly referred to as fragmentreads, sequences, or simply reads.

The overlapping regions of the fragment reads are aligned into one or more contigs

(contiguous segments) and the resulting layout is used to determine the consensus sequence of

the genome. The process of determining the layout of the reads is called fragment assembly or

sequence assembly. Assembly is complicated by repeats, subsequences that occur more than

once in a genome. When a read contains a repeat, its placement in the layout is often

ambiguous.

Techniques for sequencing whole genomes and other large fragments of DNA are

constantly evolving. The whole genome shotgun sequencingstrategy for bacteria involves

creating a random, or shotgun,library of small fragments from the whole genome, then

sequencing the small fragments. This strategy is successful for genomes up to several

megabases in size. For larger genomes, a popular strategy involves first cloning large DNA

fragments (about 200 kb long), then applying the shotgun sequencing strategy (e.g. Boysen,

Simon & Hood 1997). To determine the sequence of the whole larger genome, assembled
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contigs must be arranged according to their positions on chromosomes. This strategy has not

yet been successful in completing the sequence of a whole genome larger than that of a

bacteria.

Although there are arguments for (Weber & Myers 1997) and against (Green 1997a)

applying the whole genome shotgun sequencing approach to sequencing genomes as large as

Human, it is clear that the approach will work with genomes considerably larger than those of

a typical bacteria (Weber & Myers 1997). As strategies evolve toward sequencing larger

fragments and even whole genomes, the amount of sequence data that will need to be

assembled is immense. It is crucial that fragment-assembly software evolve in tandem to avoid

bottlenecks in sequencing.

8.1 Existing Method

Several assembly software programs are commonly used to sequence large genomes. The

program favored by many large genome centers is Phrap, developed at the University of

Washington (Green 1997b, Phrap source code documentation). In this section, I will describe

the operation of Phrap; in Chapter 11, I describe five other methods.

The method for assembly used in Phrap relies heavily on quality scores assigned to each

base call by Phrap’s companion base calling program, Phred (Ewing & Green 1998). Each

base call made by Phred is assigned a quality score that reflects the estimated probability of

error of the base call. During assembly by Phrap, pairwise comparisons of the reads are used

to adjust the quality scores. If a base call is confirmed by another call that was sequenced on

the opposite DNA strand or with a different chemistry, the quality score is increased by

summing it with the score of the confirming call. During assembly by Phrap, base calls with

low quality scores are virtually ignored, allowing use of full fragment reads without trimming.

The adjusted Phrap quality scores are also used to identify putative repeats in fragment

reads. If mismatches occur in alignments where the quality scores are high, they are assumed

to be due to a near-repeat. On the other hand, mismatches that occur in alignments where

quality scores are low are purported to be due to base-calling errors. Subsequently, the reads

are not overlapped if a repeat is suspected. A companion program to Phrap, RepeatMaskerhas
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also been developed to help avoid false overlaps of repeated regions. RepeatMasker screens

sequences for known repeats. When found, known repeated regions are masked from use

during assembly.

To determine a consensus sequence, Phrap selects the base with the highest adjusted

quality score in each aligned column. The consensus is then a Mosaicof the highest quality

parts of the alignment. Using the Mosaicconsensus method can have a significant impact on

the depth of coverage (number of aligned sequences) needed for accurate sequencing. In their

tests, the developers of Phrap find that in a typical data set, about 25% of the base calls have

predicted error rates of less than one error in 10 kb. This may eliminate the need for filling in

low coverage areas when the error probability is nominal.

As researchers move to sequencing larger fragments and whole genomes, assembly will

require software that can efficiently handle large amounts of data. As with most assembly

packages, the Phrap package uses pairwise comparisons of all fragment reads in assembling

contigs. As a rule, the execution time for an algorithm that performs pairwise comparisons is

n2. With n2 algorithms, as the size of assemblies increases, so does the rate of increase in the

amount of time needed for execution. 

Using n2 time algorithms for large-scale sequencing projects is time-consuming, perhaps

even becoming impossibly so. As an example, consider an assembly of 22,000 fragment reads

for a 2 mb fragment that takes about four hours using an n2 algorithm. Extrapolating based on

n2, it would take over one and a half years to assemble random shotgun fragments of a

chromosome of the human genome. In contrast, consider using a method that runs in time

proportional to n. If four hours are required to assemble 22,000 fragment reads, a

chromosome could conceivably be assembled in less than ten days.

8.2 The SLIC Assembler

I describe a fragment layout algorithm that offers a substantial gain in speed by running in time

that is, in practice, linear in the number of fragment reads, n. I call the algorithm SLIC, for

Sequence Layout into Contigs. The layout algorithm has been incorporated into a total

package, called the SLICAssembler, that takes ABI trace files as input and produces gapped
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and aligned contigs with corresponding consensus sequences. Four major steps are required

for this process. First the reads must be preprocessed to remove both low-quality data and

vectorsequence (a fragment used to carry and replicate a fragment of interest.) Second, the

SLIC layout method establishes the approximate offset of each read in a contig. Then the reads

are gapped and aligned to produce an assembly. Finally, a consensus sequence for each contig

is determined. The steps are summarized here.

SLIC Assembly

1. Preprocess to trim poor-quality ends and remove vector sequence.

2. Determine the layout of fragment reads into contigs using SLIC.

3. Align the layout of reads in each contig.

4. Compute the consensus sequence for each contig.

8 . 2 . 1 Integral Ancillary Methods

Next I briefly explain the integral ancillary methods used in preprocessing, alignment, and

consensus-calling steps (steps 1, 2, and 4). I follow with a detailed description of my new

linear-time layout method, SLIC.

End-Trimming

The first major step, preprocessing to trim low-quality ends and vector sequence are completed

with methods implemented in DNASTAR Inc.’s SeqManII. For use with the SLIC Assembler,

I have improved the Trace-Class Trim algorithm developed in earlier work as discussed in

Chapter 4. The new algorithm is called Trace-QualityTrim.

As with the earlier Trace-Class Trim method, the new Trace-Quality Trim algorithm

evaluates ABI traces to trim low-quality data from the ends of sequences. It proceeds by first

assigning a quality value, Q, to each base in a sequence. The Q score for a base reflects the

confidence that the base has been called correctly. (Base calls of N always have a Q of 0.) The

steps in assigning Qare listed next. 
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Assign Quality Score

Let Ibase-call be the individual quality for the trace associated with the base call.

Let Ibase be one of three quality values for traces not associated with the

base call.

1. Assign individual quality values, I, to each of the A, C, G, and T traces.

2. Find the maximum Ibase :

Imax = max (Ibase1 , Ibase2 , Ibase3 )

3. Q is the difference between Ibase-call and Imax. (0 if negative):

Q = max (0, Ibase-call – Imax )

The first step of the calculation is to assign an individual quality value, I, to each of the

four traces associated with a base call. The values reflect the shape and intensity of the traces.

For a simple example of how the I values for a base call are calculated, consider a tall, sharp

trace peak whose intensity starts at 0, increases to the maximum, and then returns to 0. The

value for this peak is 100. At the other extreme, a totally flat trace whose intensity remains at 0

is assigned a score of 0. A trace peak whose intensity begins at 0, increases half way to the

maximum, and returns to 0 gets an I value of 50. Any value from 0 to 100 is possible given

the variation in shape and intensity of traces.

The calculation of the I value is nearly identical to the calculation of the evidence score used

in consensus calling. Among several differences, the main one is that the I values are relative

to the maximum height of a peak in the entire sequence, whereas the evidence scores are

relative only to the heights of the peak for that base call.

After the four individual quality values, I, are assigned, the highest I value of the three

traces not associated with the base call is identified and subtracted from the value for the base

call trace. For example, consider the case in which the base call is A and I values for C, A, G,

and T are 2, 56, 0, and 10, respectively. Excluding the I value for A, the highest value is 10.

The resulting quality score, Q, score for the base call is 46 (56 - 10). Scores may range from 0

to 100. (In the case that the difference is negative, the score is 0.)

For each base call an averaged Qvalue, A, is also assigned. This is simply the average of

the Qscores over a window of 21 bases. The averaging serves to smooth transitions between

87



the values and provide a measure of the general quality of the trace in a region. The idea is the

same as the one used to assign weights described in Chapter 3.

The averaged Q values, A, are used for the new Trace-QualityTrim algorithm. To use

Trace-Quality Trim, a user specifies a trimming stringency threshold. Recommended

thresholds are in the range of 8 to 16. In general, the largest contiguous section of the

sequence with at or above threshold A scores is retained and the ends on either side are

trimmed. Trace-QualityTrim pseudocode appears in Appendix C and an example of using A

quality scores for trimming is contained in Figure 8-1.

I have implemented the Trace-Quality Trim method for end-trimming in the most recent

commercially available version of the SeqManIIfragment assembler, a part of the Lasergene99

suite of applications developed by DNASTAR Inc. 

Alignment

The second major step in the SLIC Assembleris to layout reads into contigs. This step is the

major emphasis of this work and I will describe the SLIC algorithm later in Section 8.2.2 and

in detailed pseudocode in Appendix D. Once the SLICmethod has been used to determine the

overall layout of the contigs, the reads must be aligned and gapped before the consensus can

be computed. Two existing methods that accomplish this task are compared.

One alignment method is implemented in SeqManII; its steps are summarized next. 

Align with SeqManII 

Let n be the number of sequence reads in a contig.

Let the n reads be ordered by the approximate offset determined by SLIC.

Create a new contig with sequence 1.

For reads 2 to n

1. Overlap the read with the contig at its approximate offset.

2. Compute the consensus of the contig.

3. Find exact substring matches between the read and the consensus.

4. Align exact matches whose order is consistent between the read

and the consensus.

5. Gap and align between exact matches.
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Figure 8-1. Trace-Quality Trim. Beginning, middle and ending segments of a

trace and base calls are shown. For each base, the quality score, Q, and average score,
A, for a window of 21 bases are shown below the base. In this example, the trimming

threshold is set to 12; the largest section of the read with an A score above 12 is

retained and the ends are trimmed. The first six bases at the 5’ end of the read and

bases past number 465 are trimmed since they are below threshold. The center of the
figure shows high quality sequence in the middle of the read that is within the retained

region. (Actual data shown.)
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In the SeqManIIapproach, sequences are added one at a time, from left to right, to a

growing contig. As each read is added, its sequence is aligned to the region of the contig

consensus that it overlaps. The approximate offset of the read in the contig as determined by

SLIC is used to determine the overlapping region. First Martinez (exact substring) matches

(Martinez 1983) are found between the read and the consensus. Then Needleman-Wunsch

(Needleman & Wunsch 1970) is used to align and gap the read with the consensus between

consistent pairs of Martinezmatches. Figure 8-2 (continued on the next page) steps through

the alignment process using the SeqManIImethod.

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

    Create a new contig with read 1.

    Sequence Offset

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG 0Read 1.

CCC AC GTC GTA CTAC GTA CGT GGG TGA TC AC CAT CCA ATT C 6Read 2.

CC A GGTT GGG TGA TC AC CAT CCA ATT CT AATAG 19Read 3.

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

CCC AC GTC GTA CTAC GTA CGT GGG TGA TC AC CAT CCA ATT C

    Add read 2 at offset 6.

    Align exact matches between consensus and read 2 (boxed).

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

C AT T CTCCC AAC GTA CGT CGG GGG TGA TC AC CAT CCA ATT C

CCC AC GTAC GTAC GTAC GTA CGTACGT GGGconsensus

    Gap and align between exact matches (grayed).

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

C AT T CTCCC AAC GTA CGT CGG GGG TGA TC AC CAT CCA ATT C--

CCC AC GTAC GTAC GTAC GTA CGTACGT GGGconsensus

Figure 8-2. SeqManII Alignment  (continued on next page).
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    Add read 3 at offset 19.

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

C AT T CTCCC AAC GTA CGT CGG GGG TGA TC AC CAT CCA ATT C--

CC A GGTT GGG TGA TC AC CAT CCA ATT CT AATAG

    Align exact matches between consensus and read 3 (boxed).

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

C AT T CTCCC AAC GTA CGT CGG GGG--

CC A GGTT GGG TGA TC AG CAT CCA ATT CT AATAG

TGA TC AC CAT CCA ATT CCCC AC GTAC GTAC GTAC GTA CGTACGT GGGconsensus

TGA TC AC CAT CCA ATT C

    Gap and align between exact matches (grayed).

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

C AT T CTCCC AAC GTA CGT CGG GGG-- TGA TC AC CAT CCA ATT C

CC A GGTT GGG TGA TC AG CAT CCA ATT CT AATAG

TGA TC AC CAT CCA ATT CCCC AC GTAC GTAC GTAC GTA CGTACGT GGGconsensus

--

-

-

Figure 8-2. SeqManII Alignment  (continued from previous page). The

approximate offset for three sequence reads have been determined by SLIC. First, read
1 is used to create a new contig. The second read is added at its offset. Consistent exact

substring matches between the read and the consensus are aligned, then the
Needleman-Wunschmethod is used to gap and align between the matches. The third

read is added in the same manner as the second.

The other method, ReAligner, was developed to gap and align nearly aligned sequences

(Anson & Myers 1997). The steps used in ReAlignerare listed next. 

Align with ReAligner 

Create a near multiple-sequence alignment with all sequence reads.

While alignment improves do

1. Get next column in alignment.

2. Gap and align columns following current column.
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First the approximate offsets as determined by the SLIC layout algorithm are used to create

a near multiple sequence alignment. ReAlignerthen makes multiple passes processing one

column at a time, improving the alignment with each iteration. When there is no improvement

in the alignment, processing ceases. Figure 8-3 illustrates an alignment using ReAligner.

Sequence Offset

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG 0Read 1.

CCC AC GTC GTA CTAC GTA CGT GGG TGA TC AC CAT CCA ATT C 6Read 2.

CC A GGTT GGG TGA TC AC CAT CCA ATT CT AATAG 20Read 3.

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

CCC AC GTC GTA CTAC GTA CGT GGG TGA TC AC CAT CCA ATT C

CC A GGTT GGG TGA TC AC CAT CCA ATT CT AATAG

Create a near multiple-sequence alignment with all 3 reads.

Iterate over columns, improving the alignment.

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

CC A GGTT GGG TGA TC AC CAT CCA ATT CT AATAG

C CC AA GTA -GT CCC A GT GT CT GGG TGA TC AC CAT CCA ATT CC

Cease processing when the alignment fails to improve.

CCC AC GTAC GTAC GTAC GTA CGTACGT GGG

C AT T CTCCC AAC GTA CGT CGG GGG-- TGA TC AC CAT CCA TT AC

CC A GGTT GGG TGA TC AG CAT CCA ATT CT AATAG--

-

Figure 8-3. ReAligner Alignment. A near multiple-sequence alignment is created

using the SLICapproximate offsets. The offsets were determined by the alignment of
the boxed subsequence. ReAligner iterates over the aligned columns, gapping and

aligning, until there is no improvement.
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Consensus

The basic idea for the consensus calling algorithm used in the SLIC Assembleris the same as

the Trace-Evidencemethod described in Chapter 6. Traces are examined and evidence for each

base is summed. However, the calculation of the evidence scores and the steps in summing

have been refined. I will refer to the refined method as Trace-EvidenceII. I incorporated this

consensus calling method into DNASTAR Inc.’s SeqManIIfragment assembly program. It is

commercially available in the Lasergene99suite of applications.

With Trace-EvidenceII, Trace-Classscores are not used to determine evidence scores,

rather a single score is computed. Nevertheless, the same trace characteristics that are

examined for Trace-Classscores are evaluated for the refined calculation. Each set of trace data

points (A, C, G, or T) associated with a single base call are scanned to find peaks (valleys are

no longer used). Peaks may be as obvious as those that have changes in sign from positive to

negative slope or may simply have a convex shape. The more defined the peak and the higher

its intensity, the higher the score.

An additional change in assigning evidence scores is that peaks that occur in runs of

identical bases are assigned scores that more accurately reflect their intensity. Before the

refinement of the calculation, peaks in runs were given inappropriately low scores because

within a run the trace does not descend as low on either side of the peak as it does when not in

a run. The minimum intensity to either side of the peak was used for the right and left extremes

in calculating the evidence score. The refined calculation in Trace-EvidenceIIuses the

minimum intensities on either side of the run, rather than either side of a peak, for the

extremes, resulting in more accurate scores for peaks in runs. The extremes are found as

follows.

Get Extremes

If the peak base call is in a run of identical bases then

The left peak extreme, L, is the min of all trace points

in the run to the left of the peak 

The right peak extreme, R, is the min of all trace points

in the run to the right of the peak 
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After all evidence scores for a column of aligned bases have been determined, the algorithm

for summing the score for Trace-EvidenceIIis as previously described in Chapter 6 for Trace-

Evidencewith one difference. The change was made necessary by spurious peaks whose

scores overwhelmedthe scores for true peaks. The false peak may be the result of fluorescent-

dye contamination or a chimeric read (a read that contains erroneously joined fragments from

discontiguous sources); Figure 8-4 contains examples. In determining the consensus, a

spurious peak is identified by its single occurrence among at least three other matching peaks

in an aligned column. When a putative false peak is found, the summed score for the base

associated with the false peak is reduced before determining the consensus. By adjusting the

evidence sum in this way, far fewer ambiguous calls occur in the consensus. The algorithm for

adjusting evidence scores follows.

Adjust Evidence Scores

For each sequence in a column

If the maximum evidence is for A, increment count A
Else if maximum evidence is for C, increment count C
Else if maximum evidence is for G, increment count G
Else if maximum evidence is for T, increment count T

Find the highest (max_count ) and second highest (next_count ) counts

If max_count is at least 3 and next_count is 1 then

For each i = A, C, G, T

evidence_sum i = evidence_sum i * count i / max_count
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AAAA TTTT C AAAA AAAA C AAAA TTTT TTTT C TTTT AAAA TTTT

AAAA TTTT C AAAA AAAA C AAAA TTTT TTTT C TTTT AAAA TTTT

AAAA TTTT C AAAA AAAA C AAAA TTTT TTTT C TTTT AAAA N

AAAA TTTT C AAAA AAAA C TTTT TTTT TTTT C TTTT AAAA TTTT

TTTT G G G G G TTTT N AAAA AAAA G TTTT TTTT

TTTT G C AAAA C G AAAA G C C C G C

TTTT G C AAAA C G AAAA G C C C G C

TTTT G C AAAA C G AAAA G C C C G C

T

A

G
C

Figure 8-4. Spurious Peaks. In the alignment on the left, a chimeric read has

been aligned with three other matching reads. The correct consensus call for the shaded
column is an A, but with the original Trace-Evidencealgorithm, the high T peak in the

top sequence results in an ambiguous consensus call of W. On the right, the correct call
is also A in the shaded column, but the unrefined Trace-Evidencereturns a W due to

the high T peak in the fourth sequence. When the sum of the evidence scores are
adjusted using the Trace-EvidenceII method, the consensus call in both cases is an A,

as desired. (Actual data shown.)

