Revised version submitted (3/94) to IEEE Ezpert (Special Track on AI and Molecular Biology).

Machine Learning Approaches
to Gene Recognition

Mark W. Craven
Jude W. Shavlik

Computer Sciences Department
University of Wisconsin
1210 West Dayton St.
Madison, Wisconsin 53706

phone: (608) 263-0475
email: {craven, shavlik }@cs.wisc.edu

Abstract

Currently, a major computational problem in molecular biology is to identify genes in
uncharacterized DNA sequences. The variation, complexity, and incompletely-understood
nature of genes make it impractical to hand-code algorithms to recognize them. Machine
learning methods — which are able to form their own descriptions of genetic concepts — offer
a promising approach to this problem. This article surveys machine-learning approaches
to identifying genes in DNA. We discuss two broad classes of gene-recognition approaches:
search by signal and search by content. For both classes, we define the specific tasks that
they address, describe how these tasks have been framed as machine-learning problems, and
survey some of the machine-learning algorithms that have been applied to them.

Keywords: machine learning
computational biology
genetic sequence analysis
neural networks
decision trees
nearest-neighbor methods
Bayesian methods
case-based reasoning

1 Introduction

Biological laboratories around the world are now sequencing large stretches of DNA from
humans and other organisms [1]. Determining the nucleotide sequence of a DNA molecule,
however, is only a first step toward the ultimate goals of (1) understanding the functionality
and (2) knowing the locations of all of the genes and regulatory sites on the molecule. As
a result of these sequencing efforts, there is a great volume of sequence data that needs
to be analyzed. Because direct laboratory analysis of this data is difficult and expensive,
computational techniques are essential to the task of identifying genes in DNA. The variation,
complexity, and incompletely-understood nature of genes make it impractical to hand-code
algorithms that recognize them. Computational techniques that are able to form their own
descriptions of genetic concepts are therefore well suited to DNA sequence analysis. The
Al field of machine learning involves developing and studying these kinds of automated
methods; that is, methods that are able to learn a useful description of a target concept
(e.g., the concept of a gene) when given instances of the concept, rather than an explicit
definition of it. This article provides a survey of machine-learning approaches to recognizing
genes in DNA.

The focus of this article is on (1) defining the tasks involved in recognizing genes in
nucleotide sequences and (2) describing some of the machine-learning approaches that have
been applied to these tasks. We first provide an introduction to a specific paradigm of
machine learning, called empirical learning, that encompasses the approaches described in
this article. We then give a brief introduction to the molecular biology that underlies the
problem of finding genes in DNA. The main sections of this article survey machine-learning
approaches to identifying genes in DNA. These sections are organized around two primary
classes of gene-recognition approaches: search by signal and search by content. These classes
are distinguished by the sequence features on which each approach concentrates. For both
classes, we define the tasks that they address, describe how these tasks have been framed as
machine-learning problems, and survey some of the machine-learning algorithms that have
been applied to them.

2 Empirical Learning

The type of machine learning that we are concerned with in this article is commonly called
empirical learning. (This type of learning is also sometimes called supervised learning, learn-
ing from examples, and similarity-based learning.) Empirical learning is an inductive process
that involves forming a general description of a target concept, using a set of known instances
of the concept, and usually, a set of instances known to not belong to the concept class. These
sets of positive and negative instances are collectively referred to as a training set. The goal of
the inductive learning process is to synthesize a concept description that is able to correctly
classify positive and negative instances. For example, we might be interested in learning the
concept of poisonous mushrooms. In this case, the positive examples are known species of
poisonous and the negative examples are known species of edible mushrooms. The concept
description should correctly classify the instances of the training set, and more importantly,
it should correctly classify novel instances; that is, instances that were not members of the

training set. In the mushroom example, clearly we are most interested in having our classifier
correctly identify newly-found species of mushrooms as being either poisonous or edible. The
ability to classify such previously-unseen instances is referred to as generalization. (Often
the learning task requires distinguishing instances that belong to more than just two classes.
In this case, training instances are not merely labelled positive and negative, but instead each
is labelled with the class to which it belongs.)

