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Abstract

Although they are applicable to a wide array of problems, and have demonstrated good performance on a
number of difficult, real-world tasks, neural networks are not usually applied to problems in which compre-
hensibility of the acquired concepts is important. The concept representations formed by neural networks
are hard to understand because they typically involve distributed, nonlinear relationships encoded by a
large number of real-valued parameters. To address this limitation, we have been developing algorithms
for extracting “symbolic” concept representations from trained neural networks. We first discuss why it is
important to be able to understand the concept representations formed by neural networks. We then briefly
describe our approach and discuss a number of issues pertaining to comprehensibility that have arisen in
our work. Finally, we discuss choices that we have made in our research to date, and open research issues
that we have not yet addressed.

1 Introduction

Neural networks provide an appealing approach to learning because they are applicable to a large
class of problems, and because they have demonstrated good generalization performance in a variety
of domains (Sejnowski & Rosenberg, 1987; Tesauro & Sejnowski, 1989; Pomerleau, 1991; Smyth &
Mellstrom, 1992). A limitation of neural networks, however, is that the concept representations they
form are extremely difficult for humans to understand. Because of this limitation, it is commonly
believed in the machine-learning community that neural networks are not well suited for domains
in which comprehensibility of learned concepts is important. To address this limitation of neural
networks, we have been developing methods for extracting from trained networks, comprehensible
concept descriptions like those produced by common symbolic learning algorithms (e.g., Michalski,
1983; Quinlan, 1993). The goal of this research is to mitigate the comprehensibility advantage that
symbolic methods have over neural learning algorithms.

In this paper, we describe our research in developing methods for extracting symbolic represen-
tations from neural networks (Craven & Shavlik, 1994; Craven & Shavlik, 1995), and discuss issues
of comprehensibility that have arisen in this work. We first provide motivation for our research by
discussing in Section 2 why it is important to be able to understand trained neural networks. In
Section 3 we summarize our approach to understanding neural networks, and present some empiri-
cal results. Section 4 then presents a discussion of issues related to comprehensibility that we have
encountered in our research. Section 5 describes related work, and Section 6 provides conclusions.



2 Neural Networks and Symbolic Representations

One aspect that distinguishes various approaches to concept learning is the way in which learned
concepts are represented. A concept representation learned by a neural network is defined by
(a) the topology of the network, (b) the activation functions used for the hidden and output units,
and (c) the real-valued parameters associated with the network connections (i.e., the weights) and
units (e.g., the biases of sigmoidal units). Concept representations learned by neural networks are
difficult to comprehend for several reasons. First, typical networks have hundreds or thousands of
real-valued parameters. Moreover, in multi-layer networks, these parameters may represent nonlin-
ear, nonmonotonic relationships between the input features and the output categories. Although
hidden units in multi-layer networks can be thought of as representing “constructed” features, they
are difficult to understand themselves because networks commonly learn distributed representa-
tions (Hinton, 1986). In a distributed representation, each meaningful concept is encoded by the
activations of many hidden units, and each hidden unit plays a part in representing many differ-
ent concepts. Additionally, hidden units may have graded activations, meaning that they are not
completely “on” or completely “off” in response to a given instance.

2.1 Why Use Neural Networks?

There are several reasons why it is sometimes preferable to use neural networks for a concept
learning task rather than a symbolic learning method. A major reason is that neural networks offer
better generalization performance than common symbolic learning algorithms for some problems
(Atlas et al., 1989; Fisher & McKusick, 1989; Weiss & Kapouleas, 1989; Shavlik et al., 1991).
When putting learning systems into practice, generalization performance is usually the overriding
criterion for selecting one algorithm over another.

Another reason for preferring neural networks over symbolic algorithms is that they can be
applied to some problems for which symbolic learning algorithms are poorly suited. For example,
the technique of Q-learning (Watkins, 1989) requires that the learning system represent concepts
as continuous-valued functions, and that these concepts be updated after each training instance.
Few symbolic learning algorithms are able to meet both of these requirements. Sequential and
temporal prediction tasks provide another type of problem for which neural networks are often
more appropriate than symbolic algorithms. Recurrent networks (Jordan, 1986; Pineda, 1987),
which are often applied to these problems, employ input units that represent the state of the
hidden units at the previous time step. Recurrent networks use their own representations of the
problem at the previous time step to generate predictions for the current time step. Moreover,
such networks are able to propagate credit and blame back to representations that were formed
in previous time steps (because their output functions are differentiable with respect to previous
representations). No symbolic learning algorithm provides these appealing representational aspects.

