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Abstract

This paper presents the PLANNETT system, which
combines artificial neural networks to achieve expert-
level accuracy on the difficult scientific task of recog-
nizing volcanos in radar images of the surface of the
planet Venus. PLANNETT uses ANNs that vary along
two dimensions: the set of input features used to train
and the number of hidden units. The ANNs are com-
bined simply by averaging their output activations.
When PLANNETT is used as the classification module
of a three-stage image analysis system called JAR-
TOOL, the end-to-end accuracy (sensitivity and speci-
ficity) is as good as that of a human planetary geolo-
gist on a four-image test suite. JARTOOL-PLANNETT
also achieves the best algorithmic accuracy on these
images to date.

Introduction

Between 1991 and 1994, the Magellan space probe
collected more than 30,000 synthetic aperture radar
(SAR) images of the surface of the planet Venus, a
greater amount of data than all previous planetary
missions combined (Smyth et al. 1995). To analyze
this data, researchers at NASA’s Jet Propulsion Labo-
ratory (JPL) have developed an Al system, JARTOOL
(Burl et al. 1994), to automatically detect and cata-
log the approximately one million small volcanos esti-
mated to be visible in the images, as a prelude to more
advanced planetary geology studies.

The accuracy of the current JARTOOL system is still
substantially below that of human scientists as mea-
sured by its sensitivity (ability to detect true volcanos)
and specificity (ability to avoid detecting nonvolcanos).
This motivates the current work, which introduces the
PLANNETT system (Person-Level Artificial Neural Net-
works for ExtraTerrestrial Terrain classification) in an
attempt to improve JARTOOL’s accuracy to the level
of a human expert. PLANNETT is a machine learning
(ML) system that combines multiple artificial neural
networks (ANNs) to improve volcano classification per-
formance. When PLANNETT is substituted for JAR-
TOOL’s current classification module, the resulting end-
to-end accuracy of the JARTOOL-PLANNETT system
reaches that of a human planetary geologist on a four-
image test suite.

As background, we briefly discuss the establishment
of ground truth for this problem, needed for per-
formance comparisons, and give an overview of the
JARTOOL system. Then we present the PLANNETT
system, and compare the new, combined JARTOOL-
PLANNETT system to the current JARTOOL (called
here JARTOOL-GAUSS) and to the performance of two
human planetary geologists at detecting volcanos in a
test suite of four images.

Establishing Ground Truth

Because we cannot verify which objects in the images
are truly volcanos, we must rely on human experts
to establish a ground truth labeling. Ground truth
is needed as a reference both for training ML volcano
classifiers and for comparing the performance of vari-
ous algorithms and humans. Because there is a wide
variation in the labelings created by individual experts,
the ground truth used for this study was the consensus
of two planetary geologists who discussed and labeled
the images together (Fayyad & Smyth 1993). This is
the ground truth labeling used for most of the JAR-
TOOL work at JPL. It consists of 163 volcanos in four
sample Magellan-SAR images. (Smyth et al. (1995)
describe an alternative, algorithmic approach to esti-
mating ground truth from the individual labelings of
many experts.)

The Current JARtool-Gauss System

JPL’s current JARTOOL system (Burl et al. 1994),
called here JARTOOL-GAUSS, consists of three mod-
ules

e Focus of Attention
e Feature Measurement
e Classification

The focus of attention (FOA) module uses a matched
filter to quickly scan the entire image database for re-
gions possibly containing volcanos. The goals of this
module are speed and sensitivity. The system attempts
to find as many of the true volcanos as possible, but



Table 1: Summary of the eight input representations PLANNETT uses. (GAUSS uses only representation 4.

