
Applying Theory Revision to the
Design of Distributed Databases

Fernanda Baião1, Marta Mattoso1, Jude Shavlik2, Gerson Zaverucha1

1 Department of Computer Science – COPPE, Federal University of Rio de Janeiro (UFRJ)
PO Box 68511, Rio de Janeiro, RJ 21941-972 Brazil
{baiao, marta, gerson}@cos.ufrj.br

2 Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison, WI 53706 USA

shavlik@cs.wisc.edu

Abstract. This work presents the application of theory revision to the design of
distributed databases to automatically revise a heuristic-based algorithm (called
analysis algorithm) through the use of the FORTE system. The analysis
algorithm decides the fragmentation technique to be used in each class of the
database and its Prolog implementation is provided as the initial domain theory.
Fragmentation schemas with previously known performance, obtained from
experimental results on top of an object database benchmark, are provided as
the set of examples. We show the effectiveness of our approach in finding better
fragmentation schemas with improved performance.

1 Introduction

Distributed and parallel processing on database management systems are efficient
ways of improving performance of applications that manipulate large volumes of
data. This may be accomplished by removing irrelevant data accessed during the
execution of queries and by reducing the data exchange among sites, which are the
two main goals of the design of distributed databases [28]. However, in order to
improve performance of these applications, it is very important to design information
distribution properly.

The distribution design involves making decisions on the fragmentation and
placement of data across the sites of a computer network. The first phase of the
distribution design is the fragmentation phase, which is the focus of this work. To
fragment a class of objects, it is possible to use two basic techniques: horizontal and
vertical fragmentation [28], which may be combined and applied in many different
ways to define the final fragmentation schema.

The class fragmentation problem in the design of a distributed database is known
to be an NP-hard problem [28]. There are a number of works in the literature
addressing the horizontal [7, 14, 31] or vertical [6, 15] class fragmentation
technique, but not both. Even when the designer decides to use a horizontal
fragmentation algorithm to one class and a vertical fragmentation algorithm to

another class, he is left with no assistance to make this decision. Our previous work
proposed a set of heuristics to drive the choice of the fragmentation technique to be
applied in each class of the database schema. Those heuristics were implemented in
an algorithm called “analysis algorithm” [2], and were incorporated in a
methodology that includes the analysis algorithm, horizontal and vertical class
fragmentation algorithms adapted from the literature. Experimental results reported
in [3, 4] show applications that were executed 3.4 times faster when applying the
fragmentation schema resulted from our methodology, compared to other alternative
fragmentation schemas proposed by other works in the literature.

Experimental results from real applications can continuously provide heuristics
for the design of distributed object databases (DDODB) that may be incorporated in
our analysis algorithm. Indeed, we have tried to manually improve the analysis
algorithm using experimental results from [23, 25], which required a detailed
analysis of each result and manual modifications on the analysis algorithm.
However, the formalization of new heuristics from these experiments and their
incorporation in the analysis algorithm, while maintaining previous heuristics
consistent, proved to be an increasingly difficult task.

This work proposes the use of Theory REvisioN on the Design of Distributed
Databases (TREND3), showing how it automatically improves our analysis
algorithm through the use of the FORTE system [29]. TREND3 is a module of a
framework that handles the class fragmentation problem of the design of distributed
databases, defined in [5].

There are approaches in the literature addressing the DDODB problem [4, 6, 7,
13, 14, 15, 16, 20, 24, 31]. However, none of them addresses the problem of
choosing the most adequate fragmentation technique to be applied to each class of
the database schema. Some works have been applying machine learning techniques
to solve database problems. For example, [8, 9] present an approach for the inductive
design of deductive databases, based on the database instances to define some
intentional predicates. Also, relational bayesian networks were used to estimate
query selectivity in a query processor [19] and to predict the structure of relational
databases [18]. However, considering the design of distributed databases as an
application for theory revision is a novel approach.

The paper is organized as follows: in section 2, the design of distributed databases
is defined and our framework for the design of distributed databases is described.
Theory revision is briefly reviewed in section 3, while in section 4 we show how to
improve a DDODB analysis algorithm through the use of the FORTE system.
Experimental results on top of the OO7 benchmark [12] are presented in section 5.
Finally, section 6 presents some conclusions and future work.

2 A Framework for the Design of Distributed Databases

This section defines the problem of designing a distributed database, focusing on the
object-oriented model, and presents a framework we propose for the class
fragmentation phase of the distribution design.

2.1 The Design of Distributed Databases

The distribution design of a database makes decisions on the fragmentation and
placement of data across the sites of a computer network. The first phase of the
distribution design is the fragmentation phase, which is the process of isolating into
fragments specific data accessed by the most relevant applications that run over the
database.

In an object-oriented database, data is represented as objects. The set of objects
sharing the same structure and behavior define a class, and classes may be related to
each other through relationships. A database schema describes the set of classes and
relationships. The UML diagram representing the database schema of the OO7
benchmark [12] is illustrated in figure 1. The OO7 benchmark is a generic
application on top of a database of design objects assembled through the composition
of parts. We may notice, for example, that each composite part is related to N atomic
parts (through the “parts” relationship), and that each atomic part “is part of” one
composite part.

