Appears in Proceedings of the First International Conference on Intelligent Systems for Molecular Biology,
Bethesda, MD: AAAT Press (1993). © 1993 AAAI

Protein Structure Prediction: Selecting Salient Features
from Large Candidate Pools

Kevin J. Cherkauer

cherkaue@cs.wisc.edu

Jude W. Shavlik

shavlik@cs.wisc.edu

Computer Sciences Department, University of Wisconsin-Madison
1210 W. Dayton St., Madison, WI 53706

Abstract

We introduce a parallel approach, “DT-SELECT,”
for selecting features used by inductive learning
algorithms to predict protein secondary structure.
DT-SELECT is able to rapidly choose small, nonre-
dundant feature sets from pools containing hun-
dreds of thousands of potentially useful features.
It does this by building a decision tree, using fea-
tures from the pool, that classifies a set of training
examples. The features included in the tree pro-
vide a compact description of the training data
and are thus suitable for use as inputs to other
inductive learning algorithms. Empirical experi-
ments in the protein secondary-structure task, in
which sets of complex features chosen by DT-
SELECT are used to augment a standard artificial
neural network representation, yield surprisingly
little performance gain, even though features are
selected from very large feature pools. We discuss
some possible reasons for this result.!

Introduction

The problem of predicting protein secondary struc-
tures is the subject of much research. For quite some
time, researchers in both molecular biology and com-
puter science have attempted to develop rules or al-
gorithms that can accurately predict these structures
(e.g. Lim, 1974a, 1974b; Chou & Fasman, 1978; Qian
& Sejnowski, 1988; King & Sternberg, 1990; Zhang,
Mesirov, & Waltz, 1992). Researchers often make use
of inductive learning techniques, whereby a system is
trained with a set of sample proteins of known con-
formation and then uses what it has learned to predict
the secondary structures of previously unseen proteins.
However, the form in which the examples are repre-
sented is an issue which is often not well addressed.
The performance of inductive learning algorithms is

!This work was supported by National Science Founda-
tion Grants IRI-9002413 and CDA-9024618.

intimately tied to the representation chosen to de-
scribe the examples. Classification accuracy may vary
widely depending on this representation, even though
other factors are held constant (Farber, Lapedes, &
Sirotkin, 1992; Craven & Shavlik, 1993), yet in most
cases the learning systems are given only the names of
the amino acids in a segment of protein with which to
make their predictions. There is a wealth of other in-
formation available about the properties of individual
amino acids (e.g. Kidera et al., 1985; Hunter, 1991)
that is ignored by these representations. This work
tests the hypothesis that inclusion of this information
should improve the predictive accuracy of inductive al-
gorithms for secondary-structure prediction.

In order to test our hypothesis, we must address
directly the question of representation choice. Our
method, called “DT-SELECT” (Decision Tree feature
Selection), chooses a small set of descriptive features
from a pool that may contain several hundred thou-
sand potentially salient ones. The method works by
constructing a decision tree from a set of training ex-
amples, where the nodes of the decision tree are chosen
from the pool. We use parallel processing to evaluate a
large number of features in reasonable time. Once the
tree is constructed, the features comprising its internal
nodes provide a representation for use by other induc-
tive learning algorithms. (Decision trees themselves
can be used as classifiers, however we have found that
on this problem they exhibit poor performance. This is
one reason they are treated here primarily as a feature
selection method, rather than an end in themselves.)

The exploration of very large feature spaces is a pri-
mary thrust of this work. It is our hope that such an
approach will discover informative features which en-
hance the performance of inductive learning algorithms
on this problem, either when used to augment more
standard representations or, possibly, as self-contained
representations.

Given this knowledge, our most surprising (and dis-
appointing) discovery is that the ability to choose

among thousands of features, many of which are quite
sophisticated and domain-specific, does not appear to
lead to significant gains on the secondary-structure
task. Experiments that use features chosen by DT-
SELECT to augment the standard input representa-
tions of artificial neural networks are detailed in the
“Experiments” section, along with some speculations
about their failure to improve the networks’ classifica-
tion accuracies. We also discuss the particular types
of features included in the selection pools.