| Rep. Name | Feats | Features Included

1. PCC6-HighRes 6 First six PCCs at full resolution

2. PCC6-MedRes 6 First six PCCs at half resolution

3. PCC6-LowRes 6 First six PCCs at quarter resolution

4. PCC6-MedRes-Petal 7 PCC6-MedRes, max petal filter

5. PCC6-AllRes-Petal 19 PCC6-HighRes, PCC6-MedRes, PCC6-LowRes, max petal filter

6. FFT-Feats 25 Avg. energies collected along 18 radii and 7 concentric rings of FFT image

7. All-But-FFT 94 All-Feats minus FFT-Feats

8. All-Feats 119 12 PCCs and 12 RMS reconstruction errors at full, half, and quarter res.;
FFT-Feats; features of dark, medium, and bright regions; max petal filter

may generate many false alarms (regions with no vol-
canos) in the process. That is, FOA has high sensitiv-
ity but low specificity.

The FOA module generates a list of candidate im-
age patches to be examined more carefully for volcanos.
This list is passed to the feature measurement module,
which measures a set of 119 continuous-valued descrip-
tive features from each patch. The features attempt
to capture the relevant information needed to distin-
guish volcanos from false alarms. The complete set of
119 available features consist of the first 12 principal
component coefficients (PCCs) from a singular value
decomposition of the true volcanos in the training set
and the corresponding 12 RMS reconstruction errors,
each at three different image patch resolutions (72 fea-
tures); average energies collected along 18 radii and 7
concentric rings of the Fast Fourier Transform of each
patch (25 features); 7 features of the dark, medium,
and bright regions of each patch, segmented using the
algorithm of (Pappas 1992) (21 features); and the max-
imum response of an orientation-dependent “petal” fil-
ter that responds most strongly to elongated, linear
objects (1 feature). (A high petal response is thus ev-
idence against a volcano.)

The classification module then uses the measured
features to decide which candidate patches actually
contain volcanos. It uses ML techniques and a set of
labeled training examples to learn to distinguish vol-
canos from false alarms, and then classifies each can-
didate according to what it has learned.

JARTOOL-GAUSS uses a simple Gaussian classifier
(Burl et al. 1994), called here GAUSS, as its classifi-
cation module. GAUSS examines only seven input fea-
tures: the first six PCCs of each candidate patch at
half resolution and the maximum petal response (rep-
resentation PCC6-MedRes-Petal in Table 1).! Tt fits
a seven-dimensional Gaussian to the training exam-
ples of each class (volcano and nonwvolcano) and uses
Bayes’ rule to estimate the posterior probability that
a given testing example is a volcano. GAUSS currently
does not use the other 112 available features.

'In (Burl et al. 1994), Gauss did not use the petal fea-
ture, but further work has shown that including it slightly
improves accuracy.

The New JARtool-Plannett System

PLANNETT is an ML system that replaces JARTOOL-
GAUss’s current GAUSS classification module to pro-
duce a new algorithm, JARTOOL-PLANNETT. We
developed PLANNETT in an attempt to take advan-
tage of the information contained in all 119 avail-
able input features. PLANNETT consists of a set of
32 feed-forward ANNs individually trained to distin-
guish volcanos from nonvolcanos using back propa-
gation (Rumelhart, Hinton, & Williams 1986), and
combined by averaging their output activations. The
ANNs contain an input layer, two output nodes (vol-
cano and nonvolcano), and an optional hidden layer.
The final classification is made by thresholding the dif-
ference between the averaged activations of the volcano
and nonvolcano output units of all 32 ANNs. The
averaging used to combine the ANNs is unweighted
and thus takes no account of the differing classifica-
tion accuracies of individual ANNs. Despite its sim-
plicity, this style of combining outputs has been shown
to produce a good composite model (Clemen 1989;
Krogh & Vedelsby 1995). More sophisticated combin-
ing techniques are described in, e.g. (Wolpert 1992;
Krogh & Vedelsby 1995; Tresp & Taniguchi 1995).

