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Abstract

Motivation: In order to understand transcription reg-
ulation in a given prokaryotic genome, it is critical to
identify operons, the fundamental units of transcrip-
tion, in such species. While there are a growing num-
ber of organisms whose sequence and gene coordinates
are known, by and large their operons are not known.
Results: We present a probabilistic approach to pre-
dicting operons using Bayesian networks. Qur ap-
proach exploits diverse evidence sources such as se-
quence and expression data. We evaluate our approach
on the E. coli K-12 genome where our results indicate
we are able to identify over 78% of its operons at a 10%
false positive rate. Also, empirical evaluation using a
reduced set of data sources suggests that our approach
may have significant value for organisms that do not
have as rich of evidence sources as E. coli.
Availability:

Our E. coli K-12 operon predictions are available at
http://www.biostat.wisc.edu/gene-regulation
Contact: joebock@biostat.wisc.edu

Introduction

The availability of complete genomic sequences and mi-
croarray expression data calls for new computational
methods for uncovering the regulatory apparatus of a
cell. We present a Bayesian network approach to pre-
dicting operons in prokaryotic genomes. Our approach
is able to take into account several data sources includ-
ing gene coordinates, codon usage statistics, predicted
transcription signals, and expression data. We evaluate
our approach using data from the E. coli K-12 genome
(Blattner et al. 1997).

In earlier work (Craven et al. 2000), we presented an
operon prediction approach that involved two compo-
nents: a simple probabilistic method for scoring can-
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didate operons, and a dynamic programming algorithm
for combining predictions across sequences of candidate
operons. With these two components together we are
able to predict an operon map for an entire genome.
The work reported here extends our earlier research in
several key directions. First, we describe and evaluate
more complex probabilistic models for scoring candi-
date operons. These models encode more “background
knowledge” about the problem than our earlier mod-
els and as a result provide better predictive accuracy.
Second, we include codon usage statistics in our prob-
abilistic model and show it to be informative. This ev-
idence source is appealing because it requires no addi-
tional knowledge beyond gene coordinates and sequence
and thus can be used to predict operons in many bac-
terial genomes. To our knowledge, our method is the
first to incorporate codon usage statistics in an operon
model. Finally, we evaluate the accuracy of our ap-
proach when only limited data sources are available,
and demonstrate its value in this situation.

Several other research groups (Overbeek et al. 1999;
Tamames et al. 1997) have addressed the task of
predicting functionally coupled genes by identifying
clusters of genes that are conserved across different
genomes. Ermolaeva et al. (2001) have presented an
approach that uses this kind of information to predict
the more specific concept of operons. We consider this
method to be complementary to ours in that it is based
on cross-genome information, whereas our approach is
based on information present within a single genome.

Salgado et al. (2000a) and Moreno-Hagelsieb and
Collado-Vides (2002) have investigated an approach to
predicting operons in E. coli using gene coordinates
and functional annotation data. Our work differs from
theirs in several key respects. First, our learned mod-
els use a richer representation of the problem. Whereas



their predictions are based on likelihood ratios, ours are
based on Bayesian networks that represent key depen-
dencies among various pieces of information used in the
predictions. Second, our models use additional data
sources — codon usage, expression data and predicted
transcription signals — in their predictions. Third, our
experiments measure accuracy using held-aside test in-
stances, whereas theirs do not.

Other operon prediction approaches use just a single
type of evidence. Yada et al. (1999) use hidden Markov
models to predict genes as well as operons from DNA
sequence alone, Tjaden et al. (2002) use expression data
from both genes and non-coding regions and Zheng et
al. (2002) use biochemical pathway information.

Another fundamental way in which our approach dif-
fers from some previous work (Salgado et al. 2000a;
Ermolaeva, White, & Salzberg 2001; Moreno-Hagelsieb
& Collado-Vides 2002; Tjaden et al. 2002) is that ours
predicts complete operons whereas others predict only
pairs of genes belonging to the same operon.

Problem Domain

The task we consider here is to predict operons in the
E. coli genome, although our approach is applicable to
other prokaryotic organisms. The genome of E. coli,
which was sequenced at the University of Wisconsin
(Blattner et al. 1997), consists of a single circular chro-
mosome of double-stranded DNA. The chromosome of
the particular strain of E. coli (K-12) in our data set has
4,639,221 base pairs. FE. coli has approximately 4,400
genes, which are located on both strands.