DT-Select
The DT-SELECT algorithm can be outlined as follows:

1. Construct a large pool of potentially useful
features

2. Initialize an empty decision tree

3. Initialize the training set to all training
examples

4. Select a feature (i.e. add a decision tree node):

4a. Score all features in parallel on the current
training set

4b. Add the most informative feature to the
decision tree (or terminate the branch if
the stopping criterion is met)

4c. Partition the current training examples
according to the values of the chosen
feature, if any, and recur (step 4) on
each subset to build each subtree

5. Output the internal-node features as the new
representation

The tree-building algorithm is essentially ID3 (Quin-
lan, 1986), except that the features examined at each
iteration are drawn from the pool constructed in step
1, which may be very large and contain complex com-
pound features. We describe the types of features cur-
rently implemented in the section titled “Constructed
Features.”

Scoring (step 4a) uses ID3’s information-gain metric
and is performed in parallel, with the feature pool dis-
tributed across processors. This metric gives a measure
of the value of each feature in correctly separating the
examples into their respective categories. The better a
particular feature does at partitioning the examples ac-
cording to class boundaries, the higher its information
gain.2 Repeated partitioning by several informative
features in conjunction eventually yields sets of exam-
ples which contain only one class each. For this task,
decision trees that completely separate the examples
in this way actually overfit the training data. To alle-
viate this problem, we limit tree growth by requiring a

2We also intend to explore the use of Fayyad and Irani’s
(1992) orthogonality measure, which exhibits better per-
formance on several tasks, as a substitute for information
gain.

feature to pass a simple x? test before being added to
the tree (Quinlan, 1986). This test, whose strictness
may be adjusted as a parameter, ensures that included
features discriminate examples with an accuracy better
than expected by chance.?

Feature selection is accomplished efficiently by
decision-tree construction, resulting in small sets of dis-
criminatory features that are capable of describing the
dataset. If we simply chose the n features from the
pool with highest information gain, we would instead
likely obtain a highly redundant feature set with poor
discriminatory power. This is because many slightly
different versions of the few best features would be
chosen, rather than a mix of features which apply to
different types of examples. Using decision trees for se-
lection helps control this problem of highly correlated
features, because at each selection step the single fea-
ture that best separates the remaining training exam-
ples is added to the tree. This provides a measure of
orthogonality to the final set of features.

Almuallim and Dietterich (1991) offer a different
feature-selection method, but its emphasis is on finding
a minimal set of features that can separate the data,
whereas our desire is to focus on the efficient discov-
ery of informative—but not necessarily minimal—sets
of relatively independent features. In addition, their
minimization method is too computationally expensive
to deal with the large number of features we wish to
examine.

Because DT-SELECT searches a very large can-
didate set containing complex general and domain-
specific constructed features, our hypothesis is that
the selected features will capture important informa-
tion about the domain which is not available in a more
standard representation (e.g. one which merely speci-
fies the amino acid sequence). The availability of these
features may then enhance the abilities of other induc-
tive learning algorithms to predict protein secondary
structures.

The Feature Pool

The most important aspect of the DT-SELECT algo-
rithm is its feature pool, which serves as a repository
from which the tree builder chooses features. For con-
ceptual and implementational simplicity, all features
in the pool are Boolean-valued; thus, the decision tree
that is built is binary.

Because of the complexity of the secondary-structure
prediction task, it is difficult to know which features,
from the myriad of possibilities, might be the most pro-
pitious for learning. The biological literature provides
some clues to the kinds of features that are important
for this problem (Lim, 1974a, 1974b; Chou & Fasman,

3We intend to replace this criterion with more a sophis-
ticated overfitting prevention technique, such as the tree
pruning methodology of C4.5 (Quinlan, 1992), in the near
future.

Table 1: Partitionings of amino acids according to high-level attributes. Duplicate partitions are given identical

numbers.

Structural partition
1. Ambivalent {ACGP ST W Y}
2. External {DEHKN Q R}
3. Internal {FILM V}

Chemical partition

4. Acidic {D E}

5. Aliphatic {A G 1L V}
6. Amide {N Q}

7. Aromatic {F W Y}

8. Basic {H K R}

9. Hydroxyl {S T}

10. Imino {P}

11. Sulfur {C M}

Functional partition
4. Acidic {D E}
8. Basic {H K R}
12. Hydrophobic non-polar {A FILM P V W}
13. Polar uncharged

Charge partition
4. Acidic {D E}
8. Basic {H KR}
14. Neutral {ACFGILMNPQSTV WY}

Hydrophobic partition
12. Hydrophobic {A FIL M P V W}
15. Hydrophilic {CDEGHKNQRST Y}

{CGNQSTY}

1978; Kidera et al., 1985); it is entirely possible, how-
ever, that different combinations or variations of these
may also prove valuable for the learning task.

