
Bellwether Analysis: Predicting Global Aggregates from Local Regions

Bee-Chung Chen
1
, Raghu Ramakrishnan

1,2
, Jude W. Shavlik

1
, Pradeep Tamma

1

1
University of Wisconsin – Madison, USA

2
Yahoo! Research, Santa Clara, CA, USA

{beechung, shavlik, pradeep}@cs.wisc.edu ramakris@yahoo-inc.com

ABSTRACT

Massive datasets are becoming commonplace in a wide range of

domains, and mining them is recognized as a challenging problem

with great potential value. Motivated by this challenge, much

effort has been concentrated on developing scalable versions of

machine learning algorithms. An often overlooked issue is that

large datasets are rarely labeled with the outputs that we wish to

learn to predict, due to the human labor required. We make the

key observation that analysts can often use queries to define labels

for cases, which leads to the problem of learning to predict such

query-produced labels. Of course, if a dataset is available in its

entirety, we can simply run the query again to compute labels. The

interesting scenarios are those where, after the predictive model is

trained, new data is gathered at significant incremental cost and,

perhaps, over time. The challenge is to accurately predict the

query-labels for the projected completion of new datasets, based

only on certain cost-effective subsets, which we call bellwethers.

1. INTRODUCTION
Mining large datasets is recognized as a challenging problem with
great potential value, and much effort has been concentrated on
developing scalable versions of machine learning algorithms.
However, large datasets are rarely labeled with the outputs that we
wish to learn to predict, due to the human labor that is typically
required. This severely limits our ability to apply supervised
learning techniques.

We make the key observation that for a large class of practically
motivated problems, conventional database queries can be used to
“tag” cases with the attribute values that we wish to predict,
thereby mitigating the labeling difficulty. The “cases” are
themselves the result of aggregating many database records.
Consider a company that wants to predict the 1st year worldwide
profit of a new item. After selling this item worldwide for one
year, the company will know the exact profit. However, if the
company can accurately predict the annual worldwide profit using
features (e.g., regional profit, etc.) collected in a much shorter
time (e.g., 1st week sales) and a much smaller area (e.g., only sales
in Wisconsin), it has gained valuable business insight.

In this example, each item for which we have historical data is a
case, and the information relating to this item is dispersed across

all sales records for the item. We can create additional per-item
features, and compute the desired label (worldwide annual profit
for the item), by using conventional OLAP-style queries. In fact
we can create training datasets by summarizing historical per-item
sales for each region of interest (e.g., by state and month, or by
county and week). We can then use each per-region training
dataset to train a predictive data model. When a new item is
introduced, if we collect sales data for a given region and
aggregate this as before to create a case for the new item, the
predictive model for the region can be used to estimate the desired
label, which, in our example, is worldwide annual profit.

The question, then, is what is the best region on which to base
such a predictive model, and whether a good region exists at all.
Intuitively, gathering sales data for a new item in the region must
be within an acceptable cost; cost could reflect real-world
marketing expenses, for example. Further, the predictive model
for the region must have high accuracy and low variance. We call
such regions bellwethers, and the problem considered in this
paper is how to identify bellwether regions.

In this paper, we make the following contributions: (1) We
introduce bellwether analysis, a novel framework that allows us to
apply predictive models to massive datasets without human labor
for labeling the training examples. (2) We formalize many
challenges raised by this framework, showing the richness of the
problem and many opportunities for future research. (3) We
develop several efficient, scalable algorithms to find bellwether
regions, and evaluate their performance. (4) Using real-life
datasets, we demonstrate the value of bellwether analysis.

The rest of this paper is organized as follows. After reviewing
predictive models in Section 2, we introduce bellwether analysis
in Section 3. We define the basic bellwether analysis problem,
and an important variation, finding item-centric bellwethers.
Intuitively, the basic approach finds a single region to serve as
bellwether for all items, while the latter recognizes that different
regions may be appropriate for different items or types of items.
We present a scalable algorithm for basic bellwether analysis in
Section 4, and two algorithms for item-centric bellwethers in
Sections 5 and 6. In Section 7, we present a detailed experimental
evaluation using both real and synthetic datasets, measuring both
the quality of the bellwethers found and the efficiency of our
algorithms. We discuss related work and conclude in Section 8.

2. BACKGROUND
Before formally introducing bellwether analysis, we first review
some basics of predictive models [13]. Let D be a data table with
attributes X1, …, Xp, Y, where X1, …, Xp are called features, Y is
called the target, and each row in the table is called an example. A
predictive model learns the relationship between X1, …, Xp and Y
from D and predicts the value of Y given a new example based on
its X1, …, Xp values. D is called the training set. We use h to
denote a predictive model, and h(x) returns the target value of
example x. If the target Y is a numeric value, h is called a

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and

its date appear, and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or to republish, to

post on servers or to redistribute to lists, requires a fee and/or special

permission from the publisher, ACM.

VLDB ‘06, September 12–15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

regression model. If Y is a categorical value, h is called a
classification model. Decision trees, support vector machines,
neural networks and linear regression models are examples of
predictive models.

The quality of a predictive model is usually measured by the error
(or equivalently, accuracy) of the model, which is the expected
discrepancy between the true target value and the predicted value
for a new example. For classification models, the misclassification
rate (i.e., the expectation of making an incorrect prediction) is a
commonly used error measure, while for regression models, the
mean squared error (MSE) and root mean squared error (RMSE)
are commonly used. MSE is the expected value of the squared
difference between the true Y value and the predicted one, and
RMSE is the square root of MSE. However, in reality, the true
distribution of X1, …, Xp, Y is generally unknown. Thus, the error
of a model cannot be computed exactly, but needs to be estimated
from the given data D. We consider two commonly used error
estimates: cross-validation error and training-set error.

Cross-validation error: To compute cross-validation error, we
first partition D into n non-overlapping subsets of examples:
D1, …, Dn. For i from 1 to n, we train a model on ∪j≠i Dj and test
the model on Di to obtain an error value. Then, the cross-
validation error is the mean of the n error values. Based on some
distribution assumptions, the confidence interval of the cross-
validation error can be obtained based on the variance of the n
error values. A commonly used n is 10.

Training-set error: Another way to estimate the error of a model
is to train the model on D, and then test it also on D to obtain the
error value, which is called the training-set error. Usually training-
set error is overly optimistic. However, for simple models, e.g.,
linear regression models, training-set error can approximate the
true error. Note that the overhead of computing cross-validation
error is approximately n times that of computing training-set error.

3. PROBLEM DEFINITION
We first introduce a motivating example, and then formally define
the problem of bellwether analysis. Intuitively, we want to use
historical data to find a region (e.g., [1st week, Wisconsin]) with a
small cost such that we can accurately predict the target value
(e.g., the 1st year worldwide sales) of an item (e.g., a product)
based on the features (e.g., the 1st week sales in Wisconsin) of
that item collected from that region. As will be seen, this problem
is significantly different from ordinary machine-learning problems
in that both features and target values are generated by queries
over the historical database.

3.1 Motivating Example
Consider a company that wants to predict the 1st year worldwide
profit of a new item. After selling this item worldwide for one
year, the company will know the exact profit. However, if the
company can accurately predict this target value using features

(e.g., regional profit, etc.) collected in a much shorter time (e.g.,
1st week) and a much smaller area (e.g., only focus on Wisconsin),
then it can quickly adapt its business strategy to minimize the loss
or even maximize the profit. [1st week, Wisconsin] is an example
of such a bellwether region. Our goal is to find such regions. Note
that, in this example, we denote a region by a pair of time interval
and location values.

To find such a bellwether region, the company can exploit its
historical sales database, which contains three tables as shown in
Figure 1. Each record in OrderTable represents a transaction of an
item (identified by ItemID) at a specific time and location, which
includes the quantity and the profit earned from that transaction.
Item information is stored in ItemTable, which records the
category and R&D expense for each item. Advertisement
information is stored in AdTable, which contains the size and
number of colors for each advertisement (identified by AdNo).
Using the foreign keys, we can obtain the item and advertisement
information for each transaction.

Let us first consider a straightforward data-mining approach. We
can aggregate OrderTable to obtain the target value (i.e., the 1st
year worldwide profit) for each historical item. Thus, a training
set can be created by associating the features (Category and
RDexpense) of each item, called the item-table features, with its
target value. Then, we can train a predictive model (e.g., a linear
regression model) on the training set, and use the model to predict
the target value of a new item based on its features. If this model
is very accurate, then no bellwether analysis is needed. However,
since the item-table features are usually not sufficiently predictive,
the accuracy of the model is usually not acceptable.

