Appears in the Proceedings of the 13th International Joint Conference on Artificial Intelligence (8/93)

Learning to Represent Codons:
A Challenge Problem for Constructive Induction*

Mark W. Craven and Jude W. Shavlik
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.

Madison, WI 53706, U. S. A.

{craven, shavlik}@cs.wisc.edu

Abstract

The ability of an inductive learning system to
find a good solution to a given problem is de-
pendent upon the representation used for the
features of the problem. Systems that perform
constructive induction are able to change their
representation by constructing new features.
We describe an important, real-world problem
— finding genes in DNA - that we believe of-
fers an interesting challenge to constructive-
induction researchers. We report experiments
that demonstrate that: (1) two different input
representations for this task result in signifi-
cantly different generalization performance for
both neural networks and decision trees; and
(2) both neural and symbolic methods for con-
structive induction fail to bridge the gap be-
tween these two representations. We believe
that this real-world domain provides an inter-
esting challenge problem for constructive in-
duction because the relationship between the
two representations is well known, and because
the representational shift involved in construct-
ing the better representation is not imposing.

1 Introduction

The ability of an inductive learning system to find a good
solution to a given problem is dependent upon the repre-
sentation used for the features of the problem. Work in
constructive induction [Michalski, 1983] has focused on
methods for constructing new features, thereby changing
the problem representation [Matheus and Rendell, 1989;
Matheus, 1990; Pagallo and Haussler, 1990]. Similarly,
one of the touted virtues of multi-layer artificial neural
networks is that their hidden units are able to construct
new features from the given input features. In this paper
we describe a difficult real-world problem that we believe
provides an interesting challenge for inductive learning
systems that adjust their input representations. We also
present a set of experiments that support our claim that

*This research was partially supported by DOE Grant DE-
FG02-91ER61129, NSF Grant IRI-9002413, and ONR Grant
N00014-90-J-1941.

this task poses a challenge to existing systems that per-
form constructive induction.

The real-world task that we discuss is the problem of
identifying genes in DNA sequences. As part of the Hu-
man Genome Project, many biological laboratories are
now in the process of ascertaining the DNA sequence
of humans and other organisms. One of the primary
challenges of these efforts is to distinguish the more in-
teresting parts of DNA sequences from the parts with
little or no functionality. Several researchers have ad-
dressed this problem using neural networks and have
found that the input representation has a significant im-
pact on the generalization performance of the trained
networks [Craven and Shavlik, 1993; Farber et al., 1992;
Uberbacher and Mural, 1991]. In this paper we further
investigate two particular input representations. The
performance difference between these two representa-
tions is especially intriguing because the relationship be-
tween the representations is well known, and further-
more, the representational shift involved in going from
the weaker representation to the better one involves only
forming an appropriate set of conjunctions.

In this paper we present two sets of experiments. We
first demonstrate the effect of input representation on
generalization performance for this problem domain, us-
ing both a symbolic learning method (Quinlan’s C4) and
a neural learning technique (Rosenblatt’s perceptrons).
We then evaluate two approaches to constructive induc-
tion on this problem and show that neither of them seem
to be able to construct the features needed for good gen-
eralization. The first approach to constructive induction
involves simply adding hidden units to the networks used
in the first experiment. The second approach that we in-
vestigate is CITRE [Matheus and Rendell, 1989], which
performs constructive induction on decision trees.

2 The Problem Domain

This section provides a brief description of the problem
that serves as a testbed for our experiments. A more
thorough treatment of the biology underlying the prob-
lem can be found in a genetics textbook.

A DNA strand is a linear sequence of nucleotides com-
posed from the alphabet {A, G, T, C}. Certain subse-
quences of a DNA strand, called genes serve as blueprints
for proteins. Proteins are important because they pro-

translated protein
sequence

I [[|
DNA sequence T A T G G A c c T

Figure 1: DNA and protein translation. Depicted here
is a DNA sequence and the amino acid sequence (protein)
that results from its translation. Each bracket delineates a
codon; collectively, the brackets show the reading frame for
this sequence.

vide most of the structure, function, and regulatory
mechanisms of cells. Interspersed between the genes are
areas, termed noncoding regions, that do not encode pro-
teins. An important problem in biology is to be able
to distinguish the coding from the noncoding regions of
DNA sequences.