The definition of operon that we use throughout the
article is a sequence of one or more genes that, under
some conditions, are transcribed as a unit. There are
several aspects of this definition that are important to
note. First, genes that are transcribed individually are
included in this definition; we refer to these special cases
as singleton operons. Second, our definition treats as
multiple operons those cases (such as rpsU-dnaG-rpoD
in E. coli) in which multiple promoters and/or termi-
nators result in different subsequences of a larger gene
sequence being transcribed under different conditions.
We consider each of the distinct gene sequences that
can be transcribed as a unit to be an operon.

Figure 1 illustrates the concept of an operon. The
transcription process is initiated when RNA polymerase
binds to a promoter before the first gene in an operon.
The RNA polymerase then moves along the DNA using
it as a template to produce an RNA molecule. When
the RNA polymerase gets past the last gene in the
operon, it encounters a special sequence called a ter-
minator that signals it to release the DNA and cease
transcription.

The data that we have available for learning a model
of operons, some of which come from the RegulonDB
(Salgado et al. 2000b), include the following;:

e complete DNA sequence of the genome,

Figure 1: The concept of an operon. The curved line rep-
resents part of the E. coli chromosome and the rectangu-
lar boxes on it represent genes. An operon is a sequence
of genes, such as [g2, g3, g4] that is transcribed as a unit.
Transcription is controlled via an upstream sequence, called
a promoter, and a downstream sequence, called a termi-
nator. Each gene is transcribed in a particular direction,
determined by which of the two strands it is located. The
arrows in the figure indicate the direction of transcription
for each gene.

e beginning and ending positions of 3,033 genes and
1,372 putative genes,

e positions and sequences of 438 known promoters, and
289 known terminators (147 rho-dependent and 142
rho-independent),

e gene expression data characterizing the activity lev-
els of the 4,097 genes and putative genes across 39
experiments and

e 365 known operons.

It is estimated that there are thousands of undis-
covered operons in E. coli (Salgado et al. 2000a;
Wolk et al. 2001). Our goal is to predict these operons
using a model learned from the data described above.
We assume that operons do not include RNA genes and
that they do not “bridge” genes on the opposite strand.

An interesting aspect of our learning task is that we
do not have a set of known non-operons to use as neg-
ative examples. The nature of scientific inquiry is such
that several hundred operons have been identified in
E. coli, but little attention has been focused on identi-
fying sequences of genes that do not constitute operons.

We are able, however, to assemble a set of 6633 pu-
tative non-operons by exploiting the fact that operons
rarely overlap with each other. Given this rule, we gen-
erate a set of negative examples by enumerating every
sequence of consecutive genes, from the same strand,
that contains at least one gene from a known operon but
is itself not a known operon. Some of these generated
non-operons might actually be true operons, because
operons do overlap in some cases. However, the prob-
ability of any particular negative example being a true
operon is small,and our learning algorithms are robust
in the presence of noisy data.

Problem Representation

In this section we describe the features that our learning
method uses to assess the probability that a given can-
didate (that is, sequence of genes) actually is an operon.
Other than the codon usage based features, these fea-
tures have been used in previous work (Craven et al.



2000). Space considerations dicate that the discussion
of some of these features be condensed.

Length and Spacing Features

We use several features that relate to the length and

inter-genic spacing of operons and non-operons:

e Operon length: The number of genes in the candidate
operon.

o Within-operon spacing: The mean and the mazimum
spacing (number of DNA base pairs) between the
genes contained in a candidate operon, e.g., the dis-
tances between g2 and ¢& and between g3 and g4
in Figure 1. Since the genes in an operon are tran-
scribed together, there might be constraints on inter-
gene spacing. These features are not defined for sin-
gleton operons (operons consisting of one gene).

e Distance to neighboring genes: The distances to the
preceding (g1 in Figure 1) and following (g5 in Fig-
ure 1) genes. Notice that these genes are not part of
the candidate operon.

