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Abstract

The choice of an input representation for machine learning can have a profound
impact on the accuracy of the learned model in classifying novel instances. A reliable
method of rapidly estimating the value of a representation, independent of the learner,
would be a powerful tool in the search for better representations. We introduce a
fast representation-quality measure that is more accurate than Rendell and Ragavan’s
blurring metric in rank ordering input representations for neural networks on two diffi-
cult, real-world datasets. This work constitutes a step forward both in representation
quality measures and in our understanding of the characteristics that engender good
representations.

1 Introduction

A major area of machine learning research is inductive learning from eramples, where a
system uses a set of classified training eramples to induce a model, or “concept,” that will
accurately predict the classes of future examples. A main component of this approach is
selecting an input representation for the examples. The most common technique describes
each example by a vector of feature-value pairs. However, the particular features used are
crucial to the learner’s success. Given a large pool of candidate features, there are combi-
natorially many subsets that could be chosen, motivating the need for automated selection
methods [4, 5, 6]. To consider a large number of representations, we need a fast measure
of representation quality. This is most important for computationally expensive learning
systems such as backpropagation-trained artificial neural networks (ANNs) [19], where a full
cross-validation learning experiment may use weeks of computer time. In such cases it is
impossible to search many representations without an inexpensive quality estimator.

In this paper we introduce three such estimators, which we call transparency measures.
We evaluate the measures empirically using two difficult, real-world datasets, demonstrating
that they produce reliable estimates of ANN input representation quality. In addition, these
estimates are better than those produced by Rendell and Ragavan’s blurring measure [17].
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2 Why Transparency?

Other work in representation evaluation concentrates mainly on the ability to separate ex-
amples of different classes (which we call coverage) and on representation size (economy)
[1, 11, 12, 13, 14, 21], the implicit assumption being that these are all one needs to evaluate
representation quality. A typical heuristic is, “If two representations have equal coverage,
prefer the more economical (smaller) one.” We believe this intuition is incomplete. There
is more to representation quality than coverage and economy, as our experiments show. We
call the missing factor transparency.

Transparency describes the ease of learning an accurate concept under a given representa-
tion. If a representation tends to foster easily learnable, accurate concepts, it is transparent,
while if most of the expressible accurate models are difficult to learn, it is opaque—even if
it has good coverage and economy—and learners using it will likely perform poorly.

We must decide first what we mean by models that are “easy to learn,” and second what
it is about representations that influences this. We believe the ease of learning a model
is determined by its complexity. Models with high-order feature interactions (e.g. lengthy
conjunctions) or many disjunctions are difficult to learn. There are f-choose-d possible order-
d feature interactions in a set of f features, so as interactions increase linearly, the search
space containing such models grows combinatorially. Disjunctions partition the training
data, so there are fewer examples available to learn each disjunct [9], leading to less accurate
models. The problem of quickly estimating how well a representation fosters simple, accurate
models is the focus of the remainder of this paper.

3 Transparency Measures

This paper’s main question is, “How do we estimate a representation’s tendency to produce
simple, accurate models?” This is not the same as asking, “What is the simplest accurate
model constructible under a given representation?” Answering the latter question requires an
intractable search and may tell us little about how well we can expect to do in practice. What
interests us is the average complexity of the accurate models possible under a representation.
This is the representation’s transparency, which estimates the complexity of the accurate
models we expect typical learners to find. Transparency is related to minimum description
length (MDL) [18] in that both have biases toward low complexity. MDL is a heuristic for
estimating model quality (“smaller encodings are better”). Transparency is a heuristic for
estimating representation quality based on the average complexity of the models a typical
learner will build under a representation.

Some authors concerned with representation quality do not address transparency at all,
and design feature-selection systems that may even minimize it (e.g. [1]). Others construct
new features with the implicit goal of raising transparency, but do not attempt a formal
definition of it (e.g. [11, 12, 13, 14, 21]). These methods likely do increase transparency, but
the authors explain that this is done to (indirectly) reach an explicit goal of economy. The
idea that transparency itself has value (indeed, more value than economy) seldom appears.
In the following sections we discuss several different transparency estimators.