N

N

BaseAssembly

DesignObject

id
type
buildDate

Document
title
text

CompositePart

compShared

1

111

compPrivate

documentation

1

1

AtomicPart
x
y

1 N1
parts

11 11
rootPart

Connection
type
length

from

11to

isRootPart

isPartOf

documents

baseShared

basePrivate

to

11

N

N N

N

N

BaseAssembly

DesignObject

id
type
buildDate

Document
title
text

CompositePart

compShared

1

111

compPrivate

documentation

1

1

AtomicPart
x
y

1 N1
parts

11 11
rootPart

Connection
type
length

from

11to

isRootPart

isPartOf

documents

baseShared

basePrivate

to

11

N

N N

Fig. 1. The OO7 benchmark database schema

Given the schema of the database to be distributed, as in any distribution design
methodology, we need to capture the set of operations over the database and
quantitative information in order to define a fragmentation schema to be applied on
the database schema, which is the goal of the fragmentation phase.

The operations are captured by decomposing the application running over the
database, and are classified into selection, projection or navigation operations
according to the definitions from [2]. Quantitative information needed includes the
cardinality of each class (i.e., its estimated size: small, medium or large) and the
execution frequency of each operation.

The fragmentation schema is composed of the choice of a fragmentation technique
and the definition of a set of fragments for each class of the database schema. The
two basic fragmentation techniques to be applied on a class are horizontal and
vertical fragmentation [28]. Vertical fragmentation breaks the class logical structure
(its attributes and methods) and distributes them into fragments. Horizontal
fragmentation distributes class instances across the fragments. Thus, a horizontal
fragment of a class contains a subset of the whole class extension. Horizontal
fragmentation is usually subdivided into primary and derived horizontal
fragmentation. Primary horizontal fragmentation basically optimizes selection and
projection operations, while derived horizontal fragmentation addresses the
relationships between classes and improves performance of navigation operations. It
is also possible to apply both vertical and primary horizontal fragmentation
techniques to a class simultaneously (which we call hybrid fragmentation) or to
apply different fragmentation techniques to different classes in the database schema
(which we call mixed fragmentation).

In the object oriented data model, additional issues contribute to increase the
difficulty of the class fragmentation and turn it into an even more complex problem.
Our previous work proposed a set of heuristics implemented by an algorithm (called
“analysis algorithm”) [2]. Some examples of the heuristics proposed are “in the case
of a selection operation on a class with a large cardinality, this class is indicated to
primary horizontal fragmentation”, or “in the case of a projection operation on a
class with a large cardinality that is not derived horizontally fragmented, this class
is indicated to vertical fragmentation”. The algorithm was also capable of handling
conflicts during the fragmentation schema definition.

2.2 The Framework for the Class Fragmentation Problem in the DDODB

The framework we propose for the class fragmentation problem in the design of
distributed databases integrates three modules: the DDODB heuristic module, the
theory revision module (TREND3) and the DDODB branch-and-bound module
(figure 2).

Improved Analysis Algorithm
(Revised Theory)

Database Application
(Semantics + Operations

+ quantitative info)

Distribution
Designer

“Optimal” fragmentation
schema

“Optimal” fragmentation schema
(Examples)

DDODB Branch and Bound Module

Query Processing
Cost Function

DDODB Heuristic Module

Good fragmentation
schema

(AA → VF → HF)

Analysis Algorithm
(Initial Theory)

FORTE ModuleFORTE

TREND3 Module
Known fragmentation

schemas (Examples)

C
os

t
of

 g
oo

d
fr

ag
m

en
ta

tio
n

sc
he

m
a

Improved Analysis Algorithm
(Revised Theory)

Database Application
(Semantics + Operations

+ quantitative info)

Distribution
Designer

“Optimal” fragmentation
schema

“Optimal” fragmentation schema
(Examples)

DDODB Branch and Bound Module

Query Processing
Cost Function

DDODB Heuristic Module

Good fragmentation
schema

(AA → VF → HF)

Analysis Algorithm
(Initial Theory)

FORTE ModuleFORTE

TREND3 Module
Known fragmentation

schemas (Examples)

Improved Analysis Algorithm
(Revised Theory)

Database Application
(Semantics + Operations

+ quantitative info)

Database Application
(Semantics + Operations

+ quantitative info)

Distribution
Designer

“Optimal” fragmentation
schema

“Optimal” fragmentation schema
(Examples)

“Optimal” fragmentation schema
(Examples)

DDODB Branch and Bound Module

Query Processing
Cost Function

DDODB Heuristic ModuleDDODB Heuristic Module

Good fragmentation
schema

(AA → VF → HF)Good fragmentation
schema

(AA → VF → HF)

Analysis Algorithm
(Initial Theory)

FORTE ModuleFORTE

TREND3 Module

FORTE ModuleFORTEFORTE

TREND3 Module
Known fragmentation

schemas (Examples)

C
os

t
of

 g
oo

d
fr

ag
m

en
ta

tio
n

sc
he

m
a

Fig. 2. The overall framework for the class fragmentation in the DDODB

The distribution designer provides input information about the database schema
(its semantics – classes and relationships – and additional quantitative information
such as the estimated cardinality of each class) and applications (projection, selection
and navigation operations) that will be executed over the database. This information
is then passed to the DDODB heuristic module. The DDODB heuristic module
defines a set of heuristics to design an adequate fragmentation schema for a given
database application. The execution of the heuristic module algorithms (analysis
algorithm, vertical fragmentation and horizontal fragmentation) will follow this set
of heuristics and quickly output an adequate fragmentation schema to the
distribution designer. Previous results using the heuristic module are presented in [2,
3].

