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Abstract. This work presents the application of theory revision to the design of 
distributed databases to automatically revise a heuristic-based algorithm (called 
analysis algorithm) through the use of the FORTE system. The analysis 
algorithm decides the fragmentation technique to be used in each class of the 
database and its Prolog implementation is provided as the initial domain theory. 
Fragmentation schemas with previously known performance, obtained from 
experimental results on top of an object database benchmark, are provided as 
the set of examples. We show the effectiveness of our approach in finding better 
fragmentation schemas with improved performance. 

1   Introduction 

Distributed and parallel processing on database management systems are efficient 
ways of improving performance of applications that manipulate large volumes of 
data. This may be accomplished by removing irrelevant data accessed during the 
execution of queries and by reducing the data exchange among sites, which are the 
two main goals of the design of distributed databases [28]. However, in order to 
improve performance of these applications, it is very important to design information 
distribution properly. 

The distribution design involves making decisions on the fragmentation and 
placement of data across the sites of a computer network. The first phase of the 
distribution design is the fragmentation phase, which is the focus of this work. To 
fragment a class of objects, it is possible to use two basic techniques: horizontal and 
vertical fragmentation [28], which may be combined and applied in many different 
ways to define the final fragmentation schema.  

The class fragmentation problem in the design of a distributed database is known 
to be an NP-hard problem [28]. There are a number of works in the literature 
addressing the horizontal [7, 14, 31] or vertical [6, 15] class fragmentation 
technique, but not both. Even when the designer decides to use a horizontal 
fragmentation algorithm to one class and a vertical fragmentation algorithm to 



another class, he is left with no assistance to make this decision. Our previous work 
proposed a set of heuristics to drive the choice of the fragmentation technique to be 
applied in each class of the database schema. Those heuristics were implemented in 
an algorithm called “analysis algorithm” [2], and were incorporated in a 
methodology that includes the analysis algorithm, horizontal and vertical class 
fragmentation algorithms adapted from the literature. Experimental results reported 
in [3, 4] show applications that were executed 3.4 times faster when applying the 
fragmentation schema resulted from our methodology, compared to other alternative 
fragmentation schemas proposed by other works in the literature.  

Experimental results from real applications can continuously provide heuristics 
for the design of distributed object databases (DDODB) that may be incorporated in 
our analysis algorithm. Indeed, we have tried to manually improve the analysis 
algorithm using experimental results from [23, 25], which required a detailed 
analysis of each result and manual modifications on the analysis algorithm. 
However, the formalization of new heuristics from these experiments and their 
incorporation in the analysis algorithm, while maintaining previous heuristics 
consistent, proved to be an increasingly difficult task. 

This work proposes the use of Theory REvisioN on the Design of Distributed 
Databases (TREND3), showing how it automatically improves our analysis 
algorithm through the use of the FORTE system [29]. TREND3 is a module of a 
framework that handles the class fragmentation problem of the design of distributed 
databases, defined in [5].  

There are approaches in the literature addressing the DDODB problem [4, 6, 7, 
13, 14, 15, 16, 20, 24, 31]. However, none of them addresses the problem of 
choosing the most adequate fragmentation technique to be applied to each class of 
the database schema. Some works have been applying machine learning techniques 
to solve database problems. For example, [8, 9] present an approach for the inductive 
design of deductive databases, based on the database instances to define some 
intentional predicates. Also, relational bayesian networks were used to estimate 
query selectivity in a query processor [19] and to predict the structure of relational 
databases [18]. However, considering the design of distributed databases as an 
application for theory revision is a novel approach. 

The paper is organized as follows: in section 2, the design of distributed databases 
is defined and our framework for the design of distributed databases is described. 
Theory revision is briefly reviewed in section 3, while in section 4 we show how to 
improve a DDODB analysis algorithm through the use of the FORTE system. 
Experimental results on top of the OO7 benchmark [12] are presented in section 5. 
Finally, section 6 presents some conclusions and future work.  