8 . 2 . 2 SLIC Algorithmic Details

The SLIC layout algorithm relies on subsequences of bases, or mers, that occur in overlapping

regions of fragment reads. Mers that are common to two or more fragment reads are aligned to

determine the overall layout of reads. The premise is that large DNA fragments contain many

mers that occur only once (or infrequently) and that can be used to tag relative positions of
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fragment reads (Jain and Myers 1997). The idea of using mers to tag fragments and identify

overlaps is illustrated in Figure 8-5. 

Actual Sequence:

CGAATGTCATATGGCAGTACACGGCGTACGTTAGGTTTCTGAGGGATTTTCGAG

Fragment Reads:

1. CGAATGTCATATGGCAGTA

2. TATGGCAGTACACGGCGTACGT

3. GGCGTACGTTAGGTTT

4. TTAGGTTTCTGAGGGATT

5. AGGTTTCTGAGGGATTTTCGAG

Fragment Read Layout:

1. CGAATGTCATATGGCAGTA

2. TATGGCAGTACACGGCGTACGT

3. GGCGTACGTTAGGTTT

4. TTAGGTTTCTGAGGGATT

5. AGGTTTCTGAGGGATTTTCGAG

Figure 8-5. Using Mer Tags to Identify Overlaps. In this case, I have a 54 bp

actual sequence that is covered by five overlapping fragment reads. The 6-mer tags for
each fragment read are underlined. I align matching mer tags to determine the layout of

the reads.

Since the SLIC algorithm relies on mer tags to identify overlapping regions of reads, this

approach can work well only with data that is fairly error free. Fortunately, sequencing

technology has now advanced to the point that at least several hundred consecutive base calls

per fragment read are highly accurate. In addition, to remove noisy ends of the reads, I have

developed methods that trim based on the quality of the traces. These both help to ensure that

the data is sufficiently error-free to assemble successfully with SLIC.

The fundamental challenge of using mers to tag fragments lies in choosing tags that are

most likely to be unique. In choosing tags, I consider two factors. The first is the length of

mers; the longer the mer, the more probable that the mer is unique. In practice, the length of a

mer tag is limited by the length of fragment read overlaps and is set before processing. The

96



second factor is the number of occurrences of each mer in the data set. If a mer occurs more

often than expected, I suspect that the mer is part of a repeated region of DNA and

preferentially choose a mer with fewer occurrences.

A brief overview of SLIC, the linear-time layout algorithm, is listed next; detailed

pseudocode appears in Appendix D. I make three linear scans through all of the base call

sequences in the data set. 

SLIC Overview

1. Initialize all variables and structures. 

2. Read sequences.

3. Count occurrences of mers in all fragment reads.

4. For each fragment read, choose mer tags using mer counts.

5. For each read, if a mer is chosen as a tag for any previous read, choose
it as a tag for the current read.

6. Make contigs.

In the initialization step, all variables and structures are cleared. In the second step,

sequences are read and stored. In step three, I scan all of the reads keeping track of the counts

of the occurrences of mers. In the fourth step, I choose mer tags for each read. The fifth step

ensures that if a mer was previously chosen as a tag for any fragment read, it is chosen for all

reads in which it occurs. In the last step, the lists of reads associated with mer tags are used to

form contigs.

The goal of the first scan (step 3 in the overview) is to obtain a count the occurrences of

each mer of fixed length k that appears in the data set. (I use the counts in the next scan to

determine which k-mers to prefer as mers used to tag overlaps of reads.) I process each

fragment read in turn, incrementing the total tally of counts for each k-mer that occurs. The

counts are kept in a bucket-and-chain hash table to preserve the linear nature of the algorithm.

In the table, the integer value of an encoding of the first first x bases of the mer specifies a

bucket. In the encoding, two bits are used to represent each base call; A, G, T, and C are
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represented by 00, 01, 10, and 11, respectively. Since two bits encode each base in the x-mer,

the length of the table is 4x. The last y bases in the mer specify a mer record in the chain.

Figure 8-6 gives an example of a mer hash table.

a)

0 AAAAAAAA 0000000000000000
1 AAAAAAAG 0000000000000001
2 AAAAAAAT 0000000000000010

65,533 CCCCCCCG 1111111111111101
65,534 CCCCCCCT 1111111111111110
65,535 CCCCCCCC 1111111111111111

… … …

Index
Mer

(first x bases)
2-Bit

Encoding

b)

Mer Chain

Mer 1

Hash Index

Mer 3Mer 2

mer GTCA mer GAATmer TTAC

count 1 count 3count 6

31,352

(GCTTGCTA)

(first x bases) (last y bases)

Figure 8-6. Mer Bucket and Chain Hash Table and Lists. a) This is an

example of bucket indices in a hash table of mers. In this example, x = 8 and the length
of the table is 65,536. The integer values of the 2-bit encoding of the 8-mers indexes

the table. b) I use the last y bases in the current mer to find the corresponding chain
record for a particular mer. In this example, consider the following three mers where x

= 8 and y = 4: GCTTGCTAGTCA, GCTTGCTATTAC, and GCTTGCTAGAAT. The
first x bases are identical, so all hash into the table at index 31,352. The last y bases are

different, so each has its own record. In the data set of fragment reads for this example,
I have so far encountered one mer of GCTTGCTAGTCA, six of GCTTGCTATTAC,

and three of GCTTGCTAGAAT. At the end of step 3, there is one record for each mer
that occurs in the data set of fragment reads. 
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Before counting, a threshold is set that specifies a maximum number of identical mers.

When the number of occurrences surpasses the threshold, the mer is marked as a repeat. My

premise is that if the number of occurrences of a mer is significantly above expected, the mer is

likely to be a repeated subsequence. Since my goal is to choose unique mers, I do not consider

the putative repeats. The default setting for the threshold is 150% of expected redundancy. The

expected number is simply the average coverage for the actual sequence:

   
read length iΣ

i = 1

number of reads

sequence length
The numerator can be estimated by multiplying the number of reads by the expected read

length (usually about 500 bp).

A summary of step 3 (first of three read scans) follows. 

Count Mers

For each read in a data set

For each mer of length k=x+y in the read

Index the hash table using the first x bases in the mer

If no record exists for the last y bases in the mer then

Create a new record

Increment the mer count in the record

If the count exceeds the repeats threshold then

mark the mer as a repeat

In the second of the three scans of the fragment reads (step 4 of the overview), I choose the

initial set of putative unique mers for each of the fragment reads. Theoretically, any number of

mers can be chosen for each read, but I need to balance completeness with efficiency. If I

choose too few mers, I risk missing some overlaps. In choosing more mers than are

necessary, I waste storage and processing time. One obvious answer is to choose two mers

per read – one at either end. With perfect data, this is sufficient, but given that the data near the

ends is more error-prone, overlaps may be missed using this scheme. Figure 8-7 illustrates

some potential problems with various numbers of mer tags. In practice, I choose three to five

mers per read; one near either end with the others distributed between.
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Actual Sequence

CGCATGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTTATCCAACCA

Correct Fragment Read Layout

1. CGCATGCAAAAGTGATCGGGTATCACG

2. AAAGTGATCGGGTATCACGCACGTATTC

3. CACGCACGTATTCTTAGCAGAGTT

4. GTATTCTTAGCAGAGTTATCCAACCA

a) First possible result

Contig 1

1. CGCATGCAAAAGTGATCGGGTATCACG

2. AAAGTGATCGGGTATCACGCACGTAT

Contig 2

3. CACGCACGTATTCTTAGCAGAGTT

4. GTATTCTTAGCAGAGTTATCCAACCA

b) Second possible result

Contig 1

1. CGCATGCAAAAGTGATCGGGTATCACG

2. AAAGTGATCGGGTATCACGCACGTATTC

3. CACGCACGTATTCTTAGCAGAGTT

4. GTATTCTTAGCAGAGTTATCCAACCA

Figure 8-7. Unidentified Overlaps (continued on next page).
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c) Third possible result

Contig 1

1. CGCATGCAAAAGTGATCGGGTATCACG

2e. AAAGTGATCGGGTATCACGCACXTATTC

Contig 2

3. CACGCACGTATTCTTAGCAGAGTT

4. GTATTCTTAGCAGAGTTATCCAACCA

Figure 8-7. Unidentified Overlaps (continued from previous page).  I have
an actual sequence that is covered by four fragment reads. In a)-c), the mer tags chosen

initially are singly underlined; their matches are marked with a double underline. a) I
choose a single 6-mer tag in the center of each read. The tags identify overlaps between

reads 1 and 2 and between reads 3 and 4, but miss the overlap of read 2 with 3. b) A mer
tag is chosen for either end of each read. The tags correctly identify all read overlaps. c)

Choosing one mer for either end of the read is not sufficient if base calling errors result in
mismatched tags. A base calling error in the base sixth from the end in read 2 prevents

finding its overlap with reads 3 and 4.

As I make the second scan, I first divide each read into as many partitions as the specified

number of mers per read. Then, if possible, a mer tag is chosen in each of these partitions. I

use a simple criterion to choose a mer; I prefer mers with the fewest number of occurrences.

(The number must be at least two to identify overlapping fragments.) Again, my premise is

that the fewer the number of occurrences, the more likely that the mer is unique in a given large

DNA fragment or genome.Often there are ties in the number of occurrences and my choice of

mer tag is dependent upon which partition I am processing. Ideally, I want to choose mer tags

that are at either end of the fragment read and spaced evenly throughout the rest of the read.

Given this, if I am choosing for the first partition, I choose the first mer with the fewest

occurrences. Conversely, if I am choosing for the last partition, I choose the last mer with the

fewest occurrences. For middle partitions, I choose the mer with the fewest occurrences that is

nearest the center of the partition. Figure 8-8 illustrates breaking ties in a partition.
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Actual Sequence

CGCATGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTTATCCAACCATA

Fragment Read Layout

1. CGCATGCAAAAGTGATCGGGTATCACGCACGTATTC

2. TGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTTATC

3. CACGCACGTATTCTTAGCAGAGTTATCCAAC

4. CACGTATTCTTAGCAGAGTTATCCAACCATA

Read 1

Partitions: CGCATGCAAAAGTGATCGGGTATC ACGCACGTATTC

Number of Occurrences: 111122222222 222222222223 33344-------

Figure 8-8. Breaking Mer Tag Ties. I show an actual sequence and three

fragment reads. I want to choose three 8-mer tags per read. Before choosing mers for
read 1, I divide it into three partitions. Then I examine the number of mer occurrences

for each partition. In the first partition, I do not choose any of the first four mers since
they occur only once and can not identify an overlap. Next, I have an eight-way tie

with two occurrences each. I want a mer nearest the end, so I choose the first mer in
the tie. In the middle partition, I want to choose one of the mers with two occurrences,

since that is the fewest. I break the tie by choosing the mer nearest the center of the
partition. In the last partition, I choose the last mer with three occurrences so that the

mer will be as near to the end as possible. Each mer tag chosen for read 1 is
underlined.

A summary of step 4 (second of three read scans) follows. 

Choose Mer Tags

For each read in a data set

Divide the read into m partitions. 

(m is the specified number of mers per read)

For partition 1 (choose the first mer with the lowest count)

While a mer tag is not chosen

Get the next mer (in 5’ to 3’ order)

If the mer is not a repeat then

Get the count of the occurrence of the mer

If the count is greater than 1 then choose the mer as a tag
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For partitions 2 to m - 1 (choose the most central mer with the lowest count)

For each mer in the partition

If the mer is not a repeat then

Get the count of the occurrence of the mer

If the count is greater than 1,

less than or equal to the count of a previous mer tag,

and nearer to the center of the partition than a previous

mer tag then

Choose the mer as a tag

For partition m (choose the last mer with the lowest count)

While a mer tag is not chosen

Get the next mer (in 3’ to 5’ order)

If the mer is not a repeat then

Get the count of the occurrence of the mer

If the count is greater than 1 then choose the mer as a tag

The third scan through the data (step 5 in the overview) ensures that if a mer was chosen

for any read, the mer is also chosen for all other reads containing that mer. The summary for

this scan is listed next.

Choose Previously Chosen Mer Tags

For each read in a data set

For each mer in the read

If the mer is already chosen as a mer tag for any read then

Choose the mer as a tag for the current read

By doing this, all fragment reads that align will be placed in the same contig. The necessity of

this step is shown in an example in Figure 8-9 where a mer has been chosen as a tag by one

fragment in the second scan, and is chosen in the third scan by another fragment that also

contains the mer.
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Actual Sequence

XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBBCCCCCCCCYYYYYYYYYYYYY

Fragment Reads

1. XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBB

2. AAAAAAAAABBBBBBBBCCCCCCCC

3. CCCCCCCCYYYYYYYYYYYYY

Scan 2

1. XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBB

2. AAAAAAAAABBBBBBBBCCCCCCCC

3. CCCCCCCCYYYYYYYYYYYYY

Scan 3

1. XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBB

2. AAAAAAAAABBBBBBBBCCCCCCCC

3. CCCCCCCCYYYYYYYYYYYYY

Figure 8-9. Choosing Mer Tags. The actual sequence has five regions designated

by X, A, B, C, and Y. Regions A, B, and C represent the three mer tags that will be
chosen in scans 2 and 3. In this example, I am going to choose two 8-mers per read;

i.e. I divide each read into two parts and choose a mer in each partition whenever
possible. Mer tags chosen in the second scan are single underlined and those chosen in

the third scan are double underlined. There are three fragments reads in the data set. In
the second scan, there is no mer to choose for the first half of read 1 since the mers

occur only once. In the second half, I choose the the mer closest to the end of the read
(BBBBBBBB). For the second read, I choose the mers closest to either end

(AAAAAAAAA and CCCCCCCC). The mer tag chosen for the third read is
CCCCCCCC. At this point I have established a relationship between reads 2 and 3, but

not between reads 1 and 2. In the third scan, I additionally choose AAAAAAAAA for
read 1 and BBBBBBBB for read 2. At this point I have accounted for all overlaps.

Note that the amount of storage and processing time can be reduced by incorporating a

check for previously chosen mers in the second scan. In that scan, if a mer in the current

partition has been previously chosen, the mer can be immediately chosen as the mer tag for the

104



current fragment. However, checking for previously chosen mers in the second scan does not

eliminate the need for the third scan, as shown in Figure 8-10.

Scan 2

1. XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBB

2. XXXXXYXXAAAAAAAAABBBBBBBBCCCCCCCC

3. CCCCCCCCYYYYYYYYYYYYY

Scan 3

1. XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBB

2. XXXXXYXXAAAAAAAAABBBBBBBBCCCCCCCC

3. CCCCCCCCYYYYYYYYYYYYY

Figure 8-10. Choosing Mer Tags More Efficiently. I have the same actual

sequence, regions, reads, and number of mers as in Figure 8-9. Again, in the second
scan, I choose the mer BBBBBBBB for read 1. For read 2, I choose BBBBBBBB

since it is in the second half and was already chosen for read 1. Note that I do not
choose CCCCCCCC for read 2 since I have already chosen a mer for the second half.

The mer tag chosen for the third read is still CCCCCCCC. Even though I checked for
previously chosen mers during the second scan, I have not established a relationship

between reads 2 and 3. To identify the overlap, I still need the the third scan in which I
additionally choose CCCCCCCC for read 2. I have, however, reduced the amount of

mer information that I must store and process. Mer tags chosen in the second scan are
single underlined and the mer chosen in the third scan is double underlined.

By the end of the third scan of the data, I have a list of mers that have been chosen as tags

for reads. Associated with each mer tag list is a corresponding list of all fragment reads that

contain the mer. This is the information I will use to determine the layout of fragment reads in

contigs.

To form contigs, I iterate through the lists of chosen mer tags, checking the pairwise

similarity of the fragment reads (The computational complexity analysis in Chapter 10 explains

why this pairwise comparison does not compromise the linear nature of algorithm.) The check

is necessary to ensure that the mers tags identify actual overlaps of fragments reads. Figure 8-

11 illustrates this point.

105



Actual Sequence

AAAAAAAAAAABBBBBBBBCCCCCCCCCCCCCCCCCCBBBBBBBBDDDDDDDDDDDDDD

Fragment Reads

1. AAAAAAAAAAABBBBBBBBCCCCC

2. ABBBBBBBBCCCCCCCCCCCCCCCCCCBB

3. CCCCCCCCCCCCCCCBBBBBBBBDDD

4. CCCCCCBBBBBBBBDDDDDDDDDDDDD

Overlaps (via mer BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB)

1. AAAAAAAAAAABBBBBBBBCCCCC

2. ABBBBBBBBCCCCCCCCCCCCCCCCCCBB

3. CCCCCCCCCCCCCCCBBBBBBBBDDD

4. CCCCCCBBBBBBBBDDDDDDDDDDDDD

Figure 8-11. False Overlaps with Non-Unique Mer Tags. In the example, I

have an actual sequence and four fragment reads. Sections of the fragment are
designated by A, B, C, and D. Note that the read identified by B is repeated. When I

align the B mer tag for the four reads and check the pairwise overlap similarity, I find
that the four reads do not match and should not be overlapped. At the same time I

recognize that the first two and the last two reads match so I divide the list into two,
placing each matching pair in a new list.

Although in theory all mers chosen as tags are unique in the original large fragment of

DNA, this is not the case in practice. Some mer tags chosen may not be unique; the pairwise

comparisons help to identify these tags. For the comparison, a threshold is set that specifies

the required amount of match similarity. The similarity is checked in a rolling window over the

overlapping region so that an extremely good match in one region does not compensate for a

poor match in another. See Figure 8-12 for an example of the need to checking match

similarity in a rolling window. Pseudocode for checking match similarity in a rolling window

follows.
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ACCCATAGATGCGACTGGTAGACAGTGACACGATAGGCTAATTTACGGCAGCATTAAAGT

ACCCATAGATGCGACTGGTAGACAGTGACACGATAGGCTAATTTGATCGATCAGTCAGCC

????? ?  ? ? ???

Figure 8-12. Pairwise Similarity in a Rolling Window. This example aligns

two fragment reads (‘?’s mark mismatches). The overall match similarity is 82%
(49/60) which would exceed an 80% threshold. However, if the read is all good data,

the first part is probably a repeat or chimeric and it is clear that the fragments should not
be aligned. By doing a rolling similarity check with a window of size 20, I find that the

last twelve windows have similarities ranging from 45-75%. These fall below an 80%
threshold and result in marking the mer as a repeat.