The set of heuristics implemented by the DDODB heuristic module may be further
automatically improved by executing a theory revision process through the use of
inductive logic programming (ILP) [27, 29, 34]. This process is called Theory
REvisioN on the Design of Distributed Databases (TREND3). The improvement
process may be carried out by providing two input parameters to the TREND3
module: the Prolog implementation of the analysis algorithm (representing the initial
theory, or the background knowledge) and fragmentation schemas with previously
known performances (representing a set of examples). The analysis algorithm is then
automatically modified by a theory revision system (called FORTE) so as to produce
a revised theory. The revised theory will represent an improved analysis algorithm
that will be able to output a fragmentation schema with improved performance, and
this revised analysis algorithm will then substitute the original one in the DDODB
heuristic module. In [26], it has been pointed out that machine learning algorithms
that use background knowledge, thus combining inductive with analytical
mechanisms, obtain the benefits of both approaches: better generalization accuracy,
smaller number of required training examples, and explanation capability.

Additionally, the input information from the distribution designer may be passed
to our third module, the DDODB branch-and-bound module. This module represents
an alternative approach to the heuristic module, and obtains (at a high execution

cost) the best fragmentation schema for a given database application. The branch-
and-bound procedure searches for an optimal solution in the space of potentially
good fragmentation schemas for an application and outputs its result to the
distribution designer. The algorithm bounds its search for the best fragmentation
schema by using a query processing cost function during the evaluation of each
fragmentation schema in the hypotheses space. This cost function, defined in [30], is
responsible for estimating the execution cost of queries on top of a distributed
database. The resulting fragmentation schema generated by the heuristic module is
used to bound evaluations of fragmentation schemas presenting higher estimated
costs. Finally, the resulting fragmentation schema generated by the branch-and-
bound algorithm, as well as the fragmentation schemas discarded during the search,
may generate examples (positive or negative) to the TREND3 module, thus
incorporating the branch-and-bound results into the DDODB heuristic module.

3 Theory Revision

The theory revision task [34] can be specified as the problem of finding a minimal
modification of an initial theory that correctly classifies a set of training examples.
Formally, it is defined as shown in figure 3.

Given: a target concept C
 a set P of positive instances of C
 a set N of negative instances of C
 a hypothesis language L
 an initial theory T expressed in L describing C
Find: a revised theory RT expressed in L that is a minimal modification of T such that RT is

correct on the instances of both P and N

Fig. 3.: The theory revision task

A theory is a set of (function-free) definite program clauses, where a definite
program clause is a clause of the form of (1).

α ← β1 ,…, βn . (1)

where α, β1 … βn are atomic formulae.
A concept is a predicate in a theory for which examples appear in the training set.

An instance, or example, is an instantiation (not necessarily ground) of a concept. An
instance of the concept “cardinality” is

cardinality(connection, large)

Each instance i has an associated set of facts Fi, which gathers all the instances of
a concept in the training set. A positive instance should be derivable from the theory
augmented with its associated facts, while the negative instances should not.

In the DDODB domain, the set of facts define a particular database schema
definition (classes with their cardinalities, relationships – of a specific type - between

classes) and the applications (operations with their frequencies, classifications and
their accessed classes) that run on the database.

class(atomicPart)
class(compositePart)
cardinality(atomicPart, large)
cardinality(compositePart, small)
relationship(rootPart)
relationshipType(rootPart, ‘1:1’)
relationshipAccess(rootPart, compositePart, atomicPart)
operation(o1, 100)
classification(o1, projection)
accessedClasses(o1, [atomicPart])

The correctness of a theory is defined as follows: given a set P of positive
instances and a set N of negative instances, a theory T is correct on these instances if
and only if (2) holds.

∀ p ∈ P: T ∪ Fp p

∀ p ∈ N: T ∪ Fp p .
(2)

The revision process of an initial domain theory works by performing a set of
modifications on it, in order to obtain a correct revised theory. The modifications
performed on a theory are the result of applying revision operators that make small
syntactic changes on it. A correct revised theory that is obtained through a minimal
modification of the initial theory is achieved by minimizing the number of operations
performed. By requiring minimal modification, we mean that the initial theory is
assumed to be approximately correct, and therefore the revised theory should be as
semantically and syntactically similar to it as possible.

Related works in the literature [10, 11] presented a detailed comparison among
many theory refinement systems in the literature, concentrating in theory revision
systems, which - in general - have better results than theory-guided systems. The
analysis included systems such as FORTE [29], A3 [33] and PTR+ [22]. The author
proposed a framework for classifying theory revision systems and a methodology for
evaluating how well an algorithm is able to identify the location of errors
independently of its ability to repair them. The performance analysis on the FORTE
system when compared to other in different domains demonstrated that it searches a
larger space of revised theories, and thus may find a more accurate candidate than
either PTR+ or A3. Also, FORTE attempts to repair many more revision points than
other systems, because it generates and evaluates more repair candidates. Therefore,
the FORTE system was chosen to perform the improvement procedure of our
DDODB algorithms.