2   A Framework for the Design of Distributed Databases 

This section defines the problem of designing a distributed database, focusing on the 
object-oriented model, and presents a framework we propose for the class 
fragmentation phase of the distribution design. 

2.1 The Design of Distributed Databases 

The distribution design of a database makes decisions on the fragmentation and 
placement of data across the sites of a computer network. The first phase of the 
distribution design is the fragmentation phase, which is the process of isolating into 
fragments specific data accessed by the most relevant applications that run over the 
database.  

In an object-oriented database, data is represented as objects. The set of objects 
sharing the same structure and behavior define a class, and classes may be related to 
each other through relationships. A database schema describes the set of classes and 
relationships. The UML diagram representing the database schema of the OO7 
benchmark [12] is illustrated in figure 1. The OO7 benchmark is a generic 
application on top of a database of design objects assembled through the composition 
of parts. We may notice, for example, that each composite part is related to N atomic 
parts (through the “parts” relationship), and that each atomic part “is part of” one 
composite part. 
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Fig. 1. The OO7 benchmark database schema 

Given the schema of the database to be distributed, as in any distribution design 
methodology, we need to capture the set of operations over the database and 
quantitative information in order to define a fragmentation schema to be applied on 
the database schema, which is the goal of the fragmentation phase. 



The operations are captured by decomposing the application running over the 
database, and are classified into selection, projection or navigation operations 
according to the definitions from [2]. Quantitative information needed includes the 
cardinality of each class (i.e., its estimated size: small, medium or large) and the 
execution frequency of each operation. 

The fragmentation schema is composed of the choice of a fragmentation technique 
and the definition of a set of fragments for each class of the database schema. The 
two basic fragmentation techniques to be applied on a class are horizontal and 
vertical fragmentation [28]. Vertical fragmentation breaks the class logical structure 
(its attributes and methods) and distributes them into fragments. Horizontal 
fragmentation distributes class instances across the fragments. Thus, a horizontal 
fragment of a class contains a subset of the whole class extension. Horizontal 
fragmentation is usually subdivided into primary and derived horizontal 
fragmentation. Primary horizontal fragmentation basically optimizes selection and 
projection operations, while derived horizontal fragmentation addresses the 
relationships between classes and improves performance of navigation operations. It 
is also possible to apply both vertical and primary horizontal fragmentation 
techniques to a class simultaneously (which we call hybrid fragmentation) or to 
apply different fragmentation techniques to different classes in the database schema 
(which we call mixed fragmentation).  

In the object oriented data model, additional issues contribute to increase the 
difficulty of the class fragmentation and turn it into an even more complex problem. 
Our previous work proposed a set of heuristics implemented by an algorithm (called 
“analysis algorithm”) [2]. Some examples of the heuristics proposed are “in the case 
of a selection operation on a class with a large cardinality, this class is indicated to 
primary horizontal fragmentation”, or “in the case of a projection operation on a 
class with a large cardinality that is not derived horizontally fragmented, this class 
is indicated to vertical fragmentation”. The algorithm was also capable of handling 
conflicts during the fragmentation schema definition. 

2.2 The Framework for the Class Fragmentation Problem in the DDODB 

The framework we propose for the class fragmentation problem in the design of 
distributed databases integrates three modules: the DDODB heuristic module, the 
theory revision module (TREND3) and the DDODB branch-and-bound module 
(figure 2). 
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Fig. 2. The overall framework for the class fragmentation in the DDODB 

The distribution designer provides input information about the database schema 
(its semantics – classes and relationships – and additional quantitative information 
such as the estimated cardinality of each class) and applications (projection, selection 
and navigation operations) that will be executed over the database. This information 
is then passed to the DDODB heuristic module. The DDODB heuristic module 
defines a set of heuristics to design an adequate fragmentation schema for a given 
database application. The execution of the heuristic module algorithms (analysis 
algorithm, vertical fragmentation and horizontal fragmentation) will follow this set 
of heuristics and quickly output an adequate fragmentation schema to the 
distribution designer. Previous results using the heuristic module are presented in [2, 
3].  