Check Similarity

Set all positions in window to 0

Set window_idx to 1

Set max_mismatches to window_size * (1- threshold )

Set num_mismatches to 0

Align overlapping region

Start scanning with the first aligned bases in the overlap

While num_mismatches <= max_mismatches and more

aligned bases in overlap

Subtract window [window_idx ] from num_mismatches

If the aligned bases do not match then

Increment num_mismatches

Set window [window_idx ] to 1 to record a mismatch

Increment window_idx , wrapping when necessary

Advance scan to next aligned bases

If num_mismatches <= max_mismatches then similarity is OK

After the pairwise similarity checks, all reads in a list have sufficient pairwise similarity in

their overlaps. However, if any of the fragments are already in a contig, I must then also check

the pairwise similarity of all fragments in the contig with any overlapping fragments in the list.

(The fragments in a contig might not contain the current mer, but might still overlap some of
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the fragment reads in the current list.) An example in Figure 8-13 illustrates the need for

checking all fragments in an existing contig with any overlapping fragment reads in the list.

Actual Sequence

AAAAAAAABBBBBBBBCCCCCCCCCCCCCCCCCCBBBBBBBBDDDDDDDDEEEEEEE

Fragment Reads

1. AAAAAAAABBBXBBBBCCCCCCCCCCCCCC

2. AAAAAAAABBBBBBBB

3. BBBBBBBBDDDDDDDD

4. BBBBBBBBDDDDDDDDEEEEEEE

Contig 1 via mer AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
(fragments 1 and 2 are in the list of reads)

1. AAAAAAAABBBXBBBBCCCCCCCCCCCCCC

2. AAAAAAAABBBBBBBB

Contig 2 via mer DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
(fragments 3 and 4 are in the list of reads)

3. BBBBBBBBDDDDDDDD

4. BBBBBBBBDDDDDDDDEEEEEEE

Overlap of Contigs 1 and 2 via mer BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
(fragments 2, 3, and 4 are in the list of reads)

1. AAAAAAAABBBXBBBBCCCCCCCCCCCCCC

2. AAAAAAAABBBBBBBB

3. BBBBBBBBDDDDDDDD

4. BBBBBBBBDDDDDDDDEEEEEEE

Figure 8-13. False Overlaps with Sequencing Errors. I have an actual
sequence and four fragment reads. Sections of the fragment are designated by A, B, C,

D, and E. This time, in fragment read 1, the first B section contains a sequencing error
in which the fourth base is called incorrectly. The result is that fragment read 1 does not

occur in the fragment read list for BBBBBBBB. When I consider the merge of Contig
1 and 2, it is clear that I need to check the overlap similarity of fragment 1 with the

others even though it does not appear in the list. To avoid the risk of incorrect
alignments of fragments, I check all overlapping regions of both reads and contigs.
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If not all overlapping regions in contigs and reads in a list have above-threshold similarity,

I divide the list into new lists such that all the overlapping regions specified by each list do

have sufficient similarity. I can then proceed to form contigs with the reads in the lists. A

contig in this scenario is a list of reads and their approximate offsets. If no read in a list is yet

in a contig, a new contig is made and all other reads in the same list are added to it. If at least

one fragment is already in a contig, then other fragments in the same list not yet in a contig are

added to it. If any other fragments in the list are already in a different contig, the fragments

bridge a gap between contigs, and the contigs are merged. This procedure is listed next.

Make List into Contig

If no reads in the list are in a contig then

Make a new contig

Add all reads with their approximate offsets to the new contig

Else (at least one read in the list is already in a contig)

Add to a contig each read in the list that is not in a contig

If the reads in the list are in more than one contig then merge the contigs

Figure 8-14 gives a brief example of making a list into a contig and Figure 8-15 illustrates

merging contigs.

Read Index Contig

63 none

125 3

42 4

15 none

1. Add read 63 to contig 3

2. Add read 15 to contig 3

3. Merge contigs 3 and 4

Figure 8-14. Making a List into a Single Contig. A mer tag list contains four
reads, two in contigs and two not. First the two reads not in a contig are added to

contig 3. This leaves the four reads in two contigs so contigs 3 and 4 are merged. 
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Actual Sequence

CGCATGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTT

Fragment Read Layout

1. CGCATGCAAAAGTGATCGG

2. AAAGTGATCGGGTATCA

3. CGGGTATCACGCACGTATTC

4. CACGCACGTATTCTTAGCAGAGTT

a)

Contig 1 (via mer AAAAAAAAAAAAGGGGTTTTGGGGAAAATTTT)

1. CGCATGCAAAAGTGATCGG

2. AAAGTGATCGGGTATCA

Contig 2 (via mer CCCCAAAACCCCGGGGCCCCAAAACCCCGGGG)

3. CGGGTATCACGCACGTATTC

4. CACGCACGTATTCTTAGCAGAGTT

Merged Contigs 1 and 2 (via mer GGGGGGGGGGGGTTTTAAAATTTTCCCCAAAA)

1. CGCATGCAAAAGTGATCGG

2. AAAGTGATCGGGTATCA

3. CGGGTATCACGCACGTATTC

4. CACGCACGTATTCTTAGCAGAGTT

Figure 8-15. Merging Contigs. Two contigs have been formed using overlapping

mers. The list of fragment reads for mer GGGTATCA indicates that the reads are
already in different contigs so I merge the contigs. 

At the completion of the iteration through the list of mer tags, I have a list of contigs. Each

contig is represented as a list of information about the fragment reads that are contained in the

contig. The information includes an identifier for the fragment read and the offset of the read in

the contig. Figure 8-16 contains an example contig list and the implied layouts of fragment

reads.
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a) Contig Lists

Contig Read List

1
index 16
offset 0

index 6
offset 8

index 2
offset 14

index 14
offset 25

index 10
offset 34

2
index 1
offset 0

index 7
offset 9

index 15
offset 19

3
index 12
offset 0

index 3
offset 6

index 13
offset 17

index 5
offset 33

b) Layout

Contig 1
Read 1 6 : TAGGCTAGGCCCCATATGC

Read 6 : GCCCCATATGCTGACGGCGCA

Read 2 : TATGCTGACGGCGCATTTGAC

Read 1 4 : CGCATTTGACCCCAAAGTC

Read 1 0 : CCCCAAAGTCCCCG

Contig 2
Read 1 : GATTGGGGACCAGCACCACCTTAGC

Read 7 : CCAGCACCACCTTAGCAGGA

Read 1 5 : CTTAGCAGGATTGACACGGGTA

Contig 3
Read 1 2 : TTAGGATCGCGAGCTTA

Read 3 : TCGCGAGCTTATCCAGAGTCGACCGG

Read 1 3 : TCCAGAGTCGACCGGTAGGGCTACACAAG

Read 5 : AGGGCTACACAAGCCT

Figure 8-16. Contig Lists. Three contig lists are shown. Each list contains an

identifier and offset for each read in the contig. The reads are ordered by offset in the
lists. 
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I have described in detail the 6 steps required for determining the layout of sequence reads

using the SLIC algorithm. First all variables and data structures are initialized. Then three

linear scans of the reads are executed. The first counts the number of unique mers that occur in

the data set. The second scan chooses mers (subsequences of bases) to tag the reads. In the

third scan of the reads, any mer tags that were previously chosen for any read are chosen as

tags for every read in which they occur. Finally, in the step 6, the mer tags are used to

determine the layout of reads. Matching tags between reads are aligned and a rolling similarity

check is used to determine if indeed the sequences should be overlapped. All reads that have

sufficient similarity are joined in a contig. Information for each contig includes an identifier

and offset for each read included in the contig.

8.3 Summary

As the speed of producing sequencing data increases, computational methods for assembling

large amounts of data in a time-efficient manner must be developed. Fragment assembly

programs currently favored by large genome sequencing centers execute pairwise comparisons

of fragment reads, resulting in assembly times that are proportional to n2 (where n is the

number of reads). I have developed an algorithm for fragment layout, SLIC (Sequence Layout

into Contigs), that avoids explicit pairwise comparisons of all reads. By using a hash table to

store and retrieve information on the subsequences that occur in reads, the SLIC algorithm is,

in practice, a function of n. This represents a dramatic decrease in assembly time as the number

of reads in an assembly increases.

The SLIC layout algorithm is incorporated into a total package for fragment assembly, the

SLIC Assembler. The assembly steps included in the package are: 1) preprocess to trim poor-

quality ends and remove vector sequence, 2) determine the layout of fragment reads using

SLIC, 3) align the layout of reads, and 4) compute the consensus sequence. I have

incorporated two of the revised methods described in this chapter, Trace-Quality Trim and

Trace-EvidenceII, into the latest commercial version of SeqManII. It is available as part of

DNASTAR Inc.’s suite of applications, Lasergene99.
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A comparative evaluation of the SLIC Assemblerwith Phrap and DNASTAR Inc.’s

SeqManIIis described in the next chapter.
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Chapter 9

Evaluation of SLIC

I compare assembly performance of the SLIC (Sequence Layout into Contigs) Assemblerto

Phrap from the University of Washington and DNASTAR Inc.’s SeqManII. In comparisons,

Phrap is used because many researchers, especially those in large genome centers, consider it

to be the assembly package of choice. SeqManII is included since my earlier work is

incorporated into this program. All tests were conducted on a Hewlett Packard Kayak XUwith

a 450 Mhz Pentium II and 256 MB RAM running WindowsNT 4.0. In my evaluation, I find

that SLIC compares favorably to Phrapand is superior to SeqManII.

9.1 Data Sets

I used four data sets provided by the E. coli Genome Project at the University of Wisconsin to

compare the performance of SLIC. The data sets contain ABI 377 reads from E. coli segments

H, J, K, and L from the E. Coli Genome Project (Blattner et al. 1997). The segments are from

211 to 265 kb long and approximately 3000 fragments reads comprise each data set. The data

sets are summarized in Table 9-1. The inputs for the tests are ABI 377 data files. Output for

each test includes assembled contigs in which the reads have been aligned and gapped.
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Table 9-1. Fragment Assembly Test Data Sets. E. coli segments H, J, K, and

L are used to compare assemblies of SLICwith SeqManIIand Phrap. Each fragment is
over 200 kb long and the expected depth of coverage is about six to seven sequences.

E. coli Segment Fragment Length (kb) Number of Reads

H 223 2925

J 240 3381

K 265 3443

L 211 3077

9.2 Time

Each of the three programs require processing of the data before assembly to promote optimal

results. In the case of SeqManII, this includes trimming low-quality data, vector removal, and

optimizing the entry order of the reads. SLIC requires trimming low-quality data and vector

removal. Phrap performs best when base calls and error probabilities have been assigned by

Phred (Ewing & Green 1998). In addition, another companion program, CrossMatchis used

to remove vector from reads before assembly by Phrap. I report the running time of each of the

packages in terms of the time needed for both assembly and preprocessing.

On the four data sets, SLIC runs in about two thirds the time it takes to run SeqManIIand

from 52% to 93% of the time it takes to assemble with Phrap. Figure 9-1 shows the results of

timing tests in a bar graph with stacked preprocessing and assembly times. Note that overall,

when preprocessing steps are included, SLIC assembles reads faster than either of the other

programs for all four segments. The reduction from the Phrapand SeqManIIassembly times

to the SLICassembly time is statistically significant at the 95% confidence level using a paired

one-tailed t-test.

Since I propose that the linear run-time of the SLIC layout algorithm makes it especially

well-suited to assembling large numbers of sequences, it is important to establish its

scalability. To do so, I used SLIC to determine the layouts of data sets with numbers of
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sequences ranging from 2925 to 17,233. For comparison, I also assembled the same data sets

with Phrap. A graph comparing number of sequences to time of execution are shown in Figure

9-2. In the graph, evidence for a linear relationship with SLIC is strong and the relationship as

Phrapscales is inconclusive.
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Figure 9-1. Assembly Timing Results. The time to preprocess and assemble the
four E. coli segments with the three methods is shown. In one segment, K, the time to

assemble using Phrap is the minimum among the three methods, although the overall
time to preprocess and assemble with SLIC is still less. In the other three segments,

SLIChas the lowest assembly and overall times.
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Figure 9-2. Scalability of SLIC. The execution times for executing SLIC
compared to Phrap with a range of numbers of sequences is shown. With SLIC the

relationship remains linear with increasing numbers of sequences. The relationship

with Phrap is unclear.

9.3 Layout

The layouts produced by SLIC, SeqManII, and Phrap differ most significantly in the

placement of repeated regions and in the number of contigs produced. A layout of fragment

reads in a contig is correct when all overlapping reads are correctly placed relative to each

other. I check the correctness of the layouts by aligning the contigs with the GenBank entry for

the E. coli sequences. In the layouts, some contigs contain false joins – reads that are

erroneously overlapped due to repeated, or nearly repeated sequences. A false join indicates

that an incorrect layout has been produced.

Figures 9-3 through 9-6 show the layouts produced by the three programs. In the figures,

horizontal black bars represent individual contigs. To display the relative positions of the

contigs, the bars are aligned with the GenBank entry for each segment (the horizontal gray
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bar).  Contigs containing false joins have been split and correctly placed relative to the

GenBank sequence. Scissors indicate where contigs have been split and thin lines connect the

split contigs so that the original layout can be deduced.

The SeqManIIlayout for segment K contains three false joins and for segment H contains

one. Both SeqManIIand SLIC fold a tandem repeat in segment L. In addition, SLIC and

Phrapmake one false join in segment K. All three programs correctly assemble segment J. 

kilobases

0 40 80 120 160 200 240

E. coli  Segment H

GenBank Entry

SLIC

✃

SeqManII

Phrap

Figure 9-3. Layout of Segment H. SLICand Phrapproduce correct layouts
while the SeqManIIlayout contains one false join. 

118



kilobases

0 40 80 120 160 200 240

E. coli  Segment J

GenBank Entry

Phrap

SeqManII

SLIC

Figure 9-4. Layout of Segment J. All three methods produce correct layouts. 
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E. coli  Segment K

GenBank Entry

kilobases
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SLIC

✃

Phrap ✃

✃

✃

SeqManII

✃

Figure 9-5. Layout of Segment K. All three methods make false joins: one each
for SLICand Phrap, and three for SeqManII. 
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kilobases
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E. coli  Segment L

GenBank Entry

✃

SLIC

SeqManII

Phrap

✃

Figure 9-6. Layout of Segment L. SLICand SeqManIIproduce a fold of a
tandem repeat that Phrapavoids. 

Figure 9-7 graphs the number of contigs (larger than 2 kb) generated by each of the three

programs for the four data sets. The number of contigs initially produced as well as after

splitting the false joins are graphed. In general, Phrapproduces fewer contigs than either SLIC

or SeqManII. Since Phrap does not require trimming of poor quality data before assembly, it

makes full use of consistent fragment reads. The trimming that is required for SLIC and

SeqManIIresults in some gaps between contigs. In addition, overlaps that could have merged

contigs may not be recognized if they are short, if there are no mers in common, or if there is
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insufficient similarity in the overlapping region of the reads. Some instances of insufficient

similarity may be due to trimming that is too conservative, leaving significantly noisy ends.

When using SLIC, the problem is ameliorated by a step I added that makes a post pass using a

smaller mer size to check for overlaps between contigs.
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Figure 9-7. Number of Contigs. The number of contigs greater than 2 kb in
length produced, both initially and after breaking false joins is shown for the three

methods. Phrap has the least for all segments. SLIC produces fewer contigs than
SeqManIIfor three of the segments and ties for the fourth. 

122



It is possible that the SLIC algorithm produces different layouts depending upon the input

order of fragment reads. Recall that in step 4 of the algorithm (Section 8.2.2), efficiency is

increased by incorporating a check for previously chosen mers in the second scan. In that

scan, if a mer in the current partition has been previously chosen, the mer can be immediately

chosen as the mer tag for the current fragment. This check introduces order-dependency into

the algorithm. To evaluate the stability of SLICrelative to the order of reads, I assembled each

of the four E. coli segments five times, each time using a different random order of reads. In

general, the contigs produced are essentially the same; the majority contain exactly the same

number of sequences in the five assemblies. Of the remaining, the maximum difference in the

number of sequences for the same contig is 0.7%. For segments K and L, the same overall

layout was produced for all five assemblies. For the other two segments, H and J, the overall

layouts are the same in four of five assemblies. In the fifth, one contigs in each was split into

two separate contigs. Note that since SeqManIIorders fragment reads during preprocessing,

varying the input order should have no effect on resulting assemblies. Tests on Phrap using

varying orders of fragment reads are future work.

9.4 Consensus

As part of my testing, I compared the accuracy of three consensus-calling methods: my refined

Trace-EvidenceII, Mosaic, and Majority. The Trace-Evidencemethod is detailed in Chapter 6

and its refinements into Trace-EvidenceIIare described in Chapter 8. The Majority method was

also covered earlier, in Chapter 5. Recall that in a Phrapcontig alignment, one base call chosen

per aligned column forms a consensus Mosaic. The base call chosen is the one with the highest

quality score as initially assigned by Phred (Ewing et al. 1998, Ewing & Green 1998) and

adjusted by Phrap(Green 1997b, Phrap source code documentation).

All three methods have a system for identifying low-confidence consensus calls that

warrant manual examination. To indicate low confidence, Majority and Trace-EvidenceII

return ambiguous calls, and Phrap returns lower-case calls. In reporting the accuracy of

Mosaic consensus sequences, although the obvious interpretation of lower-case calls is that

they must be examined individually, lower-case calls can also be interpreted as definitive
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consensus calls. I report results based on both interpretations of the calls. For one set of tests,

I interpret lower-case Phrap calls as definitive and set thresholds for Trace-EvidenceIIand

Majority such that no ambiguous calls are made. For other tests, I interpret lower-case Mosaic

calls as ambiguous and set the thresholds for the other methods to default values that allow

ambiguous calls.

The accuracy of consensus calls made using the Majority and Trace-EvidenceIImethods

are based on an assembly produced by the SLIC Assemblerusing ABI data and the ReAligner

gapping and alignment method. The accuracy of calls made using the Mosaicmethod are based

on a Phrapassembly that takes Phredbase calls and quality scores as input. For each method,

I report the accuracy of about 680k consensus calls that are aligned with the E. coli GenBank

entry.

Test results when no ambiguous calls are made by Trace-EvidenceIIor Majority and lower-

case Mosaiccalls are interpreted as definitive calls are contained in Figure 9-8 and Table 9-2.

In Figure 9-8, the number of correct calls per kb are graphed by amounts of coverage from

two to ten or morealigned sequences. Trace-EvidenceIIreturns the same or higher accuracy

than the other two methods at all coverages above two.