FORTE (First Order Revision of Theories from Examples) is a system for
automatically refining first-order Horn-clause knowledge bases. This powerful
representation language allows FORTE to work in domains involving relations, such
as our DDODB domain.

FORTE is a theory revision system, in the sense that it modifies incorrect
knowledge by applying the "identify and repair" strategy. It performs a hill-climbing

search in the hypothesis space, by applying revision operators (both specialization
and generalization) to the initial domain theory in an attempt to minimally modify it
in order to make it consistent with a set of training examples. By doing that, FORTE
preserves as much of the initial theory as possible. Furthermore, revisions are
developed and scored using the entire training set, rather than just a single instance,
which gives FORTE a better direction than if revisions were developed from single
instances. More details on the FORTE system may be found in [10, 29].

4 Theory revision on the design of distributed databases

This section proposes a knowledge-based approach for improving the DDODB
analysis algorithm through the use of theory revision. The goal of applying this
knowledge-based approach is to automatically incorporate in the analysis algorithm
changes required to obtain better fragmentation schemas. These improvements may
be found through additional experiments, thus the theory revision can automatically
reflect the new heuristics implicit on these new results.

In order to apply the FORTE system to the DDODB problem, we had to model
and represent all relevant information from the DDODB domain in an adequate way
as required by FORTE. This basically included representing both our initial domain
theory and the set of examples.

4.1 The Initial Domain Theory

In our TREND3 approach, we use our analysis algorithm as the initial domain
theory. The overall structure of our set of rules is presented in figure 4. The complete
Prolog implementation of the analysis algorithm is shown in [1].

Analysis Phase

Analyze Operation

Database

Database Schema

classes,
operations

Choose
Fragmentation Method

Choose VF Choose PHF Choose DHF

Analysis Phase

Analyze Operation

Database

Database Schema

classes,
operations

Choose
Fragmentation Method

Choose VF Choose PHF Choose DHF

Fig. 4. The overall structure of our set of rules for the analysis algorithm

FORTE assumes that the initial domain theory is divided into two files: the
“fundamental domain theory”(FDT) file (with predicates that are assumed correct)
and the “initial theory to be revised”(THY) file (with predicates subject to the
revision process).

The Fundamental Domain Theory. The FDT file contains one clause for each of
the attributes and relations used in the examples (which are defined in the DAT file
through the predicate example/4, explained later), plus one clause for each object
type. Given a database schema and a set of applications, then objects, their attributes
and the relations between objects are fixed and represent all the information that is
needed by the analysis algorithm, and therefore need not be revised.
 FORTE is responsible for decomposing the set of examples and create
extensional definitions for these attributes, relations and objects that are accessed
through the FORTE predicate example/1 illustrated in figure 5. The FDT file contains
predicates from the initial domain theory that FORTE is not allowed to revise, and is
illustrated in figure 5.
 The predicate navigatesFromTo/3 from figure 5 defines if an operation navigates
from one class X to another class Y (or vice-versa) in a path expression.
Additionally, we had to create predicates isNotDerivedFragmented/1 and
isNotVerticallyFragmented/1 due to the fact that negated literals (general logic
programs) are not addressed by FORTE revision operators.

The Initial Theory To Be Revised. The THY file contains predicates from the
initial domain theory for FORTE to revise (i.e., concepts from the analysis algorithm
that may be modified), and is illustrated in figure 6.

/*** Object types that represent the database schema (classes
 and relationships) and are used in the examples
***/
class(X) :- example(class(X)).
relationship(R) :- example(relationship(R)).

/*** Object types that represent the operations (extracted
 from applications) and are used in the examples
***/
operation(O) :- example(operation(O)).

/*** Attributes that qualify object types and are
 used in the examples
***/
 /* attributes for classes */
 cardinality(X, C) :- example(cardinality(X, C)).
 fragmentation(C, F) :- example(fragmentation(C, F)).

 /* attribute for relationships */
 relationshipType(R,T) :- example(relationshipType(R, T
)).

 /* attributes for operations */
 frequency(O, F) :- example(frequency(O, F)).
 classification(O, C) :- example(classification(O, C)).

/*** Relations between object types that are used
 in the examples
***/
relationshipAccess(X,Y,Z):-
example(relationshipAccess(X,Y,Z)).
operationAccess(O, L) :- example(operationAccess(O, L)).
navigates(O, X, Y) :- example(navigates(O, X, Y)).

/*** Predicates which appear in the initial theory to be
 revised, but which FORTE is not allowed to revise
***/
isDerivedFragmented(X) :-
 fragmentation((_,X),derivedFragmentation).
isNotDerivedFragmented(X) :-
 \+ isDerivedFragmented(X).
isVerticallyFragmented(X) :-
 fragmentation(X, vertical).
isNotVerticallyFragmented(X) :-
 \+ isVerticallyFragmented(X).
navigatesFromTo(O, X, Y) :-
 operationAccess(O, ClassPath),
 member(X, ClassPath),
 member(Y, ClassPath),
 navigates(O, X, Y).
navigatesFromTo(O, X, Y) :-
 operationAccess(O, ClassPath),
 member(X, ClassPath),
 member(Y, ClassPath),
 navigates(O, Y, X).