2.2 Comprehensibility Is Important

An important criterion by which a machine learning algorithm should be judged is the comprehen-
sibility of the representations it forms. That is, does the algorithm encode the information it learns
in such a way that it may be inspected and understood by humans? The importance of this



criterion is argued by Michalski (1983) in his comprehensibility postulate:

The results of computer induction should be symbolic descriptions of given entities, seman-
tically and structurally similar to those a human expert might produce observing the same
entities. Components of these descriptions should be comprehensible as single ‘chunks’ of
information, directly interpretable in natural language, and should relate quantitative and
qualitative concepts in an integrated fashion. (pg. 122)

There are a number of reasons why this is an important criterion.

e Validation. If the designers and end-users of a learning system are to be confident in the
performance of the system, they must understand how it arrives at its decisions. The ability to
inspect a learned concept definition is important in many domains, such as medical diagnosis
(e.g., Wolberg et al., 1994).

e Discovery. Learning systems may also play an important role in the process of scientific
discovery. A system may discover salient features and relationships in the input data whose
importance was not previously recognized. If the representations formed by the learner are

comprehensible, then these discoveries can be made accessible to human review (e.g., Hunter
& Klein, 1993).

e Explanation. In some domains, it is not necessary to have a holistic description of the
learning system’s concept representation, but it is desirable to be able to explain classifications
of individual input patterns (Gallant, 1993). If the concept representation is understandable
in such a domain, then explanations of classifications made on a particular cases can be
garnered.

e Improving generalization. The feature representation used for a concept learning task
can have a significant impact on how well an algorithm is able to learn and generalize (Flann
& Dietterich, 1986; Craven & Shavlik, 1993c). Learned concept representations that can be
understood and analyzed may provide insight into devising better feature representations.

e Refinement. Some researchers use concept learning systems to refine approximately-correct
domain theories (Pazzani & Kibler, 1992; Ourston & Mooney, 1994; Towell & Shavlik, 1994).
In order to complete the theory-refinement process, it is important to be able to express, in a
comprehensible manner, the changes that have been imparted to the theory during learning.

In addition to issues of comprehensibility, another motivation for extracting symbolic represen-
tations from neural networks is to facilitate flexibility in how learned knowledge is used. Concept
representations in neural networks are effectively procedural representations rather than declara-
tive representations. In a procedural representation, knowledge is inextricably tied to a particular
procedure that uses it. A disadvantage of procedural representations is that they limit encoded
knowledge to being used by a particular procedure in a particular way. A declarative represen-
tation, on the other hand, represents knowledge in a general manner so that it may be used by
different procedures in different contexts. For example, one reason why Mitchell et al. (1994)
decided not to use neural networks for their calendar-management system is because the “mono-
lithic” representations of neural networks would not allow them to retain only parts of learned
concept representations. Because their task involves time-varying target concepts, this was an
important consideration. However, given a method for extracting symbolic descriptions of the con-
cepts represented by trained networks, the networks’ procedural representations can be converted
into declarative ones.



3 An Approach to Extracting Symbolic Representations from Trained
Neural Networks

There are several possible approaches to understanding the representations learned by neural net-
works. Our approach to understanding trained networks is to extract symbolic concept descriptions
from them. The task is as follows: given a trained network and the data on which it was trained,
produce a concept description that is comprehensible, yet classifies instances in (nearly) the same
way as the network.

We have developed a number of algorithms for extracting symbolic descriptions of trained
networks. In previous work, we first developed an algorithm for extracting inference rules from
knowledge-based neural networks' (Towell & Shavlik, 1993), and then generalized the this algorithm
so that it could be applied to ordinary networks when a special training procedure was used (Craven
& Shavlik, 1993a). Recently, we have developed a more general approach to the extraction task
(Craven & Shavlik, 1994; Craven & Shavlik, 1995) which does not place any requirements on either
the architecture of the network or its training method.