Empirical-learning methods are characterized by the following aspects:

e A language (i.e., a notation) for representing instances.

e A language for representing concepts.

e An algorithm for forming a concept description given a set of classified instances.
e An algorithm for using a concept description to classify instances.

We discuss each of these aspects below.

The instances that the learning system processes, both during training or classification,
are described using the instance-representation language. One type of language that is com-
monly used to represent instances is a fixed-length list of feature-value pairs. For example,
one mushroom instance might be described by the following list of feature-value pairs:

[cap-shape = conical, odor = almond, gill-attachment = free].

In this example, cap-shape, odor, and gill-attachment are the features; conical,
almond, and free are the corresponding values. Using such a language, a human must select
the problem features that are deemed potentially relevant to learning the target concept,
and specify the type of each feature. Real-world instances of the problem are then mapped
to this “feature space” so that they can be processed by the learning algorithm. Some
common feature types are: Boolean, real, and nominal. (A nominal feature is one for which
there is not an ordering over the possible values of the feature. In the mushroom example,
gill-attachment is a nominal feature with the possible values of attached, descending,
free, or notched.) Additionally, for training instances, the instance language is used to
specify the class to which each instance belongs.

The concept-representation language defines the space of possible concepts that can be
represented by the learning algorithm. The richness of the concept-description language
determines the range of concepts that can be represented by it. For example, the language
of first-order logic programs has more expressive power than the language of propositional
conjunctions. Naturally, it is desirable that the concept-description language be sufficiently
rich that it is able to accurately represent the target concept. The richness of the language
also determines the number of concept descriptions that are likely to provide a good “fit” to
the training data, as well as the complexity of searching the space of concept descriptions.
The term fit refers to the degree to which the concept description correctly classifies the
training instances. A problem that arises when there are many concept descriptions that fit
the training set is that there is a high probability that the learning algorithm will find a con-
cept description that does not generalize well. Poor generalization results when the concept
description captures too much information about the specific instances in the training set,

and not enough information about the general characteristics of the class. This phenomenon
is called overfitting.

The learning algorithm performs a search through the space of concept descriptions in
order to find a description that covers most (perhaps all) of the positive instances and few
(perhaps none) of the negative instances. For many real-world problems, it is not possible to
cover all of the positive and none of the negative instances because either the given concept
representation language is not rich enough to allow a perfect covering or because there is
noise present in the training data. This noise may be attributable to several causes. It may
be due to error or imprecision that occurs in measuring feature values or assigning class
labels to instances. Alternatively, noise may be introduced in cases where the process of
mapping real-world objects to instances in the instance-description language is many-to-one.
Even in cases where it is possible to find a concept description that fits all of the training
instances, it is not necessarily desirable to do so. In order to avoid overfitting, it is often
preferable to choose a simple concept description that does not fit all of the examples over
a more complex one that does.

The classification algorithm associated with a particular empirical learning method takes
two inputs: a learned concept description and instances described using the instance repre-
sentation language. The classification algorithm produces as output a prediction of the class
to which the given instance belongs (or a probability distribution that indicates how likely
it is that the instance is a member of each class).

In order to evaluate how well a classifier has learned a target concept, it is important to
measure how it generalizes to instances that it has not seen before. This is typically estimated
by setting aside a set of instances, called a test set, prior to training. Unlike training instances,
the instances in the test set are not used in learning the concept description, but instead are
used to get an unbiased estimate of the prediction accuracy of the trained classifier. More
sophisticated methodologies, such as cross-validation, are sometimes used to gain better
estimates of how well an algorithm generalizes.

3 A Brief Introduction to Molecular Biology

This section provides a brief introduction to the molecular biology of the gene. Our descrip-
tion of this topic is quite simplified and ignores many salient aspects of molecular genetics.
A thorough treatment of the biology underlying gene recognition can be found elsewhere
[1, 2]. Our description emphasizes aspects of the biology that are relevant to finding genes
by computational methods.