3.1 Blurring as a Transparency Measure

Rendell and Ragavan [17] do address the issue of transparency explicitly and present a
method for quantifying it in a metric they call blurring. They claim that the less a rep-
resentation requires the use of feature interactions to produce accurate models, the more
transparent it is. However, blurring does not examine feature interactions per se. Instead it
measures the average value, or information content, of a representation’s individual features.
This may often correlate with the level of feature interaction needed, but it does not directly
measure it. Blurring is equivalent to the (negation of the) average information gain [15] of
a representation’s features with respect to a training set. (We show this in our Appendix.)

3.2 Model-Based Transparency Measures

We now introduce a new class of “model-based” transparency measures that sample actual
models of the target concept to make their estimates. In our experiments, the sampled mod-
els are decision trees, chosen because they are simple, inexpensive, and commonly used. The
experiments demonstrate that tree-based measures make good predictions for ANN perfor-
mance, suggesting that the measures capture fundamental properties of the representations.

We evaluate three model-based measures below, two of which calculate the average com-
plexity of n random decision trees that perfectly classify the training set (n = 100 below).
Random tree-building is top-down; features are chosen with uniform probability from those
which further partition the training examples (ignoring example class). Tree building termi-
nates either when each leaf contains examples of only one class or when there are no more
features that further partition the examples.

Our first measure estimates the expected disjunctive complexity of accurate models as
the average number of leaves in n random decision trees:2

avg(leaves) = 2 37 | leaves(t)

where leaves(t) is the number of leaves in tree ¢. High values indicate high model complexity
(low transparency), since each leaf corresponds to a disjunct.
Min(leaves) is similar, except it uses the minimum number of leaves over the n trees:

min(leaves) = glllin(leaves(t))

This is more guided than avg(leaves), basing its estimate on the “best” model seen.
ID3leaves counts the number of leaves in the tree grown by Quinlan’s [15] ID3 algorithm:

ID3leaves = leaves(I1D3)

This is the most guided transparency metric we examine, since it bases its estimate on the
most intelligently chosen model.

2Measures based on conjunctive complexity (i.e. leaf depth, or “number of decisions”) performed more
poorly and so are not included here.



4 Experiments

We evaluate the above transparency measures using ANNs as the learning systems for two
problems: prediction of gene reading frames in DNA segments (six classes), and handwritten
digit recognition (ten classes). In other work we have found that ANNs make more accurate
class predictions than decision trees for these datasets, motivating our interest in developing
inexpensive representation quality measures for ANNs, as the high ANN training cost limits
the number of representations we can try directly.

The DNA data is from Craven and Shavlik [7] and consists of 20,000 examples from 30
“sufficiently independent” E. coli genes. Each example is a 61-base window from one gene,
and the learner predicts which of six possible reading frames encodes the gene. The data is
in four 5,000-example sets, with all examples from each gene kept in a single set, allowing
four-fold cross-validation (CV) with no gene overlap between training and testing sets.

The digit data is the NIST “F13” set, available by ftp from sequoyah.ncsl.nist.gov.
There are 3,471 images of the digits 0-9 from 49 different writers. We put 10% of the exam-
ples of each class randomly into each of ten files and used ten-fold CV for our experiments.

4.1 Experiment 1—Raw Representations

This experiment compares the transparency measures on ten input representations of differ-
ent qualities and sizes, created by an algorithm we call RS (“Representation Selector”). RS
first constructs a large pool of candidate Boolean features according to general user-defined
feature types. This pool contained 5,460 features for DNA and 251,679 for NIST. For each
CV fold, RS sorts the features by information gain on the entire training set. Then it scans
the list, selecting each feature that is pairwise independent of all other features already se-
lected. Independence is determined by calculating the X? statistic of a 2 x 2 contingency
table for the training examples, where each example is one count in the table. The table
rows and columns are indexed by the two possible values of each feature.

Table 1 shows such a contingency table and the corresponding X? statistic, which is
approximately x? with one degree of freedom. We test the hypothesis that the features are
independent, rejecting it only if the X? value is > 400, which implies feature dependence
with greater than 0.999999 confidence. Such an easy acceptance criterion is needed because
as the representation grows, new features must past tens or hundreds of tests to be included.
Feature selection stops once the selected features can fully separate the training examples
into their respective classes.

The above procedure produces a single reasonable input representation. (Similar methods

Table 1: Left: a contingency table tallying training examples according to the values of two
features. Right: the corresponding X? statistic.