To improve the accuracy of the predictive model, adding more
informative features is necessary. Note that we have not yet used
the information provided by OrderTable and AdTable as features
to help predict the target value. However, collecting such features
for a new item incurs a cost. At one extreme, if we sell the new
item worldwide for a year, we know the worldwide profit exactly.
There is no need for prediction, but this incurs a very high cost.
At another extreme, if we are not willing to pay anything, then we
only have the item table information and no other features can be
used. The goal of bellwether analysis is to find a cost-effective
“region,” such that using new features collected from that region
can best improve the accuracy of the model.

In this example, a time interval and a location together define a
region for data acquisition. Figure 2 shows the dimension
structures. Any combination of an interval in the time dimension
and a place in the location dimension is a candidate region. E.g.,
[1-1, WI], [1-2, US], and [1-52, All] are regions at different levels.
Based on the company’s experience, the cost of collecting data for
each region can be defined.

For a given region [1-t, loc], new features of item i can be
generated by queries over the database, such as:

OrderTable

 Time

 Location

 ItemID

 AdNo

 Quantity

 Profit

ItemTable

 ItemID

 Category

 RDExpense

AdTable

 AdNo

 AdSize

 NumColors

All

CA US KR

AL WI

All

Country

State

Dimension: LocationDimension: Time

Week 1-1

Week 1-2

Week 1-52

(i.e., 1
st
 year)

 Figure 1. Data schema of the motivating example Figure 2. Dimensions of the motivating example

� Regional Profit: αsum(profit) σi,[1-t, loc] OrderTable, which is the
total profit of purchases of item i in region [1−t, loc].

� Regional Max AdSize: αmax(AdSize) ((σi,[1-t, loc] OrderTable) ⋈
AdTable), which is the maximum size of advertisement for
item i in region [1−t, loc].

Note that αf(A) denotes the aggregation operator that computes the
aggregate function f on attribute A; σi,[1-t, loc] denotes the selection
operator that selects records with ItemID = i, Time between 1 and
t, and Location in (or equal to) loc; and ⋈ denotes the natural
(key-foreign-key) join between tables.

Given query-generated regional features over different regions, we
want to find a region with small cost such that a highly predictive
model can be built using features generated from that region. Data
in the historical database is then used to find such a region and its
corresponding model. Using queries, we can create a training set
for each region, in which each training example represents one
item containing: (1) the item-table features, (2) the query-
generated regional features (e.g., Regional Profit, Regional Max
AdSize) from the given region for that item and (3) the target
value of that item. Then, in principle, we build a predictive model
for each region using the training set from that region, and
evaluate the accuracy. The region that has the best accuracy with
cost under a specified budget is the bellwether region. Thus, for a
new item, we can collect data from the bellwether region at a cost
within the given budget, and expect the model that uses features
generated from that region to have the best accuracy over all other
regions for which we could collect data at a cost under the budget.

3.2 Basic Bellwether Analysis
Generalizing from the motivating example, we formally define the
basic bellwether analysis.

� Historical database DB: It contains the historical data for
each item (identified by its ID). In the motivating example, it
is the relational database containing OrderTable, ItemTable
and AdTable.

� Candidate region set R: Each r ∈ R is a candidate region
(e.g., defined by a combination of dimension attribute values).

� Training item set I: Each i ∈ I is the ID of an item to be
included in the training set. We use Ir to denote the subset of
items in I that have data in region r ∈ R.

� Target generation query τi(DB), i ∈ I: It returns the target
value (e.g., the 1st year worldwide profit) of item i. We use
τ(DB) to denote the table with attributes (ID, Y) that contains
the target values of all training items; i.e., τ(DB) =
{(i,τi(DB)) : i ∈ I}, where Y denotes the target attribute.

� Feature generation query φi,r(DB), i ∈ I and r ∈ R: It
returns the feature vector of item i; i.e., the features generated
by aggregating item i’s data in region r. Note that the item-
table features that do not change over regions are always
available for every region. In the motivating example, φi,r(DB)
returns the Category, R&D Expense, Regional Profit and
Regional Max AdSize of item i over region r. We use φr(DB)
to denote the table with attributes (ID, X) that contains the
feature vectors of all the items in region r; i.e., φr(DB) = {(i,
φi,r(DB)) : i ∈ Ir}, where X is the set of feature attribute names.

� Cost query κr(DB), r ∈ R: It returns the cost of collecting
data for a new item from region r. E.g., κ[1-1, WI](DB) is the
cost of selling an item for a week in WI and putting the
transaction information into the historical database DB.

� Predictive model hr(x), r ∈ R: It is a model (e.g., a linear
regression model) trained using data in region r; i.e., the

training set for the model is φr(DB) ⋈ τ(DB) = {(φi,r(DB),
τi(DB)) : i ∈ Ir}.

� Error measure Error(h): It measures the error (e.g., cross-
validation root mean squared error) of model h.

� Coverage Coverage(r), r ∈ R: It is the fraction of items in I
that have data in region r; i.e., |Ir|/|I|. Intuitively, we want
region r to contain as many items ∈ I as possible. Otherwise,
even if the model built on region r is very accurate, it is only
accurate on a small subset of items.

Definition 1: Basic Bellwether Problem. Given historical
database DB, candidate region set R, training item set I, target
query τ, feature query φ, cost query κ, and error measure Error,
find the region r ∈ R such that Criterion(κr(DB), Error(hr),
Coverage(r)) holds. Such a region r is called the bellwether
region for item set I. The model hr built using data in the
bellwether region r is called the bellwether model.

Note that in the above definition, Criterion can be instantiated in
various ways. Two possibilities are:

� Constrained optimization criterion: Find r ∈ R such that
Error(hr) is minimized subject to κr(DB) ≤ B and Coverage(r)
≥ C, where B is a user-specified budget, and C is a user-
specified coverage threshold.

� Linear optimization criterion: Find r ∈ R such that Error(hr)
+ w1κr(DB) − w2Coverage(r) is minimized, where w1, w2 are
user-specified weights.

In this paper, we will only consider the constrained optimization
criterion. Regions that satisfy the constraints are called feasible
regions. Also note that computing Error(hr) involves training
model hr on training set {(φi,r(DB), τi(DB)) : i ∈ Ir}, which is
created by queries over data in region r. In Section 3, we develop
an efficient algorithm for the basic bellwether problem.

3.3 Item-Centric Bellwether-Based Prediction
In the basic bellwether problem, we find a single bellwether
region for the entire set I of items that minimizes an error measure.
Given a new item, we can use the model built on the bellwether
region to predict this item’s target value. However, there are two
possible problems:

� The best region found from the historical database may not
generalize to new items. This is the over-fitting problem [13]
discussed in the Machine Learning literature.

� Different subsets of items my have different behavior. For
example, [1st week, Wisconsin] may be a bellwether region
for laptops, but for desktops, the bellwether region might be
[1st week, Maryland].

Thus, to best predict the target value of an item, we take an item-
centric approach and define the item-centric bellwether problem.

Definition 2: Item-Centric Bellwether Problem. Given the same
input as that of the basic bellwether problem and a new item i,
find the region r ∈ R such that φi,r(DB) best predicts τi(DB) with
κr(DB) ≤ B (a user-specified budget). Such a region is called the
bellwether region for item i.

Note that, technically when we predict the target value of a new
item i, we do not actually have data about i in DB. Thus, the item-
centric bellwether problem is defined based on a time point in the
future; i.e., after all the data about i have been put in DB, the
bellwether region r for i should be the one such that φi,r(DB) best
predicts τi(DB) with κr(DB) ≤ B. However, since the new item i is
not in DB, we cannot evaluate how well φi,r(DB) predicts τi(DB).
Thus, to find the bellwether region for i, we need to “learn” the
concept of the bellwether region from the properties of historical

items. In Sections 4 and 5, we present two methods for finding
bellwether regions of new items.

3.4 Discussion and Extension
The above problem definitions are fairly general. The candidate
region set can contain regions of any form (not necessarily
combinations of dimension attribute values), and the feature
generation, target generation and cost queries can also be arbitrary
functions (not necessarily aggregate-select-join SQL queries).
Although the efficient algorithms in this paper apply only to the
special case mentioned above (which is actually fairly general),
we would also like to point out some other cases to show the
richness of the problem and the opportunities for future research.

� Combinatorial bellwether analysis: We previously defined
bellwether candidates to be regions in R. Now, a candidate c
is a combination of regions; i.e., c ⊆ R. Equivalently, we can
specify the candidate region set to be 2R. The search space of
combinatorial bellwether analysis is extremely flexible and
large, which opens the possibility of finding better bellwether
region combinations but requires further techniques to
efficiently search through the space.