The set of heuristics implemented by the DDODB heuristic module may be further 
automatically improved by executing a theory revision process through the use of 
inductive logic programming (ILP) [27, 29, 34]. This process is called Theory 
REvisioN on the Design of Distributed Databases (TREND3). The improvement 
process may be carried out by providing two input parameters to the TREND3 
module: the Prolog implementation of the analysis algorithm (representing the initial 
theory, or the background knowledge) and fragmentation schemas with previously 
known performances (representing a set of examples). The analysis algorithm is then 
automatically modified by a theory revision system (called FORTE) so as to produce 
a revised theory. The revised theory will represent an improved analysis algorithm 
that will be able to output a fragmentation schema with improved performance, and 
this revised analysis algorithm will then substitute the original one in the DDODB 
heuristic module. In [26], it has been pointed out that machine learning algorithms 
that use background knowledge, thus combining inductive with analytical 
mechanisms, obtain the benefits of both approaches: better generalization accuracy, 
smaller number of required training examples, and explanation capability. 

Additionally, the input information from the distribution designer may be passed 
to our third module, the DDODB branch-and-bound module. This module represents 
an alternative approach to the heuristic module, and obtains (at a high execution 



cost) the best fragmentation schema for a given database application. The branch-
and-bound procedure searches for an optimal solution in the space of potentially 
good fragmentation schemas for an application and outputs its result to the 
distribution designer. The algorithm bounds its search for the best fragmentation 
schema by using a query processing cost function during the evaluation of each 
fragmentation schema in the hypotheses space. This cost function, defined in [30], is 
responsible for estimating the execution cost of queries on top of a distributed 
database. The resulting fragmentation schema generated by the heuristic module is 
used to bound evaluations of fragmentation schemas presenting higher estimated 
costs. Finally, the resulting fragmentation schema generated by the branch-and-
bound algorithm, as well as the fragmentation schemas discarded during the search, 
may generate examples (positive or negative) to the TREND3 module, thus 
incorporating the branch-and-bound results into the DDODB heuristic module. 

3   Theory Revision 

The theory revision task [34] can be specified as the problem of finding a minimal 
modification of an initial theory that correctly classifies a set of training examples. 
Formally, it is defined as shown in figure 3. 
 
Given: a target concept C 
 a set P of positive instances of C 
 a set N of negative instances of C 
 a hypothesis language L 
 an initial theory T expressed in L describing C 
Find: a revised theory RT expressed in L that is a minimal modification of T such that RT is 

correct on the instances of both P and N 

Fig. 3.: The theory revision task 

A theory is a set of (function-free) definite program clauses, where a definite 
program clause is a clause of the form of (1). 

α ← β1 ,…, βn . (1) 

where α, β1 … βn are atomic formulae. 
A concept is a predicate in a theory for which examples appear in the training set. 

An instance, or example, is an instantiation (not necessarily ground) of a concept. An 
instance of the concept “cardinality” is  

cardinality( connection, large ) 

Each instance i has an associated set of facts Fi, which gathers all the instances of 
a concept in the training set. A positive instance should be derivable from the theory 
augmented with its associated facts, while the negative instances should not.  

In the DDODB domain, the set of facts define a particular database schema 
definition (classes with their cardinalities, relationships – of a specific type - between 



classes) and the applications (operations with their frequencies, classifications and 
their accessed classes) that run on the database.  

class( atomicPart ) 
class( compositePart ) 
cardinality( atomicPart, large ) 
cardinality( compositePart, small ) 
relationship( rootPart ) 
relationshipType( rootPart, ‘1:1’ ) 
relationshipAccess( rootPart, compositePart, atomicPart ) 
operation( o1, 100 ) 
classification( o1, projection ) 
accessedClasses( o1, [atomicPart] ) 

The correctness of a theory is defined as follows: given a set P of positive 
instances and a set N of negative instances, a theory T is correct on these instances if 
and only if (2) holds. 