Codon Usage Features

The codon usage characteristic of a gene is influenced
by a variety of factors (S. Karlin 1998) including some,
such as gene function, expression level and evolutionary
history, that also influence the grouping of genes into
operons. To decide whether or not a sequence of genes
constitutes an operon, it may be helpful to consider the
codon usage of the genes.

We associate with each gene gi a set of codon bias
vectors {5’;}, one for each amino acid. Let nyy be the
number of times codon uvw appears in g Then, the
elements of the bias vectors are

& 2 _
ba,uvw = f(uvw|a) - f(uvw|a)

where uvw is a codon that codes for a, f(uvw|a) is the
frequency with which a is encoded by wvw (relative to
other codings for a) over the whole genome and

Nyyw + f(uvw\a)

f(uvwla) Zwyzécodons(a) Neyz +1
is the smoothed frequency with which a is coded for by
uvw in the gene. The sum in the denominator ranges
over all codons that code for amino acid a.

We define the codon usage similarity between two
genes as

Sim(ge, 1) = b - B

This measure is symmetric and reflects both the con-
sistency and degree to which the bias vectors are corre-
lated.

We derive four codon usage based features for a can-
didate operon ¢: the codon usage similarity between the
first gene in ¢ and the previous gene, the codon usage
similarity between the last gene in ¢ and the following
gene, and the mean and minimum of the codon usage
similarity among all pairs of genes in c.

Transcription Signal Features

Other types of evidence associated with operons are
transcription control signals, such as promoters and ter-
minators. Thus, to decide if a given sequence of genes
represents an operon or not, we would like to look up-
stream from the first gene in the sequence to see if we
find a promoter, and to look downstream from the last
gene to see if we find a terminator. The task of recog-
nizing promoters and terminators, however, is not eas-
ily accomplished. Although there are known examples
of both types of sequences, the sufficient and neces-
sary conditions for them are not known. Thus, to use
promoters and terminators as evidence for operons, we
first need some method that can be used to predictively
identify them.

Our approach is to use the known examples of these
two types of signals to learn statistical models for
predicting them. Specifically, we induce interpolated
Markov models (IMMs) (Jelinek & Mercer 1980) that
characterize the known promoters and terminators.
Features associated with a candidate operon are con-
structed by scanning the trained promoter and termina-
tor IMMs along the sequence upstream and downstream
of the candidate operon, and retaining the largest pre-
dicted probability for each scan.

Gene Expression Features

The expression data we use comes from 39 microar-
ray experiments conducted by the Wisconsin E. coli
Genome Project. Since our expression data comes from
cDNA arrays, we have two measurements (fluorescence
intensities) for each gene in each experiment: the rel-
ative amount of mRNA under some experimental con-
dition versus the relative amount under some baseline
condition. We employ the common practice of using
the ratio of these two values as the expression intensity
for a single gene under the condition being measured.
We associate with each gene a vector of its expres-
sion ratios over all conditions. The expression based
features used to classify candidate operons are based
on a correlation metric, used previously for analyzing
gene expression data (Eisen et al. 1998), between the
expression vectors of certain pairs of genes.
Specifically, we use following four expression based
features to characterize a candidate operon ¢: (i) the
correlation between the first gene in ¢ and the previous
gene in the sequence, (ii) the correlation between the
last gene in ¢ and the next gene in the sequence. (iii)
the mean correlation of all pairs of genes in ¢ and (iv)
the minimum correlation among all pairs of genes in c.

Making the Feature Values Discrete

The operon model we employ, which we describe in
the next section, is more easily defined and accurately
trained if features are restricted to a relatively small
number of discrete values. We make all our feature val-
ues discrete by partitioning each feature’s range into
ten non-overlapping bins. These bins are labeled one



through ten and thresholds between bins are chosen so
that an equal number of positive training examples fall
into each. We use this method of define bin boundaries
because our training sets have many more negative than
positive examples and we want to avoid the case when
very few training examples of some class fall in any one
bin due to sampling effects. The discrete value of a fea-
ture is the index of the bin into which the associated
raw value falls.