� Multi-instance bellwether analysis: Previously, we defined
the feature generation query φi,r(DB) to return a feature vector
for item i aggregated over data in region r. Now, φi,r(DB)
returns a set of feature vectors in region r for item i without
aggregation. Thus, each training example consists of a set of
feature vectors and the target value for that set. This setting is
non-standard and similar to multi-instance learning [20].

� Relational bellwether analysis: Some relational predictive
models [5] do not need to make predictions based on feature
vectors. They can use the whole historical relational database
to predict the target value of a new item. In this case, φi,r(DB)
returns a relational database consisting of the data about item i
in region r and the sub-database of DB that is considered
“historical” from region r’s point of view.

� Automatic feature generation: In the current formulation,
the user needs to specify the feature generation queries. Since
the number of possibly useful queries can be huge, it is
desirable to have an automatic feature generation framework.

Also note that, although bellwether analysis may look similar to
feature selection (which goal is to select predictive features), they
are orthogonal problems. In fact, the models used in bellwether
analysis can employ feature selection techniques. However, a
unique idea of bellwether analysis is that collecting features from
a region requires a region-dependent cost. Finding a cost-effective
region is important since useful features are usually not cost free.

4. BASIC BELLWETHER ALGORITHM
Ideally, if we have unlimited resources, as long as the candidate
region set is finite, we can iterate through all the candidate regions,
and for each region, issue a query to create a training set and learn
a model from that training set, and finally pick the most cost-
effective region as the bellwether region. However, in reality, this
computation is very expensive, and we need an efficient algorithm.
We now consider an interesting instance of the basic bellwether
problem and develop an efficient algorithm.

4.1 OLAP-Style Basic Bellwether Search
For efficient computation, we structure the space by considering
OLAP-style schemas, regions and aggregate queries. The
historical database has a star schema; i.e., DB = {F, T1, …, Tn},
where F is the fact table (e.g., OrderTable) and Ti is a reference
table (e.g., ItemTable and AdTable). The link between F and Ti is

through a natural (key-foreign-key) join. F has two special kinds
of attributes: ID is the attribute containing the item IDs, and
Z={Z1, …, Zd} is the set of dimension attributes (e.g., {Time,
Location}), each of which has a dimension structure (e.g., Figure
2). We consider two kinds of dimension structures:

� Interval dimension: The values in the dimension are intervals
(e.g., week 1-5). The values recorded in F are time points (e.g.,
week 4). Currently, we only consider incremental intervals
(i.e., from time 1 to time t), but in general they can be defined
by different kinds of windows.

� Hierarchical dimension: The values in the dimension are
organized as a tree. The values recorded in F are at the lowest
(i.e., leaf) level (e.g., State level) of the tree.

Each combination of dimension attribute values defines a
candidate region (e.g., R = {[1-1, AL], …, [1-52, All]}). The
target generation query τi(DB) can be arbitrary since the target
values do not change over different regions and need to be
generated only once. The feature generation query φi,r(DB)
consists of a set of stylized aggregate-select-join SQL queries,
each for an element of the feature vector. The forms of the stylized
queries are as follows (Table 1 summarizes the operators we
consider):

� αf(F.A) σID=i, Z∈r F: It returns an aggregate value f(F.A) (e.g.,
sum, min, max or average) of attribute A of table F for item i
over region r. E.g., αsum(profit) σ ID=i, Z∈r OrderTable returns the
total profit of item i in region r.

� αf(T.A) ((σID=i, Z∈r F) ⋈ T): It returns an aggregate value of
attribute A of table T for item i over region r. E.g., αmax(AdSize)

((σID=i, Z∈r OrderTable) ⋈ AdTable) returns the largest size of
advertisement for item i in region r.

� αf(T.A) ((πFK σID=i, Z∈r F) ⋈ T), where FK is the foreign key in F
that links to the primary key of T: It returns an aggregate
value f(T.A) of attribute A of table T for item i over region r.
The projection onto FK ensures that each matching row of T
is considered only once in the aggregate, even if it matches
multiple F tuples. E.g., αsum(AdSize) ((αAdNo σID=i, Z∈r OrderTable)
⋈ AdTable) returns the total size of advertisements used for
item i in region r, where each individual advertisement is
counted once.

For the cost query κr(DB), we assume the user provides a cost
table C with attributes (Z, Cost) describing the cost of each finest-
grained region. The cost of a larger region r is αf(Cost) σ Z∈r C, e.g.,
the sum of costs of all the finest-grained regions in r. Finally, note
again that we only consider the constrained optimization criterion.

4.2 An Efficient Algorithm
The basic ideas of the algorithm are: (1) we can prune regions
with cost > B and coverage < C, so that no model is built for those
infeasible regions; and (2) we can generate the training sets for the
feasible regions all together, so that data cube computation

Table 1. Operators of extended relational algebra

σID=i, Z∈r F Select all the tuples t in F such that t[ID] = i and
t[Z] in region r.

αG, f(A) F Aggregate over F group by G and for each group
compute aggregate function f(A). If G is omitted,
α aggregates all of F.

πZ F Project F onto a set Z of attributes without
duplicates.

F ⋈ T Natural (key-foreign-key) join between tables.

techniques can be applied. In fact, the generation of the training
sets for all the feasible regions can be written as a single OLAP
query and optimized.

First, we rewrite the three forms of feature generation queries into
the following equivalent forms:

� αf(F.A) σID=i, Z∈r F → σ Z=r,ID=i, αZ,ID,f(F.A) F

� αf(T.A) ((σID=i, Z∈r F) ⋈ T) → σZ=r,ID=i αZ,ID,f(T.A) (F ⋈ T)

� αf(T.A) ((πFK σID=i, Z∈r F) ⋈ T) →

σZ=r,ID=i α Z,ID,f(T.A) ((πFK F) ⋈ T)

Note that here we assume the aggregate operator performs the
CUBE operation [7] on the dimension attributes; i.e., αZ,ID,f(F.A) F
returns a relation containing an aggregate value of f(F.A) for each
region (identified by attribute Z) and item (identified by attribute
ID). Thus, the selection condition in the rewritten forms becomes
Z = r, rather than Z ∈ r. If we remove the selection, each query
actually returns a table containing a feature for each region and
item. By joining these tables on ID and Z, we obtain all feature
vectors of all the items in all the regions. Then, by joining the
resulting table with τ(DB) (the table containing the target value
for each item) on ID, we associate each feature vector with the
target value.

The cost constraint and coverage constraint can also be expressed
in OLAP queries. πZ σsum(Cost)≤B αZ,sum(Cost) C returns the regions
with cost ≤ B. πZ σcount(ID)≥C* αZ,count(ID) (F ⋈ I) returns all the
regions with coverage ≥ C, where count(ID) counts for distinct ID
values, I is a table with a single attribute ID specifying the set of
items of interest, and C* = C⋅|I| is a constant.

Putting everything together, if the feature vector of item i in
region r is 〈 αf1(F.A) σID=i,Z∈r F, αf2(T.A) ((σID=i,Z∈r F) ⋈ T),
αf3(T.A) ((πFK σID=i,Z∈r F) ⋈ T) 〉. The query to generate all the
training sets is as follows:

τ(DB) ⋈ (αZ,ID,f1(F.A) F) ⋈ (αZ,ID,f2(T.A) (F ⋈ T)) ⋈
(α Z,ID,f3(T.A) ((πFK F) ⋈ T)) ⋈

(πZ σsum(Cost)≤B αZ,sum(Cost) C) ⋈
(πZ σcount(ID)≥C* αZ,count(ID) (F ⋈ I))

To efficiently evaluate this query, we can first use iceberg cube
techniques [1, 9] to find all the regions satisfying the constraints,
and then apply techniques for simultaneously computing multiple
aggregate functions [3]. The details are omitted for lack of space.

After generating the training sets for all the feasible regions, we
simply build a model for each feasible region and evaluate the
error of that model. Then, the region having the minimum-error
model is the bellwether region.

5. BELLWETHER TREE
Now, we consider the item-centric bellwether-based prediction.
The basic idea is that to find the bellwether region for a new item,
we first identify a subset S ⊆ I of historical items similar to the
new one, and find the bellwether region for S. In this section, we
introduce the bellwether tree, where items having different
characteristics are recursively partitioned based on item-table
features. In the next section, the bellwether cube is introduced,
which uses predefined item hierarchies to group similar items.