The ANNSs vary on two dimensions: the subset of in-
put features they are trained on and the number of hid-
den units they contain. PLANNETT trains ANNs using
eight different subsets of the 119 available continuous-
valued input features. Each of these subsets, or repre-
sentations, was hand selected as a potentially sensible
grouping of related features. The representations are
summarized in Table 1. Representations 1-4 in the ta-
ble concentrate on the first six PCCs at different reso-
lutions and the petal filter because these features work
well with the Gaussian classifier. The larger represen-
tations 5-8 in Table 1 were developed specifically for
the ANNSs, because the ANNs tended to become more
accurate as more features were added.

For each of the eight representations, PLANNETT
trains four ANNs that contain, respectively, 0, 5, 10,
and 20 hidden units in one layer. The parameters of
ANN training are summarized in Table 2.



Table 2: Back propagation parameter settings PLANNETT
uses.

| Parameter | Value |
Input Units one per input feature
Hidden Units 0, 5, 10, or 20
Output Units 2 (volcano, nonvolcano)
Activation Fn. sigmoid

Training Epochs | 500 (fixed)

Learning Rate 0.01

Momentum 0.90

Initial Weights uniformly random in [-0.5, 0.5]

Experimental Results

These experiments compare the end-to-end sensitivity
and specificity, with respect to the scientists’ consensus
labeling, of

o JARTOOL with current GAUSS classification module
(JARTOOL-GAUSS)

e JARTOOL with new PLANNETT classification mod-
ule (JARTOOL-PLANNETT)

e The two individual planetary geologists who created
the consensus labeling (two trials each)

JARTOOL-GAUSS and JARTOOL-PLANNETT are iden-
tical except for their classification modules. The algo-
rithms and the human scientists were all free to label
any object in the four images as a volcano. For analy-
sis, we present several graphs decomposing JARTOOL-
PLANNETT’s full set of 32 ANNSs into smaller groups
to investigate the impact of combining several input
representations and numbers of hidden units.

The GAUss and PLANNETT classifiers were evalu-
ated via four-image cross validation. The FOA detec-
tions from each image in turn were held aside as an
unseen testing set, while the classifier was trained on
the FOA detections from the remaining three images,
labeled according to the scientists’ consensus. The al-
gorithm performances shown are the aggregate results
over the four testing sets.

Figures 1-5 (described in detail below) present
the experimental comparison results. These graphs
show the detection rate (sensitivity) versus false alarm
rate (a measure of specificity) of JARTOOL-GAUSS,
JARTOOL-PLANNETT, and smaller groups of ANNs
as the threshold for classifying an object as a volcano
is varied.2 All graphs also include performance data
for the two planetary geologists scored individually
against the ground-truth consensus labeling in each of
two trials. Because the same two scientists created the
consensus labeling, the points plotting their individual
performances may be optimistic.

2@ Auss’s threshold applies to its computed posterior
probability that an object is a volcano, and is qualitatively
the same as PLANNETT’s.

On each graph, the point (0, 100) represents perfect
agreement with the consensus labeling, and the ideal
curve is the line segment from (0, 0) to (0, 100) and the
half line from (0, 100) to (oo, 100). The axes are scaled
by the number of consensus volcanos, 163. Thus, 100%
on the y axis indicates that all 163 consensus volcanos
have been detected, and 100% on the z axis that 163
false alarms have been generated. The FOA module
detected only 144 of the 163 consensus volcanos, so the
algorithms’ curves asymptote at y = 88.3% (144/163).
There were also 481 false alarms (nonvolcanos) in the
output of the FOA module, bring the total number of
image patches GAUSS and PLANNETT classified to 625.

Figure 1 compares JARTOOL-PLANNETT, which
combines all 32 ANNs (eight input representations,
four numbers of hidden units each), to JARTOOL-
GAuss and the planetary geologists. Note the ap-
preciable variation between the scientists and within
each scientist’s own labelings carried out at different
times. The scientists’ individual points are also quite
distant from the consensus point (0, 100), despite the
fact that the same two scientists created the consensus.
This is thus a difficult problem even for knowledge-
able experts. We therefore treat the individual scien-
tist points as benchmarks of expert-level performance,
and our goal is for our algorithms to achieve similar
accuracy. As Figure 1 shows, JARTOOL-PLANNETT
does achieve the same level of accuracy as Scientist 2
on this problem. This is the first algorithm to reach
expert-level performance on this task, and represents
a significant advancement of automating volcano cata-
loging. JARTOOL-PLANNETT improves upon the pre-
vious JARTOOL-GAUSS system, producing substan-
tially more true detections for a given false alarm rate
for most of the curve (see figure).