Fig. 5. The fundamental domain theory

chooseDerivedHorizontalFragmentationMethod(Oi, X, Y) :-
 fdt:classification(Oi,navigation),
 fdt:navigatesFromTo(Oi,Y,X),
 fdt:relationshipAccess(Name,X,Y),fdt:relationship(Name),
 fdt:relationshipType(Name, 'N:1'),
 fdt:isNotVerticallyFragmented(X),
 fdt:isNotDerivedFragmented(X).
chooseDerivedHorizontalFragmentationMethod(Oi, Y, X) :-
 fdt:classification(Oi,navigation),
 fdt:navigatesFromTo(Oi,X,Y),
 fdt:relationshipAccess(Name,X,Y),fdt:relationship(Name),
 fdt:relationshipType(Name, '1:N'),
 fdt:isNotVerticallyFragmented(Y),
 fdt:isNotDerivedFragmented(Y).
chooseDerivedHorizontalFragmentationMethod(Oi, Y, X) :-
 fdt:classification(Oi,navigation),
 fdt:navigatesFromTo(Oi,X,Y),
 fdt:relationshipAccess(Name,X,Y),fdt:relationship(Name),
 fdt:relationshipType(Name,'1:1'),
 fdt:isNotVerticallyFragmented(Y),
 fdt:isNotDerivedFragmented(Y).
choosePrimaryHorizontalFragment ationMethod(Oi, X) :-
 fdt:classification(Oi, selection),
 fdt:operationAccess(Oi, [X]), fdt:cardinality(X, large).
chooseVerticalFragmentationMethod(Oi, X) :-
 fdt:classification(Oi, projection),
 fdt:operationAccess(Oi, [X|_]), fdt:cardinality(X, large),
 fdt:isNotDerivedFragmented(X).

Fig. 6: The initial theory to be revised

Intuitively, the clauses in figure 6 choose the fragmentation technique (derived
horizontal, primary horizontal, vertical) to be applied to a class of the database
schema according to the heuristics proposed in [2]. Hybrid fragmentation arises
when both primary horizontal and vertical fragmentations are chosen, since their
clauses are not exclusive.

4.2 The set of examples

Another essential information needed by FORTE for the theory revision process is
the set of examples. For the TREND3 approach, they were derived from
experimental results presented in [23, 25, 32] on top of the OO7 benchmark [12].
This benchmark describes a representative object oriented application and it has been
used in many object database management systems to evaluate their performance in
centralized environments. Unfortunately, there are no other performance results on
top of distributed databases available in the literature, due to security or commercial
reasons.

Each example represents a choice of the fragmentation technique to be applied to
a class in a database schema. Positive/negative instances were generated by the
choices that led to good/bad performance results in the distributed database. We
obtained a total of 48 instances (19 positive and 29 negative).

The representation of an example in FORTE is an atomic formula as in (3),

example(PositiveInstances,NegativeInstances,Objects,Facts)) (3)

where PositiveInstance (NegativeInstance) is a list of positive (negative) facts of the
concept to be learned, Objects are the representation of the application domain (in the
DDODB domain, objects are represented as the classes and operations of the current
application), and Facts are facts from the fundamental domain theory.

Figure 7 shows an example of choosing vertical fragmentation for class atomicPart,
from the OO7 benchmark application, during the analysis of a projection operation.

example([chooseVerticalFragmentationMethod(o1,atomicPart)],
 [],
 [class([[designObject, none, none],
 [baseAssembly, small, none],
 [compositePart, small, none],
 [atomicPart, medium, none],
 [connection, large, none]
]),
 relationship([[componentsShared, 'N:N'],
 [componentsPrivate, '1:N'],
 [rootPart, '1:1'],
 [parts, '1:N'],
 [from, '1:N'],
 [to, '1:N']
]),
 operation([[o1, projection]])
],
 facts(
 [relationshipAccess(compShared, baseAssembly,compositePart),
 relationshipAccess(compPrivate,baseAssembly,compositePart),
 relationshipAccess(rootPart, compositePart, atomicPart),
 relationshipAccess(parts, compositePart, atomicPart),
 relationshipAccess(from, atomicPart, connection),
 relationshipAccess(to, atomicPart, connection),
 query(q1, 100, [o1]),
 operationAccess(o1, [atomicPart]),
])
).

Fig. 7: A FORTE example from the OO7 benchmark application

In the example of figure 7, the positive instance is given by the term
chooseVerticalFragmentationMethod(o1, atomicPart). There are no negative instances
defined. The objects are the sets of classes, relationships and operations of the
application, while the facts define existing relations between application objects
(e.g.: which classes are accessed by each relationship, which operations compose a
query, which classes are accessed by each operation). TREND3 examples are passed
to FORTE in a data file (DAT). The DAT file contains examples from which
FORTE will learn, and also defines execution parameters to guide the FORTE
learning process. The complete description of the DAT file for the OO7 benchmark
is in [1].

5 Experimental Results

This section presents experimental results of TREND3 on top of the OO7
benchmark, showing the effectiveness of our approach in obtaining an analysis
algorithm that produces a better fragmentation schema for the OO7 benchmark
application.