Feature 1
0 1 X2:(ad—bc)2><(a+b+c+d)
Feature 2 (1) 2 3 (a+c)(b+d)(a+b)(c+d)




are used as feature-selection algorithms by others [2, 3].) To obtain different representations,
we ran RS again with different initial feature pools. The new pools were derived from the
original pool by deleting features whose training-set information gains were greater than or
equal to various thresholds. We created nine additional representations for each problem
by using the thresholds {0.30, 0.20, 0.15, 0.10, 0.05, 0.04, 0.03, 0.02, 0.01}. The represen-
tations generally degrade as more high-scoring features are deleted, giving us a range of
representation qualities to test our measures on.

We evaluated the different measures by comparing the rank ordering they assigned the
representations to that given by ANN test-set accuracies. We are not primarily interested in
the ANN accuracies for these experiments; we only use them to create a ground-truth ranking
of representation quality. The experiments test the ability of our transparency measures to
approximate this ranking.

Our ground-truth rankings are from feed-forward ANNs trained with backpropagation
(learning rate = 0.01, momentum = 0.9, 15 epochs for DNA, 50 epochs for NIST). We used
a tuning set comprising 10% of the training set to pick the stopping epoch. For each repre-
sentation, we tried six different numbers of hidden units in one layer: 0, 10, 20, 40, 80, and
160. The best CV accuracy among these six trials was used to rank the input representation
relative to the others. Table 2 (left) shows the ANN accuracies and resultant rankings. With
one exception, better initial feature pools yielded higher ANN test-set accuracies.

To evaluate the transparency measures, we computed the rank correlation coefficients,
rg, between the rankings they assigned and the ground-truth ranking for each dataset:

635, d}

T
'S n(n? —1)

where d; is the difference between the integer ranks assigned to representation 7 by ground-

Table 2: Left: ground-truth ranking of the ten representations for each dataset in Exper. 1. Rk:
rank. Rep: allowable information gains of features in the pool from which each representation was
chosen. % Acc: test-set accuracy of the best ANN CV run for each representation; these deter-
mine the ranking. Right: ground-truth ranking compared to rankings assigned by transparency
measures (listed by name) in Exper. 1. rg: rank correlation coefficient.

DNA NIST
Rk || Rep | % Acc| Rep | % Acc
1 All 82.2 All 92.4
21 <030 79.7 | <0.30| 91.9 DNA NIST
31 <020]| 765 | <020] 910 Measure | rg Measure | rg
41 <010] 75.2 <0.15| 89.6 ID3leaves | 0.988 | ID3leaves | 1.000
51 <015 745 || <0.10| 87.6 Min(leaves) | 0.939 | Min(leaves)
6 <005| 702 || <0.05| 77.1 Avg(leaves) | 0.782 || Avg(leaves)
71 <004 698 || <004 744 Blurring Blurring
81 <0.03| 664 <0.03| 674
91 <£0.02| 58.8 <0.02]| 629
10 | < 0.01 | 49.3 < 0.01| 50.0




truth and the transparency measure. Table 2 (right) shows these. For DNA, the best
rankings are given by the most guided measures, ID8leaves and min(leaves). Blurring tied
for third place with avg(leaves). For NIST, all measures produced perfect rankings, adding
credence to their usefulness for diverse real-world problems. There is high confidence (greater
than 0.98 for DNA and 0.99 for NIST) that a true correlation exists between each measure’s
ranking and ground-truth.

4.2 Experiment 2—Same-Size Representations

Some of the difference in representation quality observed in Exper. 1 may be due to differing
representation sizes, not to transparency differences. Therefore, in Exper. 2 we equalized
the representation sizes. Exper. 2 is the same as Exper. 1 except that feature selection was
no longer terminated when all training examples were separated into their classes. Instead,
RS continued to add features until a fixed number were selected, chosen to be greater than
the number needed to correctly classify the training examples (200 features for DNA, 250
for NIST). Each Exper. 2 representation R? (: = 1, ..., 10) is thus a proper superset of
the corresponding Exper. 1 representation R}, and all representations for a given dataset
in Exper. 2 are identical in size and allow perfect classification of the training examples.
Additionally, all the extra features added to each Exper. 2 representation had training-set
information gains as bad or worse than the worst feature in the corresponding Exper. 1
representation.

Table 3 (left) shows the ground-truth rankings and ANN accuracies for Exper. 2. Again,
better feature pools on average tended to produce better representations. Comparing to
Table 2, note that in every case expanding the representations increased the ANN accuracies,
even though the added features were poorer than the original ones. This shows that smaller
consistent feature sets are not necessarily better as is often claimed [1, 11, 12, 13, 14, 21].