A bellwether tree is similar to a decision/regression tree. Each
node in the tree has a splitting criterion (e.g., RDexpense ≥ 50K)
that partitions a set of items into several parts. However, at the
leaf node, unlike a decision/regression tree that predicts the target
value directly based on the items in that leaf, we find the
bellwether region for the set of items in that leaf and use that
region to serve as the bellwether region for any new item that
would be sent to that leaf. Figure 3 shows an example bellwether

tree, where for items with RDexpense ≥ 50K, [1-1, NY] is the
bellwether region, while the bellwether region for an item with
RDexpense < 50K depends on what category the item belongs to.

The features used in the splitting criteria are the item-table
features, which do not depend on regions and are known at the
time when we want to predict the target value for any item. Thus,
we redefine the item set I to be a table (e.g., the ItemTable in
Figure 1) with attributes (ID, A1, …, An), where ID is the column
for item IDs and A1, …, An are the item-table features (e.g.,
RDexpense, Category). Ak can be categorical or numeric. To avoid
confusion between item-table features and features generated from
regions (i.e., φi,r(DB)), we call the latter regional features.

In the rest of this section, we first adapt the standard regression
tree construction algorithm to build bellwether trees. The idea is
to use the bellwether models for the subsets of items in the
branches of a split to define how good the split is. Then, we
recursively create child nodes by using the best splits. However,
the naïve recursive tree construction algorithm is not scalable.
Thus, we extend the Rain Forest [6] algorithm to make bellwether
tree construction scalable. The main result is that we provide a
sufficient statistic for evaluating the goodness of a splitting
criterion that can be plugged into the Rain Forest framework.

5.1 Naïve Bellwether Tree Algorithm
Similar to a decision/regression tree construction algorithm (e.g.
[15]), the key component of the bellwether tree construction
algorithm is the method for choosing splits at the internal nodes.
Intuitively, we want to pick the criterion that partitions a set of
items into several parts, each of which needs a different
bellwether region. Note that the reason for using different
bellwether regions for different subsets of items is to reduce
prediction error. Thus, instead of trying to identify subsets of
items having different bellwether regions, we take a more direct
approach. That is, for each node, we try to find the splitting
criterion such that after we split (and find the bellwether region
for each child subset of items), the expected prediction error can
be reduced the most. We call the amount of error reduction the
goodness of a splitting criterion. Now, consider that we want to
find the splitting criterion for node v with set S of items. Let
Error(hr | S) denote the error of the model hr built on region r
using the set S of items (i.e., trained on {(φi,r(DB), τi(DB)) : i ∈
Sr}). We consider all the possible splitting criteria for each feature
Ak, and pick the best one:

� If Ak is categorical, we denote the possible splitting criterion
by 〈Ak〉. Let the possible values of Ak be a1, …, an. Then, 〈Ak〉
splits S into n child partitions, each of which is for a value ap.
Let Sp ≡ σAk=ap

S denote the pth child partition. The goodness
of the splitting criterion 〈Ak〉 is:

Goodness(〈Ak〉) = |S|⋅Error(hr | S) − ∑p |Sp|⋅Error(hrp
 | Sp),

where r is the bellwether region for S, rp is the bellwether
region for Sp, and |S| denote the number of items in S.

� If Ak numeric, we denote a possible splitting criterion by 〈Ak,
b〉, where b is the splitting point. The set of all possible
splitting criteria for Ak is {〈Ak, (ai+ai+1)/2〉 : i = 1, …, n−1},

RDexpense ≥≥≥≥ 50K

YesNo

Category

Desktop Laptop

[1-2, WI] [1-3, MD]

[1-1, NY]

Figure 3. An example bellwether tree

constraints

where a1, …, an are the (sorted) distinct values of Ak. Then,
〈Ak, b〉 splits S into two child partitions: S1 ≡ σAk<b S and S2 ≡
σAk≥b S. The goodness of 〈Ak, b〉 is:

Goodness(〈Ak,b〉) = |S|⋅Error(hr|S) − ∑p∈{1,2} |Sp|⋅Error(hrp
|Sp),

where r, r1 and r2 are the bellwether regions for S, S1 and S2,
respectively. If the number of possible splitting points is too
large, we can consider only the points at a small number (e.g.,
50) of the percentiles of a1, …, an.

The set of all possible splitting criteria at a node is {〈Ak〉 : for
categorical feature Ak} ∪ { 〈Ak, (ai+ai+1)/2〉 : for numeric feature
Ak, and i = 1, …, n−1}. A naïve algorithm to construct a
bellwether tree is to recursively split each node by choosing the
best splitting criterion at that node until some termination
condition holds. Currently, we use a simple termination condition:
stop if the number of items in a node falls under a threshold. The
algorithm is shown in Figure 4. To avoid over-fitting [13], after
the tree is constructed, standard pruning techniques, e.g., the
minimum description length principle [16, 12], can be applied.
We omit the details since this is well known.

To predict the target value of a new item j, we first pass the item
down the tree to a leaf node based on its item-table features. Then,
the bellwether region r for the item subset S in this leaf node is
used as the bellwether region for the new item. Thus, we spend
the budget to collect data from this bellwether region for item j,
and put the data into the database DB. Finally, we predict the
target value of j by using φj,r(DB) as the input to the bellwether
model (trained on {(φi,r(DB), τi(DB)) : i ∈ Sr}) of this leaf node.

5.2 RF Bellwether Tree Algorithm
Note that, in the naïve bellwether tree algorithm, for each node,
each splitting criterion, and each child partition produced by the
splitting criterion, we solve a basic bellwether problem. Solving
this problem requires reading the training sets for all the feasible
regions once. We call the dataset that contains the training sets for
all the feasible regions the entire training data. Since we cannot
generally assume that the entire training data fits in memory, the
naïve bellwether algorithm will scan the entire training data about
l⋅m times, where l is the number of levels of the tree, and m is the
number of splitting criteria considered at each node. (Because
each node partitions the item set into non-overlapping subsets of
items, the union of all the training examples for all the nodes at a
level is, in fact, the entire training data.) We assume the item table
I fits in memory, because although the number of transactions can
be very large, the number of items is usually modest.

To reduce this tremendous cost, we extend the RainForest (RF)
algorithm [6] (designed to efficiently learn a regular decision tree
from a disk-resident dataset) to our setting. The basic idea of the
RF algorithm is to scan the entire training data once per level of
the tree, and during the scan, collect all the sufficient statistics for
determining the splitting criteria for all the active nodes at that
level. An active node is one that has not met the termination
condition. From the definition of the goodness of a splitting
criterion c, the sufficient statistic for computing the goodness of
splitting criterion c is {〈Error(hrp

 | Sp), |Sp|〉 : for each child
partition Sp produced by c}, where Error(hrp

 | Sp) is the error of
the model built on the bellwether region for that partition, and |Sp|
is the size of the partition. Note that |S| and Error(hr | S) have
been computed when we process the parent of this node.

By the definition of a bellwether region, Error(hrp
 | Sp) = minr∈R

Error(hr | Sp). Thus, we can create an entry for the minimum error
of each possible child partition Sp, and obtain the minimum error
for all Sp by a single scan over the entire training data (i.e., going
through each r ∈ R). The algorithm is presented in Figure 4. Note

that for simplicity, we just show the algorithm corresponding to
RF-read [6], and assume the sufficient statistics for any given
level fit in memory. Other techniques (e.g., RF-hybrid) proposed
in [6] that further improve the efficiency can also be applied here
in a similar manner.

Lemma 1. The RF bellwether tree algorithm produces the same
tree as the one produced by the naïve bellwether tree algorithm. It
scans the entire training data l times, where l is the number of
levels of the tree.

6. BELLWETHER CUBE
Similar to a bellwether tree, a bellwether cube finds different
bellwether regions for different subsets of items. However, unlike
a bellwether tree, in which item subsets are induced by the tree
structure, the item subsets in a bellwether cube are defined by
item hierarchies. Figure 5 shows an example of two item
hierarchies. For example, [Hardware, Low] represents the subset
of items that belong to the Hardware division and have low R&D
expenses, and the bellwether region for it may be different from
the bellwether region for item subset [Desktop, Any]. A
bellwether cube systematically finds the bellwether region for
each such cube subset of items induced by the item hierarchies. It
not only can be used to predict the target value of a new item, but
also is an exploratory tool for rollup and drilldown analysis.