Due to the small amount of examples available, and to overcome the overfitting
problem during training, we applied k-fold cross validation approach to split the
input data into disjoint training and test sets and, within that, a t-fold cross-
validation approach to split training data into disjoint training and tuning sets [26,
21]. The revision algorithm monitors the error with respect to the tuning set after
each revision, always keeping around a copy of the theory with the best tuning set
accuracy, and the saved "best-tuning-set-accuracy" theory is applied to the test set.
The experimental methodology built in FORTE, which is currently a random
resampling, was adapted to follow the one above.

The experiments were executed with k = 12 and t = 4. Each run was executed
with a training set of 33 instances, a tuning set of 11 instances and a test set of 4
instances, and obtained a revised theory as its final result. In all k runs, the best-
tuning-set-accuracy was 100%.

Table 1 shows the results of the execution of 12 independent runs, and therefore
each result refers to a different revised theory proposed by FORTE. We verified that
all proposed revised DDODB theories were identical, and represented the final
revised DDODB theory (figure 8).

By comparing the definitions of choosePrimaryHorizontalFragmentationMethod/2 and
chooseVerticalFragmentationMethod/2 predicates in figures 6 and 8, it may be verified
that the following revisions were made by FORTE:

1) Rule addition: The following rule was added:

chooseVerticalFragmentationMethod(A,B):-
 cardinality(B,medium),classification(A,projection).

2) Antecedent deletion: The antecedent fdt:cardinality(B,large) was removed from
the rule:

choosePrimaryHorizontalFragmentationMethod(A,B):-
 fdt:classification(A,selection),
 fdt:operationAccess(A,[B]).
 fdt:cardinality(B,large).

Intuitively, these modifications show that medium-sized classes are also subject to
vertical fragmentation in the case of a projection operation, and that classes may
have primary horizontal fragmentation independent of its size.

By running both versions of the analysis algorithm on top of the OO7 benchmark
application, we notice that class atomicPart is indicated for hybrid fragmentation
(primary horizontal + vertical) after the revision (instead of derived horizontal
fragmentation), as illustrated in table 2.

Table 1. Summary of the FORTE execution output.

K Initial Training
Accuracy

Initial Test
Set Accuracy

Final Training
Accuracy

Final Test
Set Accuracy

1 61.36 100.00 93.18 100.00

2 61.36 100.00 93.18 100.00

3 63.64 75.00 95.45 75.00

4 63.64 75.00 93.18 100.00

5 63.64 75.00 95.45 75.00

6 63.64 75.00 95.45 75.00

7 61.36 100.00 93.18 100.00

8 70.45 0.00 93.18 100.00

9 61.36 100.00 93.18 100.00

10 70.45 0.00 93.18 100.00

11 70.45 0.00 93.18 100.00

12 63.64 75.00 93.18 100.00

chooseDerivedHorizontalFragmentationMethod(A,B,C):-
 fdt:classification(A,navigation),
 fdt:navigatesFromTo(A,C,B),
 fdt:relationshipAccess(D,B,C), fdt:relationship(D),
 fdt:relationshipType(D,N:1),
 fdt:isNotVerticallyFragmented(B),
 fdt:isNotDerivedFragmented(B).
chooseDerivedHorizontalFragmentationMethod(A,B,C):-
 fdt:classification(A,navigation),
 fdt:navigatesFromTo(A,C,B),
 fdt:relationshipAccess(D,C,B), fdt:relationship(D),
 fdt:relationshipType(D,1:N),
 fdt:isNotVerticallyFragmented(B),
 fdt:isNotDerivedFragmented(B).
chooseDerivedHorizontalFragmentationMethod(A,B,C):-
 fdt:classification(A,navigation),
fdt:navigatesFromTo(A,C,B),
 fdt:relationshipAccess(D,C,B), fdt:relationship(D),
 fdt:relationshipType(D,1:1),
 fdt:isNotVerticallyFragmented(B),
 fdt:isNotDerivedFragmented(B).
choosePrimaryHorizontalFragmentationMethod(A,B):-
 fdt:classification(A,selection),
 fdt:operationAccess(A,[B]).
chooseVerticalFragmentationMethod(A,B):-
 cardinality(B,medium), classification(A,projection).
chooseVerticalFragmentationMethod(A,B):-
 fdt:classification(A,projection),
 fdt:operationAccess(A,[B|C]),
 fdt:cardinality(B,large), fdt:isNotDerivedFragmented(B).

Fig. 8. The revised analysis algorithm

Table 2. Fragmentation techniques chosen by both versions of the analysis algorithm

Class Initial version Revised version
baseAssembly primary horizontal primary horizontal
compositePart derived horizontal derived horizontal

atomicPart derived horizontal hybrid
connection derived horizontal derived horizontal

We then compared the costs of the resulting fragmentation schemas obtained from

the initial and the revised versions of the analysis algorithm, after executing the
vertical and horizontal fragmentation algorithms (those algorithms were not
considered for the revision process).

These costs were calculated according to the cost model from [30], assuming that
the query optimizer was able to choose the most efficient way of executing each
query (that is, choosing the least cost between the “naïve-pointer”, value-based join
and pointer-based join algorithms). The resulting costs are illustrated in figure 9.