Our new algorithm views the task of extracting a comprehensible concept description from
a trained network as an inductive learning problem. In this learning task, the target concept
is the function represented by the network, and the concept description produced by our learning
algorithm is a decision tree that approximates the network. However, unlike most inductive learning
problems, we have available an oracle that is able to answer queries during the learning process.
Since the target function is simply the concept represented by the network, the oracle uses the
network to answer to queries. The advantage of learning with queries, as opposed to ordinary
training examples, is that they can be used to garner information precisely where it is needed
during the learning process.

We now describe our new algorithm in some detail, and then present experiments that we have
conducted to evaluate the algorithm.

3.1 TREPAN: An Algorithm for Extracting Decision Trees

Our algorithm, called TREPAN,? is shown in Table 1. TREPAN is similar to conventional decision-
tree induction algorithms, such as CART (Breiman et al., 1984), ID3 (Quinlan, 1986), C4.5
(Quinlan, 1993), and ID2-0f-3 (Murphy & Pazzani, 1991), which learn directly from a training set.
These algorithms build decision trees by recursively partitioning the input space. Each internal
node in such a tree represents a partition of some part of the input space, and each leaf represents a
predicted class. Our method is substantially different from these conventional algorithms in number
of respects, which we detail below.

The Oracle. The role of the oracle is to determine the class (as predicted by the network)
of each instance that is presented as a query. Queries to the oracle, however, do not have to be
complete instances, but instead can be specified as constraints on the values that the features can
take. In the latter case, the oracle generates a complete instance by randomly selecting a value for
each feature, while ensuring that the constraints are satisfied. Random values for a given feature
are generated using the distribution of values for that feature over the training set. As shown
in Table 1, the oracle is used for three different purposes: to determine the class labels for the
network’s training examples; to determine the class labels for the tree’s leaves; and to select the

'Tn a knowledge-based network, the topology and initial weights of the network are specified by a domain theory
consisting of symbolic inference rules.

2TrEPAN stands for TREes PArroting Networks. The name is also metaphorical, however: one connotation of the
word trepan is to cut a hole in a skull in order to access the brain.



Table 1: The TREPAN decision-tree extraction algorithm.

/* Given a net’s training set and feature set, induce a tree that models the net. */
TrePAN (training_examples, features)

{
for each example FE € training_ezamples /* obtain the net’s labeling of each example */
class label for E := OracLE(E)
return MAKE SUBTREE(training_examples, features, {})
}
Make_SUBTREE(ezamples, features, constraints)
{
check stopping criteria using exzamples and calls to ORACLE(constraints)
if stopping criteria satisfied
make new leaf, L
determine class label for L using examples and calls to ORACLE(constraints)
return L
else
/* use features to build splits;
use exzamples and calls to ORACLE(constraints) to evaluate them */
S := best binary split
using S as a seed, search for best M-of-IN split, S’
make new node, N, for S’
for each outcome, I, of S’
ezamples(ry := members of ezamples with outcome I on split S’
constraintsy := constraints U {S' = I}
Ith child of N := Make SUBTREE(ezamples(;y, features, constraints(r))
return N
}

splits that create each of the tree’s internal nodes. These aspects of the algorithm are discussed in
more detail below.

Split Types. The role of internal nodes in a decision tree is to partition the input space in
order to increase the separation of members of different classes. In C4.5, each of these splits is
based on a single feature. For example, a split on a binary feature results in two subtrees being
created as children of the current node — one for each value of the feature. Our algorithm, like
Murphy and Pazzani’s ID2-of-3 algorithm (1991), forms trees that use M-of-N expressions for its
splits.

An M-of-N expression is a Boolean expression that is specified by an integer threshold, m, and a
set of n Boolean conditions. An M-of- N expression is satisfied when at least m of its n conditions are
satisfied. For example, suppose we have three Boolean features, a, b, and c; the M-of-N expression
2-of-{a, —b, c} is logically equivalent to (a A =b) V (a A ¢) V (b Ac).