In the rest of this section, we first define bellwether cubes and
show how to use them to perform bellwether-based prediction and
conduct rollup and drilldown analysis. Then, a single-scan

Naïve Bellwether Tree Algorithm

call SplitNode(Root node u, Item set I);
Prune the resulting tree;
function SplitNode(Node v, Item set S)

if the termination condition holds then return;
foreach possible splitting criterion c

foreach child partition Sp created by c

Find the bellwether region for Sp;

Evaluate Goodness(c);
Pick criterion c* that has the maximum goodness value;
Create child nodes v1, …, vn based on c*;

foreach child node vp

call SplitNode(vp, Sp);

RF Bellwether Tree Algorithm

foreach level l of the tree
foreach (active node v at level l, splitting criterion c)

foreach (child partition p) Set MinError[v, c, p] = ∞;
(In the following, scan the entire training data once)
foreach feasible region r ∈ R

Read in training set Dr for region r;
foreach active node v at level l

foreach possible splitting criterion c
foreach child partition Sp created by c

Build a model hr on region r for Sp;

if Error(hr | Sp) < MinError[v, c, p] then

MinError[v, c, p] = Error(hr | Sp);

Size[v, c, p] = |Sp|;

foreach active node v at level l
foreach possible splitting criterion c

Compute Goodness(c) from
MinError[v, c, p] and Size[v, c, p], for all p;

Split v based on c* that has the best goodness value;

Figure 4. Bellwether tree algorithms

bellwether cube construction algorithm is presented. To further
improve efficiency, we transform model construction into efficient
data cube computation based on the frameworks developed in [2]
and [4]. The main technical contribution here is that we show
building weighted least squares linear models and computing
training-set means squared errors for such models can be
formulated as an algebraic function, which can be efficiently
computed using data cube computation techniques.

6.1 Cube Subsets of Items
Similar to bellwether trees, the training item set I is extended to
an item table (e.g., ItemTable in Figure 1) with attributes (ID,
A1, …, An), where each Ak has an associated item hierarchy (e.g.,
Figure 5). All the values of Ak recorded in the item table I are at
the lowest (leaf) level of the hierarchy. Each combination of
values (nodes) of the hierarchies defines a cube subset of items.
E.g., [Desktop, 100K], [Hardware, 1M], [Any, Low] and [Any,
Any] denote cube subsets of items at different levels: [Category,
Expense], [Division, Expense], [All, Range] and [All, All].
[Desktop, 100K] represents the subset of items (records in I)
having A1=Desktop and A2=100K; [Hardware, 1M] represents the
subset of items with A1 being a leaf value under the Hardware
node and A2=1M, and so on. Figure 6 shows all the levels induced
by the two hierarchies in Figure 5. As suggested by [10], the
levels are organized in a lattice structure. The collection of all the
cube subsets contains all possible combinations of values (nodes)
at all possible levels. We call the cube subsets at the lowest level
(e.g., the [Category, Expense] level) the base subsets.

Note the difference between the item table I and the fact table F:

� Item table I (e.g., ItemTable in Figure 1) provides
information about items independent of candidate bellwether
regions; i.e., this information is always available when we
predict the target value of a new item. We use attributes of the
item table to create subsets of items. In OLAP terminology,
the item hierarchies (e.g., Figure 5) are in fact the dimensions
of the item table. To avoid confusion, we call the dimensions
of the item table the item hierarchies, and regions defined by
the item hierarchies the item subsets.

� Fact table F (e.g., OrderTable in Figure 1) provides
information about items in the candidate bellwether regions.
We reserve the term dimensions to mean the dimensions (e.g.,
Figure 2) of the fact table, and the term regions to mean the
candidate bellwether regions defined by combinations of
values of these dimensions.

6.2 Bellwether Cube and a Naïve Algorithm
Given the inputs specified in Definition 1 with I extended to an
item table with associated item hierarchies, a bellwether cube is
{〈S, rS〉 : for each cube subset S of items}, where rS is the
bellwether region for subset S of items. The reason that this
collection is called a cube is that this collection is similar to a data

cube [7] with the only difference that, in a data cube, rS is
replaced with an aggregate number (e.g., sum of RDexpense over
all the items in the subset S). Note that, to identify a bellwether
region for subset S, we build models for items in S. Each model is
trained on a dataset (generated from a region), in which each
training example represents a distinct item in S. Thus, if the size
of S is too small, the models may be trained on too few examples.
Thus, in practice, the user can specify a size threshold K, such that
a bellwether cube only includes cube subsets S with |S| ≥ K. We
call these subsets of items the significant subsets.

A bellwether cube can be used to predict the target value of a new
item and is also an exploratory tool.

Prediction for a new item: To predict the target value for a new
item i, we try to use historical items similar to i to find the
bellwether region for item i. In the bellwether cube context, items
that co-occur in a cube subset are considered similar. Intuitively,
the similarity decreases as the level of the cube subset goes higher
and higher. In the extreme case, the cube subset [Any, Any]
contains all the items with the lowest similarity. Thus, given the
new item i, we first identify all the cube subsets that include i. For
example, if item i has F1=Desktop and F2=100K, then the cube
subsets that include i are: [Desktop, 100K], [Hardware, 100K],
[Desktop, Medium], [Any, 100K], [Hardware, Medium],
[Desktop, Any], [Any, Medium], [Hardware, Any], and [Any,
Any]. The bellwether regions for these subsets of items are the
candidate bellwether regions for predicting item i, because the
items in each of these subsets are similar to item i (with different
similarities). Then, we pick the candidate bellwether region whose
bellwether model (the model built on that bellwether region) has
the lowest upper confidence bound of error (defined by the P%
confidence interval of the error, where P is a user-specified
parameter) to be the bellwether region for item i. We use the
confidence bound instead of the lowest error, so that the picked
bellwether region will both have low error and be stable.

Similar to a bellwether tree, after choosing the cube subset S of
items and the corresponding bellwether region r, we spend the
budget to collect data for item i from region r and put this data
into DB. Then, the bellwether model built on r for S is used to
predict the target value of i by taking φj,r(DB) as the input.

Rollup and drilldown analysis: Since a bellwether cube is very
similar to a data cube, the cross-tabular user interface of a data
cube that supports the rollup and drilldown operations can also be
applied here. Just like a data cube, each cube subset of items
corresponds to a cell in the cross tabulation. The only difference is
that, instead of showing an aggregate number (e.g. count or sum),
we show the bellwether region or the error of the bellwether
model built on that region for each cell in the cross tabulation.
Rollup and drilldown are operations that change the levels of the
cube subsets presented in the current cross tabulation. By using
these operations, the user can explore the space of different
subsets of items at different levels to understand the bellwether

AnyAll

Division

Category

Item Hierarchy: Category

HardwareSoftware

Desktop Laptop

Others

AnyAll

Range

Expense

Item Hierarchy: RDExpense

MediumLow High

100K 1M [Category, Expense]

[Category, Range] [Division, Expense]

[Category, All] [Division, Range] [All, Expense]

[Division, All] [All, Range]

[All, All]

Level Hierarchy Tree Level Hierarchy Tree

 Figure 5. Example item hierarchies Figure 6. All the levels of cube subsets

behavior of the database. We omit the details of the user interface,
and note that a more thorough treatment of applying the data cube
interface to predictive models can be found in [2].

Naïve algorithm: If we have unlimited resources, we can just
enumerate the cube subsets of items, and for each cube subset,
apply the basic bellwether search algorithm to find the bellwether
region for that subset.

6.3 Single-Scan Bellwether Cube Algorithm
It is obvious that the naïve algorithm is very inefficient, since for
each cube subset of items, we need to solve a basic bellwether
problem for that subset. However, because the cube subsets are
nested, by carefully sharing the computation, it is possible to
improve the efficiency. Also, if we have large enough memory, we
can build a bellwether cube in a single scan over the entire
training data, which consists of the training sets for all the feasible
regions. In this subsection, we describe the single-scan technique.
We discuss the technique that exploits shared computation in the
next subsection.

In the following, we assume the size of main memory is at least
O(n), where n is the number of significant cube subsets of items;
i.e., the main memory is large enough to simultaneously hold a
small amount of size-fixed data for each significant cube subset.
Since the number of items is usually modest, the number of
significant cube subsets of items is usually also modest. Thus, it is
reasonable to assume the number of significant cube subsets can
fit in memory. If the number of significant cube subsets cannot fit
in memory, we can partition these cube subsets into several parts
such that each part fits in memory. However, for simplicity, we
omit the details.