A DNA molecule usually comprises two strands that coil around each other into a double
helix. A strand of DNA is a linear sequence of chained nucleotides. DNA is composed from
four different nucleotides — adenine, guanine, thymine, and cytosine — commonly abbreviated
by the alphabet {A, G, T, C}. The two strands are held together by bonds that connect
each nucleotide to its complementary nucleotide on the other strand. The nucleotide A always
bonds to T, and C is always paired with G.

Certain subsequences of a DNA strand, called genes, serve as blueprints for proteins.
Interspersed between the genes are segments, termed noncoding regions, that do not encode
proteins. Proteins are important because they provide most of the structure, function, and

noncoding region RNA polymerase

DNA
A 4 TGCAGCTCCGGACTCCAT..
TRANSCRIPTION
promoter MRNA
UGCAGCUCCGGACUCCAU.. ﬂ
TRANSLATION
protein
ribosome

Figure 1: The process of gene expression. DNA and RNA are composed of linear chains of nucleotides.
Transcription involves synthesizing messenger RNA (mRNA) using DNA as a template. The enzyme RNA
polymerase is the molecule that transcribes DNA into RNA. A site where RNA polymerase binds to DNA
to begin transcription is called a promoter. Messenger RNA is translated to protein by a molecule called
a ribosome. Proteins are linear chains of amino acids; each amino acid is encoded by a string of three
consecutive nucleotides. Noncoding regions are stretches of DNA that do not encode proteins.

regulatory mechanisms of cells. Proteins are also linear sequences; they are composed from
the 20-member set of amino acids.

Gene ezpression refers to the process by which genes are used to produce proteins. The
mechanisms of gene expression are somewhat different for prokaryotic organisms, such as
bacteria, that lack cell nuclei, and higher, or eukaryotic, organisms. We discuss only the
differences that are germane to the task of finding genes.

The process of gene expression is illustrated in Figure 1. The first step in this process is
called transcription, and involves the synthesis of an RNA molecule using DNA as a template.
RNA that is eventually translated into protein is known as mRNA (for messenger RNA).
The structure of RNA is very similar to DNA, except that it is composed from a slightly
different alphabet of {A, G, U, C}, where U represents the ribonucleotide uracil. Each
ribonucleotide of an RNA strand matches the DNA from which it was transcribed except
that each T nucleotide in DNA is replaced with a U ribonucleotide in the RNA. (Actually, the
synthesized RNA is complementary to one strand of the DNA and is identical — except for
T — U substitutions — to the other strand. In our discussion, we follow biological convention
and refer to the gene as being on the strand that is identical to the RNA.) The enzyme
RNA polymerase is the molecule that transcribes DNA into RNA. RNA polymerase begins
transcription after it binds to a regulatory signal called a promoter on a DNA molecule. In
eukaryotic DNA, each gene is transcribed independently, and thus there is a promoter before
every gene. In prokaryotic DNA, however, several consecutive genes may be transcribed into
a single, continuous RNA molecule, thus there is not necessarily a promoter preceding each
prokaryotic gene.

The translation process involves synthesizing a protein molecule using an mRNA strand
as a template. A complex molecule called a ribosome performs the task of “reading” an
mRNA strand and using its message to assemble a protein chain. Recall that amino acids

exon intron exon intron exon

I || EN°° mmmm DNA

TRANSCRIPTION

I | E——
] MRNA

Figure 2: mRNA splicing in eukaryotic organisms. In higher organisms, or eukaryotes, parts of the
mRNA chain are spliced out before translation occurs. The regions of a gene that are translated to protein

are termed exons, and the regions that are spliced out are called introns.

are the building blocks of proteins. Each string of three consecutive nucleotides in mRNA
encodes a single amino acid. The nucleotide triplets are called codons, and the mapping
from codons to amino acids is called the genetic code. For a given strand of DNA, there are
three different ways in which the nucleotides can be grouped into triplets: a given nucleotide
can occupy the first, second, or third position in a codon. Only one of the three possible
groupings is actually “read” by the ribosome; this grouping is termed the reading frame of
the gene. As an analogy, consider a bit stream that contains a message encoded in ASCII.
Such a bit stream has eight possible reading frames, and the correct frame must be found in
order to decode the message.