Split Selection. Split selection involves deciding how to partition the input space at a given
internal node in the tree. A limitation of conventional tree-induction algorithms is that the amount
of training data used to select each split decreases with the depth of the tree. Thus splits near the
bottom of a tree are often poorly chosen because the decision is based on few training examples. In
contrast, because we have an oracle available, TREPAN is able to generate as many training examples
as desired to select each split in the tree. Currently, our algorithm chooses a split after considering
at least Sy, examples, where Sy,;, is a parameter of the algorithm. Although it is possible to use
a statistical test for this decision (Musick et al., 1993), it is not clear that the computation involved
in estimating the relevant statistic is worth the effort, since each split-selection step is only a locally



optimal decision.

When using the oracle to select a split at a given node, the oracle is given the list of all of the
previously selected splits that lie on the path from the root of the tree to that node. These splits
serve as constraints on the feature values that any instance generated by the oracle can take. Note
that any example must satisfy these constraints in order to reach the current node.

Like the ID2-of-3 algorithm, TREPAN uses a heuristic search process to construct its M-of-N
splits. The search process begins by first selecting the best binary split at the current node; TREPAN
uses information gain (Quinlan, 1986) to evaluate candidate splits. For two-valued features, a
binary split separates examples according to their values for the feature. For features with more than
two values, we consider binary splits based on each allowable value of the feature (e.g., color=red?,
color=blue?, ...). The selected binary split serves as seed for the search process. The search uses
information gain as its heuristic evaluation function, and uses the two following operators (Murphy
& Pazzani, 1991):

e m—of-n+1: Add a new value to the set, and hold the threshold constant. For example,
2-of-{a, b} = 2-of-{a, b, c}.

o m+1-of-n+1: Add a new value to the set, and increment the threshold. For example, 2-of-
{a, b, ¢} = 3-of-{a, b, ¢, d}.

TREPAN’s search for M-of-N splits differs from ID2-0f-3 in two ways. First, whereas ID2-o0f-3 uses
a hill-climbing search, TREPAN uses a beam search. Second, TREPAN constrains M-of-N splits so
that the same feature is not used in two or more disjunctive splits which lie on the same path
between the root and a leaf of the tree. Without this restriction, the oracle might have to solve
difficult constraint-satisfaction problems in order create instances for nodes on such a path.

Stopping Criteria. TREPAN uses two separate criteria to decide when to stop growing an
extracted decision tree. First, a given node becomes a leaf in the tree if, with high probability, the
node covers only instances of a single class. In order to make this decision, TREPAN determines the
proportion of examples, p., that fall into the most common class at a given node, and then calculates
a confidence interval around this proportion. The oracle is queried for additional examples until
prob(p. < 1 —€) < §, where € and § are parameters of the algorithm.

TREPAN also accepts a parameter that enables the depth of extracted trees to be limited. In
some domains, it may require a very large tree to describe a given network to a high level of fidelity.
Since we are interested in extracting comprehensible trees, we use this parameter to limit TREPAN
to extracting relatively small trees.

Leaf Labeling. Every leaf in a decision tree is given a label that corresponds to the class
it predicts for those examples that reach it. In TREPAN, the class label for a leaf is determined
by first calculating the proportion of examples, p., that fall into the most common class at the
leaf. In cases where p. has not satisfied the first stopping criterion, TREPAN must determine if its
confidence in p. is sufficient to label the leaf with the corresponding class. If necessary, the oracle
is queried for additional examples until V[ prob(p. < p;) < 0 ], where d is a parameter of the
algorithm. The Bonferroni correction (Rice, 1995) is used for problems that involve more than two
classes.

3.2 Empirical Evaluation of the TREPAN Algorithm

In our experiments, we are interested in evaluating our algorithm according to three criteria: (i)
the fidelity of the trees to the networks from which they were extracted; (ii) the comprehensibility
of the trees; (iii) the accuracy of our extracted decision trees, i.e., how well they generalize.