∀ p ∈ P: T ∪ Fp  p 

∀ p ∈ N: T ∪ Fp  p . 
(2) 

The revision process of an initial domain theory works by performing a set of 
modifications on it, in order to obtain a correct revised theory. The modifications 
performed on a theory are the result of applying revision operators that make small 
syntactic changes on it. A correct revised theory that is obtained through a minimal 
modification of the initial theory is achieved by minimizing the number of operations 
performed. By requiring minimal modification, we mean that the initial theory is 
assumed to be approximately correct, and therefore the revised theory should be as 
semantically and syntactically similar to it as possible. 

Related works in the literature [10, 11] presented a detailed comparison among 
many theory refinement systems in the literature, concentrating in theory revision 
systems, which - in general - have better results than theory-guided systems. The 
analysis included systems such as FORTE [29], A3 [33] and PTR+ [22]. The author 
proposed a framework for classifying theory revision systems and a methodology for 
evaluating how well an algorithm is able to identify the location of errors 
independently of its ability to repair them. The performance analysis on the FORTE 
system when compared to other in different domains demonstrated that it searches a 
larger space of revised theories, and thus may find a more accurate candidate than 
either PTR+ or A3. Also, FORTE attempts to repair many more revision points than 
other systems, because it generates and evaluates more repair candidates. Therefore, 
the FORTE system was chosen to perform the improvement procedure of our 
DDODB algorithms.  

FORTE (First Order Revision of Theories from Examples) is a system for 
automatically refining first-order Horn-clause knowledge bases. This powerful 
representation language allows FORTE to work in domains involving relations, such 
as our DDODB domain. 

FORTE is a theory revision system, in the sense that it modifies incorrect 
knowledge by applying the "identify and repair" strategy. It performs a hill-climbing 



search in the hypothesis space, by applying revision operators (both specialization 
and generalization) to the initial domain theory in an attempt to minimally modify it 
in order to make it consistent with a set of training examples. By doing that, FORTE 
preserves as much of the initial theory as possible. Furthermore, revisions are 
developed and scored using the entire training set, rather than just a single instance, 
which gives FORTE a better direction than if revisions were developed from single 
instances. More details on the FORTE system may be found in [10, 29]. 

4 Theory revision on the design of distributed databases 

This section proposes a knowledge-based approach for improving the DDODB 
analysis algorithm through the use of theory revision. The goal of applying this 
knowledge-based approach is to automatically incorporate in the analysis algorithm 
changes required to obtain better fragmentation schemas. These improvements may 
be found through additional experiments, thus the theory revision can automatically 
reflect the new heuristics implicit on these new results.  

In order to apply the FORTE system to the DDODB problem, we had to model 
and represent all relevant information from the DDODB domain in an adequate way 
as required by FORTE. This basically included representing both our initial domain 
theory and the set of examples. 

4.1 The Initial Domain Theory 

In our TREND3 approach, we use our analysis algorithm as the initial domain 
theory. The overall structure of our set of rules is presented in figure 4. The complete 
Prolog implementation of the analysis algorithm is shown in [1]. 
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Fig. 4. The overall structure of our set of rules for the analysis algorithm 



FORTE assumes that the initial domain theory is divided into two files: the 
“fundamental domain theory”(FDT) file (with predicates that are assumed correct) 
and the “initial theory to be revised”(THY) file (with predicates subject to the 
revision process). 

The Fundamental Domain Theory. The FDT file contains one clause for each of 
the attributes and relations used in the examples (which are defined in the DAT file 
through the predicate example/4, explained later), plus one clause for each object 
type. Given a database schema and a set of applications, then objects, their attributes 
and the relations between objects are fixed and represent all the information that is 
needed by the analysis algorithm, and therefore need not be revised. 
 FORTE is responsible for decomposing the set of examples and create 
extensional definitions for these attributes, relations and objects that are accessed 
through the FORTE predicate example/1 illustrated in figure 5. The FDT file contains 
predicates from the initial domain theory that FORTE is not allowed to revise, and is 
illustrated in figure 5.  
 The predicate navigatesFromTo/3 from figure 5 defines if an operation navigates 
from one class X to another class Y (or vice-versa) in a path expression. 
Additionally, we had to create predicates isNotDerivedFragmented/1 and 
isNotVerticallyFragmented/1 due to the fact that negated literals (general logic 
programs) are not addressed by FORTE revision operators.  