In eukaryotic organisms, there is another significant step that occurs during gene expres-
sion. As illustrated in Figure 2, after RNA is transcribed, certain parts of the molecule are
spliced out before it is translated to protein. Thus, genes in eukaryotes consist of alternating
segments of ezons, the nucleotide sequences that are expressed (translated to protein), and
introns, the intervening sequences that are spliced out. The boundary points where splicing
occurs are termed splice junctions.

The genome of an organism refers to the complete complement of DNA found in each cell
of the organism. The human genome contains about 6 billion nucleotides and an estimated
100,000 genes. The genome is often called the blueprint for an organism since each gene
is a plan for a protein, and proteins are the key building blocks of organisms. Unlike a
blueprint, however, a large part of the genome does not contain such plans, but instead
contains sequences that regulate the construction of the proteins, and sequences that may
not have any useful function. Clearly, a fundamental problem in analyzing DNA sequences
is to locate the genes (plans) in them. In the following sections we discuss machine-learning
approaches to finding genes in DNA. Where applicable, we describe how the approaches
differ for prokaryotic and eukaryotic DNA.

4 Search by Signal

There are two broad classes of computational approaches to finding genes in nucleotide
sequences: search by signal and search by content. Search by signal locates genes indirectly
by finding particular signals that are associated with gene expression. A signal is a localized
region of DNA that performs a specific function, such as binding an enzyme. Search by
content recognizes genes directly by identifying segments of DNA sequences that possess the
general properties of coding regions. Search by content exploits knowledge of the differing
statistical properties of coding and noncoding regions.

In this section we discuss machine learning approaches that have been applied to recog-
nizing the biological signals that are involved in gene expression. Although our discussion
focuses on search by signal as a method for locating genes in DNA, signal detection is an
important problem in its own right. In order to understand the genome of a particular
organism, it is necessary not only to understand the function of each gene, but also the
mechanisms that regulate the expression of the gene. Many signals perform important regu-
latory functions by determining the conditions under which genes are expressed and the rate
at which expression occurs.

There are several signals that can be identified in nucleotide sequences that are especially
germane to identifying genes:

e transcription initiation sites (promoters),

transcription termination sites (terminators),

e splice-junction sites,

translation initiation sites (initiation codons),

translation termination sites (stop codons).

The difficulty involved in identifying these sites varies considerably. Translation termina-
tion sites, for example, are trivial to identify. There are three special codons, called stop
codons, that cause the translation process to terminate. Unlike the other codons, which
are translated to amino acids, stop codons signal the ribosome to release the mRNA chain,
thus terminating translation. Detecting translation termination sites, consequently, involves
finding stop codons that occur in-frame in coding regions. A codon is said to be in-frame if
it occurs in the reading frame of the gene. The tasks of identifying the other types of sites
listed above, however, are reasonably complex. We discuss machine learning approaches to
recognizing transcription initiation sites, translation initiation sites, and splice junctions.

As illustrated in Figure 3, the search-by-signal approaches that we describe all formulate
their task as one of classification. Specifically, the tasks are defined in the following way:
given a fixed-length “window” on a DNA sequence, determine if the window contains the
signal of interest such that some identifiable feature of the signal occupies a particular po-
sition in the window. Once such a classifier has been trained, it can be used to locate the
signals of interest by scanning its window along the length of the sequence.

promoter at position 3?

|
|

feature } position 3
representation |
|
|
|

DNA sequence ...ATCGTGCTTACGCGTCCA...
Figure 3: Search by signal as a classification task. Each instance is defined by the contents of a
fixed-size window. The dashed box in the figure shows the window contents represented as feature-value
pairs. The signals of interest (promoters, in this example) are located by scanning the classifier along the
given sequence. A positive example occurs when a signal of interest is located in a specified position in the
window (when a promoter begins at position 3, in this example).