Bayesian Network Operon Model

In this section we show how the features just described
are used by a machine learning approach to induce a
probabilistic model, called a Bayesian network (Pearl
1988), of operons. A Bayesian network is way of rep-
resenting the joint probability distribution of a set of
random variables that exploits the conditional indepen-
dence relationships among the variables, often greatly
reducing the number of parameters needed to represent
the full joint probability distribution. Also, Bayes nets
give a powerful and natural way to represent the de-
pendencies that do exist. This contrasts to naive Bayes
models, which we used in previous work (Craven et al.
2000), where it assumed that all non-class variables are
conditionally independent of each other given the class.

The ability to model dependencies between variables
is important in our task for pairs of features that both
relate to a certain aspect of an operon; for example,
the 5' spacing and promoter features both refer to the
5 edge. The values of these features are clearly not
independent of each other for negative examples. For
example, if the promoter feature indicates there is high
probability of a promoter upstream of some negative ex-
ample, it is likely its 5’ edge is the 5’ edge of some actual
operon thus changing our distribution over 5’ spacing.
These types of dependencies cannot be represented by
a naive Bayes model, but are naturally handled with
general Bayes nets.

A Bayes net consists of two components: a qualita-
tive one (the structure) in the form of a directed acyclic
graph whose nodes correspond to the random variables
and a quantitative component consisting of a set of con-
ditional probability distributions. The structure of the
graph encodes a set of conditional independence asser-
tions through the absence of arcs between nodes. In
particular, a node is conditionally independent of all
non-parent ancestors given its parents. These assertions
allow the full joint probability distribution to be com-
pactly represented by storing a conditional probability
distribution at each node conditioned on its parents, as
can be readily seen through a rewriting of the chain rule

Pr(Xy,...,X,) = [[Pr(XilXi,...,Xi1) (1)

k3

= HPr(X,-|Parents(Xi)). (2)

Here the X;’s are the random variables and Parents(X;)

(a)

5'codon usage 5’ expression

3’ codon usage 3’ expression

5’ spacing O

operon
internal consistency

. — O operon length
max internal min internal
spacing codon usage

mean internal O
codon usage

@  Intermediate nodes

mean internal
spacing Feature nodes

mean internal min internal

expression expression © Opaon node
(b)
5 edge 3’ edge | Pr(—operon) Pr(operon)
false false 0.999 0.001
false true 0.999 0.001
true false 0.999 0.001
true true 0.580 0.420

Figure 2: (a) The structure of our Bayes net operon model.
(b) An example conditional probability distribution for the
operon node given its parents nodes 5 edge and 3’ edge.

is the set of X;’s parents. The last line exploits the
conditional independence relationships and the ordering
from 1 to n is such that a node is preceded by all of its
parents.

We construct by hand the structure of our Bayes net
operon model, shown in Figure 2, from knowledge of the
domain and with an effort to have arcs correspond with
causes. This correspondence usually results in a net-
work with fewer arcs and therefore fewer parameters to
estimate. Our network contains three types of nodes:
those that represent the features just described (fea-
ture nodes, the open in circles in Figure 2), those that
represent intermediate concepts important in describ-
ing operons (intermediate nodes, the filled in circles in
Figure 2) and one, the operon node, that represents
whether a candidate is an operon or not.

The intermediate nodes and the operon node are
Boolean valued. The 5’ edge node represents the case
that the first gene of the candidate is the first gene in
some actual operon; an analogous statement holds for
the 3' edge node and the last gene. The node internal
consistency represents the case that all of the genes in
a candidate are in the same actual operon. Note that
with the exception of operon length, the feature nodes
only influence operon through one of the intermediate
nodes and if that intermediate node is observable, the
child feature nodes’ values have no impact on operon.
This matches the intuition that if, say, it is known that,
for some candidate, 5' edge is true, the distance to the
nearest gene upstream (5’ spacing) has no influence on
whether or not the candidate is a true operon.

Since all of the variables are discrete, each node’s con-



ditional probability distribution can be represented by a
conditional probability table (CPT). An example of the
CPT for the operon node is shown in Figure 2(b). Each
row of this CPT refers to a state of the operon node’s
parents and gives its probability distribution given this
parental state.