Table 3 (right) compares the transparency measures in Exper. 2. Again, all measures
performed perfectly on the NIST data. On the DNA data, the three model-based mea-

Table 3: Left: ground-truth ranking of the ten representations for each dataset in Exper. 2. Right:
ground-truth rankings compared to rankings assigned by transparency measures in Exper. 2.

DNA NIST
Rk | Rep | % Acc| Rep | % Acc
1 All 84.4 All 94.0
21 <030 8.9 | <030 93.7 DNA NIST
31<015| 82.8 || <0.20] 93.0 Measure ‘ Ts Measure ‘ rs
41 <0.10| 823 | <0.15| 927 Min(leaves) | 0.988 | Min(leaves) | 1.000
511 <020 8.2 || <0.10] 92.0 Avg(leaves) | 0.964 || Avg(leaves)
61 <0.04| 80.2 < 0.05| 88.5 ID3leaves | 0.952 ID3leaves
71 <0.05| 794 <0.04| 85.3 Blurring 0.806 Blurring
81 <0.03| 77.7 | <0.03| 80.8
9(1<0.02| 715 ||<0.02| 73.7
10 | <0.01| 55.3 || <0.01| 54.4




sures did well, with rank correlations greater than 0.95. Blurring’s predictions are poorer
(rs = 0.806). Exper. 2 strengthens our empirical evidence that transparency measures based
on typical model complexity can be more accurate than simpler measures like blurring. More-
over, having equalized coverage and economy across representations in Exper. 2, we believe
transparency accounts for most of the observed differences in ANN test-set accuracy.

4.3 Experiment 3—Redundant Features

ANNs can often use redundant features to advantage (e.g. see [20]), an ability generally
not attributed to decision trees. Therefore, a transparency measure based on decision trees
may be unable to accurately rank a pair of representations R' and R? to be used by an
ANN, where R? is just R' plus some redundant features. Exper. 3 shows that a tree-based
transparency measure can in fact accurately predict which representation is better for ANNs.

In Exper. 3 we compared the ten representations from Exper. 1 with the ten corresponding
representations from Exper. 2. Recall that each Exper. 2 representation R? (1 = 1, ..., 10)
was created by adding extra features to an Exper. 1 representation R} (so R? D R}). The
additional features in Exper. 2 were not needed to separate the training data and also had
lower training-set information gains than the original features of Exper. 1 they were added
to. Thus, each pair of Exper. 1-Exper. 2 representations fits the situation described in the
previous paragraph.

Across these ten representation pairs, in every case ANN test-set accuracy was higher for
the Exper. 2 (larger, more redundant) representation (see Tables 2 and 3). Exper. 3 tests the
ability of the various transparency measures to predict this. For each pair of corresponding
Exper. 1 and Exper. 2 representations, we counted the number of times each transparency
measure correctly scored Exper. 2’s representation higher. Table 4 shows the results.

The only measure that correctly scored any representation pairs was ID3leaves, which is
based on the ID3 decision tree. It scored all 20 pairs correctly, while the other measures
scored all pairs incorrectly. ID3 must benefit from redundant features, probably because
having more splitting options allows better greedy choices to be made.

The measures based on random trees, on the other hand, suffer in the face of redun-
dant features. The added features in Exper. 2 are poorer than those shared with Exper. 1
representations. This lowers the average predictiveness of the features in the Exper. 2 rep-
resentations. The quality of random feature choices for the tree nodes degrades with the
average quality of the available features, so the redundant representations yield more com-
plex random trees.

Blurring examines only the information gains of individual features. The representations
of Exper. 2 must necessarily score worse under blurring because the added features were all

Table 4: Number of correct rankings (out of 10) by each transparency measure of the pairs of
corresponding Exper. 1 and Exper. 2 representations.

| Measure | ID3leaves | Min(leaves) | Avg(leaves) | Blurring |

DNA 10 0 0 0
NIST 10 0 0 0




of lower information gains than the original Exper. 1 features.
The probability of ID&leaves ordering all 20 pairs of representations correctly by chance

2

20
is (l) , which is less than one in a million. We conclude that ID3leaves, though tree-based,
is nonetheless robust in the face of redundant features. The other measures clearly are not.