4.1 Translation Initiation Sites

The first search-by-signal problem that we discuss is the recognition of translation initia-
tion sites. Translation of mRNA to protein does not begin with the first nucleotide triplet
of an mRNA molecule, but rather begins somewhere “downstream.” In prokaryotic organ-
isms, a single mRNA molecule may actually have several translation initiation sites since, in
prokaryotes, consecutive genes may be transcribed into a single mRNA chain. Translation
is usually initiated by the codon AUG which encodes the amino acid methionine. Identifying
translation initiation sites, however, is more complicated than simply locating AUG codons.!
The first AUG codon in an mRNA chain is not necessarily the initiation codon. Furthermore,
in prokaryotes, translation sometimes begins with other codons, and AUG may also occur in
the middle of a coding region. In prokaryotic organisms there is usually a sequence preceding
the initiation codon that is complementary to the part of the ribosome that binds to mRNA.
This sequence, called the Shine-Dalgarno sequence, is named for the biologists who proposed
that mRNA and the ribosome bind to each other as part of initiation-site selection. Locat-
ing Shine-Dalgarno sequences can therefore aid in finding prokaryotic translation initiation
sites. Recognizing them, however, is not straightforward since the nucleotides present in the
Shine-Dalgarno region show considerable variation in actual translation initiation sites.

An early application of machine learning to molecular biology involved training per-
ceptrons to recognize translation initiation sites in DNA of the bacterium E. coli [3]. As
illustrated in Figure 4, a perceptron is an artificial neural network that has only one output
unit and no hidden units. The input units of a perceptron represent features of the problem
at hand. The input units shown in the figure, for example, represent three features: the
nucleotides in particular window positions. Four units are used to represent each feature —

!Note that although translation initiation sites are actually features of mRNA, they can be recognized
in DNA sequences since it is trivial to determine the RNA sequence that is transcribed from a given DNA
sequence.

A C G T A C G T A C G T

_ATCGTGC[TTA|[CGCGTCCA...
diding
window

Figure 4: A perceptron. A perceptron is an artificial neural network that has a single thresholding output
unit and no hidden units. In this figure, the input units represent the contents of the window. Shaded input
units have activations of 1, the other input units have activations of 0.

one for each possible value that the feature can have. The state of a unit is represented by
its activation, which is typically a real-valued number in the range [0, 1]. The activations of
the input units are set to represent the feature values of a particular instance. Real-valued
weights connect input units to the output unit. The activation of the output unit, for a
given instance p, is calculated as follows:

o = 1 if Ej W;jQps > 0
PP 1 0 otherwise

where ay; is the activation of the ith unit in response to instance p, w;; is the weight con-
necting unit j to the output unit 7, and 6 is a threshold. A function, such as this one, that
is used to compute activations is called an activation function. The output activation can
be interpreted as the “answer” given by the perceptron. For example, an activation of 1
is typically interpreted as indicating a positive instance (e.g., translation initiation site),
whereas an activation of 0 indicates a negative instance. Perceptron learning involves ad-
justing the network weights and threshold to maximize the number of training instances that
are correctly classified. Specifically, several passes are made through the training set where
the weights are updated for each instance in the following manner:

Aw;j = 1ty — api)ap;

where t,; is the teaching signal, or correct response, for instance p, and 7 is a step-size
parameter that determines the rate of learning. A comprehensive introduction to neural-
network learning techniques can be found elsewhere [4].

In training perceptrons to recognize translation initiation sites, Stormo and his colleagues
experimented with windows that were 101, 71, and 51 nucleotides wide. As in Figure 4, they
used four input units to represent each nucleotide in the window. The positive instances con-
sisted of 124 known initiation sites, and the set of negative instances was 167 sites that were
falsely identified as initiation sites using a rule-based technique. The positive instances were
aligned so that the initiation codon for each instance occupied the same window positions.

Stormo et al. found that the perceptron with 101-nucleotide window generalized better than
the others. Not surprisingly, the most significant weights were those connected to the units
representing the initiation codon and the nucleotides in the Shine-Dalgarno region.