Humans cannot be expected to analyze by hand ex-
tensive numbers of such features, yet this kind of search
may yield valuable fruit for such a challenging problem.
Therefore, one of our primary goals is to automate the
process in order to search as large a space of features
as possible. We use a Multiple Instruction-Multiple
Data (MIMD) parallel machine, Wisconsin’s Thinking
Machines Corporation CM-5, to accomplish this. At
each selection step during tree building, the informa-
tion contents of all the thousands of features in the
pool are evaluated in parallel with respect to the cur-
rent training partition. This can be accomplished in
only a few seconds even with thousands of training ex-
amples. Clearly this search is more thorough than is
possible manually. The following subsections describe
the features that comprise the pool.

The Raw Representation

In order to detail the types of features the pool in-
cludes, first we must briefly describe the raw example
representation from which they are constructed. The
proteins we use are those of Zhang, Mesirov, and Waltz
(1992) and are provided as primary sequences of amino
acids (AAs). There are 113 protein subunits derived
from 107 proteins in this dataset, and each subunit has
less than 50% homology with any other. Each position
in a sequence is classified as either a-helix, S-strand,
or random coil. For all of the experiments reported
here, each possible 15-A A subwindow of a protein con-
stitutes an ezample, for a total of 19,861 examples (one
per residue). The overall task is to learn to correctly
predict the classifications of the center AA of unseen
examples, given a set of classified examples for train-
ing. Subwindow sections overhanging the end of a se-
quence are filled in with a special code. The same

code is also occasionally present within the dataset’s
proteins themselves to denote ambiguous amino acids.
Since some of the primary sequences are actually pro-
tein fragments, there may in fact be more AAs follow-
ing the end of a sequence as given, so it is reasonable
to represent these areas using the same code as for in-
ternal ambiguity. This follows the representation of
Zhang, Mesirov, and Waltz (1992).

DT-SELECT has available the raw primary repre-
sentation of each example. In addition, in order to
tap AA physical and chemical property information
which is not available from the primary representation
alone, the implementation also has access to two other
sources of information about amino acids. The first
is a table of ten statistical factors from Kidera et al.
(1985). These are small floating point numbers (rang-
ing from -2.33 to 2.41), different for each amino acid,
which summarize 86% of the variance of 188 physical
AA properties. Since the value of each factor averages
to zero across amino acids, we simply use zero as the
value of all factors for unknown AAs.

The second collection of AA information is the
knowledge of various partitionings of the set of amino
acids into groups sharing common higher-level aspects.
These are shown in Table 1. Though the table shows
20 labelled subgroups of AAs, there are only 15 unique
partitions, and it is membership in these which the pro-
gram uses. (The partitions are numbered in the figure
such that duplicate partitions share the same number.)

Constructed Features

DT-SELECT constructs all features in the feature pool
from the example information specified in the preced-
ing section. Currently we have implemented several
types of general-purpose and domain-specific features,
some of which are quite complex. As mentioned earlier,
all features have Boolean values.

Table 2 summarizes the implemented feature types.

Table 2: A brief summary of feature types. See the “Constructed Features” section for further details.

Name Domain

Nominal Single amino acid names

Unary Numeric Single-factor comparisons

Binary Numeric Two-factor comparisons

Unary Average Single-factor average comparisons
Template Salient multi-factor comparisons
Unary Cluster Single amino acid group memberships
Binary Cluster Paired amino acid group memberships

Of these, nominal, unary numeric, and binary numeric
comparisons are relatively general-purpose. On the
other hand, templates and unary and binary clusters
are specific to the domain. Finally, average unary fea-
tures may be viewed as both: though they were in-
spired by the ideas of Chou and Fasman (1978), they
could easily be applied to any domain whose examples
contain numeric attributes for which averaging makes
sense. We describe each particular feature type in more
detail in the following subsections.

Nominal Features This type of feature asks, “Does

example position P contain amino acid A?” Since
there are twenty AAs and one ambiguity code in our
data, for 15-AA examples there are

21 AAs x 15 positions = 315

nominal features. Note that these are often the only
features a typical artificial neural network (ANN) is
given as inputs for this problem.