Correct calls 
per kb

994

995

996

997

998

999

1000

Coverage
2 3 4 5 6 7 8 9 10+

Trace-EvidenceII (SLIC)

Majority 

Mosaic (Phrap)

Figure 9-8. Consensus Accuracy with No Ambiguities. The accuracy of the
Trace-EvidenceIIconsensus is equal to or higher than the other two methods for all

coverages of three or more. 
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Table 9-2 lists a summary of the consensus accuracies for aligned columns with coverages

of four or more reads and no ambiguous calls. The Trace-EvidenceIImethod produces one

incorrect consensus call per 20 kb, compared to about one in 13 kb using the Mosaicmethod

and about one per 4 kb for the Majority method. The differences between the results of Trace-

EvidenceIIand the Mosaicmethod with four or more sequences are statistically significant  at

the 95% confidence level using a paired one-tailed t-test.

Table 9-2. Consensus Accuracy with No Ambiguities Summary. The
number of correct consensus calls per kb are listed for the Trace-EvidenceII, Majority,

and Mosaic consensus calling methods. The accuracies listed are for columns with a
coverage of four or more aligned reads.

Method Correct per kb

Trace-EvidenceII 999.95

Majority 999.77

Mosaic 999.92

Test results when thresholds in Trace-EvidenceIIand Majority allow ambiguities and

lower-case Mosaiccalls are considered ambiguous are contained in Figure 9-9 and Table 9-2.

In Figure 9-9, results of the accuracy tests are graphed by amounts of coverage from two to

ten or morealigned sequences. The graphs reveal a dramatically greater number of ambiguous

calls made by Mosaic, especially at lower coverages. The number of incorrect is very similar

for Trace-EvidenceIIand Mosaicfor coverages of three or more. At the 95% confidence level,

the differences between correct calls and ambiguous calls made by Trace-EvidenceIIand

Mosaicare statistically significant using a paired one-tailed t-test.
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Table 9-3 lists a summary of the consensus accuracies for aligned columns with coverages

of four or more reads when ambiguous calls are allowed. The error rate for Trace-EvidenceII

and Mosaicare extremely low; both make three or fewer errors per 100 kb. However, the

number of ambiguous calls is far less for Trace-EvidenceII. Respectively, the Majority and

Mosaicmethods output 377 and 472 ambiguous calls per 100 kb, compared to 8 for Trace-

EvidenceII. This is a significant reduction in the number of calls that must be examined

manually when using Trace-EvidenceII. In addition, note that when ambiguous calls are

allowed, Trace-EvidenceIIis the only method that produces an accuracy of 99.98% that all but

meets the National Human Genome Research Instituteaccuracy standard of 99.99% without

hand editing (NHGRI 1998). In the results of using four or more aligned sequences with

ambiguous calls, the differences between using Trace-EvidenceIIand the Mosaicmethod are

statistically significant using a paired one-tailed t-test at the 95% confidence level.

In Table 9-3, although the number of ambiguities is far less with Trace-EvidenceIIthan

with Mosaic, the amount of error is slightly higher. This result suggests that there may be a

trade-off between accuracy and ambiguities. However, when I sum results for coverages of

eight or more, the error rate for both the methods is 0.01 per kb. Even with the equal error

rate, Mosaicstill outputs many more ambiguous calls; 120 per 100 kb compared to 1 per 100

kb for Trace-EvidenceII. 
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Figure 9-9. Consensus Accuracy with Ambiguities. Phrap returns far more
ambiguities than either of the other two methods. At coverages of four or more, the

number of incorrect consensus calls is nearly equal for all three methods.
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Table 9-3. Consensus Accuracy with Ambiguities Summary. The number

of correct, incorrect, and ambiguous consensus calls per kb are listed for the Trace-
EvidenceII, Majority, and Mosaicconsensus calling methods. The accuracies listed are

for columns with a coverage of four or more aligned reads.

Method Correct
per kb

Incorrect
per kb

Ambiguous
per kb

Trace-EvidenceII 999.89 0.03 0.08

Majority 996.08 0.14 3.77

Mosaic 995.27 0.01 4.72

I examined Phrap consensus calls that are not in agreement with GenBank and find that

errors usually occur due to the interaction of the Mosaicscheme with inaccurate base calls. In

an aligned column, even though one or even the majority of the base calls is correct, an

incorrect consensus call is made if the highest quality score is associated with a miscalled base.

Figure 9-10 contains two examples, one in which the erroneous call is a gap and the other in

which it is a base.

Many Trace-EvidenceIIconsensus errors occur when a nearly equal number of gaps and

bases are in the aligned column. In general, if the sum of the weights of the bases exceeds the

sum of the weights, the consensus is called as a base, and is called as a gap if the gap weight

sum is greater than the base weight sum. Other errors are made by Trace-EvidenceIIwhen the

evidence for a spurious peak dominates the sum of the evidence for true peaks. This problem

has been diminished by the refinement described earlier in Section 8.2.1, but has not been

eliminated. Examples of gap and spurious peak errors are shown in Figure 9-11.
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Mosaic
GenBank CCCCGGGGA - CCCC-

t
CCCCGGGGGGGG

cccc gggg a a cccc - t cccc n gggg

cccc gggg a - cccc cccc T CCCCGGGGGGGG

cccc gggg a - cccc cccc T CCCCGGGGGGGG

cccc gggg A - CCCCcccc T CCCCGGGGGGGG

CCCCGGGGA - CCCC- T CCCCGGGGGGGG

CCCCGGGGA - CCCC cccc CCCCGGGGGGGG
T

CCCC

CCCCGGGGAAAAAAGGGG

CCCCGGGGAAAAAAGGGG

CCCCGGGGAa gggg a AAGGGG

CCCCGGGGAAAAAAGGGG

GGGGAa gggg a AAGGGG

CCCCGGGGAAGGGGAAAGGGG

G
C
A

T

Figure 9-10. Mosaic Consensus Errors. Mosaic returns incorrect consensus

calls when the highest quality base call is erroneous. (Actual data shown.)

129



GenBank
Trace-Evidence AT CCCCCCCC- GGGGGGGGT T

AT CCCCCCCCGGGGGGGGGGGGT T

AT CCCCCCCC- GGGGGGGGT T

AT CCCCCCCC- GGGGGGGGT T

AT CCCCCCCC- GGGGGGGGT T

AT CCCCCCCCGGGGGGGGGGGGT T

AT CCCCCCCC- GGGGGGGGT T

AAACCCCT - - CCCCGGGGAAA
AAAAT - - T GGGGAAA

T AAAAT - - T GGGGAAA

CCCCAAACCCCT CCCCCCCCCCCCGGGGAAA

T AAAAT - - T GGGGAAA

T
T

G
C
A

T

Figure 9-11. Trace-EvidenceIIConsensus Errors. Spurious peaks in the left

alignment and a missing base call in the right result in errors in Trace-EvidenceII
consensus calls. (Actual data shown.)

9.5 Alignment

To compare the two SLICAssembleralignment methods, SeqManIIand ReAligner (Anson &

Myers 1997), I report the amount of time to align, the number of conflicts in an alignment, and

the consensus accuracy of alignments. First, I compare the time to align of the SeqManIIand

ReAligner methods. As can be seen in Table 9-4, on average over four E. coli segment

assemblies, the ReAlignermethod takes just over two thirds the time it takes for SeqManII.
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Table 9-4. Alignment Time. The time to align E. colisegments H, J, K, and L in

minutes are listed in along with average times for the two alignment methods.

Method H J K L Average

ReAligner 6.1 8.9 8.3 7.1 7.6

SeqManII 9 12.8 12.3 10.1 11.1

For the second comparison, I count the number of base calls that are in conflict with the

consensus in the four E. coli segment assemblies. A higher-quality alignment should have

fewer conflicts. Table 9-5 lists the number of conflicting and total base calls found in the

comparison. (Gaps added by the methods are included in the base call counts.) The percent of

conflicts is very similar for the two methods: 1.45% for ReAlignerand 1.48% for SeqManII. I

hypothesized that with the low error rates produced by the SLIC Assembler, even this small

difference could have some effect on consensus accuracy. To confirm this belief, I compared

consensus sequence accuracies of the two methods (Figure 9-12.) I find that the although the

ReAligner consensus appears to contain fewer errors, the difference is not statistically

significant.

Table 9-5. Alignment Conflicts. The total and conflicting number of base calls
are shown for the two methods. Although the percent of conflicts is lower for

ReAligner, the percentages are close.

Method Number of
Base Conflicts

Total Number
of Bases

Percent
Conflicts

ReAligner 89,153 6,141,734 1.45

SeqManII 91,075 6,135,870 1.48
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Figure 9-12. ReAligner and SeqManII Alignment Consensus Accuracy.
The accuracy of 242 kb of consensus calls for segment J is graphed. The differences in

the accuracies are not statistically significant.

I also observe that ReAlignertends to add more gaps than SeqManII in areas of high

disagreement, resulting in longer alignments. Figure 9-13 illustrates this with a comparison of

alignments produced by ReAlignerand SeqManIIfor the same region of sequence. There is no

disadvantage with using either method by this criterion since the consensus for both

alignments is accurate compared to the GenBank entry.
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a)

Consensus ... CTTGGTGCTGGCGGTCA-G-AT------AG--CCCGCCAT...
----------------------------------------------------------------------------------------------------------------------------------------------------------------

... CTTGGTGCTGGCGGTCA-G-AT------AG--CCCGCCAT...

... CTTGGTGCTGGCGGTCA-G-AT------AG--CCCGCCAT...

... CTTGGTGCTGGCGGTCA-G-AT------NG--CCCGCCAA...

... TTNGGTGCTGGCGGTCA-G-AT------AG--CCCGCCAT...

ACATGAATACGCCAAGCTCCCGCCAT...

b)

Consensus ... CTTGGTGCTGGCGGTCAGATAGCCCGCCAT...
-----------------------------------------------------------------------------------------------------------------------------

... CTTGGTGCTGGCGGTCAGATAGCCCGCCAT...

... CTTGGTGCTGGCGGTCAGATAGCCCGCCAT...

... CTTGGTGCTGGCGGTCAGATNGCCCGCCAA...

... CTTGGTGCTGGCGGTCAGATAGCCCGCCAT...

ACATGAATACGC-CA-AGCTCCCGCCAT...

Figure 9-13. ReAligner and SeqManII Alignments. Five sequences are

aligned; the first four match well throughout their length, but the fifth one has a noisy

5’ end. a) ReAligneradds multiple gaps to the matching sequences to align them with

the noisy end. b) SeqManIIaligns by allowing more mismatches among the sequences.

In either case, the consensus sequence generated is correct. (Actual data shown.)

Overall, since there does not seem to be any significant difference between the consensus

accuracies of alignments produced by ReAligner and SeqManII, the preferred alignment

method is ReAlignerdue to the advantage it realizes in shortened execution time. 

9.6 Quality Scores

Accurate trimming is critical to the effectiveness of the SLIC Assembler. If trimming is too

conservative, noisy ends may prevent elongation of a contig and trimming that is too

aggressive will result in a loss of overlaps that could merge contigs. The Trace-QualityTrim

algorithm employed in the preprocessing steps of the SLIC Assembleris based on quality

scores associated with individual base calls. The most effective scores should have a strong

correlation with the accuracy of base calls. To investigate the existence of such a correlation, I
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measured accuracy as a function of quality score. Results are graphed in Figure 9-14. The

percent of correct base calls obviously rises along with the quality scores for scores up to

about 20. Above 20, although the percent of correct base calls slowly increases, the range of

scores is not significantly indicative of the expected accuracy of base calls.

Ideally, I would like to obtain a linear relationship between quality score and base-call

correctness for the entire spectrum of quality scores. However, the low correlation for scores

above 20 is not a problem for the SLICAssemblersince averaged quality scores are used only

for thresholds in trimming. The thresholds I recommend are in the 8 to 16 range, well within

the discriminating region of quality scores.
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Figure 9-14. Accuracy as a Function of Quality Score. A definite correlation

can be seen between quality scores and the percent of correct base calls for scores up to
about 20. 
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9.7 Discussion and Summary

Overall, the SLIC Assemblerproduces high-quality fragment assemblies. It outperforms

SeqManIIin every aspect of this evaluation, and produces results similar or superior to Phrap

in most ways. In particular, the assembly time and consensus accuracy are a proven strength

of the SLIC Assembler. Not only does the consensus sequences produced by the SLIC

Assemblerhave low error rates that compete with Phrap, they also contain far fewer low-

confidence calls that must be examined manually.

The SLIC Assemblertakes a simple approach to detecting repeats. The approach is to

eliminate mer overlaps when the number of identical mers exceeds some fraction above the

expected coverage. This method resulted in fewer false joins than SeqManII, but one more

than Phrap. An important next step is to develop more sophisticated methods for avoiding false

joins due to repeated regions.

Arguably, the most significant weakness of the SLIC Assembleris in its need to use

trimmed fragment reads, resulting in fragmentation into multiple contigs. In unreported

experiments using a lower trimming stringency with SLIC, even more contigs are produced

since mismatches in noisy ends cause the pairwise similarity to fall below threshold. The

Phrapassembler does do some virtual trimming, but only by adjusting base call quality scores

in the context of all other reads in an assembly project. This allows the confirmation and

utilization of all reasonable data. The Trace-QualityTrim used in preprocessing for the SLIC

Assemblertrims sequences without regard for other reads in the project. This is a significant

drawback and is a problem for future work.

As part of the SLIC Assemblerevaluation, I compared the SeqManII and ReAligner

alignment algorithms. Although the number of conflicts in a ReAligneralignment shows a

small decrease over the number in a SeqManII alignment, the decrease makes no significant

difference in consensus accuracy as shown in Figure 9-12. However, due to its relatively

shorter execution time, ReAligneris a better choice than SeqManIIfor aligning layouts in the

SLICAssembler.

Even though the quality scores produced by the SLIC Assemblerare adequate for their use

in the trimming, refinement of the score calculation is another subject for future work. In the
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analysis, only scores below about 20 are highly correlated to base call correctness. Since the

preferred trimming thresholds are in that range, the quality scores work well for trimming.

However, quality scores are also useful to apply to other problems in DNA sequencing. For

example, many researchers want a reliable measure of the overall quality of their reads so that

they can adjust laboratory procedures to increase the quality of data they produce.

The SLIC Assemblerprovides a fast and accurate system for assembling fragment reads.

Improvements in the system will be realized by refining it to trim in the context of all sequence

reads in a project, handle repeats in a more sophisticated manner, and produce quality scores

that correlate linearly with base-call correctness.
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Chapter 10

Computational Complexity of SLIC

In practice, the computational complexity of the SLIC layout algorithm is linear with respect to

n, the number of fragment reads. The complexity analysis relies on the assumption that there is

a practical upper bound to the size of the mer tags that depends neither on the number of

fragment reads nor on the length of the actual sequence. In theory, the complexity may be

analyzed as O(n log n), but in practice, the assumption is valid and the complexity of the

algorithm is O(n). I first discuss why I assume that the mer size may be considered constant.

I define the following symbols:

k size of mer tag

n number of fragment reads

s length of the actual sequence

f average length of a fragment read

c average coverage

m number of mer tags to choose per f bases

t total number of mer tags to choose
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I state the following:

   n ≡ sc
f

   s ≡ nf
c

   t ≡ sm
f

A mer tag size of k provides 4k possible unique tags since there are four DNA bases. I must

have at least as many possible mer tags as the total number of tags I choose. Given this and a

series of substitutions I find the following:

   4k ≥ t

   4k ≥ sm
f

   4k ≥ nm
c

   k ≥ log4
nm
c

   k ≥ log4n + log4m – log4c

   k ≥ log4n + constant

At this point, it appears that the size of the mer tag, k, is a function of n, the number of

fragments. Although this is true in theory, in practice there is an upper bound to k. The upper

bound can be approximated by using a Poisson distribution to estimate the probability that a

random k-mer occurs more than once in a sequence (Studier 1989). The probability that a

random mer has exactly p occurrences is estimated by

  P p = x pe– x

p!
where   x = s

4k

and the probability that a randomly chosen k-mer occurs two or more times is 

   P ≥2 = 1 – P 0 + P 1 .
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When I consider a genome ten times the size of Humanand graph the probabilities for

various sizes of mers (Figure 10-1) I see that the probability of two or more mer occurrences

approaches zero near a mer size of 19. This can be used to estimate a reasonable upper bound

on k.

15 16 17 18 19 20 21

0

0.5

1

mer size

P(≥2)

Figure 10-1. Mer Sizes for a Large Genome. The probability that a randomly

chosen mer of a given size will occur two or more times in a genome containing 3x1010

base pairs. Mer sizes from 15 to 21 are graphed. The probability approaches zero at a

mer size of 19. 

An absolute upper bound on k is set by the length of fragment reads. At present, although

some technologies produce reads in excess of 1000 base pairs, the usable portion is usually

about 500 base pairs long. Clearly, the mer tag size must be less than this or the algorithm is

useless for identifying overlaps. I can state that the absolute upper bound on the mer size is not

set by the length of the actual sequence nor of the number of fragment reads, but rather on the

length of fragment overlaps. In the degenerate case, the bound is approximately 500. I can

therefore consider k, the size of mer tags, to be a constant in my analysis of the complexity of

the algorithm. Given this assumption, an analysis of the complexity of individual steps as

listed in Figure 10-2 is provided next.
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Complexity Step

O(constant) 1. Initialize all variables and structures

O(n) 2. Read sequences

O(n) 3. Count occurrences of mers in all fragment reads

O(n) 4. For each read, choose mer tags using mer counts

O(n) 5. For each read, if a mer is chosen as a tag for any
read, choose it as a tag for the current read

O(n) 6. Make contigs

Figure 10-2.  SLIC Computational Complexity. The computational

complexity of each major step in the implementation of the layout algorithm is listed. 

Step 1 is completed in constant time. The three major data structures used are the hash table

for the mers, the list of fragment reads, and the list of contigs. Each of the entries in the hash

table is an empty list of mers. The time to accomplish its initialization is therefore constant

since the length of the table is dependent upon the size of the mer, which is constant. The

fragment read and contig lists are both empty at this point, so the time to clear them is also

constant.

In step 2, I read once through each of the fragments’ base-call sequences determining its

length. This iteration depends on the number of fragments and takes time proportional to n. 

Step 3 requires a single read through all of the base-call sequences, counting occurrences

of mers. To read the sequences takes time proportional to n. To count the mers, it is necessary

to access a bucket and chain hash table. The size of a mer, k, is x + y. Recall that in the table,

the integer value of an encoding of the first first x bases of the mer specifies a bucket. In the

encoding, two bits are used to represent each base call; A, G, T, and C are represented by 00,

01, 10, and 11, respectively. Since two bits encode each base in the x-mer, the length of the

table is 4x. The last y bases in the mer specify a mer record in the chain. Indexing the hash
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table therefore takes place in constant time since I use the integer value of the encoding of the

first x bases of the mer as the index, and the last y bases to specify a record in the chain. The

length of the mer lists that form the chain of the hash table can be at most 4y. Since y is

constant, accessing a mer in the list is also constant. The overall complexity of this step is

proportional to n. 