There is a sensitivity-specificity tradeoff as the vol-
cano detection threshold is varied. For this work, we
are most interested in the portions of the curves near
the scientists’ points as well as the overall picture of
how the curves from two algorithms compare. If one as-
signs specific costs to missed volcanos and false alarms,
cross validation techniques could be used to choose an
appropriate threshold automatically.

Figure 2 breaks JARTOOL-PLANNETT’S 32 ANNs
into eight groups of four according to the input rep-
resentation used to train. Each group combines four
ANNs having 0, 5, 10, and 20 hidden units, respec-
tively. The figure also shows JARTOOL-PLANNETT’s
curve combining all 32 ANNs. The different input rep-
resentations produce a wide range of ANN accuracies.
It is striking that JARTOOL-PLANNETT’s unweighted
averaging of all 32 ANNs yields better accuracy for
much of the curve than any individual representation,
despite including three very poor representations. This
may indicate that the different representations succeed
in producing ANNs whose errors are relatively uncor-
related or negatively correlated, a situation favorable
to reducing error when combining models (Krogh &
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Figure 1: Comparison of JARTOOL-PLANNETT (32 combined ANNs) to JARTOOL-GAUSS and human scientists.
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Figure 2: Comparison of ANNs trained on each individual input representation and combined (four ANNs per represen-
tation, with 0, 5, 10, and 20 hidden units, respectively) to JARTOOL-PLANNETT, which combines the ANNs from all eight
representations (32 ANNs), and human scientists.
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Figure 3: Comparison of combining four ANNSs trained on representation All-But-FFT with 0, 5, 10, and 20 hidden units,

respectively, to each individual ANN and human scientists.

Vedelsby 1995; Ali 1996). Interestingly, PCC6-MedRes
is a very good representation, but the variations PCC6-
LowRes and PCC6-HighRes, which use different source
image resolutions, are the two worst representations.
(The accuracy differences for these three representa-
tions are much smaller for the Gaussian classifier, but
the ordering is the same.)

Figure 3 gives a more detailed picture of the ANNs
trained on the All-But-FFT representation, which is
the best individual representation as judged from Fig-
ure 2. It compares the curves for the four individ-
ual ANNs to the curve for the four ANNs combined
(which also appeared in Figure 2). Individual ANN
accuracy varies substantially for different numbers of
hidden units, while the combined-ANN result here is
actually better than that of the best individual ANN,
which had 5 hidden units. We typically found that
combining ANNs trained on a single input represen-
tation with different numbers of hidden units gave re-
sults about as good as the best individual ANN. This
is fortunate, because the number of hidden units that
produces the best results changes with different input
representations. It would be unfair to look at the test-
ing set results to choose the number of hidden units.
Instead, by averaging over several numbers of hidden
units, we do about as well as any individual network
without having to choose a specific network size.

Figure 4 demonstrates that slight changes in the in-
put representation can have a large impact on ANN

classification accuracy. The figure shows curves for
combining the four ANNs trained on each of the PCC6-
MedRes-Petal and PCC6-MedRes input representa-
tions, respectively (two of the curves shown in Fig-
ure 2). Recall that PCC6-MedRes-Petal is the rep-
resentation used by JARTOOL-GAUSS, containing six
PCCs plus the petal feature. PCC6-MedRes is identi-
cal except for the omission of the petal feature. The
figure shows that including the petal feature in this
case substantially improves ANN accuracy.