Let rS denote the bellwether region for item subset S. By
definition, Error(hrS

 | S) = minr∈R Error(hr | S). Thus, similar to
the RF bellwether tree algorithm, we can keep an entry for each
cube subset S of items in memory, and scan the entire training
data (i.e., going through each r ∈ R) once to find the region rS
that has the minimum error. The algorithm is shown in Figure 7.
Note that we omit the details about how to select significant cube
subsets of items because this can be done by an iceberg query, for
which computation techniques are well known [1, 19].

Lemma 2. The single-scan bellwether cube algorithm outputs the
same bellwether cube as the naïve algorithm in a single scan over
the entire training data.

6.4 Optimizing Repeated Model Construction
Now, we describe the techniques to share the computation of
building models on nested subsets of items. Note that, in the
single-scan bellwether cube algorithm, we build a model for each
significant cube subset of items, and these cube subsets may be
nested. For example, we may build models for cube subsets:
[Hardware, Medium], [Any, Medium], [Hardware, Any], and
[Any, Any], where the first one is included in the following two,
and the first three are included in the last one.

Let us first review how to take advantage of this nested-subset
structure in regular data cube computation, where we want to
compute an aggregate function (e.g., sum and average) for each
cube subset. It is well known that if the aggregate function is
distributive or algebraic, the aggregate values for all the cube
subsets can be computed efficiently [7]. Let S1, …, Sn be subsets
of items that partition S; i.e., ∪i Si = S, Si ∩ Sj = ∅, for i ≠ j. An
aggregate function f is distributive if there is a function q such that
f(S) = q({f(Si) : i = 1, …, n}). SUM, and COUNT are examples of
distributive functions. An aggregate function f is algebraic if there
are a function g that returns a fixed-length tuple and a function q

such that f(S) = q({g(Si) : i = 1, …, n}). All distributive functions
are algebraic, and AVG is another example of a distributive
function, where g(Si) returns 〈SUM(Si), COUNT(Si)〉, and q sums
up all the sums and counts separately and then divides the total
sum by the total count. See [7] for details.

Observation 1. Fixing region r, if Error(hr | S) is a distributive or
algebraic function of S, then data cube computation techniques
can be directly applied to efficiently compute the errors for all the
(significant) cube subsets of items for region r.

Note that knowing Error(hr | S) for all feasible region r and all
significant cube subset S of items is sufficient to build a
bellwether cube. Thus, we focus on error computation, instead of
model construction, although model construction is embedded in
the error computation.

Following the observation, if Error(hr | S) can be computed by
distributive or algebraic aggregate functions, we can replace
“foreach significant cube subset S of items, build a model hr on r
for S” (i.e., line 7-8 of Figure 7) with a data cube query that
returns the error value for each significant cube subset. We omit
the details of the data cube computation, for it is well known.

Now the question is how to make Error(hr | S) a distributive or
algebraic aggregate function of S. It depends on what kind of
predictive model is used. For classification models, Chen et al. [2]
developed a scoring function decomposition technique, which
allows test-set-based accuracy (equivalently, error) computation to
be treated as computing distributive or algebraic aggregate
functions if the model used is distributively or algebraically
decomposable. For indecomposable models, an approximation
technique called probability-based ensemble was also proposed to
make the model distributively decomposable with a small
accuracy drop. These techniques can be directly applied here.

For regression models, Chen et al. [4] developed a technique to
efficiently build ordinary least squares (OLS) linear regression
models for nested cube subsets. In the following, we extend their
technique in two ways. First, our technique not only can handle
OLS linear regression models, but also weighted least squares
(WLS) linear regression models, which are usually used in
Statistics to handle aggregated target values (e.g., total sales).
Second, our technique directly transforms the computation of
training-set mean squared errors of WLS linear models to the
computation of algebraic aggregate functions. Note that because
linear models are simple models, training-set errors are usually
good estimates of the true errors of the models. Our experimental
results also suggest that the behavior of training-set errors is very
similar to that of cross-validation errors for linear models.

We first review some basics of linear regression models (see [18]
for details). Let X = (Xi,j) be an n×p matrix, where each row is a

Select all the significant cube subsets of items by an
iceberg cube query over I;

foreach significant cube subset S of items
Set MinError[S] = ∞;

(In the following, scan the entire training data once)
foreach feasible region r ∈ R

foreach significant cube subset S of items
Build a model hr on r for S;
if Error(hr | S) < MinError[S] then

MinError[S] = ∞;
BellwetherRegion[S] = r;

Output BellwetherRegion[S] for each S;

Figure 7. Single-scan bellwether cube algorithm

training example, and each column represents a feature; i.e., Xi,j is
the jth feature value1 of example i. Note that we have n training
examples, each of which has p feature values. For simplicity, all
the features are assumed to be numeric. Let Y = (Yi) be a column
vector with length n, where Yi is the target value of the ith
example (i.e., row) in X. Let W = (Wi,j) be an n×n positive
diagonal matrix (i.e., Wi,j = 0 for i ≠ j and Wi,i > 0 for i = 1, …, n)
which specifies the weight for each example; i.e., Wi,i is the
weight for the ith example in X. A linear regression model is
written as Yi = ∑j Xi,j βj + εi, where βj, j = 1, …, p, are the model
parameters, and εi is the error term for the ith example. We use a
p-element column vector ββββ to denote all the model parameters.
The OLS linear model is the ββββ that minimizes ∑i (Yi −∑j Xi,j βj)

2
and the WLS linear model is the ββββ that minimizes ∑i Wi,i(Yi −∑j
Xi,j βj)

2. Note that, when Wi,i = 1 for all i, the WLS linear model
reduces to the OLS linear model. Thus, we only consider the WLS
linear model. According to [18], the WLS linear model is:

ββββWLS = (X′WX)−1(X′WY),

where X′ denotes the matrix transpose of X. By a straightforward
matrix derivation, we obtain the weighted sum of squared errors:

∑i Wi,i(Yi −∑j Xi,j βj)
2 = (Y − XββββWLS)′W(Y − XββββWLS)

 = Y′WY − (X′WY)′(X′WX)−1(X′WY),

and the weighted mean squared error is the above quantity divided
by n−p, which is the number of degrees of freedom. Note that
Y′WY is a number, X′WX is a p×p matrix, and X′WY is a p×1
vector. None of their sizes depend on the number of examples (i.e.,
n), but having these is sufficient to obtain the WLS linear model
and its training-set (weighted) mean squared error.

Let S be a cube subset of items, and S1, …, Sm be subsets of S that
partition S. We use X, Y, W and Xk, Yk, Wk to denote the feature
matrix, target-value vector and weight matrix for S and Sk (k =
1, …, m), respectively. Let SSEr(S) denote the (weighted) sum of
squared errors of the model hr trained on a given region r using
items in S. Then, we have the following theorem.

Theorem 1. SSEr(S) is an algebraic aggregate function of S; i.e.,
SSEr(S) = q({g(Si) : i = 1, …, n}), where

g(Sk) = 〈Yk′WkYk, Xk′WkXk, Xk′WkYk〉, and
q({g(Sk)}) = (∑k Yk′WkYk)−(∑k Xk′WkYk)′(∑k Xk′WkXk)

−1(∑k Xk′WkYk).

Proof: (1) The size of the returned value of g(Sk) is 1 + p×p + p,
which is fixed (i.e., independent of the sizes of S and Sk). (2) By a
straightforward matrix derivation, we can see that Y′WY = ∑k
Yk′WkYk, X′WX = ∑k Xk′WkXk and X′WY = ∑k Xk′WkYk. Thus,
q({g(Si)}) indeed returns the SSEr(S). �

7. EXPERIMENTAL RESULTS
In this section, we present the experimental results. We first show
that bellwether regions do exist in real datasets, and bellwether
trees and cubes may improve the prediction accuracy over the
bellwether region found by the basic bellwether search. We then
demonstrate efficiency and scalability of the proposed algorithms.

7.1 Mail Order Dataset
The mail order dataset contains transaction records of a real
catalog company for the year 1996. It contains 1,515 items and
4,591,581 transactions. After removing outliers, 1,012 items and
the associated 4,030,335 transactions were selected for the
following analysis. The fact table contains transactions of the
orders, each of which records an order of a single item at a
specific time and from a specific location with the net profit

1 To include a constant term in the regression model, set Xi,1 always to 1.

earned from that order. A candidate region is defined by a time
interval (e.g., first two months) and a location (e.g., Midwest) in
the US. The time and location dimensions are similar to those in
Figure 2 with the following differences. For the time dimension,
instead of weeks, we consider the 1st month, 1-2 months, …, and
1-10 months. For the location dimension, the levels are State,
Division, Region, and All. The cost of each region is defined by
m⋅n, where m is the number of months in the time interval and n is
the number of zip code areas in the location divided by 100. The
goal is to find a cost-effective region such that the features
generated from that region can best predict the total profit of an
item in the US over the entire time interval (10 months). The
features of an item are the profit and the number of orders in a
region, and also information from the mailed catalogs. We use the
OLS linear regression model as the predictive model, and use 10-
fold cross-validation root mean squared error as the error measure.