5,228 5,228

18

17,652

1,882

15,294

2,391 2,391

16

1,022

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Q1 Q2 Q3 T1 T2

IO
 +

 C
P

U
 +

 C
o

m
m

u
n

ic
at

io
n

 c
o

st
s

Initial Analysis Algorithm Revised Analysis Algorithm

5,228 5,228

18

17,652

1,882

15,294

2,391 2,391

16

1,022

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Q1 Q2 Q3 T1 T2

IO
 +

 C
P

U
 +

 C
o

m
m

u
n

ic
at

io
n

 c
o

st
s

Initial Analysis Algorithm Revised Analysis Algorithm

Fig. 9: Comparing the costs of the fragmentation schemas obtained from the initial and the
revised analysis algorithm

Figure 9 shows the cost of executing each query from the OO7 benchmark
application. The total cost of the OO7 benchmark application, according to the
frequencies of each operation, can be calculated as:

Cost(OO7) = 100*cost(Q1) + 50*cost(Q2) + 10*cost(Q3) + 30*cost(T1) + 30*cost(T2)
Which produces the following costs for the two versions of the analysis algorithm

that are being compared:

Cost_of_InitialVersion(OO7) = 1,370,410
Cost_of_RevisedVersion(OO7) = 848,297

Our results show the effectiveness of the TREND3 approach in revising the
analysis algorithm and obtaining a new version that produced a fragmentation
schema that reduced the cost (i.e., increased the performance) of the OO7 application
in 38%.

6 Conclusions

Heuristic algorithms are used to address the intractability of the class fragmentation
problem in the design of a distributed database, which is known to be an NP-hard
problem. However, once defined, it is very difficult to improve them by manually
defining and incorporating new heuristics from experimental results, while
maintaining previous ones consistent.

This work presented a knowledge-based approach for automatically improving a
heuristic DDODB algorithm through the use of theory revision. This approach is
part of the framework that handles the class fragmentation problem of the design of
distributed databases. The proposed framework integrates three modules: the
DDODB heuristic module, the theory revision module (called TREND3) and the
DDODB branch-and-bound module.

The focus of this work was to apply TREND3 to automatically revise the analysis
algorithm of the heuristic module, according to experimental results on top of the
OO7 benchmark presented as examples.

The revised algorithm led to an improvement of 38% in the overall system
performance. This shows the effectiveness of our approach in finding a
fragmentation schema with improved performance through the use of inductive logic
programming.

Future work will include applying TREND3 to other applications, and the
generation of examples to the TREND3 module using the branch-and-bound module
to address the lack of performance results on top of distributed databases in the
literature. Also, we intend to enhance the FORTE system to deal with negation as
failure, extending the ideas already mentioned in previous works of our group [1,16].

Acknowledgements

The Brazilian authors would like to thank the Brazilian agencies CNPq and FAPERJ
for providing financial support for this work, and Savio Leandro Aguiar for helping
with the implementation of the experimental methodology in FORTE. Part of this
work was done at the Computer Science Department of University of Wisconsin -
Madison, USA, while the authors Fernanda Baião and Gerson Zaverucha were on
leave from UFRJ.

References

1 Baião, F. (2001). A Methodology and Algorithms for the Design of Distributed Databases
using Theory Revision. Doctoral Thesis, Computer Science Department – COPPE,
Federal University of Rio de Janeiro, Brazil. Technical Report ES-565/02 (2002),
COPPE/UFRJ.

2 Baião, F. & Mattoso, M. (1998). A Mixed Fragmentation Algorithm for Distributed
Object Oriented Databases. Proc Int’l Conf Computing and Information (ICCI'98),
Winnipeg, pp. 141-148. Also In: Special Issue of Journal of Computing and Information
(JCI), 3(1), ISSN 1201-8511, pp. 141-148.

3 Baião, F., Mattoso, M., & Zaverucha, G. (1998a). Towards an Inductive Design of
Distributed Object Oriented Databases. Proc Third IFCIS Conf on Cooperative
Information Systems (CoopIS'98), IEEE CS Press, New York, USA, pp. 88-197.

4 Baião, F., Mattoso, M. and Zaverucha, G. (2001), "A Distribution Design Methodology
for Object DBMS", submitted in Aug 2000; revised manuscript sent in Nov 2001 to
International Journal of Distributed and Parallel Databases, Kluwer Academic
Publishers

5 Baião, F., Mattoso, M., Zaverucha, G., (2002), A Framework for the Design of
Distributed Databases, Workshop on Distributed Data & Structures (WDAS 2002), In:
Proceedings in Informatics series, Carleton Scientific.

6 Bellatreche, L., Simonet, A., & Simonet, M. (1996). Vertical Fragmentation in
Distributed Object Database Systems with Complex Attributes and Methods. Proc 7th
Int’l Workshop Database and Expert Systems Applications (DEXA’96), IEEE Computer
Society, Zurich, pp. 15-21.

7 Bellatreche, L., Karlapalem, K., & Simonet, A. (2000). Algorithms and Support for
Horizontal Class Partitioning in Object-Oriented Databases. Int’l Journal of Distributed
and Parallel Databases, 8(2), Kluwer Academic Publishers, pp. 155-179.

8 Blockeel, H., & De Raedt, L. (1996). Inductive Database Design. Proc Int’l Symposium
on Methodologies for Intelligent Systems (ISMIS’96).

9 Blockeel, H., & De Raedt, L. (1998). IsIdd: an Interactive System for Inductive Database
Design. Applied Artificial Intelligence, 12(5), pp. 385-420.