During each of steps 4 and 5, I again scan through the base-call sequence of each of the

fragment reads, accessing the hash table once for each mer that is contained in the sequence.

The scans require time proportional to n and accessing the table is constant. In addition, for

each new mer tag, I add onto the mer’s list of associated fragment reads. I always add to the

end of the list, so this step takes constant time. The time complexity for each of steps 4 and 5

is O(n).

In step 6, I iterate through each of the lists in the hash table of mers, possibly making

contigs with each of the fragment lists associated with mer tags. Since the greatest possible

number of mer tags that can be chosen is 4x+y, and x + y is a constant, the number of mer tag

lists that must be processed is constant. (Note that the number chosen is actually much less

than 4x+y). Making a contig with each of the mer tags lists is also constant. Recall that I set a

threshold for the maximum count of mer occurrences allowed before a mer is marked as a

repeat. This keeps the maximum length of any list at less than the threshold, so the lists are

constant in length. (Recall that the threshold is a function of the depth of coverage of

sequences, which is a constant usually about 6 to 10 sequences.) Since the lists’ lengths are

constant, the number of pairwise comparisons required for the similarity check is dependent on

a constant. Making a new contig is constant in time and adding to or merging contigs is at most

proportional to n. Overall, step 6 completes in time proportional to n.

I have shown that, in practice, the computational complexity of the SLIC algorithm is

proportional to n, the number of fragment reads. The first step is completed in constant time, a

series of scans through the reads in steps 2 to 5 each require linear time with respect to n, and

constructing the contigs in step 6 is also linear. The analysis is based on the assumption that

there is a practical upper bound to the size of mer that can be used. Note that although base-
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calling errors in the data set may result in production of an inferior assembly, errors do not

affect the computational complexity of the algorithm.
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Chapter 11

Additional Related Research

Research into computational methods for DNA sequencing has been ongoing since the advent

of sequencing methods. Starting as early as the late 1970s, Rodger Staden published a series

of papers describing software programs designed to analyze and manipulate sequence data

(Staden 1986, 1984a, 1984b, 1982a, 1982b, 1980, 1979, 1978, 1977). Recent work by

various researchers has progressed into methods that use artificial intelligence, genetic

algorithms, and examination of fluorescent trace data. In this chapter I review research

including methods for sequence assembly, base calling, and quality assessments. I also report

observations about patterns found in trace data that may be useful.

11.1 Fragment Assembly

The Phrap assembly program was described in Chapter 8. Here I describe five other assembly

methods: TIGR, GAP, CAP2, Alewife, and an approach that uses genetic algorithms. 

11.1.1 TIGR

The TIGR Assembler, developed at the Institute for Genomic Research, was used to assemble

the 1.8 mb Haemophilusinfuenzaegenome (Sutton et al. 1995). In the TIGR assembler, first

a pairwise comparison of all reads in a data set identifies potential overlaps between reads. The

pairwise comparison for n reads is a function of n2. To speed up this step, rather than
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executing a full Smith-Watermanalignment (Smith & Waterman 1980) on each pair, an

evaluation of the number of substrings common to both reads is performed. Only those pairs

with a sufficient number of substrings in common are fully aligned and checked for similarity. 

During the pairwise comparisons, putative repeated regions are identified in reads that have

an overly abundant number of potential overlaps. Assembly of these reads is deferred until last

and is carried out with a higher match stringency. In addition, distance constraints are used to

help properly place sequences that have been identified as potential repeats. The distance

between some pairs of reads containing a repeat may be known. In that case, if a read

containing a repeat already has its paired read in a contig, then only regions at the given

distance from the paired read are considered for overlap with the repeat read.

The consensus sequence is generated by examining the base calls in an aligned column. A

profile is produced that indicates the total number of reads in the column with calls of A, C, G,

T, and gap. Allowable consensus calls include: upper and lower-case bases (A, C, G, T, a, c,

g, and t), gap, two-base ambiguity codes (r, k, s, w, m, and y), and n. A small set of rules

determines the consensus call based on the profile. If the largest component in the profile is

greater than two-thirds the total, an upper-case base or gap is called. If two non-gap

components are significant, a lower-case ambiguity is called. If the largest component is

between one-half and two-thirds the total, a lower-case base or gap is called. In all remaining

cases, a lower-case n is called. Lower case letters indicate when the confidence in the call is

not high. In addition, if the confidence in a gap call is not high, the call following the gap is

lower-case. Using this method, lower-case letters in the consensus sequence pinpoint calls that

require examination by human editors.

11.1.2 GAP

The Genome Assembly Program (GAP) uses a greedy approach to fragment assembly

(Bonfield, Smith, & Staden 1995). First a companion program, PREGAPassigns quality

values to base calls and trims reads to remove poor quality data and vector. Then, one at a

time, each read is added to a contig if it is sufficiently similar. First the read is compared

against all other reads for matching subsequences. An alignment is then made between the read
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and each other read for which it has a match, and the quality of each alignment is noted. The

read is overlapped with the read with which it has the highest-quality alignment (over some

minimum threshold). If the read aligns sufficiently well with more than one read, then after it

is overlapped with the best-aligning sequence, it is used to join the contigs of the two matching

reads.

The GAPprogram can also use distance constraints. To use the constraints, the placement

of a read may be restricted to an approximate given distance from an anchorread. If an above

threshold alignment can be found for the read within the specified region, the read is added to

the contig. The program also allows for a variety of tags to be used. One tag is used to label

repeated regions in reads. A region that is tagged as having a repeat is not used in searching for

subsequence matches but is aligned during assembly. 

11.1.3 CAP2

CAP2 is an improved version of the Contig Assembly Program (CAP) (Huang 1996). The

assembly methods developed for CAP are at the core of the ABI Prism AutoAssembler. This

program assembles reads in three phases: 1) overlap detection, 2) contig formation, and 3)

consensus sequence determination. In the first phase, a filter identifies which pairs of reads are

likely to overlap. Between all such pairs, the match similarity is computed using a variant of

the Smith-Watermanalignment algorithm (Smith & Waterman 1980). Error vectors are

computed and used to evaluate the strength of overlaps and to identify chimeric reads. In the

second phase, a preliminary assembly is formed by joining pairs of reads in decreasing order

of pairwise similarity. Inconsistent overlaps in the preliminary assembly are used to identify

and partition repeated reads. The partitions are used to establish the final assembly. In phase

three, the contigs are fully aligned and the consensus is computed.

11.1.4 Alewife

A method called Alewife that is reported to run in time less than n2 is described on the

Whitehead Institute/MIT Genome Sequencing Project web site (MIT 1998). The basic idea of

this assembler is similar to the idea I use in my layout algorithm. The Alewifemethod uses 25-
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mers as tags to identify overlaps in fragment reads. By using a hash table, Alewife is reported

to assemble fragments at a rate that is proportional to n log n. It thus appears to be based on an

algorithm capable of performing sequence assembly more quickly than programs using n2

algorithms. However, the linear algorithm I have developed, SLIC, performs sequence

assembly proportional to n, and is theoretically faster than Alewife. Since the details of the

MIT algorithm are not yet published, other possible differences between my layout algorithm

and Alewifeare not known.

11.1.5 Genetic Algorithms

A unique approach to sequence assembly is to use genetic algorithms (Parsons & Johnson

1995, Parsons 1993). In this work, the layout of a data set with n fragments is represented as

a bit string with n * k bits (k bits per fragment) where n ≤ 2k. For each fragment, the integer

value of its k bits identifies the position of the read in the overall layout. Added to the n * k bit

string is an additional k bits used to identify the starting fragment in the layout. The total length

of the bit string is then (n + 1) * k. Standard operators are used while the mapping from bit

strings to layouts ensures that legal layouts are generated. The fitness function evaluates the

strength of overlaps between adjacent reads in the layout. Two variants of the fitness function

were developed, one is proportional to n and the other to n2. Depending on which function is

chosen, the overall time to run the algorithm is then proportional to n2 or n3.

In initial work, although the genetic algorithm approach produced good layouts for small

data sets under 20 kb, the large search space often led to the failure to find good solutions for

larger data sets. Later work produced acceptable results with a 35 kb data set, but this size is

still far from the size of sequencing projects undertaken by large sequencing centers and is

certainly far less than most whole genomes. Another drawback of the method is its failure to

deal with highly conserved repeat regions. With the presence of repeats, the resulting

consensus tends to be shorter than expected, indicating a compression of the repeated regions.
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11.2 Base Calling

Commercial companies, such as ABI, that perform one of the most commonly used base

calling methods for fluorescently labeled sequences have not disclosed their algorithms.

However, some research for base calling on fluorescent data has been performed and reported.

A system that is rapidly gaining popularity, challenging ABI base calling, is Phred (Ewing et

al. 1998). Tibbetts, Bowling, and Golden (1994) have studied using neural networks for base

calling. Giddings et al.(1993) describe a system that uses an object-oriented filtering system.

A base caller that reports error rates lower than ABI software is Phred(Ewing et al. 1998).

Given ABI trace files, Phredcalls bases and assigns error probabilities to each base call. Base

calls are determined with a four-phase method: 1) determine peak locations, 2) identify

observed peaks, 3) match locations to observed peaks, and 4) call unmatched observed peaks.

The first phase is based on the premise that in a local area, base call peaks are fairly evenly

spaced. The expected spacing of the peaks is used to predict the number and locations of base

calls. In phase two, observed peaks are found by scanning each of the four traces, looking for

concave down regions. The area of each concave down region found is computed and

compared to preceding observed peaks. If the area is within 10% of the last ten observed peaks

and within 5% of the immediately preceding peak, it is identified as an observed peak.

As observed peaks are matched with predicted locations in phase three, some peaks may be

eliminated and others may be broken into two or more identical base calls. This phase is the

most complicated and progresses through three stages. In the first stage, obvious matches are

made. In the second stage dynamic programming is used to align other peaks with locations.

Finally, unmatched observed peaks that appear to be real are matched to locations. At the end

of phase three, there may still be peaks in troublesome regions that seem to be actual peaks but

still have not been assigned locations. In phase four these peaks are assigned locations if they

meet specific criteria.

Tibbetts, Bowling, and Golden build their neural network base calling system on previous

work that conditions the raw data output from sequencers (Golden, Torgersen & Tibbetts

1993). In the conditioned traces, peaks are narrower, better separated, and have less

crossover. This conditioned data is used to form the inputs for a neural-network base caller.
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The base caller takes three inputs: the primary sequence determinant (related to the intensity

and probable identity of the peak), intensity relative to the 5' base, and separation relative to

the 5' base. There are four outputs, one for each of the four possible bases. They tested their

system on data generated by a Du Pont Genesis 200 U; the base calling output by the Du Pont

system is 90-95% accurate. The neural network base caller achieved 95% accuracy without

using relative intensities and separations, and reached 99% accuracy using these features. The

limitation in the use of these features is that they are specific to chemistries and conditions.

Giddings et al. (1993) also preprocess raw trace data before base calling to make peaks

more distinct and disjoint. Base calling, using this processed data, consists of three major

steps: 1) identify peaks, 2) determine which peaks are likely to represent fragments, and 3)

assign confidence values to base calls. The base calling system iterates over steps 2 and 3,

removing unlikely peaks after each iteration. This cycle continues for a given number of

iterations, or until all confidence values are adequate or unchanged. For step 2, filtering likely

bases, they suggest that multiple characteristics of trace data may be used. They chose three:

peak height, peak spacing, and peak width. (For peak spacing, they use the value as computed

globally over an entire run.)

Gidding’s system requires a substantial number of parameters. Some are automatically set

according to characteristics of the run – this is an appealing component of this system. Many

other (more than ten) parameters must be set by a user. This is ordinarily an undesirable

feature in a system, but the authors claim that it is not difficult to find a reasonable

combination, and that once set, the parameters need not be changed unless experimental

conditions change. One of the strengths of the system is that the filters in step 2 are completely

modular; additional filters may be developed and added readily.

11.3 Quality Assessment

Through the last decade, interest in quality assessments for DNA sequencing has been

increasing (Ewing & Green 1998, Richterich 1998, Li et al. 1997, Bonfield & Staden 1995,

Naeve et al. 1995, Lawrence & Solovyev 1994, Lipshutz et al. 1994, Khurshid & Beck 1993,

and Chen & Hunkapiller 1992).
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Currently, the most widely accepted quality standard is that which is produced by Phred

(Ewing & Green 1998). Each base call made by Phred is assigned a quality score, Q, that

reflects the estimated probability of error, P(e), of the base call. The interpretation of the

quality score is Q = n10 log10(P(e)). For example, with Q = 20, the Phred quality score

estimates that the probability of error is 1 in 100. The most effective criteria used in assigning

quality scores examine data in a window surrounding the base call of interest. The four most

influential measurements used are: the ratio of the largest to the smallest peak spacing in a

window of seven, the ratio of the highest to the lowest peak intensity in a window of seven,

the ratio of the highest to the lowest peak intensity in a window of three, and the number of

bases separating the base of interest from the nearest base call of N.

The method used to combine the measurements into a quality score must be calibrated by

using a known sequence and a training set of reads. This constrains the usefulness of the

quality scores since the method must be calibrated for each machine that produces traces with

different characteristics. For example, ABI has recently released its new sequencer, the 3700,

and the developer of Phredpredicts it will be months before their quality assessment method is

calibrated to work with the 3700 (Wade 1999). 

Another method that uses a known sequence and training reads in assigning error

probabilities was developed by Lawrence and Solovyev (1994). This method uses

discriminant analysis to combine 25 trace characteristics into an error probability for a base

call. Models for three types of base calling errors are developed: miscalls, insertions, and

deletions. For each of the three models, an iterative process adds characteristics one at a time in

decreasing order of significance until the discriminating power of the model fails to increase.

11.4 Patterns in Trace Data

With dye-terminating chemistries, the intensity signal reflects the number of

dideoxynucleotides that are inserted during replication. The likelihood of inserting a chain-

terminating dideoxynucleotide rather than a chain-elongating deoxynucleotide is influenced by

adjacent 5' bases in the growing fragment. The result is that patterns in intensities are seen.

This observation led to some of the (unreported) experiments I performed using neural
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networks for consensus calling (Chapter 7). In some experiments I input information about

one or more bases to either side of the base of interest in hopes of increasing accuracy. In these

experiments, I found no increase in accuracy over input representations that include only

single-column data. Here I relate some research involving the discovery of patterns in DNA

trace data.

Perkin-Elmer (1995) reports patterns they have detected in fluorescent-dye labeled trace

data. Parker et al. (1995) systematically varied pairs of neighboring bases to discover patterns

in peak intensities. They found that peak height can often be predicted by 5' neighboring

bases. They report predictions based on one, two, and three bases 5' to the base of interest.

Golden, Torgersen, and Tibbetts (1993) used neural networks to extract patterns in peak

intensities. They report that different proteins seem to have complex systems of rules

dependent on 5' bases that determine whether a dideoxynucleotide or a deoxynucleotide will

be added to a growing fragment. They found that the bases one, two, three, and ten bases 5'

to the base of interest have the most influence on the dideoxynucleotide and deoxynucleotide

competition.

Golden, Torgersen, and Tibbetts (1993) have also found patterns in the separations (rate of

migration) of adjacent bases. They show that separations are dependent on a dideoxynucleotide

and its 5' neighboring bases. Particular patterns in neighboring bases may form secondary

structures that result in the predictable variance in rate of migration of adjacent bases.

Some researchers have reported that the separations also vary globally over an entire run of

fragments. Giddings et al. (1993) established that the separations are best fit by a negative

quadratic function – the fragments tend to migrate progressively faster before slowing in the

latter part of the run. Bouriakov and Mayhew (1995) have found that the rate of migration over

a run steadily increases and then drops off sharply after about the last 100 bases. 

11.5 Summary

Research into computational methods for DNA sequencing is a growing and exciting

endeavor. Some approaches to problems are well-studied and mature, while other, more

innovative approaches are also under investigation. For example, research into applying AI
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techniques to problems in molecular biology has become fairly common in academic settings.

One example of an AI approach that is widely used is GRAIL, a system that uses neural

networks to search for genes (Uberbacher & Mural 1991). Unfortunately, many solutions

have yet to make a strong appearance in freely available or commercial software. In the future,

more novel solutions should make their way into common usage as research moves away from

conventional methods.
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Chapter 12

Conclusions

The goal of my work is to develop computational methods for increasing the speed and

accuracy of DNA fragment assembly. As advances in technology result in the production of

increasing amounts of sequencing data in decreasing amounts of time, it is imperative that

computational methods are developed that allow data analysis to keep pace. In this dissertation,

I presented several methods that improve the speed and accuracy of fragment assembly and

that lay a foundation for further research.

12.1 Contributions

I contribute effective computational methods for DNA fragment assembly in two primary

directions. One thrust is in the development and application of a descriptive representation of

fluorescent traces. The representation, Trace-Class, is useful for trimming poor-quality data

from the ends of fragment reads, in methods for determining the consensus sequence of an

assembly of aligned reads, and in assessing data quality. The other thrust is in developing an

algorithm for fragment read layout, SLIC (Sequence Layout into Contigs), that in practice runs

in time linear with the number of reads. I incorporated SLIC into a total package for fragment

assembly, the SLIC Assembler, that includes refinements of trimming and consensus

algorithms.
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12.1.1 Trace-ClassRepresentation

Fluorescent traces output by sequencing machines are the key to modern DNA sequencing.

The traces are scanned to call the bases for individual reads. Previous representations of the

traces include: a raw representation as a sequence of dye intensities, the collapse of the

intensities into a base call, and the visual representation of a 2-D graph. I defined a new

representation, Trace-Class, that captures the shape and intensity of the traces (Chapter 3). In

particular, the representation recognizes the height and definition of peaks and valleys in

traces. In assembly processes, it is useful to have access to these characteristics. If not, any

decisions that require examination of the traces must be made by hand; incorporating

characteristics into computational methods allows many decisions to be made without human

intervention.

12.1.2 Trace-ClassTrim

Most assembly programs require that the poor quality data be trimmed from the ends of

fragment reads before assembly. Without trimming, inclusion of the poor data may result in

fragmented contigs. When attempting to align overlapping reads, the poor data on the ends of a

read may have insufficient similarity to allow overlapping and aligning the read in a contig.