The Initial Theory To Be Revised.  The THY file contains predicates from the 
initial domain theory for FORTE to revise (i.e., concepts from the analysis algorithm 
that may be modified), and is illustrated in figure 6. 
 



/*** Object types that represent the database schema (classes  
     and relationships) and are used in the examples  
***/ 
class( X ) :- example( class( X ) ). 
relationship( R ) :- example( relationship( R ) ). 
 
/*** Object types that represent the operations (extracted  
     from applications) and are used in the examples  
***/ 
operation( O ) :- example( operation( O ) ). 
 
/*** Attributes that qualify object types and are  
     used in the examples  
***/ 
  /* attributes for classes */ 
  cardinality( X, C ) :- example( cardinality( X, C ) ). 
  fragmentation( C, F ) :- example( fragmentation( C, F ) ). 
 
  /* attribute for relationships */ 
  relationshipType( R,T ) :- example(relationshipType( R, T 
)). 
 
  /* attributes for operations */ 
  frequency( O, F ) :- example( frequency( O, F ) ). 
  classification( O, C ) :- example( classification( O, C ) ). 
 
/*** Relations between object types that are used  
     in the examples  
***/ 
relationshipAccess( X,Y,Z ):-
example(relationshipAccess(X,Y,Z)). 
operationAccess( O, L ) :- example( operationAccess( O, L ) ). 
navigates( O, X, Y ) :- example( navigates( O, X, Y ) ). 
 
/*** Predicates which appear in the initial theory to be  
     revised, but which FORTE is not allowed to revise  
***/ 
isDerivedFragmented( X ) :-  
   fragmentation((_,X),derivedFragmentation). 
isNotDerivedFragmented( X ) :-  
   \+ isDerivedFragmented( X ). 
isVerticallyFragmented( X ) :-  
   fragmentation( X, vertical ). 
isNotVerticallyFragmented( X ) :-  
   \+ isVerticallyFragmented( X ). 
navigatesFromTo( O, X, Y ) :- 
   operationAccess( O, ClassPath ), 
   member( X, ClassPath ), 
   member( Y, ClassPath ), 
   navigates( O, X, Y ). 
navigatesFromTo( O, X, Y ) :- 
   operationAccess( O, ClassPath ), 
   member( X, ClassPath ), 
   member( Y, ClassPath ), 
   navigates( O, Y, X ). 

Fig. 5. The fundamental domain theory 



chooseDerivedHorizontalFragmentationMethod( Oi, X, Y ) :- 
  fdt:classification(Oi,navigation), 
  fdt:navigatesFromTo(Oi,Y,X), 
  fdt:relationshipAccess(Name,X,Y),fdt:relationship( Name ), 
  fdt:relationshipType(Name, 'N:1'), 
  fdt:isNotVerticallyFragmented( X ), 
  fdt:isNotDerivedFragmented( X ). 
chooseDerivedHorizontalFragmentationMethod( Oi, Y, X ) :- 
  fdt:classification(Oi,navigation), 
  fdt:navigatesFromTo(Oi,X,Y), 
  fdt:relationshipAccess(Name,X,Y),fdt:relationship( Name ), 
  fdt:relationshipType(Name, '1:N'), 
  fdt:isNotVerticallyFragmented( Y ), 
  fdt:isNotDerivedFragmented( Y ). 
chooseDerivedHorizontalFragmentationMethod( Oi, Y, X ) :- 
  fdt:classification(Oi,navigation), 
  fdt:navigatesFromTo(Oi,X,Y), 
  fdt:relationshipAccess(Name,X,Y),fdt:relationship( Name ), 
  fdt:relationshipType(Name,'1:1'), 
  fdt:isNotVerticallyFragmented(Y), 
  fdt:isNotDerivedFragmented( Y ). 
choosePrimaryHorizontalFragment ationMethod( Oi, X ) :- 
  fdt:classification(Oi, selection),  
  fdt:operationAccess(Oi, [X]), fdt:cardinality( X, large ). 
chooseVerticalFragmentationMethod( Oi, X ) :- 
  fdt:classification(Oi, projection),  
  fdt:operationAccess(Oi, [X|_]), fdt:cardinality( X, large ),  
  fdt:isNotDerivedFragmented( X ). 