Table 2: Test-set accuracy.

domain method

networks | C4.5 | ID2-0f-3 | TREPAN
voting 91.5% 89.2% | 86.9 92.2%
protein coding | 93.7 88.7 91.1 91.7
promoters 90.6 84.4 83.8 86.5

We evaluate TREPAN using three real world domains: Congressional voting (Schlimmer &
Fisher, 1986), recognition of protein-coding regions in DNA (Craven & Shavlik, 1993b), and recogni-
tion of promoters in DNA (Towell et al., 1990). The voting domain has 15 Boolean features and two
output categories. Following Buntine and Niblett (1992), we remove the physician-fee-freeze
feature to make the problem more difficult. The protein-coding domain has 64 Boolean features
and two output classes. The promoter problem has 57 features with four values each, and two
output classes. The voting data set has 435 examples, the promoter set has 438 examples, and the
protein-coding domain has 20,000 examples. Note that the promoter set we use is larger and more
complex than the original data set (Towell et al., 1990). We randomly partition the voting and the
promoter data into 10 training and test sets. Because of certain domain-specific characteristics of
the data, we use only four training and test sets for the protein-coding task.

We measure accuracy and fidelity on the examples in the test sets. Whereas accuracy is defined
as the percentage of test-set examples that are correctly classified, fidelity is defined as the percent-
age of test-set examples on which the classification made by a tree agrees with its neural-network
counterpart. Since the comprehensibility of a decision tree is problematic to measure, we measure
the syntactic complexity of our extracted trees and take this as being representative of compre-
hensibility. Specifically, we measure the complexity of a given tree in two ways: (i) the number
of internal (i.e., non-leaf) nodes in the tree, and (ii) the number of symbols used in the splits of
the tree. We count an ordinary, single-feature split as one symbol. We count an M-of-N split as n
symbols, since such a split lists n feature values.

The neural networks we use in our experiments have a single layer of hidden units. The number
of hidden units used for each network is chosen using cross validation on the network’s training
set. For each training set, we perform cross-validation runs using 0, 5, 10, 20 and 40 hidden units.
The networks are trained using a conjugate-gradient learning method (Kramer & Sangiovanni-
Vincentelli, 1989). Training continues until either (i) all of the training-set examples are correctly
classified, (ii) a local minimum in the error surface is reached, or (iii) 100 search directions have
been tried. A validation set is used to decide at which epoch the weights are saved for a given
training run.

Our TREPAN algorithm is applied to each saved network. TREPAN has several parameters which
are set as follows for all runs: at least 1000 examples are considered before selecting each split;
the beam-width for the M-of-N split search is set to five; the maximum tree depth is also set to
five; we set the € and § parameters, which are used for the stopping-criterion and the leaf-labeling
procedures, to 0.05.

As baselines for comparison, we also run Quinlan’s C4.5 algorithm (Quinlan, 1993), and Murphy
and Pazzani’s ID2-of-3 algorithm (1991) on the same testbeds. Recall that ID2-o0f-3 is similar to
C4.5, except that it learns trees that use M-of-N splits. C4.5 avoids overfitting by pruning decision
trees after they have been grown. We use cross validation to select the level of pruning used for each
training set. The cross-validation runs evaluate unpruned trees and trees pruned with confidence
levels ranging from 10% to 90%.



Table 3: Fidelity to networks (measured on test sets).

domain method

C4.5 | ID2-0f-3 | TREPAN
voting 95.2% | 92.0% 96.3%
protein coding | 89.7 92.5 93.2
promoters 81.8 85.0 88.3

Table 4: Tree complexity.

domain # internal nodes # symbols

C4.5 | ID2-of-3 | TREPAN || C4.5 | ID2-0f-3 | TREPAN
voting 20.1 16.3 11.8 || 20.1 56.3 23.7
protein coding | 146.5 5.5 5.0 || 146.5 58.3 43.3
promoters 11.2 8.6 18.0 || 11.2 36.9 67.5