Unary Numeric Features These features compare
a particular statistical factor of the amino acid at a
given example position with the neutral value of zero.
While this is technically a binary comparison, we call
these “unary numeric” features because only one sta-
tistical factor is involved. The possible comparisons
are less-than, equal-to, and greater-than, all of which
are performed relative to one of a set of user-specified
positive thresholds. A factor is greater than zero with
respect to a threshold if it is strictly greater than the
threshold. Likewise, it is less than zero w.r.t. the
threshold if it is strictly less than the negated thresh-
old. Otherwise it is considered equal to zero. A typical
set of thresholds is {0, &, 7, %, 1}.

An individual unary numeric feature asks, “Is factor
F of the AA in example position P {less-than | equal-
to | greater-than} zero w.r.t. threshold 7'?” where the
comparison is one of the three possible ones. Thus,
using five threshold values there are

10 factors x 15 positions X 3 comparisons
X § thresholds = 2,250

potential unary numeric features. Calculations in the
following subsections also assume five threshold values.

Binary Numeric Features Binary numeric fea-
tures are similar to unary numeric ones, except that
they compare statistical factors of amino acids in two
example positions with each other. A feature of this
type is of the form, “Is factor F; of the AA in position
P, {less-than | equal-to | greater-than} the factor F
of the AA in position P, w.r.t. threshold T?” F; may
be the same as F, as long as P; and P, are different.
Similarly, P, and P, may be the same if F}; and F; are
different. Thus, there are

{ ((10 x 10) ordered factor pairs

X (125 > unique position pairs) when Py # Py

+ ((120) unique factor pairs*

x 15 positions) when P, = Py, F} # F» }
X 3 comparisons x 5 thresholds
= 167,625

possible binary numeric features.

Unary Average Features These are identical to
unary numeric features except that instead of compar-
ing a single statistical factor to zero, they compare
the average of a factor over a given subwindow of an
example to zero. To wit, these features ask, “Is the
average value of factor F' of the subwindow with left-
most position P and width W {less-than | equal-to
| greater-than} zero w.r.t threshold T'?” Subwindows
from width two to the full example width of 15 are al-
lowed and can be placed in any position in which they
fit fully within the example. Thus, there are 14 sub-
windows of width two, 13 of width three, and only one
of width 15. Summing, there are

14
10 factors x E 1 subwindows X 3 comparisons

=1
X b thresholds = 15,750
possible unary average features.
“The set of possible comparisons itself provides symme-

try, alleviating the need to include ordered factor pairs in
this case.

Table 3: Three- and four-place templates used.

Three-place templates

LN

[N JeN]

e O0O0e
@e0O0ee
e0O0@e0O0e
@e00O@e@000e
000000
000000 e

Four-place templates

[N N N J
[Qoo N]
0000060

@e0O0Oe@eeO0O0e
00000000000

Local interactions

(-strands

a-helices (hydrophobic triple)
a-helices (hydrophobic triple)
a-helices

a-helices

a-helices

a-helices (hydrophobic run)

Local interactions

a-helices (overlapping 1-5 pairs)
B-strands (alternating),
a-helices (overlapping 1-5 pairs)
a-helices (overlapping 1-5 pairs)
a-helices (long hydrophobic run)

Template Features

Template features are the first

eleventh, and fifteenth.

wholly domain-specific features we describe. They es-
sentially represent particular conjunctions of unary nu-
meric features as single features. A template feature
picks out several example positions and performs the
same unary numeric comparison with the same factor
and threshold for all of them. The feature has value
true if the test succeeds for all positions and false oth-
erwise. We have thus far implemented three- and four-
place templates. Because template features consolidate
the information from several unary numeric features
into one, they may have larger information gains than
any of the unary numeric features would individually.
This is important, because the patterns of AAs exam-
ined are restricted to ones which appear to operate in
conjunction during protein folding, as explained in the
next paragraph.