Fig. 6: The initial theory to be revised 

Intuitively, the clauses in figure 6 choose the fragmentation technique (derived 
horizontal, primary horizontal, vertical) to be applied to a class of the database 
schema according to the heuristics proposed in [2]. Hybrid fragmentation arises 
when both primary horizontal and vertical fragmentations are chosen, since their 
clauses are not exclusive. 

4.2   The set of examples 

Another essential information needed by FORTE for the theory revision process is 
the set of examples. For the TREND3 approach, they were derived from 
experimental results presented in [23, 25, 32] on top of the OO7 benchmark [12]. 
This benchmark describes a representative object oriented application and it has been 
used in many object database management systems to evaluate their performance in 
centralized environments. Unfortunately, there are no other performance results on 
top of distributed databases available in the literature, due to security or commercial 
reasons.  

Each example represents a choice of the fragmentation technique to be applied to 
a class in a database schema. Positive/negative instances were generated by the 
choices that led to good/bad performance results in the distributed database. We 
obtained a total of 48 instances (19 positive and 29 negative).  



The representation of an example in FORTE is an atomic formula as in (3), 

example(PositiveInstances,NegativeInstances,Objects,Facts)) (3) 

where PositiveInstance (NegativeInstance) is a list of positive (negative) facts of the 
concept to be learned, Objects are the representation of the application domain (in the 
DDODB domain, objects are represented as the classes and operations of the current 
application), and Facts are  facts from the fundamental domain theory.  

Figure 7 shows an example of choosing vertical fragmentation for class atomicPart, 
from the OO7 benchmark application, during the analysis of a projection operation. 

example( [ chooseVerticalFragmentationMethod(o1,atomicPart)], 
         [ ], 
         [ class([ [designObject,  none,   none], 
                   [baseAssembly,  small,  none], 
                   [compositePart, small,  none], 
                   [atomicPart,    medium, none], 
                   [connection,    large,  none] 
                 ]),  
           relationship([ [componentsShared,  'N:N'], 
                          [componentsPrivate, '1:N'], 
                          [rootPart,          '1:1'], 
                          [parts,             '1:N'], 
                          [from,              '1:N'], 
                          [to,                '1:N'] 
                        ]),  
           operation([ [o1, projection] ]) 
         ], 
         facts( 
 [ relationshipAccess(compShared, baseAssembly,compositePart), 
   relationshipAccess(compPrivate,baseAssembly,compositePart), 
   relationshipAccess(rootPart, compositePart, atomicPart), 
   relationshipAccess(parts, compositePart, atomicPart), 
   relationshipAccess(from, atomicPart, connection), 
   relationshipAccess(to, atomicPart, connection), 
   query( q1, 100, [o1] ), 
   operationAccess( o1, [atomicPart] ), 
 ]) 
). 

Fig. 7: A FORTE example from the OO7 benchmark application 

In the example of figure 7, the positive instance is given by the term 
chooseVerticalFragmentationMethod(o1, atomicPart).  There are no negative instances 
defined. The objects are the sets of classes, relationships and operations of the 
application, while the facts define existing relations between application objects 
(e.g.: which classes are accessed by each relationship, which operations compose a 
query, which classes are accessed by each operation). TREND3 examples are passed 
to FORTE in a data file (DAT). The DAT file contains examples from which 
FORTE will learn, and also defines execution parameters to guide the FORTE 
learning process. The complete description of the DAT file for the OO7 benchmark 
is in [1]. 