Proteins are also linear sequences; they are composed
from the 20-character alphabet of amino acids. As il-
lustrated in Figure 1, each consecutive string of three
nucleotides in a gene encodes a single amino acid (e.g.,
“GGA” encodes glycine). The nucleotide triplets are
called codons and the mapping from codons to amino
acids is called the genetic code. The genetic code is al-
most universal across species and is well known. The
process of translating a gene into protein involves group-
ing nucleotides into codons and inserting the amino acid
encoded by each codon into the protein chain being syn-
thesized.

In order to determine the amino-acid sequence en-
coded by a given DNA sequence, it is necessary to know
the reading frame of the sequence. The reading frame
refers to how the nucleotides of a DNA sequence are
grouped into codons as a gene is translated. As an anal-
ogy, consider trying to decode a bit stream that contains
a message encoded in ASCII. Unless the bits are cor-
rectly grouped into bytes, the decoded message will be
nonsense.

The problem that we address in this paper is the fol-
lowing: given a relatively small, fixed-length “window”
on a DNA sequence, predict whether or not the sequence
is part of a gene that is “in-frame ” with the window.
The window is considered to be in-frame with a gene
when the leftmost nucleotide in the window is the first
nucleotide in a codon of the translated gene. Thus the
problem involves classifying input sequences into two
classes: coding and noncoding. Other researchers have
also investigated neural network approaches [Farber et
al., 1992; Uberbacher and Mural, 1991] to the problem
of finding genes in DNA sequences.

3 The Effect of Input Representation

In this section we describe two different representations
that can be used for DNA sequences and compare the re-
sultant performance for these representations using both
perceptrons and decision trees. The first approach is to
use a binary encoding of the nucleotides that are present
in the input window. This input representation requires
four features for every nucleotide position in the input

coding?

...ATCGCCAG...

Representing the input window as nu-
The nucleotides in the window determine the

Figure 2:
cleotides.
activations of the input units. Shaded input units have acti-
vations of 1, the other input units have activations of 0. In
this figure, the input window is only three nucleotides wide.

coding?

Figure 3: Representing the input window as codons.
There are sixty-four input units for each codon in the window.
In this figure, the input window is only two codons wide.

window, where each feature represents one of the four
nucleotides that could occupy the position. We will re-
fer to this as the nucleotides representation. The sec-
ond approach involves representing the codons that are
present in the window and are in-frame with respect to
the window. This input representation involves sixty-
four binary features for every codon position in the win-
dow, where each feature represents one of the codons
that could occupy the position. We will refer to this as
the codons representation. Figure 2 and Figure 3 depict
artificial neural nets using the nucleotides and codons
representations respectively.

In order to evaluate the effect of input representation
for the problem of recognizing genes in DNA, we con-
struct generalization curves (described below) for both
representations using the C4.5 decision tree algorithm

[Quinlan, 1993], and perceptrons [Rosenblatt, 1958]. A

0.50

nucleotides =—e—
codons me
. 0.40
o
3
5 0.30 ‘u,,.,
E """" L T
ST I W ———
® 0.20 i
Q
c
S
0.10
0.00
2000 5000 10000

training examples

Figure 4: Perceptron generalization curves. The solid
line shows the observed generalization curve for the nu-
cleotides representation. The dashed line shows the gener-
alization curve for the codons representation. Generalization
error is the percentage of misclassified test-set examples.

perceptron is a neural network with no hidden units. A
window size of 15 nucleotides is used to determine the
input features for both representations. We partition
the set of sequences into four sets, and all of our experi-
ments involve a four-fold cross-validation methodology.!
For both representations, classifiers are trained on ex-
ample sets that range from 100 to 10,000 examples. For
a given run, each successive training set is a superset
of the previous training set. The classifiers are tested
on a disjoint set of 5,000 examples after learning each
training set, and the accuracies on this set are plotted.
All training and testing sets contain approximately 50%
coding sequences and 50% noncoding sequences.