The three or four positions of a template feature are
chosen such that they lie in one of a few user-specified
spatial relations to one another (hence the name “tem-
plate”). For example, triplets of amino acids which are
four apart in the sequence may be important for a-
helix formation, since they will all be on approximately
the same “face” of the helix. Thus, the user may choose
to specify a three-place template of the form “(159).”
We represent this graphically as “(eoooeoooce).”
This notation defines a spatial relationship, or tem-
plate, among three amino acids; it is not meant to re-
strict a template feature to looking only at the first,
fifth, and ninth amino acid in an example. On the
contrary, the template may be “slid” to any position
in an example, provided the entire template fits within
the example. Thus, this particular template would also
generate features that examine the second, sixth, and
tenth AAs, as well as ones that access the seventh,

To summarize, a template feature asks, “Is factor F’
{less-than | equal-to | greater-than} zero w.r.t. thresh-
old T for all AA’s in template M with its left end at
position P?” Table 3 gives graphic representations of
all the templates used in these experiments, along with
annotations as to their expected areas of value. Most
of them were suggested by Lim (1974b, 1974b). Using
the set of templates in Table 3, there are a total of

10 factors x 120 template positions
X 3 comparisons X 5 thresholds = 18,000

template features.

Unary Cluster Features These are domain-
specific features similar to nominal features, but in-
stead of directly using the names of A As, they check for
membership in one of the groups, or “clusters,” of re-
lated AAs given in Table 1. These features ask, “Does
the AA in position P belong to cluster C'?” There are

15 clusters x 15 positions = 225

unary cluster features.

Binary Cluster Features Binary cluster features
comprise all pairwise conjunctions of unary cluster fea-
tures which examine different positions. That is, they
ask, “Does the AA in position P; belong to cluster C
and the AA in position P, to cluster Cy?” where Py
and P, are distinct. Thus there are

(15 x 15) ordered cluster pairs X (125) positions
= 23,625

binary cluster features.

Table 4: Feature pools for Tree 1 through Tree 4.

| I Tree 1 | Tree2 | Tree 3 | Tree4d |
Nominal N v Vv Vv
Unary Numeric Vv Vv Vv Vv
Binary Numeric v v v v
Unary Cluster Vv Vv N4 N4
Binary Cluster N v Vv N
Unary Average N4 N4
All but All but
Template XX coe All All
LN LN
1 1 1 1 111
Thresholds 1 0 3 bl 1 1 0 38413 1
[Total Features | 60,990 | 208,290 | 64,800 | 227,790 |

Experiments

In order to evaluate the worth of feature sets selected
by DT-SELECT, we compared the classification cor-
rectnesses of ANNs that use a standard input repre-
sentation to those of ANNs whose representations are
augmented with these sets. The “standard” ANN in-
put representation encodes only the particular amino
acid sequence present in an example. The represen-
tations of augmented ANNs add to this the features
chosen by DT-SELECT. (Preliminary experiments in-
dicated that, for this particular task, augmentation of
the standard feature set results in better performance
than simply using the features chosen by DT-SELECT
alone.) To the fullest extent possible, all experimental
conditions except the different representations (and at-
tendant network topologies) were held constant for the
corresponding standard and augmented ANNs com-
pared.

Cross-Validation

All experiments followed a ten-fold cross-validation
(CV) paradigm. It is important to ensure that all the
examples from a single protein subunit are either in
the training or the testing set during all cycles of CV
to avoid artificially overestimating correctness through
effects of training on the testing set. Thus, the experi-
ments were set up by first separating the 113 subunits
into ten separate files. Nine of these are used for train-
ing and the tenth for testing in each of ten iterations, so
each file is the testing set once. We created these files
by first ordering the subunits randomly and then, for
each subunit in the list, placing it in the file which at
that time contained the shortest total sequence length.
This method balances the desires for a completely ran-
dom partitioning of the data and the obtainment of
files of approximately equal size. The same ten files
were used in all experiments.

The Networks

All networks were feed-forward with one layer of hid-
den units and full connection between layers. (We ran
each cross validation experiment using networks hav-
ing 5, 10, 20, and 30 hidden units.) Weights were ini-
tialized to small random values between -0.5 and 0.5,
and we trained the ANNs with backpropagation for
35 epochs. For each epoch, the backpropagation code
tracked correctness on a tuning set consisting of 10%
of the training data. The weights from the epoch with
the highest tuning-set correctness were used for the fi-
nal, trained network. (The use of a tuning set makes it
possible to control overfitting without using the testing
set to choose the stopping epoch.) The output layers
contained three units, one for each of a-helix, §-strand,
and random coil, and the one with highest activation
indicated a network’s classification of an example.