10 Brunk, C. (1996). An Investigation of Knowledge Intensive Approaches to Concept
Learning and Theory Refinement. PhD Thesis, University of California, Irvine, USA.

11 Brunk, C., Pazzani, M. (1995). A Linguistically-Based Semantic Bias for Theory
Revision. Proc 12th Int’l Conf of Machine Learning.

12 Carey, M., DeWitt, D., & Naughton, J. (1993). The OO7 Benchmark. Proc 1993 ACM
SIGMOD 22(2), Washington DC, pp. 12-21.

13 Chen, Y., & Su, S. (1996). Implementation and Evaluation of Parallel Query Processing
Algorithms and Data Partitioning Heuristics in Object Oriented Databases. Int’l Journal of
Distributed and Parallel Databases, 4(2), Kluwer Academic Publishers, pp. 107-142.

14 Ezeife, C., & Barker, K. (1995). A Comprehensive Approach to Horizontal Class
Fragmentation in a Distributed Object Based System. Int’l Journal of Distributed and
Parallel Databases, 3(3), Kluwer Academic Publishers, pp. 247-272.

15 Ezeife, C., Barker, K. (1998). Distributed Object Based Design: Vertical Fragmentation of
Classes. Int’l Journal of Distributed and Parallel Databases, 6(4), Kluwer Academic
Publishers, pp. 317-350.

16 Fogel, L., Zaverucha, G. (1998). Normal programs and Multiple Predicate Learning. Proc
8th Int’l Conference on Inductive Logic Programming (ILP’98), Madison, July, LNAI
1446, Springer Verlag, pp. 175-184.

17 Fung, C., Karlapalem, K., Li, Q., (2002), Object-Oriented Systems: An Evaluation of
Vertical Class Partitioning for Query Processing in Object-Oriented Databases, IEEE
Transactions on Knowledge and Data Engineering, Sep/Oct, Vol. 14, No. 5

18 Getoor., L., Friedman, N., Koller, D., & Taskar, B. (2001). Probabilistic Models of
Relational Structure. Proc Int’l Conf Machine Learning, Williamstown.

19 Getoor, L., Taskar, B., & Koller, D. (2001). Selectivity Estimation using Probabilistic
Models, Proc 2001 ACM SIGMOD, Santa Barbara, CA.

20 Karlapalem, K., Navathe, S., & Morsi, M. (1994). Issues in Distribution Design of
Object-Oriented Databases. In M. Özsu et al. (eds.), Distributed Object Management,
Morgan Kaufmann Pub Inc., San Francisco, USA.

21 Kohavi, R (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. In Proceedings of the IJCAI 1995, pp. 1137-1145.

22 Koppel, M., Feldman, R., & Segre, A. (1994). Bias-Driven Revision of Logical Domain
Theories, Journal of Artificial Intelligence Research, 1, AI Access Foundation and Morgan
Kaufmann, pp. 159-208.

23 Lima, F., & Mattoso, M. (1996). Performance Evaluation of Distribution in OODBMS: a
Case Study with O2. Proc IX Int'l Conf. on Par & Dist Computing Systems (PDCS'96),
ISCA-IEEE, Dijon, pp.720-726.

24 Maier, D. et al. (1994). Issues in Distributed Object Assembly. In M. Özsu et al. (eds.),
Distributed Object Management, Morgan Kaufmann Publishers Inc., San Francisco, USA.

25 Meyer, L., & Mattoso, M. (1998). Parallel query processing in a shared-nothing object
database server. Proc 3rd Int’l Meeting on Vector and Parallel Processing (VECPAR'98),
Porto, Portugal, pp.1007-1020.

26 Mitchell, T. (1997). Machine Learning, McGraw-Hill Inc.
27 Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods,

Journal of Logic Programming, 19(20), pp. 629-679.
28 Özsu, M., & Valduriez, P. (1999). Principles of Distributed Database Systems. New

Jersey, Prentice-Hall, 2nd edition.
29 Richards, B., & Mooney, R. (1995). Refinement of First-Order Horn-Clause Domain

Theories. Machine Learning, 19(2), pp. 95-131.
30 Ruberg, G., Baião, F., & Mattoso, M. (2002). “Estimating Costs of Path Expression

Evaluation in Distributed Object Databases”, In: Proceedings of the 13th International
Conference on Database and Expert Systems Applications (DEXA 2002), LNCS v.2453,
Springer Verlag, pp. 351-360.

31 Savonnet, M., Terrasse, M., & Yétongnon, K. (1998). Fragtique: A Methodology for
Distributing Object Oriented Databases. Proc Int’l Conf Computing and Information
(ICCI'98), Winnipeg, pp.149-156.

32 Tavares, F., Victor, A., & Mattoso, M. (2000). Parallel Processing Evaluation of Path
Expressions. Proc XV Brazilian Symposium on Databases, SBC, João Pessoa, Brazil. pp.
49-63

33 Wogulis, J. (1994). An Approach to Repairing and Evaluating First-Order Theories
Containing Multiple Concepts and Negation. Ph.D. Thesis, University of California,
Irvine, USA.

34 Wrobel, S. (1996). First Order Theory Refinement. In L. De Raedt (ed.), Advances in
Inductive Logic Programming, IOS Press, pp. 14-33