The perceptrons are trained until convergence using a
conjugate-gradient algorithm.? A tuning set consisting
of ten percent of each training set is used to determine
when the network weights are saved so that networks do
not “overfit” the training data. Members of the tuning
set are not presented to the network as ordinary train-
ing examples, but instead are used during learning to
estimate the accuracy of the network on unseen exam-
ples. Pessimistic pruning [Quinlan, 1993] is used on the
trained decision trees to help avoid overfitting.

Figure 4 shows the observed generalization curves for
perceptrons using the nucleotides and codons input rep-
resentations. Figure 5 shows the observed generaliza-
tion curves for decision trees using both representations.
A generalization curve plots test-set error on the y-axis
against training set size on the z-axis. It can be seen
that perceptrons achieve better generalization perfor-
mance than decision trees for both input representations.
This result indicates that the inductive bias of neural

'In four-fold cross-validation, classifiers are trained using
examples drawn from three of the sets and tested on examples
from the fourth set. This procedure is repeated four times so
that each set is used as the testing set once.

2A conjugate-gradient algorithm obviates the need for
learning-rate and momentum parameters.

0.50
nucleotides =—e—

o codons me
g N
)
é 0.30 T
g W L
® 0.20
Q
c
S

0.10

0.00

2000 5000 10000

training examples

Figure 5: C4.5 generalization curves. The solid line
shows the observed generalization curve for the nucleotides
representation. The dashed line shows the observed gener-
alization curve for the codons representation. Generalization
error is the percentage of misclassified test-set examples.

networks is better suited to this task than the bias of
decision trees. Furthermore, for both learning methods,
using the codons representation results in classifiers that
generalize substantially better than those using the nu-
cleotides representation.

4 Gene Recognition and Constructive
Induction

Because the defining characteristics of genes are more
readily apparent at the codon level than the nucleotide
level, the codons representation of DNA sequences is ob-
viously a better representation for the task of recognizing
genes. However, what if we did not know « prior: that
the codons representation was a reasonable input repre-
sentation to try for this task? Would this representation
be discovered by state-of-the-art learning systems that
perform constructive induction?

There are several reasons why the problem of find-
ing genes provides an interesting testbed for construc-
tive induction research. First, it is a real-world problem
that can be “reverse-engineered.” We know that codons
provide a good representation for the problem, and the
mapping between nucleotides and codons is known. Sec-
ond, the representational shift involved in going from nu-
cleotides to codons is neither trivial nor overly-complex.
The codons representation does not contain any informa-
tion that is not present in the nucleotides representation,
and the features of the codons representation, namely
the codons themselves, are simply ternary conjunctions
of adjacent nucleotides. Thus we would expect that a
fairly general feature-construction algorithm would be
able to construct codon features from the nucleotide fea-
tures. Third, the process of finding the codons represen-
tation is, to some extent, a problem of scientific discov-
ery. The process of “cracking” the genetic code in the
early 1960’s involved discovering the mapping between
sequences of nucleotides and sequences of amino acids.

Two parts of this discovery, in particular, are manifested
in the process of learning the codons representation: (1)
determining that each consecutive nucleotide triplet en-
codes a single amino acid; and (2) determining that the
code is non-overlapping (i.e., codons do not overlap each
other).

In the following sections we describe experiments that
involve applying both neural and symbolic construc-
tive induction approaches to the problem of recognizing
genes. The question that motivates these experiments is
whether or not general methods for constructive induc-
tion are able to discover the “right” representation (i.e.,
the codons representation) for this problem when given
only the nucleotides representation?

5 Constructing Features in Networks

The artificial neural networks used in the previous exper-
iment were perceptrons, meaning that they did not have
any hidden units. When used for classification tasks,
such as the gene-recognition problem, perceptrons are
able only to make linear discriminations in their input
space. The role of hidden units in a neural network is to
transform the input space into a different representation
— one in which two classes may be separated by a sin-
gle linear boundary. Thus, the concepts represented by
hidden units can be thought of as constructed features.
The question that we address in this section is whether
or not neural networks using the nucleotides represen-
tation, when given a sufficient number of hidden units,
are able to construct features that enable them to ap-
proach the generalization performance of networks using
the codons representation. It is important to note that
we are not particularly concerned with exactly what fea-
tures the networks learn to encode with their hidden
units. It is possible that the hidden units could learn a
local encoding of codons, or they may learn a distributed
representation of codons, or some entirely different, but
useful, set of features.