The standard ANNs used a typical “unary” input
encoding of the amino acids in an example (which cor-
responds to the 315 nominal features of DT-SELECT).
Specifically, this encoding uses 315 input units: 21 for
each of the 15 example positions. For each position,
only one of the 21 units is on (set to 1.0) to indicate
which amino acid (or the ambiguity code) is present.
The remaining input units are set to 0.0. ANNSs us-
ing an augmented representation have the 315 inputs
of the standard ANNs plus additional binary inputs
corresponding to the values of the features chosen by
DT-SELECT.

To preserve the cross-validation paradigm employed,
augmenting features for each fold of the CV had to be
chosen separately using only the data in that fold’s
training set. Therefore, the ten augmented networks
for a particular ten-fold CV run did not always have
identical augmenting features or even the same num-
ber of features. This is unavoidable if contamination
with information from the testing sets is to be avoided.
However, the resulting network size differences were

Table 5: Average tree sizes (number of features) for
Tree 1-Tree 4.

| Decision Tree | Avg. Size |

Tree 1 31.8
Tree 2 46.7
Tree 3 17.5
Tree 4 32.5

Table 6: Best test-set percent correctnesses (averaged
over the ten folds) of the standard and augmented
ANNS.

| ANN Type | % Correct |

| Standard | 61.5 |
Tree 1 61.6
Tree 2 61.2
Tree 3 61.9
Tree 4 61.0

small relative to the overall network sizes.

Augmentations

To explore the utility of representation augmentation
by our method, we made four different attempts at
network augmentation, using features chosen by DT-
SELECT from differing pools of features with varying
stopping criterion strictnesses. For each of these exper-
iments, DT-SELECT built ten decision trees, one from
each training set, using a fixed feature pool. For con-
venience, we will lump the first experiment’s ten sets
of augmenting features under the label “Tree 1.” Like-
wise, we shall call the other sets “Tree 2,” “Tree3,”
and “Tree 4.”

The features in the pools used to build these trees
are summarized in Table 4. The sizes of the resulting
individual trees are given in Table 5. The differences
in average sizes of the four sets of trees are due to
varying the strictness of the stopping criterion used
during decision-tree construction.

Results

The best test-set correctnesses (averaged over the ten
folds) observed across the four different numbers of hid-
den units for the standard and augmented networks
are given in Table 6. (There was little variation in cor-
rectness over the differing numbers of hidden units.)
We see that the augmented networks unfortunately did
not produce the performance gains we had anticipated
achieving with DT-SELECT. The Tree 1 and Tree 3
networks did obtain slightly higher correctnesses than
the best standard network, however the improvements
are not statistically significant.

It is of some interest to see how well the original sets
of decision trees themselves classify the data. This in-

Table 7: Average correctnesses of the decision trees on
the test sets.

| Tree 1 | Tree 2 | Tree 3 | Tree 4 |
[550% | 567 | 572 | 576 |

formation is given in Table 7. It is evident that the
neural networks do substantially better for this prob-
lem than the decision trees by themselves.

The use of the Wisconsin CM-5 was crucial in mak-
ing these experiments possible, both because of its
large memory and its parallel computing power. Our
CM-5 currently has one gigabyte of main memory
for each of two independent 32-node partitions. The
largest of the experiments reported here required ap-
proximately 586 megabytes of this. Since precomputed
feature values occupy most of this space, the mere
availability of so much real (as opposed to virtual)
memory alone adds substantially to tree-building per-
formance by eliminating paging.

We were able to run all of the tree-building exper-
iments in only a few hours of total CPU time on the
CM-5. The longest-running (affected by both num-
ber of features and strictness of stopping criterion) of
the four cross-validated tree-building experiments was
Tree 2, which took approximately 3.35 hours on a 32-
node partition of the CM-5 to build and test all ten
trees. From this run we estimate a search rate in the
neighborhood of 290 million feature values per second.
Each decision tree node required about 12.8 parallel
CPU seconds to construct.’

Figure 1 shows a decision tree constructed for one
of the cross-validation folds of the Tree 3 experiment.
This tree obtained 57.7% correctness on its training
set and 56.0% on its testing set. The tree constructed
in the actual experiment had 13 internal nodes, but
due to the strict stopping criterion used to build it,
several subtrees had leaves of only a single class. In
the figure we have collapsed each such subtree into a
single leaf for simplicity. The simplified decision tree
will thus make the same classifications as the original.
However, it is important to note that the features in
the collapsed subtrees were retained as inputs for the
neural networks, as they do provide information on
example classification that may be of use to the ANNs.