Training

Training our Bayes net involves the setting of the prob-
ability parameters. To do this, we first compute a ta-
ble of counts for each node. This table has the same
dimensions as its CPT; an example CPT is shown in
Figure 2(b). A cell in the count table for X; indicates
the total number of times over the training set that X;
took on the value given by the cells’ column when its
parents were in the state given by its row. To create a
CPT from this count table we add 1 to each cell and
normalize each row so it sums to 1. That is, we compute
Laplace estimates (Mitchell 1997). In some training ex-
amples the values of one or more intermediate nodes are
unobservable while their child nodes’ values are observ-
able. Although, the standard approach in these cases
is to use EM or Gibbs’ sampling to fully utilize these
training examples, the number of these cases is small
so, for simplicity, we keep the tables of counts for the
unobservable nodes and their children unchanged.

Classification

Given a new candidate operon we use the following pro-
cedure to decide whether or not a candidate is an actual
operon. First, we set the values of any observable in-
termediate nodes. In particular, since all genes of an
operon are transcribed in the same direction, if the ori-
entations of the first gene and the previous gene do not
match, the 5’ edge node is observable (and true) and
if the orientations of the last gene and the following
gene do not match the 3’ edge node is true. Also, inter-
nal consistency is true for singleton candidate operons.
Next, we set the feature nodes to the candidates’ fea-
ture values. The values of the feature nodes are always
observable with the exception that for singletons, the
children of internal consistency are undefined. However,
in this case internal consistency is directly observable.
Then, we apply the variable-elimination inference pro-
cedure (Russell & Norvig 1995) to compute the proba-
bility distribution of the operon node given the values
just fixed. Although inference in Bayesian networks is
in general a computationally demanding problem, it can
be performed very quickly in our case because both the
network size and the number of hidden nodes are rela-
tively small. When we want to classify a candidate we
choose a threshold, such as 0.5, above which we call a
candidate an actual operon, or we may use the proba-
bilities themselves if we want to do further inference.

Empirical Evaluation

In this section we examine the predictive accuracy of
our Bayes net operon model. We have conducted a set
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Figure 3: ROC curves for our Bayes net model, a naive
Bayes model, and C5.0.

of experiments designed to answer the following ques-
tions:

e What is the overall accuracy of our model?

e What is the predictive value of individual data
sources?

e What is the predictive value of the network structure?

We run ten-fold cross-validation experiments with a
data set consisting of 365 known operons and 6633 runs
of genes thought not to be operons. For each train-
ing/test set split, besides learning new histograms for
each of our features, we also learn new promoter and
terminator IMMs, leaving out of these models’ training
sets those promoters and terminators that are associ-
ated with test-set operons. In this way, we can ensure
that our operon predictions are not biased by using in-
formation that is closely linked to a given test case (i.e.,
a known promoter or terminator), that we would not
have in the case of a currently undiscovered operon.

To answer the first question above, we treat our Bayes
net operon model as a classifier and generate an ROC
(receiver operating characteristic) curve (Eagen 1975).
An ROC curve is a plot of false positive (FP) rate versus
true positive (TP) rate where

_ ##false positives

FP rate= ———— —— 3
rate #tnegatives 3)

and ; i
TP rate — F#true p.o.5| |ves‘ )

#£positives

Points on the curve are generated by varying the thresh-
old on the posterior probability of the operon node that
divides positive from negative predictions. A model
that guessed randomly would result in an ROC “line”
defined by: TP rate = FP rate. For comparison, we
consider two alternatives, the naive Bayes models de-
veloped in our earlier work (Craven et al. 2000) and
decision trees induced using the C5.0 algorithm (Quin-
lan 1999), where both alternatives are given as features



Table 1: Area under ROC curves and p-values from a test
comparing areas under the ROC curve to that of the Bayes
net model.

method ROC area | p-value
Bayes net 0.921

naive Bayes 0.901 0.020
C5.0 0.851 < 0.001

the values of the Bayes net’s feature nodes. We generate
points on the C5.0 ROC curve by varying misclassifica-
tion costs. All ROC curves shown are averages over all
folds. That is, the TP Rate at a given FP Rate is the
mean of the TP Rate at that FP Rate over all folds.

The ROC curves of the Bayes net and alternative
models are shown in Figure 3. The significant deviation
of all ROC curves from the 45° random-guess ROC line
(not shown) indicates that each model has substantial
predictive value. Comparing the Bayes net ROC curve
to the others, we see that at any given FP Rate, its TP
Rate is equal to or greater than the TP Rates of the
other methods.