Table 2 shows the test-set accuracy results for all four algorithms on each data set. It can be
seen that, for every data set, neural networks generalize better than decision trees learned by the
C4.5 algorithm. Similarly, although I1D2-0f-3 generalizes better than C4.5 on most of the problem
domains, it does not match the performance of the neural networks on any domain. The decision
trees extracted from the networks by our TREPAN algorithm, on the other hand, are more accurate
than the C4.5 trees and the ID2-0f-3 trees for all domains. Moreover, on the voting task, the trees
produced by TREPAN are actually more accurate than the networks from which they were extracted
(although the difference is not statistically significant). For all three domains, the differences in
accuracy between the neural networks and the two conventional decision-tree algorithms (C4.5
and ID2-of-3) are statistically significant at the 0.05 level using a paired, two-tailed ¢-test. Clearly,
these are domains in which the inductive bias of neural networks is more suitable than the inductive
bias of ordinary decision-tree algorithms. We also test the significance of the accuracy differences
between TREPAN and the other decision-tree algorithms. For all three domains, these differences
are statistically significant. The results in this table indicate that our algorithm is able to extract
decision trees which are more accurate than decision trees induced strictly from the training data.

Table 3 shows the fidelity measurements on each data set. Recall that fidelity is defined as
the percentage of test-set examples for which a given tree and its neural-network counterpart make
the same classification. As expected, the TREPAN trees exhibit a higher level of network fidelity
than do either the C4.5 or the ID2-0f-3 trees. We measure the statistical significance of fidelity
differences using a paired, two-tailed ¢-test at a significance level of 0.05. Except for the difference
between TREPAN and C4.5 on the voting task, all differences between TREPAN and the other two
algorithms are statistically significant.

Table 4 shows tree-complexity measurements for C4.5, ID2-0f-3, and TREPAN on all three
data sets. Except for on the promoter domain, the trees learned by TREPAN have fewer internal
nodes than the trees produced by C4.5 and I1D2-0f-3. Although the trees generated by TREPAN
on the promoter problem are more complex than C4.5 and ID2-of-3 trees, we believe that this
difference is not so large as to make the TREPAN trees significantly more difficult to understand.
Based on these results, we conjecture that the trees extracted by TREPAN are as comprehensible
as the trees learned by conventional decision-tree algorithms.



4 Comprehensibility Issues in Extracting Symbolic Representa-
tions from Trained Networks

In this section, we address some of the issues related to comprehensibility that have arisen in our
research. We first discuss a number of directions that we have taken in our approach, and the
reasoning behind the decisions we have made. We then present a number of open issues that we
plan to consider in future work.

Some of the major issues pertaining to comprehensibility that we have considered in our work
to date are the following:

e Concept descriptions and explanations: Much research on the topic of comprehensi-
bility in AI has focused on generating ezplanations of a system’s behavior (Shortliffe, 1976;
Swartout, 1983; Paris, 1987; Moore & Swartout, 1989). The explanation task in this body of
work has involved both describing why a given instance is classified the way that it is, and
describing the defining criteria for a particular concept. In contrast to providing explanations
of individual instances, our research has concentrated on providing complete (or nearly com-
plete) descriptions of learned concept representations; an extracted decision tree describes all
of the sets of sufficient conditions for each class. Our TREPAN extraction algorithm, how-
ever, can also be used for the task of describing the learned concept over limited regions of
a classifier’s instance space. As one anonymous referee pointed out, this limited extraction
task may be interesting because the instance space may be so large and heterogeneous that
it is not possible to produce a comprehensible description of a network’s entire concept rep-
resentation. The ability to extract descriptions of limited parts of learned concepts is also
useful when the users of a classifier have specific questions about the learned concept that
they want answered.

e Symbolic descriptions: To date, our research has focused on extracting concept de-
scriptions like those produced by common symbolic learning algorithms (Michalski, 1983;
Quinlan, 1993). We have used these kind of representation languages, instead of more numer-
ically oriented representations — such as probabilistic rules or linear discriminant functions
— because we believe that symbolic representations are usually more comprehensible. As
discussed below, however, we are reconsidering this issue. Incidentally, our research to date
has involved problem domains that have only discrete-valued attributes and discrete out-
put categories. We are currently extending our TREPAN algorithm to handle problems with
real-valued attributes.

e M-of- N expressions: A central aspect of our extracted representations is the use of M-of-N
expressions. We contend that M-of-N expressions can greatly aid comprehensibility by re-
ducing the syntactic complexity of extracted concept representations and by highlighting
symmetric relationships that are present in them. We have found empirically that, by using
M-of-N expressions in our extracted representations, we are able to produce concept descrip-
tions which are much more concise than extracted representations that do not allow them
(Craven & Shavlik, 1993a; Towell & Shavlik, 1993). As evidence that M-of-N rules are readily
understandable, we note that in the field of medicine, they are common representations for
diagnostic decision criteria (Spackman, 1988).