5   Experimental Results 

This section presents experimental results of TREND3 on top of the OO7 
benchmark, showing the effectiveness of our approach in obtaining an analysis 
algorithm that produces a better fragmentation schema for the OO7 benchmark 
application.  

Due to the small amount of examples available, and to overcome the overfitting 
problem during training, we applied k-fold cross validation approach to split the 
input data into disjoint training and test sets and, within that, a t-fold cross-
validation approach to split training data into disjoint training and tuning sets [26, 
21]. The revision algorithm monitors the error with respect to the tuning set after 
each revision, always keeping around a copy of the theory with the best tuning set 
accuracy, and the saved "best-tuning-set-accuracy" theory is applied to the test set. 
The experimental methodology built in FORTE, which is currently a random 
resampling, was adapted to follow the one above.  

The experiments were executed with k = 12 and t = 4. Each run was executed 
with a training set of 33 instances, a tuning set of 11 instances and a test set of 4 
instances, and obtained a revised theory as its final result. In all k runs, the best-
tuning-set-accuracy was 100%.  

Table 1 shows the results of the execution of 12 independent runs, and therefore 
each result refers to a different revised theory proposed by FORTE. We verified that 
all proposed revised DDODB theories were identical, and represented the final 
revised DDODB theory (figure 8). 

By comparing the definitions of choosePrimaryHorizontalFragmentationMethod/2 and 
chooseVerticalFragmentationMethod/2 predicates in figures 6 and 8, it may be verified 
that the following revisions were made by FORTE:  
 
1) Rule addition: The following rule was added: 

chooseVerticalFragmentationMethod(A,B):- 
   cardinality(B,medium),classification(A,projection). 

2) Antecedent deletion: The antecedent fdt:cardinality(B,large) was removed from 
the rule: 

choosePrimaryHorizontalFragmentationMethod(A,B):- 
   fdt:classification(A,selection), 
   fdt:operationAccess(A,[B]). 
   fdt:cardinality(B,large). 

Intuitively, these modifications show that medium-sized classes are also subject to 
vertical fragmentation in the case of a projection operation, and that classes may 
have primary horizontal fragmentation independent of its size.  

By running both versions of the analysis algorithm on top of the OO7 benchmark 
application, we notice that class atomicPart is indicated for hybrid fragmentation 
(primary horizontal + vertical) after the revision (instead of derived horizontal 
fragmentation), as illustrated in table 2.  



Table 1. Summary of the FORTE execution output. 