Figure 7 (a) shows the error of the bellwether model as a function
of the budget. To understand how well a bellwether model
performs, we plot the following curves.

� Bel Err: This curve shows the error of the bellwether model
(i.e., the model built using data from the bellwether region).
Each point represents the error of the bellwether model with a
cost under a specific budget.

� Avg Err: This curve shows the average error, on which each
point represents the average error of all the regions with costs
under a specific budget.

� Smp Err: This curve shows the performance of a random
sampling approach, in which we randomly select a collection
of regions such that the cost of the collection is at most the
specified budget. Note that this collection may not correspond
to any OLAP-style region (defined in Section 3.1), which we
consider as the candidates in the bellwether search.

The result in Figure 7 (a) shows that at budget around 50, the
error of the bellwether model converges, which means we cannot
increase the performance of the model by increasing the budget.
The bellwether region found is [1-8, MD], i.e., the first eight
months in the state of Maryland. Also, the bellwether model
performs better than the random sampling approach and
significantly better than the average case.

Figure 7 (b) shows the uniqueness of bellwether regions. Each
point on the curve labelled with P% represents the fraction of
regions that have a model with error within P% confidence
interval of the error of the bellwether model under a specific
budget. A high fraction means the bellwether region found is
indistinguishable from other regions under the budget. A low
fraction means the bellwether is almost unique, because almost no
other region can perform as well as the bellwether one. As shown
in the figure, from budget 35 to 85, the bellwether regions found
are almost unique.

Figure 7 (c) shows the plot of error vs. budget using the training-
set error, instead of the cross-validation error. Note that it is
almost exactly the same as Figure 7 (a). This verifies that for
simple models such as linear models, training-set error usually
approximates cross-validation error, but can be computed much
more efficiently.

Finally, we evaluate item-centric bellwether-based prediction on
the mail order dataset. The result is shown in Figure 8. We
consider three methods. The bellwether tree (labelled Tree), the
bellwether cube (labelled Cube) and the method that simply uses
the bellwether region found by the basic bellwether search
(labelled Basic). The 10-fold cross-validation prediction errors for
each method at various budgets are reported in Figure 8. The

result shows that from budget 10 to 30, both the bellwether cube
and the bellwether tree improve accuracy over basic bellwether
search. However, the improvement is not significant. The reason
might be that there is not too much difference between different
subsets of items in this particular dataset.

7.2 Book Store Dataset
Next, we show the results on another real dataset where there is
no clear bellwether region. The book store dataset is a sample
from a large bookstore company with stores spread across the
United States. The dataset obtained contains transactional data of
books sold for the year 2004 in five states of USA totaling
900,000 transactions and about 43,000 books; of which we used
around a thousand most occurring books, since many books only
have very few transaction records. There are 116 stores spread
across 86 cities in the five given states. Similar to the mail order
dataset, we consider time and location to be dimension attributes
that define candidate regions. Similarly, OLS linear regression
models and cross-validation errors are used to determine
bellwether regions.

The result is shown in Figure 9. Although in Figure 9 (a) the error
of the bellwether model seems to converge at budget 200, we
cannot identify a bellwether region with high confidence, since as
shown in Figure 9 (b), there is still a relatively large fraction of
other regions that are indistinguishable from the one returned by
the basic search algorithm. The reason that we cannot find clear
bellwether regions might be that (1) there is actually no unique
bellwether region at each budget point, or (2) the dataset is too
small. Note that this dataset does not contain all the transaction
records for the stores we have. Rather, it is a relatively small
sample of the actual data warehouse. The prediction errors of the
basic, tree and cube methods are shown in Figure 9 (c). There is
no clear winner to be found.

7.3 Simulation Results
To understand how much and when bellwether trees and cubes
can improve the accuracy of bellwether-based prediction, we
conducted the following simulations. We took the schema of the
mail order dataset and synthetically generated the data records.
The item table contains 1,000 items with eight binary features.
The target value of each item is generated by a decision tree with
different number of nodes based on the item-table features. For an
n node decision tree, we first randomly create a tree with n nodes,
and then randomly choose a bellwether region and a bellwether
model for each leaf node of the tree. The bellwether region and
model at a leaf node are generated based on the subset of items
that falls into this leaf node. To determine the target value of item
i, we first use its item-table features to find the leaf node to which

that item belongs, and then query the regional features from the
bellwether region associated with the leaf node for i. Let X1, …,
X4 be the four regional features for i. The target value of i is then
generated by a linear regression model, ∑k βkXk + ε, with different
degrees of error ε, where βk are the model parameters of the
bellwether region of the leaf node. By varying the number of
nodes of the decision tree and the standard deviation of the error
term, we can create datasets with different degrees of complexity
and noise. For each setting of the number of nodes and the noise
level, we generate 10 datasets. The average of 10-fold cross-
validation errors on the 10 datasets is reported as a point in Figure
10.

Figure 10 (a) shows the prediction errors of the cube, basic and
tree methods as functions of the noise level. The complexity of the
bellwether distribution to be learned is set at 15 tree nodes. It can
be seen that the cube and the tree are consistently better than the
basic method. However, when the noise becomes large, the
difference becomes small. This might explain why we did not see
the cube and tree significantly improve the accuracy.

Figure 10 (b) shows the prediction errors of the three methods as
functions of the complexity of the bellwether distribution (i.e., the
number of nodes in the tree that generates a dataset). The noise
level is set at 0.5. The tree and cube methods are consistently
better than the basic method. However, as the bellwether
distribution becomes complex, the accuracy improvement
provided by the cube and tree methods becomes smaller.

7.4 Algorithm Efficiency and Scalability
We use synthetic data to evaluate the efficiency and scalability of
the proposed algorithms. We first show that, when the entire
training data cannot fit in memory, the RF bellwether tree and the
single scan bellwether cube algorithms can significantly improve
the efficiency. Then, we show these algorithms scale linearly in
the size of the entire training data.

7.4.1 Experimental Setting
We generate data for an item table and a fact table. The item table
contains 2,500 randomly generated items, and has three item
hierarchies and several numeric attributes. By varying the number
of nodes in the item hierarchies, we generate different numbers of
cube subsets to test the performance of the bellwether cube
algorithm. By varying the number of numeric attributes, we test
the bellwether tree algorithm on different numbers of features.

The fact table has two tree-structured hierarchical dimensions. By
varying the number of nodes in the dimension hierarchies, we can
generate different numbers of regions. We generate one
transaction for each item in each region. As a result, each region
has 2,500 transactions, and the size of the fact table is the total

0

5000

10000

15000

20000

25000

30000

5 25 45 65 85
Budget

R
M

S
E

Bel Err Avg Err

Smp Err

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 25 45 65 85
Budget

F
ra

ct
io

n
 o

f
in

d
is

ti
n

g
u

is
ab

le
s

95% 99%

0

5000

10000

15000

20000

25000

30000

5 25 45 65 85
Budget

R
M

S
E

Bel Err Avg Err

Smp Err

8000

10000

12000

14000

16000

18000

20000

22000

24000

5 25 45 65 85

Budget

R
M

S
E

Basic T ree Cube

 Figure 7. Basic bellwether analysis of the mail order dataset Figure 8. Bellwether-based

 prediction on the mail order dataset

(a) (b) (c)

number of regions times 2,500. The target values are generated
based on four predefined bellwether regions with small errors, and
regional features are randomly generated.

We note that the synthetic data may not correspond to real-world
problems. However, it is sufficient to test the efficiency and the
scalability of the algorithms. The IO cost depends on the size of
the fact table. For bellwether cubes, the CPU cost depends on the
number of significant item subsets. For bellwether trees, the CPU
cost depends on the number of splitting criteria considered, which
can be captured by the number of features in the item table.
Ordinary least squares linear regression models are used as the
predictive models. The cost of learning such a model does not
depend on the concept to be learned. That is, although the
synthetic data may not correspond to any real dataset, the
computation cost is still roughly the same.