In order to investigate this question, we construct gen-
eralization curves using networks with different numbers
of hidden units. The methodology and the data sets used
to train and test the multi-layer networks are the same as
in the previous experiment. Networks are trained using
a conjugate-gradient algorithm until a local minimum is
reached. A tuning set is used to determine when the
weights are saved. The networks that we test have 5,
10, 20 and 40 hidden units. Each hidden unit is fully-
connected to the set of input units. The number of free
parameters (weights + biases) in a neural network gives
a rough indication of the capacity of the network [Baum
and Haussler, 1989]. The 40-hidden-unit networks used
in this experiment have 2481 parameters. In contrast,
it would take only 1601 parameters to encode by hand
a network that had a layer of 320 hidden units hard-
wired to represent each of the 64 codons in each of the
five codon positions in the window. Thus, although the
networks in this experiment do not provide a topology
that enables them to form a local representation of the
codons in the window, they should have sufficient com-
plexity to form an alternative, distributed encoding of
similar features. We do not allow the networks to form

0.50
o perceptron —s—
,; 5 HUs -+
5 0.40 10 HUs
% 20 HUs
R 40 H :
£ 0.30 i 0 HUs
kS
N
® 0.20
Q
c
S
0.10
0.00

2000 5000
training examples

10000

Figure 6: Neural network generalization curves for
the nucleotides representation.
served generalization for networks with 5, 10, 20 and 40 hid-
den units. In contrast, perceptrons using the codonsrepresen-
tation result in generalization error of about 0.21 for 10,000
training examples.

The curves show ob-

a local representation of codons, because to do so would
require either hard-wiring codon features into the net-
works, or using networks with an extremely large number
of parameters. For example, a network with 320 fully-
connected hidden units has 19,521 parameters. Using a
rule-of-thumb that recommends two training examples
per parameter [Hinton, 1989], such a network would re-
quire training with more examples than is practicable.

Figure 6 shows the generalization curves for networks
with 5, 10, 20 and 40 hidden units, as well as the nu-
cleotides perceptrons used in the first experiment. Al-
though networks with hidden units offer an improvement
over the generalization performance of perceptrons us-
ing the nucleotides representation, this improvement is
not enough to match the performance of the perceptrons
using the codons representation. This result indicates
that the fully-connected networks are failing to represent
codons with their hidden units. Although the networks
with 40 hidden units should have sufficient capacity to
form a representation of codons, it is possible that net-
works with more hidden units would learn such a repre-
sentation.

6 Constructing Features in Trees

A number of algorithms have been developed to perform
feature construction using decision trees as the concept
description language [Matheus and Rendell, 1989; Pa-
gallo and Haussler, 1990]. The CITRE system [Matheus
and Rendell, 1989] provides a general approach for con-
structive induction on decision trees. In this section we
describe an experiment in which we train decision trees
using the nucleotides representation, and then use CITRE
to construct features on these decision trees. The mo-
tivation for this experiment is to see if a symbolic sys-
tem for constructive induction, such as CITRE, is able
to bridge the generalization gap between the nucleotides

representation and the codons representation.

The CITRE approach to feature construction involves
an iterative cycle of learning a decision tree, constructing
new features, and then learning a new tree using the
constructed and original features. CITRE uses a learned
decision tree to suggest constituent features to be used
in the constructed features. As outlined by Matheus, the
CITRE approach has four aspects:

1. the detection of when new features are required

2. the selection of relationships used to define new
features

3. the generalization of new features
4. the global evaluation of constructed features

We will now discuss how we address these four aspects
in our experiment.

Matheus’ criterion for detection is that feature con-
struction should be performed whenever disjunctive re-
gions, as evidenced by the presence of more than one
positively-labelled leaf, are detected in a decision tree
(for our purposes, a positively-labelled leaf is one labelled
coding). We believe that for many real-world tasks this is
probably too stringent of a criterion because it requires
the concept to be represented as a conjunction. In our
experiment, we finesse the issue of defining a good de-
tection criterion; instead we just try to establish a lower
bound on the generalization error over a fixed number of
iterations of tree building and feature construction.