Figure 5 compares the combined-ANN curve for
representation PCC6-MedRes-Petal from Figure 4 to
JARTOOL-GAUSS and the human scientists. This
comparison is interesting because it varies the clas-
sification algorithm (ANNs versus Gaussian classi-
fier) while holding the input representation, PCC6-
MedRes-Petal, constant. For most of the curve, includ-
ing the “knee” portion where the scientist points are,
the combined ANNs slightly outperform JARTOOL-
GAUss. The single-ANN curves for this representa-
tion (not shown) cluster tightly around the two plotted
curves. They are not shown simply because including
them makes it nearly impossible to distinguish the in-
tertwining JARTOOL-GAUSS curve. In this case, the
combined ANNs perform better than the three indi-
vidual ANNs having 5, 10, and 20 hidden units, and
slightly worse than the ANN with no hidden units. On
average, the individual ANNs using just the PCC6-
MedRes-Petal representation are about as good as
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Figure 4: Comparison of combining four ANNs trained on representations PCC6-MedRes-Petal (seven features) versus
PCC6-MedRes (six features) with 0, 5, 10, and 20 hidden units and human scientists. The representations differ from each
other only as to whether or not the maximum petal response feature is included.
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Figure 5: Comparison of combining four ANNs trained on representation PCC6-MedRes-Petal with 0, 5, 10, and 20 hidden

units to JARTOOL-GAUSS, which uses the same input representation, and human scientists.
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JARTOOL-GAUSS using the same representation (one
is appreciably better, one is about equivalent, and two
are slightly worse), while the combination of all four
ANNSs performs slightly better than average and has
a small edge over JARTOOL-GAUSS. This suggests
that JARTOOL-PLANNETT’s accuracy advantage over
JARTOOL-GAUSS is not primarily due to the differ-
ent learning algorithm used (ANNs versus Gaussian
classifier), but rather to its combination of many dif-
ferent input representations, although this hypothesis
requires verification via experiments in which Gaussian
models are trained and combined over the same eight
input representations the ANNs used.

One advantage the Gaussian classifier has over
ANNs is its much lower computational expense for
small input representations. GAUSS required less than
one CPU second on a modern workstation to perform
the entire four-image cross validation training and test-
ing, while PLANNETT used about 2,700 seconds on
comparable hardware to train and test the subset of
its ANNs that use the same input representation as
GAUss. For the entire experiment using all eight input
representations, PLANNETT consumed approximately
45,100 seconds (about 12.5 hours). However, training
time for the ANNs increases only linearly in the num-
ber of input features, while for the Gaussian classifier
it increases approximately as the cube of the number
of features, so GAUSS’s time advantage quickly disap-
pears as larger feature sets are used. In any case, a
few hours of extra computational expense are of little
importance in a project that has spanned several years
and in which final classification accuracy is the most
important goal.

Conclusions

This paper introduced the PLANNETT system, which
combines multiple ANNs to improve classification
performance on the task of recognizing volcanos in
Magellan radar images of Venus. PLANNETT re-
places the current GAUSS classification module of the
JARTOOL image analysis system developed at the
Jet Propulsion Laboratory. The resulting system,
JARTOOL-PLANNETT, achieves the accuracy (both
sensitivity and specificity) of a human planetary ge-
ologist at recognizing volcanos in a test suite of
four images. JARTOOL-PLANNETT outperforms the
JARTOOL-GAUSS system and achieves the best algo-
rithmic results on this image suite to date.

The analysis presented indicates that PLANNETT’s
accuracy improvements over GAUSS likely stem from
its combination of multiple different input represen-
tations and its use of more diverse sets of input fea-
tures. Additional experiments are needed to determine
whether the GAUSS classifier could benefit equally
from a similar combination scheme. Future work will
test JARTOOL-PLANNETT and JARTOOL-GAUSS on
a larger set of labeled images that have not been used
for algorithmic development. If results are favorable,

PLANNETT may replace GAUSS as JARTOOL’s classi-
fication module of choice.
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