Discussion

It was surprising to us to find that the addition of
apparantly salient domain-specific features of great so-
phistication to the input representations of ANNs does
not lead to gains in classification performance. The

5System software development for the CM-5 is currently
ongoing. These performance analyses should be taken as
rough estimates only and may vary with different versions
of the system software.

Figure 1: A sample decision tree for protein secondary-structure prediction. Leaves are labelled with classifications.
Recall that the window has 15 positions, and we are attempting to predict the secondary structure of position 8.
Internal nodes (labelled “1” through “6”) refer to the following Boolean-valued features:

1. Is the average value of Kidera factor 1 (roughly, anti-preference for a-helix) over positions 5-13 < —i?

U WN

reasons for this remain unclear at this time, although
several possibilities exist.

First, it could be that the ANNs themselves are ca-
pable of deriving similar types of features on their own
using their hidden units. If this is true, it demonstrates
that the power of backpropagation to develop useful in-
ternal representations is indeed substantial, given the
complexity of the features available to DT-SELECT
during tree construction. This implies that perhaps the
implementation of even more complex types of salient
features which backpropagation is not capable of de-
riving itself is necessary for the use of DT-SELECT to
yield performance improvements.

Second, it is possible that we have not yet imple-
mented the best types of features for augmentation.
There are always new types of features one can think
of adding to the system; for instance, binary aver-
age features which examine two factors in two sub-
windows, or templates which average factors over the
A As they examine. Indeed, we have observed that, in
general, adding new features tailored to the secondary-
structure prediction task, such as the cluster and aver-
age features, tends to displace the more general types
of features from decision trees out of proportion to

. Is the average value of Kidera factor 3 (roughly, 8-strand preference) over positions 5-11 > i?
. Is the average value of Kidera factor 3 over positions 6-9 > i?

. Is the average value of Kidera factor 1 over positions 7-9 < —i?

. Is the average value of Kidera factor 1 over positions 6-9 > i?

. Is the average value of Kidera factor 1 over positions 1-14 > i?

their numbers. In Tree 2, the cluster-type features ac-
count for approximately one third of all features cho-
sen, though they constitute only about 10% of the fea-
tures in the pool. Even more remarkable, the addition
of the unary average feature in Tree 3 and Tree 4 re-
sulted in more than half of the features of each of these
tree sets being of this type, though they comprise only
about one quarter of the features in the pool for Tree 3
and about 7% of those in Tree 4’s pool. (All features in
Figure 1’s collapsed tree are unary average features.)
This indicates that these features are higher in infor-
mation “density” than the more general-purpose fea-
tures they displace, yet, strangely, we do not see great
advances in either decision-tree or augmented-network
correctnesses when such features are added to the pool.

Thus, a third possible explanation for the lack of
observed gain is that, for ANNs of this form, the 315
inputs of the standard unary encoding actually cap-
ture all the information such networks are capable of
using. This is an interesting hypothesis in itself, and
the reasons behind it, if it is true, would be worth
uncovering—especially considering the effects of in-
put representation on DNA coding-region prediction
mentioned earlier (Farber, Lapedes, & Sirotkin, 1992;

Craven & Shavlik, 1993). Our standard ANNs were
used only as controls, and the learning parameters were
not extensively optimized. (The augmented networks
used the same parameters as the standard ones.) How-
ever, though the complete system of Zhang, Mesirov,
and Waltz (1992) attained a considerably higher cor-
rectness, the ANN component of their system alone
achieved an accuracy comparable to that of our ANNs.
Some researchers postulate an upper bound of 80-90%
correctness on this problem using local information
(Cohen & Presnell, personal communication, 1991),
but it is possible that techniques more sophisticated
than single feed-forward ANNs are needed to get be-
yond the low-60% range when using datasets of the size
currently available.