e Syntactic complexity: A major premise of our work is that syntactic complexity is a good
indicator of comprehensibility. For a given representation language, we contend that, other



things being equal, simpler descriptions are better than complex descriptions. Not surpris-
ingly, the psychological literature supports the notion that humans prefer simple concepts
(Neisser & Weene, 1962; Pinker, 1979; Medin et al., 1987). We have used measures such as
rule and antecedent counts to quantify the complexity of rule sets, and node and “symbol”
counts to quantify the complexity of decision trees. Complexity is a thorny issue, however,
since it does not have an objective arbiter. Even comparing representations expressed in
the same language is problematic because it requires specifying the relative costs of differ-
ent components of the language. For example, is a description with lots of short rules (few
antecedents) more or less complex than a description with few long rules?

There are still many issues that we plan to further explore in our research. Among them are
the following:

e Trading off comprehensibility and fidelity: Our algorithm may produce concept de-
scriptions that have a high level of fidelity to the networks from which they were extracted,
yet are too complex to be understood. In such situations, we would like to have a mechanism
that enables fidelity to be traded-off for comprehensibility. Hence, an area for future investi-
gation is to design an algorithm that is able to transform extracted concept descriptions into
simpler, though perhaps less faithful and accurate, representations.

e Numeric representations: As mentioned previously, our research has focused on producing
concept descriptions like those formed by common symbolic learning algorithms such as AQ
(Michalski, 1983) and C4.5 (Quinlan, 1993). However, we also plan to investigate the utility
of concept representations that use numeric weights to represent the strength of relationships.
Specifically, we plan to consider the representation of simple perceptrons that have attributes
and combinations of attributes as inputs. Although it may seem pointless to translate a neural
network into another, albeit simpler network, we do not believe that this is true. Recall that
in Section 2, we stated that neural networks are difficult to understand because they usually
have a large number of parameters, and because the relationships between input features and
output categories may be nonlinear and nonmonotonic. We contend that representations,
such as simple perceptrons, in which there are relatively few real-valued parameters and in
which each parameter describes a simple (i.e. linear) relationship, are comprehensible. As
evidence for this position, consider that linear discriminant functions are commonly used
to express decision criteria in medicine (Spackman, 1988). They are also widely used in
molecular biology to describe sequence characteristics of interest (Stormo, 1987).

In order to produce a perceptron that is able to accurately describe a network that has
learned high-order relationships, it is necessary to have some of the perceptron’s inputs rep-
resent combinations of attributes (conjunctions of attributes, for example). We are currently
investigating the applicability of algorithms developed in the computational learning theory
community to this task (Blum et al., 1994). The potential benefit of using simple perceptrons
to describe trained multi-layer networks is that they may, in some cases, be more comprehen-
sible than their equivalent decision trees. We view this as a question to be decided by domain
experts (see below).

o Expert evaluation of extracted representations: To date, we have evaluated the com-
prehensibility of our extracted representations by measuring their syntactic complexity. It is
not clear how well syntactic complexity serves as a proxy for actual comprehensibility, and
thus we would like to have humans evaluate our extracted representations in some domains.
We do not have the resources to conduct the large-scale psychological experiment that would
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be needed to objectively measure the comprehensibility of our representations. However, we
do plan to work with experts in some of our problem domains (e.g., branch prediction in com-
pilers, Calder et al., 1995) in order to assess how comprehensible they find the representations
produced by our algorithms.

e Dialogue vs. one-shot processes: Some work has cast the explanation problem not as
a “one-shot” process, but instead as a dialogue between system and user. An open research
issue in our work is how we might enable the user to request more, or different, information
in response to a concept description produced by our method. For example, we may augment
our system so that it can produce more abstract descriptions when requested to do so by the
user.