One common previous method for end-trimming, N-Trim, merely counts the number of

no-calls (Ns) in a window of bases. Ends with above-threshold number of Ns in a window are

trimmed from the read. The new method I introduced, Trace-ClassTrim examines the number

of high quality characteristic classes, as defined by the Trace-Classrepresentation, in a

window (Chapter 4). Assemblies produced from reads trimmed with Trace-ClassTrim are of

higher quality than those produced after N-Trim or no trimming. The key to the success of

Trace-Class Trim is in its use of descriptive trace information via the Trace-Class

representation.

12.1.3 Trace-EvidenceConsensus

The specific goal of DNA sequencing is to determine the sequence of bases in a fragment of

DNA. In a fragment assembly, this sequence is the consensus of the aligned reads in the

assembly. As such, the consensus must be accurate if the specific goal of sequencing is to be
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attained. Inaccurate sequences can have significantly adverse effects on sequence analysis as

miscalled, inserted, or deleted bases change the characteristics of predicted proteins.

Automatically generated consensus sequences usually contain some errors and a number of

ambiguous (low-confidence) calls. Ambiguous calls add to the work of sequencing since these

calls must be examined and resolved by hand. Reducing the number of ambiguous calls and

eliminating errors are eminently worthwhile objectives for developers of automatic methods for

consensus calling. My new method for consensus calling, Trace-Evidence, makes substantial

progress toward these objectives (Chapter 6). A standard previous method, Majority, simply

counts the number of each kind of base call in an aligned column and applies a threshold in

calling a base, gap, or ambiguity. In contrast, the Trace-Evidencemethod takes into account

underlying trace characteristics by summing evidence as supplied by the Trace-Class

representation.

When compared to the previous Majority method for consensus calling, Trace-Evidence

consensus sequences are substantially more accurate while making significantly fewer

ambiguous calls, especially at low coverages (numbers of aligned sequences). Reducing the

needed coverage means a decrease in costs, since every step in sequencing adds to the overall

expense. A typical coverage of 6 to 10 may not be required when consensus calls are highly

accurate with fewer aligned sequences. As with Trace-Class Trim, the strength of Trace-

Evidence consensus is in its use of trace information provided by the Trace-Class

representation.

12.1.4 Neural-Network Consensus

I contribute to research in the application of neural networks to problems in molecular biology

by training neural networks to make consensus calls (Chapter 7). In my work, I trained neural

networks with five different input representations to output one of the four bases or a gap as a

consensus call. One network uses only base call information in its input representation, while

the other four include trace characteristics using the Trace-Classrepresentation, trace peak

intensities, or both. Again I find that using trace characteristics significantly improves

consensus accuracy. The network that uses only base calls as inputs produces lower

consensus accuracies.
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12.1.5 SLIC Assembler

One major contribution of my work is in the development of an algorithm for fragment layout,

SLIC (Sequence Layout into Contigs), that, in practice, runs in linear time with the number of

fragment reads (Chapter 8). In addition, building on the layout algorithm, I have developed a

comprehensive package for fragment assembly, the SLIC Assembler. The package is still

evolving and is expected to be available commercially through DNASTAR Inc. in the future.

Quality Scores

Used in various methods in assembling with the SLIC Assemblerare quality scores (Chapter

8). I assign a single trace quality score to each base call in a read based on the shape and

intensity of the underlying trace data. In some cases, the quality score is relative to the intensity

of the entire trace, while in others it is appropriate to make the score relative only to the portion

of the trace that underlies a base call.

The purpose of the quality score is to define a measure of the confidence of a base call. For

some applications, the scores are averaged over a window centered on the base of interest so

that the local quality of the traces can be evaluated. The quality scores may range from 0 to

100. The scores up to about 20 show a strong correlation with correctness of base calls. This

relationship indicates that using scores under 20 to evaluate quality is reasonable and justified.

Trace-Quality Trim

For use in the SLIC Assembler, I developed a second approach to end trimming, Trace-

Quality Trim, that also examines trace characteristics (Chapter 8). Rather than using Trace-

Classscores, I use the averaged quality scores (with intensities relative to the entire trace). A

threshold of the averaged quality values specifies where trimming occurs; the largest portion of

the read at or above threshold is retained while the rest is trimmed. This trimming method uses

more information than Trace-ClassTrim, making trimming decisions less arbitrary.
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Trace-EvidenceIIConsensus

I refined the Trace-Evidenceconsensus for incorporation into the SLIC Assembler. The

refined consensus method, Trace-EvidenceII, does not use the Trace-Classscores for evidence

as Trace-Evidence does (Chapter 8). Instead, it uses the single quality score based on the

shape and intensity of traces as is used in the refined Trace-Quality Trim. However, the

intensities used for trimming are relative to an entire trace, and the intensities used for

consensus calling are relative only to the local area of the base call. Before summing, the

evidence scores are weighted by the quality of the trace according the the averaged quality

values (identical to those used in trimming).

Another difference between Trace-Evidenceand Trace-EvidenceIIis that while summing

the evidence based on the quality scores, adjustments are made to reflect the detection of a

spurious peak in a column of bases. This helps to prevent spurious peak evidence from

overwhelming the evidence for true peaks and results in fewer ambiguous calls.

The improvements in the Trace-EvidenceIIconsensus method result in consensus

sequences with extremely high accuracies and substantially fewer ambiguous calls. The

accuracy of consensus calls made when the coverage is four or more sequences is 99.989%.

This all but meets the standard of 99.99% set by the National Human Genome Research

Institute (NHGRI 1998).

SLIC Algorithm

Most existing assemblers perform pairwise comparisons of reads, resulting in layout times

proportional to n2, where n is the number of reads. An important contribution of my work is in

the development of an algorithm, SLIC, that in practice executes in time proportional to n

(Chapter 8). No other existing assembler claims a linear layout time. As scientists move

toward sequencing larger DNA fragments and whole genomes, execution times may represent

the difference between a possible and impossible task. With a large number of fragment reads,

an n2 algorithm may take years to execute, compared to days for a linear time algorithm.

In general, the layouts produced by SLIC are of good quality. In evaluative tests, the times

to assemble and the layouts produced using SLIC compare favorably. Observations of repeat

156



handling capabilities show that SLIC is superior or similar to other methods. 

12.1.6 Commercial Availability

I have implemented several of my new methods into commercially available versions of

DNASTAR Inc.’s SeqManIIfragment assembly program. The original version of SeqMan

used the N-Trim approach to end trimming and the Majority method to make consensus calls.

For SeqManII, I replaced N-Trim with Trace-Class Trim for trimming, and for consensus

calling I replaced the Majority method with Trace-Evidence. For the latest release of

DNASTAR Inc.’s suite of applications, Lasergene99, I implemented Trace-Quality Trim and

enhanced the Trace-Evidencemethod with the Trace-EvidenceIIimprovements. Also available

as a feature of SeqManII in Lasergene99is a visual display of quality values and averaged

quality values as described in Chapter 8. The SLIC Assembleris expected to be released by

DNASTAR Inc. as commercial software in the future.

12.2 Limitations and Future Work

The work I have completed represents a real improvement in methods for DNA fragment

assembly. Although the work has limitations, it still provides a solid ground for building more

sophisticated solutions to unsolved problems.

12.2.1 Quality Scores

The Trace-Classrepresentation was originally developed for use with neural networks. I

wanted to give the network a good description of the traces that captured visual characteristics.

As it turned out, when I applied the scores to other problems, the scores needed to be

combined into a single score. Although evaluated empirically, the method for combining

scores is fairly arbitrary. It is much more straightforward to assign a single score at the outset.

In later work, this is what I did in determining the quality scores used in the SLIC Assembler

ancillary methods. The glaring weakness in the quality scores is their inability to discriminate

among the correctness of base calls when their values exceed about 20. There is a great deal of

interest in the development of quality scores that accurately reflect base call correctness and I

believe that this is an important direction for my work to take in the future.
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12.2.2 Neural-Network Consensus

One major limitation with the use of neural network is that they must be trained on a data set

with characteristics similar to those of the data that they will later process. The problem is in

forming a training set; a training set contains not only instances of the problem, but must also

include the correct classification for the instance. A researcher may not have access to data that

allows them to form training sets with both an adequate number of instances as well as the

correct classification. Alternately, using networks trained by developers who do have access to

such data is not useful unless the characteristics of the data are the same as that which is to be

analyzed. An undertaking for future work is to develop a method for training accurate neural

networks using only small amounts of training data for which the correct classification may be

only an estimate. 

12.2.3 SLIC Assembler

Evaluations of the current implementation of the SLIC Assemblerdictate several paths for

improvements. Limitations that must be addressed include issues with end trimming, repeat

handling, consensus accuracy, and memory use.

End Trimming

One limitation of the SLIC Assembleris that it requires relatively error-free data for successful

assembly. I help to ensure the use of accurate data by trimming poor quality data from the ends

of sequences before assembly. However, the ends in a read are trimmed without regard to

other reads in the data set. The result is that the trimming is arbitrary in the context of the

whole data set. Some ends are trimmed too excessively and overlaps with other reads are lost.

Some are trimmed too conservatively and noisy ends prevent aligning with other reads due to

below threshold similarity in overlapping regions.

To address this problem, I first plan to use data sets with varying amounts of artificially

introduced noise to characterize how base-calling errors affect assembly. I can then investigate

possible solutions. One idea is to use the mer counts made in the first pass of the SLIC

algorithm as a possible source of information for trimming in the context of other reads.

Regions of sequences that have no mers in common with other reads are are likely to be noisy,
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chimeric, or non-overlapping with other reads. In any case, it may be safe to ignore these

regions of reads during assembly. I plan to try this approach is in future work.

Repeat Handling

Repeat handling in the SLIC Assembleris primitive; it assumes a mer is in a repeat if its

occurrence is excessive given the expected coverage. This approach is used by other existing

assemblers, but it is not sufficient to distinguish between repetitive and non-repetitive regions.

The amount of coverage can vary dramatically in an assembly due to inconsistencies inherent

in the fragment preparation and sequencing process. The repeat handling approach also does

not address how the correct placement for the putative repeats might be determined. Correct

handling of sequences containing repeats is a significant undertaking for future work. I plan to

research graph-traversal and other algorithmic solutions for cases in which the SLICalgorithm

fails when assembling repeated regions.

Consensus Accuracy

Errors in the consensus of a SLICassembly appear when the evidence supplied by the reads is

not in total agreement. I believe that many errors can be avoided by not just examining a single

column of trace information, but also the information surrounding columns. If there is good

agreement among most reads aligned in a local area, but a minority do not correspond, reads

associated with the minority should be discounted. Although the error rate is already quite low

with Trace-EvidenceII, I think it is worthwhile to pursue this idea for increasing accuracy. 

Memory Use

In the present implementation of the SLIC algorithm, all reads and ancillary information are

kept in memory. Clearly, this is a significant detriment to assembling large fragments and

whole genomes. Fluorescent sequencing machines produce individual fragment reads of about

500 usable base pairs. Assuming a coverage of five, the number of fragment reads is almost

10,000 to cover a small bacterium, is about 120,000 for the yeast genome, and numbers over

one million for C. elegans. To execute SLIC on these numbers of reads would require about

40 MB, 500 MB, and 5 GB of memory, respectively. While to many users, 40 MB, and even
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500 MB is not a problem, others will not have access to sufficient RAM.

My aim for future work on memory usage is that, given the length of the overall fragment

and the number of sequences, SLIC will automatically segment processing to work within

memory and disk space limitations. SLIC requires space not only for the sequences and

ancillary information, but also for several large tables of information collected during

processing. Both of these space requirements will be addressed through appropriate

segmenting of the SLIC algorithm. The basic idea is that layout can be accomplished though

iterative accumulation of interim results that can be saved on disk and merged later. 

12.3 Final Remarks

Computational methods for DNA fragment assembly have been evolving for a number of

years. Through a great deal of dedicated research over time, considerable improvements in the

effectiveness of the methods have been made. The work I have presented here provides

additional improvements and can serve as a foundation for further study in developing better

solutions to problems in fragment assembly.
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Appendix A

Glossary of Biological Terms

This appendix contains a glossary of biological terms as used in this dissertation. Further

details may be found in textbooks such as Modern Genetic Analysis(Griffiths et al. 1998).

5 ’ end

The end of a DNA molecule that originates with the sugar ring containing a 5’ carbon

atom. Often used to refer to the start of a fragment read.

3 ’ end

The end of a DNA molecule that terminates with the sugar ring containing a 3’ carbon

atom. Often used to refer to the end of a fragment read.

ABI

Applied Biosystems Inc. A division of Perkin-Elmer that produces the most widely used

DNA sequencing machines.

adenine

See base.

ambiguous

A base call that is any combination of A, C, G, and/or T.
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assembly

Determining the layout of fragment reads by aligning their overlapping regions of base

calls.

base

One of four molecules, (A), cytosine (C), guanine (G), and thymine (T),  that when

bonded to phosphate and sugar make up a deoxynucleotide.

base call

The base associated with a particular sequence of fluorescent-dye intensities.

base calling

Interpreting output from sequencing machines to call the sequence of bases for a fragment

of DNA.

base pair

A pair of complementary bases. A is complementary to T and C is complementary to G.

chimera

Two erroneously joined fragments of DNA from discontiguous sources.

complementary bases

Bases that bond in a pair. A is complementary to T and C is complementary to G.

consensus

Refers to either a consensus call or a consensus sequence.

consensus call

The most likely base given an aligned column of base calls.

consensus calling

Determining the most likely base given an aligned column of base calls.

consensus sequence

The most likely sequence of bases given an alignment of sequences.
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contaminant sequence

A sequence that is not from the organism of interest.

contig

Contiguous segments of DNA formed by aligning overlapping regions of reads.

coverage

The number of aligned sequences.

cytosine

See base.

deoxyribonucleic acid

A molecule composed of a chain of deoxynucleotides. Commonly called DNA. 

deoxynucleotide

A base bonded to phosphate and sugar.

dideoxynucleotides

A modified deoxynucleotide that terminates elongation during DNA replication.

DNA

see deoxyribonucleic acid.

DNA sequencing

Determining the sequence of bases in a fragment of DNA.

dye contamination

Excess dye that migrates with fragments during sequencing resulting in a spurious high

fluctuation in the trace.

electrophoresis

See gel electrophoresis.

false join

Reads erroneously overlapped due to repeated or near-repeated sequences.
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fluorescent dye

Dyes used to label fragments of DNA. Each of four dyes labels one of the four

dideoxynucleotides. When excited by a laser, each of the four dyes emits a distinct

spectrum of light.

fluorescent-dye traces

See traces.

fragment assembly

See assembly.

fragment layout

See layout.

fragment read

See read.

gap

Used in an alignment to indicate that either a base is missing from the sequence of base

calls (a deletion) or that a false base has been called in one or more of the aligned sequences

(an insertion).

gel electrophoresis

A process in which fragments of DNA migrate through a gel when a voltage is applied.

genes

Regions in DNA that enocde proteins and other products.

genome

A molecule of DNA that is the genetic material for an organism.

guanine

See base.
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Human Genome Project

A project to find all the genes in human DNA and to discover the functions of their

proteins.

kb

Seekilobase.

kilobase

A measure of the length of DNA fragments; 1000 bases.

layout

The order and offset of reads in a fragment assembly.

no-call

The call made by a base caller when it must make a call, but the correct base cannot be

determined.

polyacrylamide gel

A gel that allows electropheretic separation of DNA fragments.

primer

A short fragment of DNA used to prime replication.

read

The sequence of base calls for a fragment of DNA.

reading a trace

The detection and recording of the intensities of fluorescent dyes by a sequencing machine

as fragments pass a detector.

repeat

A subsequence of DNA that occurs more than once in a DNA fragment or genome.

repeated sequence

See repeat.
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sequence alignment

Aligning two or more sequences of bases such that the number of mismatches is

minimized.

sequence assembly

See assembly.

sequence layout

See layout.

sequence read

See read.

shotgun sequencing

A strategy for sequencing DNA that involves first creating a random (shotgun)library of

small fragments from a whole genome and then sequencing the small fragments.

thymine

See base.

traces

Sequences of the intensities (amounts) of fluorescent dyes advancing through time.

vector sequence

A fragment of DNA used to carry and replicate a fragment of interest.

whole-genome shotgun sequencing

See shotgun sequencing.
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Appendix B

Trace-Class Score Pseudocode

In this appendix I present pseudocode for calculating the Trace-Classscores described in

Chapter 3. Four functions are included:

Assign_Trace-Class_Scores,

Assign_Strong_Med_Scores,

Assign_Med_Weak_Scores, and

Assign_Weak_Scores.