K Initial Training 
Accuracy 

Initial Test 
Set Accuracy 

Final Training 
Accuracy 

Final Test 
Set Accuracy 

1 61.36 100.00 93.18 100.00 

2 61.36 100.00 93.18 100.00 

3 63.64  75.00 95.45 75.00 

4 63.64 75.00  93.18 100.00 

5 63.64  75.00 95.45 75.00 

6 63.64  75.00 95.45 75.00 

7 61.36 100.00  93.18 100.00 

8 70.45 0.00 93.18 100.00 

9 61.36  100.00 93.18 100.00 

10 70.45  0.00  93.18 100.00 

11 70.45  0.00  93.18 100.00 

12 63.64  75.00 93.18 100.00 
 

chooseDerivedHorizontalFragmentationMethod(A,B,C):-  
   fdt:classification(A,navigation), 
   fdt:navigatesFromTo(A,C,B), 
   fdt:relationshipAccess(D,B,C), fdt:relationship(D), 
   fdt:relationshipType(D,N:1), 
   fdt:isNotVerticallyFragmented(B), 
   fdt:isNotDerivedFragmented(B). 
chooseDerivedHorizontalFragmentationMethod(A,B,C):-  
   fdt:classification(A,navigation),  
   fdt:navigatesFromTo(A,C,B), 
   fdt:relationshipAccess(D,C,B), fdt:relationship(D), 
   fdt:relationshipType(D,1:N), 
   fdt:isNotVerticallyFragmented(B), 
   fdt:isNotDerivedFragmented(B). 
chooseDerivedHorizontalFragmentationMethod(A,B,C):-  
   fdt:classification(A,navigation), 
fdt:navigatesFromTo(A,C,B), 
   fdt:relationshipAccess(D,C,B), fdt:relationship(D), 
   fdt:relationshipType(D,1:1), 
   fdt:isNotVerticallyFragmented(B), 
   fdt:isNotDerivedFragmented(B). 
choosePrimaryHorizontalFragmentationMethod(A,B):-  
   fdt:classification(A,selection),  
   fdt:operationAccess(A,[B]). 
chooseVerticalFragmentationMethod(A,B):- 
   cardinality(B,medium), classification(A,projection). 
chooseVerticalFragmentationMethod(A,B):-  
   fdt:classification(A,projection),    
   fdt:operationAccess(A,[B|C]),  
   fdt:cardinality(B,large), fdt:isNotDerivedFragmented(B). 

Fig. 8. The revised analysis algorithm 



Table 2. Fragmentation techniques chosen by both versions of the analysis algorithm  

Class Initial version Revised version 
baseAssembly primary horizontal primary horizontal 
compositePart derived horizontal derived horizontal 

atomicPart derived horizontal hybrid 
connection derived horizontal derived horizontal 

 
We then compared the costs of the resulting fragmentation schemas obtained from 

the initial and the revised versions of the analysis algorithm, after executing the 
vertical and horizontal fragmentation algorithms (those algorithms were not 
considered for the revision process).  

These costs were calculated according to the cost model from [30], assuming that 
the query optimizer was able to choose the most efficient way of executing each 
query (that is, choosing the least cost between the “naïve-pointer”, value-based join 
and pointer-based join algorithms). The resulting costs are illustrated in figure 9. 
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Fig. 9: Comparing the costs of the fragmentation schemas obtained from the initial and the 
revised analysis algorithm 

Figure 9 shows the cost of executing each query from the OO7 benchmark 
application. The total cost of the OO7 benchmark application, according to the 
frequencies of each operation, can be calculated as: 

Cost(OO7) = 100*cost(Q1) + 50*cost(Q2) + 10*cost(Q3) + 30*cost(T1) + 30*cost(T2) 
Which produces the following costs for the two versions of the analysis algorithm 

that are being compared: 

Cost_of_InitialVersion(OO7) = 1,370,410 
Cost_of_RevisedVersion(OO7) =  848,297 

Our results show the effectiveness of the TREND3 approach in revising the 
analysis algorithm and obtaining a new version that produced a fragmentation 
schema that reduced the cost (i.e., increased the performance) of the OO7 application 
in 38%. 



6   Conclusions 

Heuristic algorithms are used to address the intractability of the class fragmentation 
problem in the design of a distributed database, which is known to be an NP-hard 
problem. However, once defined, it is very difficult to improve them by manually 
defining and incorporating new heuristics from experimental results, while 
maintaining previous ones consistent. 

This work presented a knowledge-based approach for automatically improving a 
heuristic DDODB algorithm through the use of theory revision. This approach is 
part of the framework that handles the class fragmentation problem of the design of 
distributed databases. The proposed framework integrates three modules: the 
DDODB heuristic module, the theory revision module (called TREND3) and the 
DDODB branch-and-bound module. 

The focus of this work was to apply TREND3 to automatically revise the analysis 
algorithm of the heuristic module, according to experimental results on top of the 
OO7 benchmark presented as examples.  

The revised algorithm led to an improvement of 38% in the overall system 
performance. This shows the effectiveness of our approach in finding a 
fragmentation schema with improved performance through the use of inductive logic 
programming. 

Future work will include applying TREND3 to other applications, and the 
generation of examples to the TREND3 module using the branch-and-bound module 
to address the lack of performance results on top of distributed databases in the 
literature. Also, we intend to enhance the FORTE system to deal with negation as 
failure, extending the ideas already mentioned in previous works of our group [1,16]. 
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