5 Discussion

Our experiments show that what we call transparency is an important factor in the quality
of input representations for ANN learning. We also found that model-based transparency
measures can be better at predicting representation quality than the less sophisticated blur-
ring metric, even though we created the different representations by thresholding feature
information gains, which should fit blurring’s biases well.

Blurring is, however, the fastest measure discussed in this paper. It computes the infor-
mation gain of each feature on the training set once and consumed on the order of a few
CPU seconds per representation evaluated on a SPARC 10/30 workstation. ID3leaves builds
an ID3 decision tree, doing approximately blurring’s amount of work for each tree node and
using a few CPU minutes per representation. However, the ANN CV runs required several
CPU days for the larger representations, so ID3leaves still saves three orders of magnitude.
Blurring and ID3leaves present a tradeoff between ranking accuracy and time consumed.

The other transparency measures were slower than blurring or ID3leaves (on the order of
hours) when we sampled 100 random trees, and therefore may not be fast enough for many
purposes unless the number of samples can be greatly reduced. Rerunning the experiments
with a sample size of 10, which requires about the same amount of time per measure as
ID3leaves, degraded the DNA results only slightly and the NIST results not at all.

Even though all the new transparency measures we introduced are based on decision-tree
models, the rankings they gave were accurate for neural networks. This suggests that they
measure something fundamental about representation quality for a perhaps broad class of
learning systems rather than just artifacts of the particular models measured. Further work
is needed to verify this supposition.

John et al. [10] propose that representations should be scored on the basis of models
constructed by the actual learning algorithm to be used for production runs, as is done, for
example, by Caruana and Freitag [4] with ID3 and C4.5 [16]. They believe that learner-
independent quality measures cannot be accurate enough. However, this approach is too
costly to be applied effectively to the ANNs we use here. We showed in this paper that
inexpensive, learner-independent measures can indeed perform well.

6 Future Work

We would like to develop a single formula in coverage, transparency, and economy (CTE)
that efficiently predicts representation quality. The experiments reported here isolated trans-
parency, but in general one must take all three factors into account. An open question is
how learner-dependent such a formula will be. We suspect that many learning techniques
build similar types of models, and we hope that one formula may therefore apply to a broad



range of learners. We intend to test our ideas on other standard learning algorithms and
additional real-world datasets.

Low-cost quality measures make it possible to search a larger number of potential repre-
sentations. A CTE formula could thus form the basis of broadly applicable representation-
selection schemes (e.g. genetic search over representations using CTE values in the fitness
function). Fast representation evaluation is necessary to search many representations for
expensive learners.

Another issue is extending our transparency measures to continuously valued features.
Fortunately, effective methods of discretizing continuous features for decision trees have
already been developed [8, 16] and can be inserted directly into our measures.

7 Conclusions

We discussed transparency as an important factor in representation quality and developed
inexpensive, effective ways to measure it. Empirical tests on two real-world datasets demon-
strated these measures’ accuracy at ranking representations for ANN learning at much lower
cost than training the ANNs themselves. This work is a step forward in understanding
representation quality and solving the problem of its rapid estimation.

Appendix

We show here that Rendell and Ragavan’s (“R&R”) blurring metric [17] is equivalent to
the average information gain of a representation’s features. R&R define the entropy H of a
binary concept y with class values 0 and 1 as

H(y) = —[p(y) logy p(y) + p(7) log, p(7)]

where p(y) and p(7) are the prior probabilities that y = 1 and y = 0, respectively. This is a
standard entropy measure, which Quinlan [15] calls I(p,n), p and n being R&R’s p(y) and
p(7), respectively. R&R also define the entropy of y conditioned on feature x; as

H(ylz;) = — X, p(zi = v)[p(ylz; = v) log, p(y|zi = v) + p(Y|z; = v)logy p(Yl|z; = v)]

over all values v of z;. Quinlan calls this F(A), where his A is R&R’s z;. Finally, R&R
define blurring as the average value of H(y|x;) over the n features in the representation

A=15r, Hyls) (1)

n

But note that Quinlan’s definition of information gain is gain(A) = I(p,n) — E(A) which in
R&R’s notation would be gain(x;) = H(y) — H(y|z;) so average information gain is just

gain = S [H(y) — H(ylz:)] = H(y) — 3 Ziny H(ylz:) (2)

Substituting A (Equation 1) into Equation 2 gives A = H(y) — gain. Blurring (A) is thus
equivalent to a constant minus the average information gain of the representation’s features.
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