Assign_Trace-Class_Scores

Parameters

int pt_array[]; /* Array of intensity data points */

int num_pts; /* Number of data points in pt_array */

int base_pt; /* pt_array index of base call location */

int max_pt; /* Max intensity of all four traces */

int *strong_peak; /* Pointer to Strong peak score */

int *med_peak; /* Pointer to Medium peak score */

int *weak_peak; /* Pointer to Weak peak score */

int *strong_valley; /* Pointer to Strong valley score */
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int *med_valley; /* Pointer to Medium valley score */

int *weak_valley; /* Pointer to Weak valley score */

Algorithm

if ( Assign_Strong_Med_Scores(pt_array, num_pts, base_pt,

max_pt, &strong_peak, &med_peak, &strong_valley,

&med_valley) == false) {

if ( Assign_Med_Weak_Scores(pt_array, num_pts, base_pt,

max_pt, &med_peak, &weak_peak, &med_valley,

&weak_valley) == false) {

Assign_Weak_Scores(pt_array, num_pts base_pt, max_pt, &weak_peak,

&weak_valley);

}

}

Assign_Strong_Med_Scores

/* Returns true if strong peak or valley found */

Parameters

int pt_array[]; /* Array of intensity data points */

int num_pts; /* Number of data points in pt_array */

int base_pt; /* pt_array index of base call location */

int max_pt; /* Max intensity of all four traces */

int *strong_peak; /* Pointer to strong peak score */

int *med_peak; /* Pointer to medium peak score */

int *strong_valley; /* Pointer to strong valley score */

int *med_valley; /* Pointer to medium valley score */
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Local Variables

int curr_pt; /* pt_array index of current point */

int prev_slope; /* Slope between previous point and curr_pt */

int next_slope; /* Slope between curr_pt and next point */

int peak_pt; /* pt_array index of peak */

int valley_pt; /* pt_array index of valley */

int left_extreme_pt; /* pt_array index of change to left of

peak_pt or valley_pt */

int right_extreme_pt; /* pt_array index of change to right of 

peak_pt or valley_pt */

int extreme_array[]; /* Indices in pt_array where slope sign

changes; used to find left_extreme_pt and

right_extreme_pt */

int idx; /* Index into extreme_array */

int extreme_peak_idx; /* Index of peak_pt pt_array index in

extreme_array */

int extreme_valley_idx; /* Index of valley_pt  pt_array in

extreme_array */

float distance_adj; /* Score multiplier based on distance of

peak_pt and valley_pt from base_pt */

float height_adj; /* Score multiplier based on relative

intensities of peak_pt and valley_pt with

max_pt */

Algorithm

idx = 1;

extreme_array[idx] = 1; /* use first point if no changes */

idx = idx + 1;

peak_pt = -1;

valley_pt = -1;

169



for curr_pt = 2 to num_pts - 1 {

prev_slope = pt_array[curr_pt] - pt_array[curr_pt - 1];

next_slope = pt_array[curr_pt + 1] - pt_array[curr_pt];

/* if change in sign of slope, peak or valley found */

if (prev_slope * next_slope < 0) {

if (prev_slope > 0) { /* peak found */

if ( abs_value (curr_pt - base_pt) < abs_value (peak_pt - base_pt)) {

peak_pt = curr_pt; /* closer peak found */

extreme_peak_idx = idx;

}

}

else { /* valley found */

if ( abs_value (curr_pt - base_pt) <

abs_value (valley_pt - base_pt)) {

valley_pt = curr_pt; /* closer valley found */

extreme_valley_idx = idx;

}

}

extreme_array[idx] = curr_pt;

idx = idx + 1;

}

}

extreme_array[idx] = num_pts; /* use last point if no changes */

idx = idx + 1;
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if (peak_pt <> -1) {

left_extreme_pt = extreme_array[extreme_peak_idx - 1];

right_extreme_pt = extreme_array[extreme_peak_idx + 1];

*strong_peak = 100 * (pt_array[peak_pt] - (pt_array[left_extreme_pt]

+ pt_array[right_extreme_pt]) / 2) / pt_array[peak_pt];

*med_peak = 100 - *strong_peak;

distance_adj = (num_pts - abs_value (peak_pt - base_pt)) / num_pts;

height_adj = pt_array[peak_pt] / max_pt;

*strong_peak *= distance_adj * height_adj;

*med_peak *= distance_adj * height_adj;

}

if (valley_pt <> -1) {

left_extreme_pt = extreme_array[extreme_valley_idx - 1];

right_extreme_pt = extreme_array[extreme_valley_idx + 1];

*strong_valley = 100 * (pt_array[valley_pt] - (pt_array[left_extreme_pt]

+ pt_array[right_extreme_pt]) / 2) / pt_array[valley_pt];

*med_valley = 100 - *strong_valley;

distance_adj = (num_pts - abs_value (valley_pt - base_pt)) / num_pts;

height_adj = (1 - pt_array[valley_pt] / max_pt);

*strong_valley *= distance_adj * height_adj;

*med_valley *= distance_adj * height_adj;

}

return (peak_pt <> -1 or valley_pt <> -1);
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Assign_Med_Weak_Scores

/* Returns true if medium peak or valley found */

Parameters

int pt_array[]; /* Array of intensity data points */

int num_pts; /* Number of data points in pt_array */

int base_pt; /* pt_array index of base call location */

int max_pt; /* Max intensity of all four traces */

int *med_peak; /* Pointer to medium peak score */

int *weak_peak; /* Pointer to weak peak score */

int *med_valley; /* Pointer to medium valley score */

int *weak_valley; /* Pointer to weak valley score */

Local Variables

int curr_pt; /* pt_array index of current point */

int prev_slope; /* Slope between previous point and curr_pt */

int next_slope; /* Slope between curr_pt and next point */

int max_change; /* Amount of max change between slopes */

int max_change_pt; /* Data point where max_change occurs */

Bool in_peak; /* True when in slopes decreasing */

Bool in_valley; /* True when in slopes increasing */

int peak_pt; /* pt_array index of peak */

int valley_pt; /* pt_array index of valley */

int left_extreme_pt; /* pt_array index of change to left of

peak_pt or valley_pt */

int right_extreme_pt; /* pt_array index of change to right of 

peak_pt or valley_pt */

int extreme_array[]; /* Indices of data points with curvature

changes; used to find left_extreme_pt and

right_extreme_pt */
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int idx; /* Index into extreme_array */

int extreme_peak_idx; /* Index of peak_pt in extreme_array */

int extreme_valley_idx; /* Index of valley_pt in extreme_array */

float distance_adj; /* Score multiplier based on distance of

peak_pt and valley_pt from base_pt */

float height_adj; /* Score multiplier based on relative

intensities of peak_pt and valley_pt with

max_pt */

Algorithm

idx = 1;

extreme_array[idx] = 1; /* first point */

idx = idx + 1;

max_change = 0;

max_change_pt = 1;

in_peak = false;

in_valley = false;

peak_pt = -1;

valley_pt = -1;

for curr_pt = 2 to num_pts - 1 {

prev_slope = pt_array[curr_pt] - pt_array[curr_pt - 1];

next_slope = pt_array[curr_pt + 1] - pt_array[curr_pt];

if (prev_slope > next_slope) { /* peak, decreasing slope */

if (in_peak) { /* still in peak */

if (prev_slope - next_slope > max_change) {

max_change = prev_slope - next_slope; /* change is greater */

max_change_pt = curr_pt;

}

}
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else if (in_valley) { /* were in peak, now in valley */

if ( abs_value (max_change_pt - base_pt) <

abs_value (peak_pt - base_pt)) {

peak_pt = max_change_pt; /* save closer peak */

extreme_peak_idx = idx;

}

extreme_array[idx++] = max_change_pt;

max_change = 0;

in_valley = false; /* no longer in valley */

in_peak = true; /* now in peak */

}

}

else if (prev_slope > next_slope) { /* valley, increasing slope */

if (in_valley) { /* still in valley */

if (next_slope - prev_slope > max_change) {

max_change = next_slope - prev_slope; /* change is greater */

max_change_pt = curr_pt;

}

}

else if (in_peak) { /* were in valley, now in peak */

if ( abs_value (max_change_pt - base_pt) <

abs_value (peak_pt - base_pt)) {

valley_pt = max_change_pt; /* save closer valley */

extreme_valley_idx = idx;

}

extreme_array[idx] = max_change_pt;

idx = idx + 1;

max_change = 0;

in_peak = false; /* no longer in peak */

in_valley = true; /* now in valley */
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}

}

}

if (in_peak) {

if (valley_pt <> -1) {

if ( abs_value (max_change_pt - base_pt) < 

abs_value (peak_pt - base_pt)) {

peak_pt = max_change_pt; /* closer valley found */

extreme_peak_idx = idx;

}

extreme_array[idx] = max_change_pt;

idx = idx + 1;

}

}

else if (in_valley) {

if (peak_pt <> -1) {

if ( abs_value (max_change_pt - base_pt) < 

abs_value (valley_pt - base_pt)) {

valley_pt = max_change_pt; /* closer valley found */

extreme_valley_idx = idx;

}

extreme_array[idx] = max_change_pt;

idx = idx + 1;

}

}

extreme_array[idx] = num_pts; /* last point */

idx = idx + 1;
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if (peak_pt <> -1) {

left_extreme_pt = extreme_array[extreme_peak_idx - 1];

right_extreme_pt = extreme_array[extreme_peak_idx + 1];

*weak_peak = 100 * ( max(pt_array[left_extreme_pt],

pt_array[right_extreme_pt]) - pt_array[peak_pt]) /

max(pt_array[left_extreme_pt], pt_array[right_extreme_pt]);

*med_peak = 100 - *med_peak;

distance_adj = (num_pts - abs_value (peak_pt - base_pt)) / num_pts;

height_adj = pt_array[peak_pt] / max_pt;

*strong_peak *= distance_adj * height_adj;

*med_peak *= distance_adj * height_adj;

}

if (valley_pt <> -1) {

left_extreme_pt = extreme_array[extreme_valley_idx - 1];

right_extreme_pt = extreme_array[extreme_valley_idx + 1];

*weak_valley = 100 * (pt_array[valley_pt] -

min (pt_array[left_extreme_pt],

pt_array[right_extreme_pt])) / pt_array[valley_pt];

*med_valley = 100 - *med_valley;

distance_adj = (num_pts - abs_value (valley_pt - base_pt)) / num_pts;

height_adj = (1 - pt_array[valley_pt] / max_pt);

*strong_valley *= distance_adj * height_adj;

*med_valley *= distance_adj * height_adj;

}

return (peak_pt <> -1 or valley_pt <> -1);
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Assign_Weak_Scores

Parameters

int pt_array[]; /* Array of intensity data points */

int base_pt; /* pt_array index of base call location */

int max_pt; /* Max intensity of all four traces */

int *weak_peak; /* Pointer to weak peak score */

int *weak_valley; /* Pointer to weak valley score */

Local Variables

int prev_slope; /* Slope between previous point and curr_pt */

int next_slope; /* Slope between curr_pt and next point */

float height_adj; /* Score multiplier based on relative

intensities of peak_pt and valley_pt with

max_pt */

Algorithm

prev_slope = pt_array[base_pt] - pt_array[base_pt - 2];

next_slope = pt_array[base_pt + 2] - pt_array[base_pt];

if (prev_slope > next_slope) { /* peak, decreasing slope */

*weak_peak = 100;

height_adj = (1 - pt_array[base_pt] / max_pt);

*weak_peak *= height_adj;

}

else if (prev_slope < next_slope) { /* peak, increasing slope */

*weak_valley = 100;

height_adj = (1 - pt_array[base_pt] / max_pt);

*weak_valley *= height_adj;

}
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Appendix C

End-Trimming Pseudocode

In this appendix I present pseudocode for trimming poor data with Trace-ClassTrim as

described in Chapter 4 and the Trace-Quality Trimdescribed in Chapter 8.

Trace-Class Trim

/* Trims the 3’ end of a sequence read. */

/* Returns base_array index of first base to trim. */

Parameters

char base_array[]; /* Array of base calls */

int num_bases; /* Number of bases in base_array */

int trace_array[4][]; /* Array of traces for each of the 4 bases */

int max_poor; /* Max number of poor_classes allowed in window

*/

Bool poor_classes[]; /* Array position 1= SP, 2= MP, 3= WP, 4= WV, 5= MV,

6=SV, true if defined as poor_class */

int window_size; /* Number of bases in a window */

178



Local Variables

int base_idx; /* Index into base_array */

int curr_class; /* Characteristic class for trace of curr_base,

1=SP, 2= MP, 3= WP, 4= WV, 5= MV, 6= SV */

int window_array[]; /* Rolling window array of poor classes, set to 1

if classified as a poor class & 0 otherwise */

int num_poor; /* Number of poor_classes in current window */

int window_idx; /* Index into window_array */

Algorithm

base_idx = num_bases; /* start at 3’ end */

num_poor = 0;

clear (window_array); /* set all window positions to 0 */

/* Fill the first window, then continue counting number of poor classes

until num_poor <= max_poor */

While (base_idx > 0 && (num_poor > max_poor or   /* too many poor */

base_idx >= num_bases - window_size)) { /* filling 1st window */

num_poor= num_poor - window_array[window_idx];

curr_class = get_class(base_idx, bases_array, trace_array);

If (poor_classes[curr_class] == true) {

window_array[window_idx] = 1; /* record occurrence of poor class */

num_poor = num_poor + 1;

}

Else window_array[window_idx] = 0;

window_idx = (window_idx + 1) mod window_size;

--base_idx;

}

base_index = base_idx + window_size + 1;

return base_index;
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Trace-Quality Trim

/* Trims 3’ end and 5’ ends of a sequence read. */

Parameters

char bases_array[]; /* Array of base calls */

int num_bases; /* Number of bases in base_array */

int trace_array[4][]; /* Array of traces for each of the 4 bases */

int threshold; /* Regions above this quality threshold are ok */

int *end3_base; /* Pointer to base_array index of 3’ trim

location */

int *end5_base; /* Pointer to base_array index of 5’ trim

location */

Local Variables

int Q; /* Quality score for curr_base */

int curr_base; /* Index of current base in base_array */

int curr_seq_length; /* Length of potential ok subsequence */

int curr_end3_base; /* base_array index of potential 3’ trim location */

int curr_end5_base; /* base_array index of potential 5’ trim location */

int seq_length; /* Length of longest ok subsequence so far */

Algorithm

seq_length = 0

curr_seq_length = 0

/* Scan bases from 3’ to 5’, keeping track of the longest ok subsequence

found so far */

For curr_base = 1 to num_bases {

Q = get_quality (curr_base, traces);

If Q >= threshold { /* base Q meets threshold */
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curr_seq_length = curr_seq_length + 1;

curr_end3_base = curr_base; 

}

Else { /* found a base with Q below threshold */

/* potential ok subsequence is longer */

If (curr_seq_length > seq_length) {

end5_base = curr_end3_base - curr_seq_length + 1;

end3_base = curr_end3_base;

seq_length = curr_seq_length;

}

curr_seq_length = 0;  /* reset length of potential ok subsequence */

}

}

If (curr_seq_length > seq_length) { /* ok subsequence goes to 3’ end */

*end5_base = curr_end3_base - curr_seq_length + 1;

*end3_base = curr_end3_base;

}
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Appendix D

SLICPseudocode

In this appendix I present type definitions, variables, data structures, function prototypes, and

pseudocode followed by a detailed description of the SLIC layout algorithm.

Type Definitions

Name Type Description

StreamT string Base call sequence, encoded with 2 bits per base

(A = 00, C = 11, G = 01, T = 10)

MerT StreamT Encoded mer

FrgRec Record Fragment read information

int length Read length

StreamT stream Base call sequence of read

int ctgListIdx Index in a CtgListT

End

FrgListT FrgRec List List of FrgRec

MerFrgRec Record Information on a fragment read that contains a  

given mer

int frgIdx Index of a FrgRec in a FrgListT

int merOffset Offset of mer in a FrgRec.stream
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End

MerFrgListT MerFrgRec List List of MerFrgRec

MatchListT MerFrgListT List List of MerFrgListT

MerRec Record Mer information

MerT mer Mer 

int count Count of mer occurrences in all fragment  reads

Boolean repeat True if the mer is a putative repeat

MerFrgListT merFrgList List of MerFrgRec

End

MerListT MerRec List List of MerRec

MerTableT MerListT List Hash table of mers, hashed on first x bases in mer, 

chained by last y bases in mer; chains are of 

type MerListT

ScoreRec Record Score information

MerT mer Encoded last y bases of mer

int merOffset Offset of mer in a FrgRec.stream

int score Mer score

End

CtgFrgRec Record Information on a fragment read that is in a contig

int frgIdx Index of a fragment read in a FrgListT

int offset Offset of fragment read in a contig 

End

CtgFrgListT CtgFrgRec List List of CtgFrgRec , ordered by offset

CtgListT CtgFrgListT List List of CtgFrgListT , one CtgFrgListT per 

contig
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Variables and Data Structures

Name Type Description

newCtgFrg CtgFrgRec New CtgFrgRec

ctgList CtgListT List of contigs

ctgListIdx int Current index of a contig in a CtgListT

found Boolean True if found

frgList FrgListT List of FrgListRec for fragment reads in the dataset

frgRec FrgRec Current FrgRec

maxCount int Count threshold for the number of occurrences of a mer 

in the dataset

matchListT MatchFrgListT List of MerFrgListTs .

mer MerT Current mer

newMerFrg MerFrgRec New MerFrgRec

merFrgRec MerFrgRec Current MerFrgRec

merRec MerRec Current MerRec

merTable MerTableT Hash table of all mers of length x + y that occur in the dataset

numFrgs int Number of fragment reads in frgList

numMers int Number of mer tags to choose for each fragment read

merOffset int Offset of a mer in a fragment read

scoreRec ScoreRec Current ScoreRec

tagScoreRec ScoreRec ScoreRec of highest scoring mer for current partition

Functions

Prototype Returns Description

addToList(List, Item) List Adds Item to List

assignScore(MerT, int) ScoreRec Assigns score for MerT

betterScore(ScoreRec, Boolean Returns true if 1st ScoreRec is better 

than 2nd for given partition

getCtgListIdx(MerFrgListT) int Returns index of any contig in the list, 0 if 
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none

getMerRec(MerTableT, MerT) MerRec Returns MerRec for MerT from 

MerTableT

getNextFrgRead() FrgRec Returns next fragment read, stored in a 

FrgRec

getNextMer(FrgRec, int) MerT Returns next mer from FrgRec for 

current partition;

if int is 0, partition is entire 5’ to 3’ read

inMerFrgList(MerFrgListT, int) Boolean Returns true if the read indexed by int

is in MerFrgListT

listLen(List) int Returns length of List

makeMatchFrgLists(MerFrgListT) MatchFrgListT

Divides a MerFrgListT into separate

lists in MatchFrgListT such that all

fragment overlaps within each list have

above-threshold similarity

mergeCtgs(CtgListT, int, int) CtgListT Merges contigs indexed by the two

ints

newCtgFrgRec(CtgFrgListT, int) CtgFrgRec Makes a new CtgFrgRec

newCtg(CtgListT, int) int Makes a new contig, returns its index in a 

CtgListT

newMerFrgRec(int, int) MerFrgRec Makes a new MerFrgRec

oneCtg(MerFrgListT) Boolean Returns true if all in the MerFrgListT

are in the same contig

Figure D-1 charts the three main data structures and their relationships.
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Figure D-1. SLIC Data Structures. The frgList contains a FrgRec for each fragment

read in the dataset. In FrgRec , ctgListIdx is an index into the ctgList (the list of all
contigs). The merTable is a bucket-and-chain hash table. The first x bases of a mer are used to

index into the table and the last y bases are in MerRec records in the MerRecList . Each
MerRec may have a merFrgList associated with it. A merFrgList is a list of MerFrgRec . In a

MerFrgRec , the frgIdx indexes a fragment read record in the frgList . The merOffset is the
offset of the mer in the fragment read. The ctgList is a list of all contigs for the dataset. Each

contig is represented by a list of CtgFrgRec . The frgIdx in a CtgFrgRec indexes a frgRec in
the frgList . The offset specifies the position of the fragment read in the contig.
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Pseudocode

1.  Initialize all variables and structures

/* Get fragment reads */

2.  While frgRec = getNextFrgRead()

2.1  frgList = addToList(frgList, frgRec)

2.2  numFrgs = numFrgs + 1

/* Count occurrences of mers */

3.  For i = 1 to numFrgs

3.1  While mer = getNextMer(frgList[i], 0)

3.1.1  merRec = getMerRec(merTable, mer)