The area under an ROC curve can be used as an mea-
sure of model quality. For the probabilistic classifiers,
an interpretation of this measure is the probability that
a randomly selected positive instance will have a higher
probability than a randomly selected negative instance.
Table 1 shows this measure for the three models. The
Bayes net ranks first followed by the naive Bayes and
C5.0 models.

We perform a statistical test to determine if the dif-
ference in the areas under the ROC curves of two mod-
els is significant. For any two models, we define the
null hypothesis to be the case that the expected dif-
ference in the areas under their ROC curves is zero.
We make the assumption that the area under the ROC
curve for a model on a single fold is a normally dis-
tributed random variable whose mean is the expected
area and whose variance is constant for all folds. The
p-values from a two-tailed, paired ttest comparing the
Bayes net model with the alternatives are shown in the
last column of Table 1. If we use a standard threshold
of 0.05 on the p-values, there exists significant evidence
that our Bayes net model is more accurate than both
of the alternative models.

Although the alternative models employ different in-
ductive biases than the Bayes net, their predictive value
as indicated by their ROC curves indicates that the fea-
tures we have defined are valuable and suggests that
much of the predictive value of the Bayes net model
is due to them. However, the differences between the
curves and areas under them suggests that the structure
of the Bayes net has value as well.

Evaluating the Data Sources

In this section we examine the predictive power of
groups of features. We perform this analysis to de-
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Figure 4: ROC curves for our Bayes net model using single
feature groups. Note that the order of the key matches the
order of the curves. The ROC curves for models using all
features and no features are included for reference.

termine the relative value of the data sources and the
predictive value of our approach under conditions of re-
duced data sources. This final condition is especially
important because it provides an estimate of the appli-
cability of our approach to organisms that do not have
as diverse of data sources as E. coli.

We assign each feature node to a group based on its
data source. The operon length, promoter, and termina-
tor groups contain a single feature and the gene spacing,
codon usage, and expression groups each contain multi-
ple features. We conduct a set of experiments with
reduced Bayes net models where subsets of the feature
groups are removed from the Bayes net. The interme-
diate nodes, however, are not removed even in cases
where they do not have any child feature nodes.

Figure 4 shows the ROC curves for reduced Bayes
net models containing single feature groups. For refer-
ence, the ROC curve with all features is repeated and
the ROC curve with no features is shown. The “no fea-
tures” model contains just the three intermediate nodes
and the operon node. The gene spacing group is the
clear winner as it dominates over the other groups and
is close to the “all features” curve. Next, the codon
usage and expression groups have simliar ROC curves
as do the promoter and operon length groups, each with
substantial improvement over the “no features” curve.
Finally, we have the terminator group with little im-
provement.

The robustness of the model using only the gene spac-
ing group is encouraging because it indicates that our
approach is applicable to other genomes that currently
do not have the rich data sources that are available
for E. coli. Furthermore, as long as gene boundaries
and sequence are known, the operon length and codon
usage features can be easily obtained as well. In fact,
experiments on the Bayes net model with the gene spac-
ing, operon length and codon usage features yield perfor-
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Figure 5: ROC curves for our Bayes net model leaving
individual feature groups out. Note that the order of the
key matches the order of the curves.

mance similar to the full model (last line in Table 2). Of
course, making predictions presupposes the existence of
a model trained from a training set of known operons
and non-operons. If known operons are not available
for a genome of interest, a model trained on another
organism, for example FE. coli, may be applied. Al-
though we expect performance to degrade somewhat as
a learned model is transferred across genomes, less so
for closely related genomes, the precise implications of
such a transfer are not well understood and is an area
of current research.

Two of the weakest features are those derived from
the models of the transcription control sequences. The
relatively poor performance of these features, especially
the terminator feature, highlights the difficulty of finding
good models for these signals and suggests that consid-
ering alternate models (Bockhorst & Craven 2001) may
be useful.

Figure 5 shows the ROC curves for models where
single feature groups have been removed. These results
support the findings from using only a single feature
group. The most significant loss occurs when the gene
spacing features are withheld. The only other groups
whose withholding results in a noticeably lower curve
are the expression and codon usage groups.