5 Related Research

A number of researchers have employed scientific visualization techniques to assist in understand-
ing neural networks. Scientific visualization uses graphical attributes such as color, size, and spa-
tial organization to depict systems with large numbers of numerical parameters. Visualization
techniques have been used to illustrate both the learning process and the prediction process in
neural networks. Specifically, the following aspects of neural networks have been described us-
ing visualization methods: the weights and magnitudes of a network’s connections (Hinton, 1986;
Wejchert & Tesauro, 1989; Craven & Shavlik, 1992); the decision boundaries formed by units in
a network (Lang & Witbrock, 1988; Munro, 1991; Pratt et al., 1991); unit activations and the
forward propagation of activation signals through the network (Craven & Shavlik, 1992); the back-
ward propagation of error signals during learning (Craven & Shavlik, 1992); and the trajectory of
units in weight space during learning (Wejchert & Tesauro, 1989). Although visualization methods
can provide insight into the learning and prediction behavior of a network, they are not a substitute
for extraction methods. None of these visualization methods is able to provide a complete descrip-
tion of a concept learned by a neural network, and several of the methods (e.g., decision-boundary
visualization) only work well for very small networks.

A number of statistical techniques have been used to characterize the activity of the hidden
units in neural networks. These methods include: hierarchical clustering of hidden-unit activations
(Sejnowski & Rosenberg, 1987; Elman, 1989; Hanson & Burr, 1990), contribution analysis (Sanger,
1989), and weight pattern analysis (Gorman & Sejnowski, 1988). Like visualization techniques,
these hidden-unit analysis methods are limited in that they do not provide complete descriptions
of the concepts learned by networks.

Numerous research groups have developed methods for extracting finite-state automata (FSA)
from recurrent neural networks (Cleeremans et al., 1989; Pollack, 1991; Giles et al., 1992; Watrous
& Kuhn, 1992; Zeng et al., 1993; Das & Mozer, 1994). Because recurrent networks have links from
their hidden or output units to their input units, they are able to maintain state information from
one input instance to the next. This ability to maintain state information allows recurrent networks
to learn simple grammatical concepts. Recurrent networks have been trained both to predict the
next element in a sentence, and to distinguish positive and negative instances of a target language.
FSA-extraction algorithms operate by associating patterns of hidden-unit activity with states in
a FSA, and then recording the state transitions that occur for various inputs. Although these
algorithms have been able to extract accurate finite-state automata from networks trained on
simple languages, they have not yet shown their usefulness for real-world applications.

Other research groups have also investigated the problem of extracting symbolic representa-
tions from neural networks. Many of these approaches require special network architectures,
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training methods, or both (Hayashi, 1990; McMillan et al., 1992; Sethi et al., 1993; Tan, 1994;
Tchoumatchenko & Ganascia, 1994; Alexander & Mozer, 1995). Our algorithm, in contrast, sim-
ply uses the network as a black box to answer queries during the extraction process. There are
several existing algorithms which do not require special network architectures or training proce-
dures (Saito & Nakano, 1988; Fu, 1991; Gallant, 1993). These algorithms, however, do not extract
M-of-N rules, but instead extract only conjunctive rules. In previous work (Towell & Shavlik, 1993;
Craven & Shavlik, 1994), we have shown that this type of algorithm produces rule-sets which typ-
ically are far to complex to be comprehensible. Additionally, these algorithms assume that each
hidden unit in a network can be accurately approximated by a threshold unit. Thrun (1995) has
developed a general method for rule extraction, and has described how his algorithm can be used
to wverify that an M-of-N rule is consistent with a network, but he has not proposed a method for
searching for M-of-N rule sets. A strength of our algorithm, in contrast, is its scalability. We have
demonstrated that our algorithm is able to produce succinct decision-tree descriptions of networks
with large input spaces.

6 Conclusions

A widely held belief in the machine-learning community is that neural networks are not suitable
for problems in which it is important to be able to comprehend induced concepts. We have been
working to develop methods that elicit comprehensible concept descriptions from trained neural
networks. We have discussed a number of issues related to comprehensibility that have arisen in our
research. We have also presented a number of open issues that we plan to consider in future work. It
is our hope that this paper will serve to provoke discussion on two fronts: the relationship between
neural networks and comprehensibility in machine learning, and general issues of comprehensibility
in machine learning that transcend any particular learning method (e.g, how can we measure
comprehensibility).
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