Conclusion and Future Work

We introduced the DT-SELECT system, which at-
tempts to select, from large candidate pools, com-
pact feature sets that capture the relevant informa-
tion about a problem necessary for successful inductive
learning. The method operates by building decision
trees whose internal nodes are drawn from the pool
of features. It offers an efficient way to select features
that are both informative and relatively nonredundant.
We tested the utility of this approach by using the sets
of features so selected to augment the input represen-
tations of artificial neural networks that attempt to
predict protein secondary structure. We observed no
significant gains in correctness, leading us to surmise
three possible explanations for this negative result. Re-
gardless of which of these, if any, is the correct one, we
believe the method yet exhibits potential for extension
in this domain and for application to other problems,
both inside and outside molecular biology.

Immediate future work will include the addition of
other problem-specific features to our implementation,
the replacement of the x? stopping criterion with a
more modern pruning methodology, and experimenta-
tion with a replacement for the information-gain met-
ric. We have also begun to test DT-SELECT on the
problem of handwritten-character recognition, with
preliminary results already showing correctness gains
over a standard encoding. We will soon begin testing
the method on the DNA coding-region prediction task
as well.

A more general issue we intend to explore is the
use of selection algorithms other than decision trees.
We have performed a few initial experiments with
two other algorithms, one which builds Foil-like rules
(Quinlan, 1990) to describe the individual example
classes and another which applies statistical indepen-
dence tests to select features which are largely or-
thogonal, but more work is needed to determine the
strengths and weaknesses of different feature-selection
approaches.

References

Almuallim, H., & Ditterich, T.G. (1991). Learning With
Many Irrelevant Features. Proceedings of the Ninth Na-
tional Conference on Artificial Intelligence, Vol. 11 (pp.
547-552). Anaheim, CA: AAAI Press/The MIT Press.

Chou, P.Y., & Fasman, G.D. (1978). Prediction of the
Secondary Structure of Proteins from their Amino Acid
Sequence. Advances in Enzymology, 47, 45-148.

Craven, M.W., & Shavlik, J.W. (1993). Learning to Pre-
dict Reading Frames in E. coli DNA Sequences. Pro-
ceedings of the Twenty-sizth Hawaii International Con-
ference on System Science (pp. 773-782). Maui, HI:
IEEE Computer Society Press.

Farber, R., Lapedes, A., & Sirotkin, K. (1992). Deter-
mination of Eucaryotic Protein Coding Regions Using
Neural Networks and Information Theory. Journal of
Molecular Biology, 226, 471-479.

Fayyad, U.M., & Irani, K.B. (1992). The Attribute Selec-
tion Problem in Decision Tree Generation. Proceedings
of the Tenth National Conference on Artificial Intelli-
gence, (pp. 104-110). San Jose, CA: AAAI Press/The
MIT Press.

Hunter, L. (1991). Representing Amino Acids with Bit-

strings. Working Notes, AAAI Workshop: Al Ap-
proaches to Classification and Pattern Recognition in
Molecular Biology, (pp. 110-117). Anaheim, CA.

Kidera, A., Konishi, Y., Oka, M., Ooi, T., & Scheraga,
H.A. (1985). Statistical Analysis of the Physical Proper-
ties of the 20 Naturally Occurring Amino Acids. Journal
of Protein Chemistry, 4, 1, 23-55.

King, R.D., & Sternberg, J.E. (1990). Machine Learning
Approach for the Prediction of Protein Secondary Struc-
ture. Journal of Molecular Biology, 216, 441-457.

Lim, V.I. (1974a). Algorithms for Prediction of a-Helical
and B-Structural Regions in Globular Proteins. Journal
of Molecular Biology, 88, 873-894.

Lim, V.I. (1974b). Structural Principles of the Globular
Organization of Protein Chains. A Stereochemical The-
ory of Globular Protein Secondary Structure. Journal of
Molecular Biology, 88, 857-872.

Qian, N., & Sejnowski, T.J. (1988). Predicting the Sec-
ondary Structure of Globular Proteins Using Neural Net-
work Models. Journal of Molecular Biology, 202, 865-
884.

Quinlan, J.R. (1986). Induction of Decision Trees. Ma-
chine Learning, 1, 81-106.

Quinlan, J.R. (1990). Learning Logical Definitions from
Relations. Machine Learning, 5, 239-166.

Quinlan, J.R. (1992). C4.5: Programs for Machine Learn-
ing. San Mateo, CA: Morgan Kaufmann.

Zhang, X., J.P. Mesirov, D.L. Waltz (1992). A Hy-
brid System for Protein Secondary Structure Prediction.
Journal of Molecular Biology, 225, 1049-1063.