3.1.2  If merRec.count < maxCount

3.1.2.1  merRec.count = merRec.count + 1

3.1.3  Else merRec.repeat = true

/* Choose mer tags in each fragment read */

4.  For i = 1 to numFrgs

4.1  merOffset = 0

4.2  For j = 1 to numMers

4.3.1  found = false

4.3.2  While mer = getNextMer(frgList[i], j)

4.3.2.1  scoreRec = assignScore(mer, merOffset++)

4.3.2.2  If betterScore(scoreRec, tagScoreRec, j)

4.3.2.2.1  tagScoreRec = scoreRec

4.3.2.2.2  found = true

4.3.3  If found

4.3.3.1  newMerFrg = newMerFrgRec(i, tagScoreRec.merOffset)

4.3.3.2  merRec = getMerRec(merTable, tagScoreRec.mer)
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4.3.3.3  merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)

/* If not in the list, add fragment reads that contain a previously chosen mer tag to the mer’s

merFrgList */

5.  For i = 1 to numFrgs

5.1  merOffset = 0

5.2  While mer = getNextMer(frgList[i], 0)

5.2.1  merRec = getMerRec(merTable, mer)

5.2.2  If merRec.merFrgList and not inMerFrgList(merRec.merFrgList, i)

5.2.2.1  newMerFrg = newMerFrgRec(i, merOffset++)

5.2.2.2  merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)

/* Make, add to, and merge contigs */

6. For i = 1 to listLen(merTable)

6.1  For j = 0 to listLen(merTable[i])

6.1.1  merRec = merTable[i][j]

6.1.2  If merRec.merFrgList and not oneCtg(merRec.merFrgList)

6.1.2.1  makeMatchFrgLists(merRec.merFrgList, matchFrgList)

6.1.2.2  For j = 0 to listLen(matchingMerFrgLists)

6.1.2.2.1  ctgListIdx = getCtgListIdx(matchFrgList[k])

6.1.2.2.2  If ctgListIdx = 0

6.1.2.2.2.1  ctgListIdx = newCtg(ctgList, matchFrgList[k][1]) 

6.1.2.2.3  For m= 1 to listLen(matchFrgList[k])

6.1.2.2.3.1  merFrgRec = matchFrgList[k][m] 

6.1.2.2.3.2  If frgList[merFrgRec.frgIdx].ctgListIdx = 0 

6.1.2.2.3.2.1  newCtgFrg = newCtgFrgRec(ctgList[ctgListIdx],

merFrgRec.frgIdx)

6.1.2.2.3.2.2  ctgList[ctgListIdx] = addToList(ctgList[ctgListIdx],

newCtgFrg)

6.1.2.2.3.2.3    frgList[merFrgRec.frgIdx].ctgListIdx = ctgListIdx
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6.1.2.2.3.3  Else If frgList[merFrgRec.frgIdx].ctgListIdx <>

ctgListIdx

6.1.2.2.3.3.1  ctgList = mergeCtgs(ctgList,

frgList[merFrgRec.frgIdx].ctgListIdx, ctgListIdx)

Detailed Description

1.  Initialize all variables and structures.

2.  While frgRec = getNextFrgRead()

Sequences of base calls for fragment reads are read and information is stored in a record of

type FrgRec . Information includes:

1) length , the total number of base calls;

2) stream , the sequence of base calls;

3) ctgListIdx , an index into ctgList that specifies which contig includes the 

fragment (initialized to 0).

The base calls are encoded in stream such that two bits are used to represent each base

call; A, G, T, and C are represented by 00, 01, 10, and 11, respectively.

2.1  frgList = addToList(frgList, frgRec)

At this point, reads that are too short to be useful can be excluded from the dataset.

Otherwise, I add the new FrgRec record to frgList (the list of all fragment reads in the

dataset).

2.2  numFrgs = numFrgs + 1

3.  For i = 1 to numFrgs

Iterate through each of the reads in frgList , counting the total occurrences of individual

mers.

3.1  While mer = getNextMer(frgList[i], 0)
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Get the next mer for the current fragment read. (The ‘0’ in the function call indicates that I

am scanning the entire read, 5’ to 3’.) Only the mer or its reverse complement needs to be

processed; I arbitrarily choose the one with the smaller integer value. For example, with 2-

bit encoding, the bit stream for the sequence GATT is 01001010, yielding an integer value

of 74.The reverse complement and its corresponding bit stream are AATCand 00001011,

yielding an integer value of 11. I return the reverse complement of the mer since its value

(11) is less than that of the mer (74). Null is returned after the last mer in the sequence

stream has been returned.

3.1.1  merRec = getMerRec(merTable, mer)

Get the merRec corresponding the the current mer. First, the integer value of the 2-bit

encoding of the first x bases of the mer is used as the index into merTable . Abstractly, the

merTable is a bucket-and-chain hash table where the first x bases specify the buckets.

Since two bits encode each base in the x-mer, the length of the table is 4x. Figure D-2 gives

an example of merTable indexing and length.

If no merRec exists for the mer when getMerRec() is called, a new merRec is created

and added to the merRecList . Since the records are dynamically allocated, only mers that

occur in the dataset have an associated record. Note that all merFrgList fields remain null

until step 4.

3.1.2  If merRec.count < maxCount

Increment the count for the current merRec if it is less than the maxCount threshold. A

threshold is set that specifies the maximum number of identical mers that occur in the

dataset. (The default setting is 150% of expected redundancy.) When the number of

occurrences reaches the threshold, the mer is marked as a repeat. As an example, consider

a dataset with an expected redundancy of six. If a mer occurs more than nine times, I

presume that it is repeated in the original DNA fragment. In that case, the repeat field of

the MerRec is set to true .

3.1.2.1  merRec.count = merRec.count + 1
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3.1.3  Else merRec.repeat = true

4.  For i = 1 to numFrgs

Iterate through the fragment reads, choosing mer tags.

4.1   merOffset = 0

Initialize merOffset to 0. The offset of the current mer in a FrgRec.stream is needed for

the merOffset field in a MerFrgRec .

4.2  For j = 1 to numMers

Choose a mer tag for each partition of the fragment read. The user specifies how many

mers to choose per fragment read. The read is divided into that many partitions and a mer is

chosen for each partition. Multiple mers are usually needed to help ensure that each overlap

has a chosen mer tag. It is especially important to have mers near either end of the fragment

reads.

4.3.1  found = false

found remains false if no mer tag is found the the partition.

4.3.2  While mer = getNextMer(frgList[i], j)

Get the next mer for the current partition and fragment read. I am only interested in finding

a mer in the current partition of the fragment read, so I only return mers in the that

partition. For example, consider the case where the number of partitions is three and I have

a fragment read of 440 bases. The three partitions will include bases 1 to 147, bases 148 to

294, and bases 295 to 440. If possible, a mer tag is chosen in each of these partitions. Null

is returned after I have returned the last mer in the partition.

4.3.2.1   scoreRec = assignScore(mer, merOffset++)

Assign a score for the current mer by preferring mers with the fewest number of

occurrences (greater than one). The score for a mer is maxCount - merRec.count . The

merOffset is incremented at the completion of the function call. If the mer is marked as a

repeat, a score of 0 is assigned.
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a)

0 AAAAAAAA 0000000000000000
1 AAAAAAAG 0000000000000001
2 AAAAAAAT 0000000000000010

65,533 CCCCCCCG 1111111111111101
65,534 CCCCCCCT 1111111111111110
65,535 CCCCCCCC 1111111111111111

… … …

Index Mer (first x bases) 2-Bit Encoding

b)

merList

merRec  1

hash index

merRec  3merRec  2

merFrgList null merFrgList nullmerFrgList null

mer GTCA mer GAATmer TTAC

count 1 count 3count 6

repeat false repeat falserepeat false

31,352

(GCTTGCTA)

(first x bases) (last y bases)

Figure D-2. Mer Table and Lists. a) This is an example merTable . In this example, x =
8 and the length of the table is 65,536. The integer values of the 2-bit encoding of the 8-mers

indexes the table. I use the last y bases in the current mer to find the corresponding merRec .

Each entry in the merTable is a merRecList ; the lists form the chains for the hash table. In the

list, there is one merRec for each mer that occurs in the dataset of fragment reads. b) This is an
example of a merRecList . In this example, consider the following three mers where x = 8 and

y = 4: GCTTGCTAGTCA, GCTTGCTATTAC, and GCTTGCTAGAAT. The first x bases are
identical, so all hash into merTable at index 31,352. The last y bases are different, so each has

its own record in the merRecList . In the dataset of fragment reads for this example, I have so

far encountered one mer of GCTTGCTAGTCA, six of GCTTGCTATTAC, and three of

GCTTGCTAGAAT.
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4.3.2.2  If betterScore(scoreRec, tagScoreRec, j)

Check if the current score is better than the best score so far. There are often ties in scores

and the identification of the better score is dependent upon which partition I am processing.

I want to choose mer tags that are near either end of the fragment read and spaced as evenly

as possible throughout the rest of the read. If I am scoring the first partition, I choose the

first mer with the highest score. Conversely, if I am scoring the last partition, I choose the

mer with the last occurrence of the highest score. For middle partitions, I choose the mer

with the highest score that is nearest the center of the partition. If the score in scoreRec is

0, false is returned.

4.3.2.2.1  tagScoreRec = scoreRec

Update tagScoreRec if the current score in scoreRec is better than the score in

tagScoreRec .

4.3.2.2.1  found = true

Indicate that at least one possible mer tag has been found.

4.3.3  If found

4.3.3.1  newMerFrg = newMerFrgRec(i, tagScoreRec.merOffset)

Make a new MerFrgRec using the fragment index and the direction and offset of the mer

tag. 

4.3.3.2  merRec = getMerRec(merTable, tagScoreRec.mer)

Find the merRec associated with the mer tag (as in step 3.1.1). 

4.3.3.3  merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)

Add the new MerFrgRec to the mer tag’s merFrgList . The merFrgList is the list of all

fragment reads for which the mer has been chosen as a mer tag.

5.  For i = 1 to numFrgs

This iteration through the data ensures that if a mer was chosen for one read, all other reads

with that mer are in the mer’s associated merFrgList . For each mer, the existence of a
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merFrgList indicates that the mer has been chosen as a tag for at least one fragment. (The

list remains null until the mer has been chosen by a fragment.)

The amount of storage and processing time can be reduced by incorporating a check for

existing merFrgList’s in step 4. In that step, if a merFrgList exists for a mer in the

current partition, the mer can be immediately chosen as the mer tag for the current

fragment. Checking for previously chosen mers in step 4 does not eliminate the need for

step 5.

5.1  merOffset = 0

Set merOffset to 0. As in step 4.1, the offset of the current mer in a FrgRec.stream is

needed for the merOffset field in a MerFrgRec .

5.2  While mer = getNextMer(frgList[i], 0)

Get the next mer for the current fragment. (The ‘0’ in the function call indicates that I am

scanning the entire read, 5’ to 3’.)

5.2.1  merRec = getMerRec(merTable, mer)

Find the merRec associated with the mer (as in step 3.1.1).

5.2.2  If merRec.merFrgList and not inMerFrgList(merRec.merFrgList, i)

Check if a merFrgList exists and if the fragment is already in the list. If there is no

merFrgList for the current mer, then the mer has never been chosen as a tag and I ignore

it. Otherwise, I check if the current fragment read already has an entry in the MerfrgList .

If not, I add a new MerFrgRec containing the fragment information to the list.

5.2.2.1  newMerFrg = newMerFrgRec(i, merOffset++)

Make a new MerFrgRec using the fragment index and position of the mer. The merOffset

is incremented at the completion of the function call.

5.2.2.2  merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)

Add the new MerFrgRec to the merRec.merFrgList .

6.  For i = 1 to listLen(merTable)
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Iterate through the merTable , making, adding to, and merging contigs. At the completion

of this step I have a list of contigs in ctgList . Each contig is represented as a list of

ctgFrgRec records that each contain an index into the frgList and the offset of the

fragment read in the contig. Each contig list of ctgFrgRec are ordered by offset to simplify

further processing of the contig layouts. Figure D-3 contains an example of a completed

ctgList and its associated layout.

6.1  For j = 0 to listLen(merTable[i])

Each entry in the merTable is a list of merRec’s . I check each entry in the list to see if the

fragment reads in the merFrgList should be overlapped in a contig. 

6.1.1  merRec = merTable[i][j]

Get the next merRec in the merRecList.

6.1.2  If merRec.merFrgList and not oneCtg(merRec.merFrgList)

First I check if the merRec has a merFrgList , indicating that the mer has been chosen as a

tag. Then I check if all the fragments in the list are already in the same contig

6.1.2.1makeMatchFrgLists(merRec.merFrgList, matchFrgList)

I check for pairwise overlap similarity between all fragment reads in merRec.merFrgList .

In addition, if any of the fragments are already in a contig, I check the pairwise similarity

of all fragments in the contig with any overlapping fragments in the merRec.merFrgList .

(The fragments in a contig might not contain the current mer, but might still overlap some

of the fragment reads in the current merRec.merFrgList .) A threshold is set that specifies

the required amount of match similarity. If not all the fragments and contigs in a list have

above-threshold pairwise similarity, then the list is divided by makeMatchFrgLists into

multiple lists such that the similarity within each list is above threshold.
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6.1.2.2For j = 0 to listLen(matchingMerFrgLists)

Iterate through the fragment read lists in the matchingMerFrgLists.

6.1.2.2.1ctgListIdx = getCtgListIdx(matchFrgList[k])

Check if any of the fragments in the matchFrgList[k] is in a contig. If a

merRec.ctgListIdx is 0, the fragment is not yet in a contig; otherwise, it identifies an

index into the ctgList . In this step, if any of the fragments in merRec.merFrgList is in a

contig, I return its ctgListIdx ; otherwise I return 0. If none of the fragments is in a

contig, I make a new one and add all other fragments to the same contig. If any fragments

are in other contigs, I add them to the same contig also. 

6.1.2.2.2If ctgListIdx = 0

If the ctgListIdx is 0, none of the fragments is in a contig. If the ctgListIdx is greater than

0, I enter all other fragment reads in the merRec.merFrgList into the contig indexed by

ctgListIdx. 

6.1.2.2.2.1ctgListIdx = newCtg(ctgList, matchFrgList[k][1])

I arbitrarily make a new contig with the CtgFrgRec of the first fragment read in the

matchFrgList[k] . The offset of this fragment read in the CtgFrgRec is 0. The

ctgListIdx is recorded as the ctgListIdx field in the fragment’s frgRec . Subsequently,

all other fragments in the list will be added to the new contig.

6.1.2.2.3For m= 1 to listLen(matchFrgList[k])

Iterate through the fragment reads in the matchFrgList[k].

6.1.2.2.3.1merFrgRec = matchFrgList[k][m]

Get the next merFrgRec in the list.

6.1.2.2.3.2If frgList[merFrgRec.frgIdx].ctgListIdx = 0

If the ctgListIdx for the fragment is 0, the fragment is not in a contig. 
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b) Layout

Contig 1
frgIdx 16: TAGGCTAGGCCCCATATGC
frgIdx 6: GCCCCATATGCTGACGGCGCA
frgIdx 2: TATGCTGACGGCGCATTTGAC
frgIdx 14: CGCATTTGACCCCAAAGTC
frgIdx 10: CCCCAAAGTCCCCG

Contig 2
frgIdx 1: GATTGGGGACCAGCACCACCTTAGC
frgIdx 7: CCAGCACCACCTTAGCAGGA
frgIdx 15: CTTAGCAGGATTGACACGGGTA

Contig 3
frgIdx 12: TTAGGATCGCGAGCTTA
frgIdx 3: TCGCGAGCTTATCCAGAGTCGACCGG
frgIdx 13: TCCAGAGTCGACCGGTAGGGCTACACAAG
frgIdx 5: AGGGCTACACAAGCCT

Figure D-3. A Contig List and Layout. In this example, 16 fragment reads are in the
dataset. a) Twelve reads are aligned into three contigs. Each ctgFrgList contains ctgFrgRec

that include the frgIdx (an index into the frgList ) for each read in the contig. The records
also include the offset of the read in the contig. Four reads (frgIdx = 4, 8, 9, and 11) did

not overlap any other read and are not in any contig. b) The fragment reads for each contig are
aligned according to the offsets listed in the ctgFrgRec .
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6.1.2.2.3.2.1newCtgFrg = newCtgFrgRec(ctgList[ctgListIdx], merFrgRec.frgIdx)

Make a new CtgFrgRec using the index of the fragment read. The offset of the read in the

contig is calculated in the function. If the mer for the current fragment read is not in the

same direction as in the contig, then I must set the offset to reflect the reverse complement

of the read. An example is given in Figure D-4.

6.1.2.2.3.2.2ctgList[ctgListIdx] = addToList(ctgList[ctgListIdx], newCtgFrg)

Add the new CtgFrgRec to the contig. The list of CtgFrgRec is ordered by offset.

6.1.2.2.3.2.3 frgList[merFrgRec.frgIdx].ctgListIdx = ctgListIdx

Record the ctgListIdx in the frgRec for the current fragment read. 

6.1.2.2.3.3Else If frgList[merFrgRec.frgIdx].ctgListIdx <> ctgListIdx

If the ctgListIdx for the current fragment does not match the ctgListIdx for the contig I

am building, then I have two separate contigs that I merge.

Fragment reads in MerfrgList for mer ACCACACC:

1.  G ACCACACCGTAGTG
2.  AGGATAG ACCACACCGTAG
3f. GGGGTGGGTCACTACGGTGTGGTCT (Forward)
3r. AG ACCACACCGTAGTGACCCACCCC(Reverse-complemented)

Make a new contig with fragment read 1:

1.  G ACCACACCGTAGTG  offset = 0

Add fragment read 2: 

1.        G ACCACACCGTAGTG  offset = 6
2.  AGGATAG ACCACACCGTAG    offset = 0

Add fragment read 3: 

1.        G ACCACACCGTAGTG           offset = 6
2.  AGGATAG ACCACACCGTAG             offset = 0
3r.      AG ACCACACCGTAGTGACCCACCCC  offset = 5

Figure D-4. Reversing Reads when Forming Contigs. The example in shows three

fragment reads added one at a time to a growing contig. The mer occurs in the reverse direction
in the third fragment, so the offset is from the original 3’ end of the read.
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6.1.2.2.3.3.1ctgList = mergeCtgs(ctgList, 

frgList[merFrgRec.frgIdx].ctgListIdx, ctgListIdx)

Merging contigs requires the adjustment of all the offsets of the fragment reads in one of

the contigs to reflect their new positions relative to fragment reads in the other contig. In

the case that the mer is in the forward direction in one contig and reversed in the other, the

offset adjustment must also reflect the reverse complementation of one contig. During

merging, the ctgListIdx is updated for all the affected fragments’ frgRec . After moving

all fragment reads from one ctgFrgList to another, the empty list is deleted.
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