We are especially interested in the value of the codon
usage features because they are easily obtained and have
not previously been used in making operon predictions.
To measure their value, we perform two paired t-tests of
ROC curve area as above. The first compares the model
trained with all features to the model trained with all
features except codon usage and the second compares
the model trained with operon length, gene spacing and
codon usage to the model trained with just operon length
and gene spacing (ROC curves not shown). We designed
the second test to measure the value of the codon usage
features for a situation where only gene coordinates and
sequence are known. The p-values for thses two tests

are 0.15 and 0.05, from which we conclude that the
codon usage features can have significant value, at least
in cases of limited data.

Evaluating the Structure

In order to more thoroughly evaluate the benefit of
the Bayes net structure, we also run the single-feature
group experiments using naive Bayes models. In ad-
dition we run experiments with models containing the
features derivable from only gene coordinates and se-
quence data (the gene spacing, operon length and codon
usage features). Table 2 shows the area under the ROC
curves of Bayes net and naive Bayes models using the
different feature groups. Also shown are the p-values
from a test of equal areas. For all feature groups, the
area under the Bayes net curves are greater than those
of the naive Bayes curves and the differences are statis-
tically significant.

Although the addition of features beyond the easily
obtained operon length, gene spacing and codon usage
features offers at best a slight improvement in perfor-
mance, we present results with the other more com-
plicated features as well for three reasons. First, on
their own, all feature types have predictive value. Sec-
ond, the value of the gene expression features may
grow as the number and quality of the experiments
grow. Third, and most importantly, it is not clear
how well the results reported here will transfer to other
genomes, (although there is indication that genome-
wide gene spacing statistics are relatively consistent
across a wide range of prokaryotic genomes (Moreno-
Hagelsieb & Collado-Vides 2002)) and having a variety
of evidence sources in these cases may prove useful.

Conclusions

We have presented a computational method, based on a
Bayesian network, for predicting operons in prokaryotic
genomes. The network structure is manually crafted
from background knowledge and its parameters are set
by a machine learning method. Our method takes ad-
vantage of a variety of data sources including gene coor-
dinates, predicted transcription signals, gene expression
experiment results and codon usage statistics. We be-
lieve this to be the first use of codon usage statistics for
the task of operon prediction.

From our empirical evaluation we make the following
conclusions:

¢ The Bayes net model has significant predictive value.

e The Bayes net model significantly outperforms naive
Bayes and Quinlan’s C5.0 algorithm in terms of area
under ROC curves.

e The codon usage features add significant predictive
value, especially in the case of limited data sources.

e Under conditions where the available data sources
are limited, the Bayes net model still has significant
predictive value. In particular, our model is accurate



Table 2: Comparison of our Bayes net and naive Bayes
models. Results for models constructed using all features,
individual feature groups and those features derivable from
only gene coordinates and sequence (gene spacing, operon
length and codon usage) are presented. The first column
indicates the features used to construct the model. The
second and third columns show the areas under the ROC
curves (AUC) of our Bayes net model and a naive Bayes
model respectively. The fourth column shows the p-values
from a test of the null hypothesis that the AUCs of the two
models are the same.

group AUC AUC p-value
Bayes net | naive Bayes

all features 0.929 0.911 0.006
spacing 0.915 0.896 0.003
expression 0.831 0.751 0.001
codon usage 0.815 0.662 < 0.001
promoter 0.781 0.715 0.001
operon length 0.778 0.713 < 0.001
terminator 0.739 0.568 < 0.001
length, spacing, 0.924 0.883 < 0.001
& codon usage

given only sequence and gene coordinates. The impli-
cation of this result is that our approach is generally
applicable to organisms that have not been as heavily
studied as E. coli.

The relative weakness of the features based on tran-
scription control signals, especially the terminator fea-
ture, indicate an area for improvement. We are cur-
rently exploring more appropriate models for these im-
portant signals.

Finally, we have used our Bayes net model along
with a dynamic program for combining predictions
(Craven et al. 2000) to construct an operon map
for E. coli K-12. This map can be obtained from
http://www.biostat.wisc.edu/gene-regulation.
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