The selection process involves forming conjunctions of
pairs of Boolean features. Matheus describes a num-
ber of ways in which pairs of features can be selected
[Matheus, 1990]. In this experiment we use the adja-
cent method which selects all adjacent pairs of tests that
occur on decision-tree branches that lead to positively-
labelled leaves. The selection process can also exploit
domain knowledge to narrow the set of candidate con-
structed features. We do not use any domain knowl-
edge in the selection process because we are interested
in determining how well we can do without using such
information.

The generalization step enables CITRE to generalize
the features constructed in the selection process. For
example, constants may be replaced by variables. In
this experiment we do not perform any generalization of
constructed features.

The evaluation process serves to limit the number of
new features constructed. The evaluation criterion we
use is the information gained when an individual fea-
ture is used to partition the entire training set. For this
experiment we limit the number of constructed features
to 320 at any given time. Since there are 60 original
features, the total number of features never exceeds 380.
When the number of features is restricted in this manner,
CITRE can be thought of as performing a beam search
through the space of constructed features. Note that
320 features is the number necessary to represent each
codon in each position in the input window.

In order to evaluate the ability of CITRE to construct
useful features, we test the feature-construction process
starting only with nucleotides as features. In this exper-
iment we use fixed-size training sets of 5,000 examples.

0.50
. 0.40
o
o a“,,' Eoe o Mo o
c 0.30 L - s B A 3 LR R R BN ‘ﬂ"lﬂl"‘_ N o
.% =E ’E““'B'E'“nﬂﬂ.mgua-ngu-nﬂ woeBBgagaaEaaty
N
® 0.20
% data set1 —~—
© 410 data set 2 -=----
: data set 3 g
data set 4 -
0.00
5 15 25 35

CITRE iterations

Figure 7: Test set error for the CITRE trees. The ini-
tial set of features is simply the nucleotides representation.
The z-axis represents the number of feature-construction it-
erations, and the y-axis represents the test set error for a
decision tree induced using the features of a given iteration.
Fixed-size training sets of 5,000 examples are used to gener-
ate the trees.

The training and test sets are the same 5,000-example
sets used in the previous experiment. We run CITRE for
40 iterations on each training set.

Figure 7 shows the test set error for each of the four
training sets on each iteration of CITRE. From this figure
it can be seen that the generalization performance fluctu-
ates slightly as the feature set changes. Over the course
of the feature-construction process, however, test set ac-
curacies do improve somewhat. Table 1 shows the gener-
alization performance of the CITRE-induced trees relative
to the performance of C4.5 trees using both representa-
tions. The numbers in this table represent averages over
all four folds of data. The CITRE error rate was deter-
mined by taking the tree from the iteration with the best
performance for each data set. Thus, the error rate for
the CITRE approach is a lower bound on what it would
be if we used, say, a tuning set to decide when to stop
iterating. All differences in this table (except CITRE vs.
the nucleotides perceptrons, and CITRE vs. 40-hidden
unit networks) are significant to at least the 0.025 level
using a paired, 1-tailed #test.

The results of this experiment indicate that CITRE,
when given no domain knowledge, is able to improve
upon the performance of a decision tree using only the
nucleotides representation, but that this improvement is
not enough to match the performance of trees using the
codons representation. We have also conducted this ex-
periment using the fringe feature selection method [Pa-
gallo and Haussler, 1990], and competitive evaluation of
features [Matheus, 1990]. However, we found that the
adjacent selection method and information-based evalu-
ation provided the best results. Further experimentation
needs to be conducted to explore the effects of using do-
main knowledge, feature-generalization operators, and
more iterations of feature construction.