In all the experiments, we assume that the entire training data (i.e.,
the training data in all feasible regions) has been generated by
iceberg queries and saved on disk. Since we did not implement
techniques for iceberg queries, we only focus on the performance
of the bellwether tree and cube algorithms. We denote the naïve
bellwether tree algorithm by naïve tree, the RF bellwether tree

algorithm by RF tree, the naïve bellwether cube algorithm by
naïve cube, the single-scan bellwether cube algorithm by single-
scan cube, and the single-scan cube with data cube optimization
by optimized cube. We set the maximum tree depth to be 7. All
the algorithms are implemented in Java and run on a Linux
machine with Pentium IV 3.0 GHz CPU and 2GB RAM.

7.4.2 Results
We first compare the naïve algorithms with the algorithms
designed for disk-resident datasets. Note that if the entire training
set fits in memory, we do not expect to see performance difference.
However, if the entire training set exceeds the size of memory, the
performance of naïve algorithms will be much worse than the
algorithms designed for disk-resident datasets. In fact, in this case,
the naïve algorithm will run out of memory. To compare these
algorithms, we use the following simulation. For both the naïve
algorithms and their counterparts, each time when they need the
training data from a region, they always read the data from disk.
No training data is cached in memory. The result is shown in
Figure 11 (a). It can be clearly seen that if every request of
training data requires a disk read, the single-scan cube, optimized
cube and RF tree are much better than the naïve algorithms.

0

500

1000

1500

2000

2500

0 100 200
Budget

R
M

S
E

Bel Err Avg Err

Samp Error

0

0.2

0.4

0.6

0.8

1

0 100 200
Budget

F
ra

c
ti

o
n

 o
f

in
d

is
ti

n
g

u
is

a
b

le
s

0 .95% 0.99%

0

500

1000

1500

2000

2500

0 100 200

Budget

R
M

S
E

SingleRegion Cube T ree

Figure 9. Bellwether analysis of the book store dataset

0

0.5

1

1.5

2

2.5

3

0.05 0.5 1 2
Noise

R
M

S
E

cube

basic

tree

0

0.5

1

1.5

2

3 7 15 31 63
Number of nodes

R
M

S
E

cube

basic

tree

Figure 10. Error of cube, basic and tree on the simulated data

0

500

1000

1500

2000

2500

3000

100 200 300

Thousands of examples

S
e

c

optimized

cube

naive

cube

single-

scan

cube
naive

tree

RF tree

0

200

400

600

800

1000

1200

2.5 5 7.5 10
Millions of examples

S
e

c

optimized

cube

single-

scan

cube

0

1000

2000

3000

4000

5000

6000

7000

2.5 5 7.5 10
Millions of examples

S
e

c

RF tree

Figure 11. Scalability of the algorithms

(a) (b) (c)

(a) (b)

(a) (b) (c)

Next, we show the scalability of the single-scan cube, the
optimized cube (in Figure 11 (b)) and the RF tree (in Figure 11
(c)). These algorithms all scale linearly in the number of examples
in the entire training data. Also the optimized cube has better
performance than the single-scan cube. Note that the RF tree takes
more time than the cubes. This is because RF tree scans the entire
training data once per level of the tree, while the cubes only scan
the entire training data once. Techniques developed in [6] can
further reduce the cost of the RF tree. Also, the cubes only use the
three item hierarchies, but the RF tree uses 4 additional numeric
item features.

Finally, we investigated the characteristics of the optimized cube
and the RF tree with respect to the number of significant item
subsets and the number of item-table features, respectively. The
optimized cube was applied to 2.5 millions of training examples,
and the RF tree was applied to 1 million training examples. Figure
12 (a) shows that the optimized cube scales linearly in the number
of significant item subsets. Figure 12 (b) shows that the RF tree
scales linearly in the number of item-table features.

8. RELATED WORK AND CONCLUSION
While marketing analysts have long understood that certain
locations might be good predictors for larger populations (e.g.,
Peoria and the US), our bellwether problem formulation in terms
of cube-space regions is novel in the OLAP, Data Mining and
Machine Learning literature. The key idea that we introduce in
bellwether analysis is that OLAP queries can be used to generate
the target values (or class labels) for prediction tasks, which opens
the possibility of developing a prediction system without the
expensive human labor of data labeling. In this paper, we have
demonstrated the feasibility of this idea using bellwether analysis,
shown its value, and developed several efficient and scalable
algorithms. In future work, we would like to apply bellwether
analysis to more real-life datasets and further explore the
paradigm of using OLAP queries to generate training sets, which
include features and targets, for various kinds of prediction tasks.

In related work, Greiner et al. in various papers [11] discussed
budgeted learning, which is similar to bellwether analysis in that
the goal of both problems is to find a cost-effective way to make
predictions for new examples. However, they did not consider
using aggregate queries to exploit the large available historical
data to create features and target values. Using aggregate queries
to generate features is a common practice in relational learning [5,
14]. In general, to create a feature for an item from a 1-to-n
relation requires aggregation. In particular, Friedman et al. [5]
used aggregate queries to create features for a relational extension
of Bayesian networks. Perlich et al. [14] introduced a hierarchy of

relational concepts that use features generated by aggregate
queries. However, none of the research in this field tries to find a
cost-effective way − in terms of real data collection cost − to make
predictions. Also, none of them considers using queries to
generate the target values to turn a large unlabeled dataset into a
labeled one. Predicting future target values based on historical
data is generally discussed in the time-series analysis and
forecasting literature [8] in Statistics. However, we are not aware
of any problem formulation similar to ours in this literature.

As to the algorithmic aspect of bellwether analysis, evaluating
iceberg queries to create the training set for feasible regions is
well known. Constructing decision/regression trees from large
datasets has also been studied. The contribution we make is to
develop sufficient statistics for bellwether trees so that existing
algorithms [6] can be used to scale up the construction of
bellwether trees. It is interesting to see whether other techniques
can be applied to bellwether analysis. Using predictive models in
OLAP-style space has been considered in [2, 4]. Based on
existing work, we developed a new technique to efficiently
compute mean squared errors for weighted linear models.

9. REFERENCES
[1] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse

and iceberg CUBEs. SIGMOD, 1999.

[2] B.-C. Chen, L. Chen, Y. Lin and R. Ramakrishnan. Prediction cubes.
VLDB, 2005.

[3] L. Chen, R. Ramakrishnan, P. Barford, B.-C. Chen and V.
Yegneswaran. Composite subset measures. VLDB, 2006.

[4] Y. Chen, G. Dong, J. Han, B. Wah and J. Wang. Multi-dimensional
regression analysis of time-series data streams. VLDB, 2002.

[5] N. Friedman, L. Getoor, D. Koller and A. Pfeffer. Learning
probabilistic relational models. IJCAI, 1999.

[6] J. Gehrke, R. Ramakrishnan and V. Ganti. RainForest - A framework
for fast decision tree construction of large datasets. VLDB, 1998.

[7] J. Gray, S. Chaudhuri, A. Bosworth and A. Layman, et al. Data cube:
A relational aggregation operator generalizing group-by, cross-tab,
and sub totals. Data Mining and Knowledge Discovery, 1997.

[8] J. Hamilton. Time Series Analysis. Princeton University Press, 1994.

[9] J. Han, J. Pei, G. Dong and K. Wang. Efficient computation of
iceberg cubes with complex measures. SIGMOD, 2001.

[10] V. Harinarayan, A. Rajaraman and J. Ullman. Implementing data
cubes efficiently. SIGMOD, 1996.

[11] A. Kapoor, R. Greiner. Budgeted learning of bounded active
classifiers. ECML, 2005.

[12] M. Mehta, J. Rissanen and R. Agrawal. MDL-based decision tree
pruning. KDD, 1995.

[13] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[14] C. Perlich, F. Provost. Aggregation-based feature invention and
relational concept classes. SIGKDD, 2003.

[15] J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[16] J. Quinlan and R. Rivest. Inferring decision trees using the minimum
description length principle. Information and Computation, 1989.

[17] S. Ray and M. Craven. Supervised versus multiple instance learning:
An empirical comparison. ICML, 2005.

[18] G. Seber and A. Lee. Linear Regression Analysis. John Wiley &
Sons, 2003.

[19] Z. Shao, J. Han and D. Xin. MM-cubing: Computing iceberg cubes
by factorizing the lattice space. SSDBM, 2004.

[20] Z. Zhou. Multi-instance learning: A survey. Technical Report, CS,

Nanjing University, 2004.

Optimized Cube

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000
of s ignif icant subsets

S
e

c

RF Tree

0

2000

4000

6000

8000

10000

0 50 100 150 200
of item table features

S
e

c

Figure 12. Characteristics of the optimized cube and the RF tree

(a) (b)