Table 1: Generalization error for decision tree and
neural network approaches. Reported values are averages
for four training sets of 5,000 examples each. The CITRE
result is an average of the values from the iteration with the
best performance for each data set.

| approach | % error |
C4.5 with nucleotides 33.59
CITRE starting with nucleotides | 28.75
C4.5 with codons 25.60
perceptron with nucleotides 29.53
40 HU network with nucleotides 27.95
perceptron with codons 22.56

7 Conclusions

We have described a real-world machine learning task
that we believe serves as an interesting challenge problem
for researchers investigating constructive induction. The
problem is an interesting one for several reasons:

e it embodies the complexity inherent in an important
real-world problem,

e two different, yet natural, input representations re-
sult in significantly different generalization perfor-
mance for neural networks and decision trees trained
using them,

e the relationship between the two representations is
well known,

e the representational shift involved in constructing
the better representation is not too imposing.

We have presented experiments that demonstrate that
the nucleotides and codons representations result in sig-
nificantly different test set accuracies for both percep-
trons and decision trees. Additionally, we have presented
experiments in which we tested the ability of both neural
and symbolic constructive induction methods to bridge
the gap between the two representations. These exper-
iments indicate that the two approaches do not easily
find the constructed features necessary to approach the
performance of the codons representation.

The next question to be addressed in our research is
how much domain knowledge is required in order to
match the performance of the codons representation?
One obvious piece of domain knowledge that could be
exploited is information about the sequential nature of
DNA. For example, in a neural network we could con-
nect hidden units so that each one is connected only to
a spatially-local part of the input window. Similarly,
we could bias CITRE so that conjunctions of neighboring
nucleotides are preferred. Although we know the map-
ping between nucleotides and codons, it is important to
find feature-construction methods which are as general
as possible so that they can be extended to problems in
which a good representation is not known.

The challenge that we issue to the machine learning
community is to develop an approach that is able to
achieve the performance of the codons representation us-
ing the nucleotides representation, and as little domain

knowledge as possible.3 We believe that this problem can
help guide research in constructive induction towards its
goal of finding effective domain-independent biases for
feature construction.

Acknowledgements

Insightful comments by Chris Matheus contributed to
this research and its presentation. Dave Opitz provided
helpful comments on an earlier version of this paper.

References

[Baum and Haussler, 1989] E. B. Baum and D. Haus-
sler. What size net gives valid generalization? Neural

Computation, 1:151-160, 1989.
[Craven and Shavlik, 1993] M. W. Craven and J. W.

Shavlik. Learning to predict reading frames in FE.
coli DNA sequences. In Proc. of the 26th Hawau In-
ternational Conf. on System Sciences, pages T73-782,
Wailea, HI, 1993. IEEE Press.

[Farber et al., 1992] R. Farber, A. Lapedes, and K.
Sirotkin. Determination of eucaryotic protein coding
regions using neural networks and information theory.
Journal of Molecular Biology, 226:471-479, 1992.

[Hinton, 1989] G. E. Hinton. Connectionist learning
procedures. Artificial Intelligence, 40:185-234, 1989.

[Matheus and Rendell, 1989] C. J. Matheus and L. A.
Rendell. Constructive induction on decision trees. In
Proc. of the Eleventh International Joint Conf. on Ar-
tificial Intelligence, pages 645-650, Detroit, MI, Au-
gust 1989.

[Matheus, 1990] C. J. Matheus. Feature Construction:
An Analytic Framework and an Application to De-
cision Trees. PhD thesis, University of Illinois at

Urbana-Champaign, 1990.
[Michalski, 1983] R.S. Michalski. A theory and method-

ology of inductive learning. Artificial Intelligence,

20:111-161, 1983.

[Pagallo and Haussler, 1990] G. Pagallo and D. Haus-
sler. Boolean feature discovery in empirical learning.

Machine Learning, 5:71-99, 1990.

[Quinlan, 1993] J. R. Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, San Mateo, CA,
1993.

[Rosenblatt, 1958] F. Rosenblatt. The perceptron: A
probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65(6),
1958.

[Uberbacher and Mural, 1991] E. C. Uberbacher and
R.J. Mural. Locating protein coding regions in human
DNA sequences by a multiple sensor — neural network

approach. Proc. of the National Academy of Sciences,
88:11261-11265, 1991.

#We plan to make this data set publicly available through
the UC-Irvine Repository of Machine Learning Databases
and Domain Theories. This database may be accessed by
doing an anonymous ftp to ftp.ics.uci.edu.