One way to think about the concept represented by a perceptron is as a matrix where
the rows represent A, C, G, and T, and the columns represent positions within the window.
Each element of this matrix is a number that represents the associated weight for a par-
ticular nucleotide occurring in a particular window position. In fact, it is common to find
descriptions of such “weight” matrices in the biological literature. Another way to think
about a perceptron’s concept representation is as an (n — 1)-dimensional hyperplane where
n is the number of input units. A pattern of activation on the input units corresponds to a
point in the n-dimensional space. The class predicted by the perceptron is determined by
the side of the hyperplane that the point is on. A perceptron is thus able to accurately rep-
resent only concepts that are linearly separable; that is concepts for which the positive and
negative instances can be completely separated by a hyperplane. Artificial neural networks
that have hidden units are able to form more complex concept descriptions than perceptrons.
Hidden units are able to transform the space defined by input unit activations into another
space in which it is more profitable for the output units to make linear discriminations.
Since the early work of Stormo et al., learning algorithms for such multi-layer networks have
been developed (e.g., backpropagation), and these networks have been applied to recognize
translation initiation sites and other signals.

4.2 Transcription Initiation Sites

As previously mentioned, transcription begins just downstream from where RNA polymerase
binds to a promoter. Promoters thus provide another class of biological signal that is useful
for locating genes in DNA. Several research groups have investigated using artificial neural
networks to recognize promoters. One such group, Towell, Shavlik, and Noordewier have em-
ployed a novel approach, the KBANN algorithm, that combines neural network and symbolic
learning [5].

The KBANN algorithm uses a set of approximately-correct, propositional rules to initial-
ize the topology and weights of a neural network. After the network is initialized, ordinary
neural-network learning techniques are used to adjust the weights. In a conventional net-
work, the weights are initially assigned small random values, and a suitable topology is
determined through experimentation. One of the contributions of the KBANN algorithm is
that it provides a method for using problem-specific knowledge, in addition to training ex-
amples, during learning. Networks initialized using the KBANN algorithm often learn faster,
and more importantly, find solutions that result in better generalization.

The first real-world problem to which Towell and Shavlik applied their algorithm was
the task of recognizing promoters in E. coli DNA. Figure 5 shows the promoter rule set
they used and an initial KBANN network. The input units of their network represent a
window of 57 nucleotides. The positive instances (i.e., promoter sequences) were aligned so
that the transcription initiation site for each occurred seven nucleotides from the right edge
of the window. Noordewier, a biologist, derived an approximately-correct set of rules for
recognizing F. coli promoters from the biological literature. This rule set identified two sets
of sequence patterns that should occur about 10 and about 35 nucleotides upstream from

promoter

promoter :— contact, conformation.

contact :—- minus_35, minus_10.

minus_35 - @-37 "cttgac".

minus_35 :- @-37 "xttgxca". contact conformation
minus_35 :- @-37 "xttgaca".

minus_35 :- @-37 "xttgac". \\\\\\
minus_10 :- @-14 "tataat". minus 35 minus. 10 \ \:\\
minus_10 :— @-14 "xtaxaxt". ANRN
minus_10 :- @-14 "xtataat".

minus_10 :- @—14 "xxtaxxxt".

conformation :— @-45 "aaxxa".

conformation :— @-45 "axxxxa", @-4 "t",
@—28 "txxxtxaaxxtx".

conformation :— @-49 "axxxxt", @-1 "a",
@-27 "txxxxaxxtxtg".

conformation :- @-47 "caaxttxac", @—22 "gxxxtxc", KR
" " 0000000000000V VVVOOO0O0O00000O0000000VVOVOOO0000000000000
@-8 "gcgcexcc”. BO000000000000000A0AOAANAIAAAOOOAOOO0O0000000000OAD
000000000000 0O0000O0000O0000O0000O0O000O0000O00O000000000000000
OO000O00O00O0OOO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0O0OO00000

input units

Figure 5: The promoter rules and initial neural network. The KBANN algorithm uses the
approximately-correct rules to determine the topology and initial weights of the network. The rules are
written here using a Prolog-like syntax. The notation @-37 "cttgac" is used to indicate that this rule is
looking for the sequence "cttgac" thirty-seven nucleotides before the putative transcription initiation site.
The character x in a sequence indicates that any nucleotide will match the rule at the given position.

where transcription begins. These two parts of the sequence, commonly referred to as the
-10 and -35 regions in the biological literature, are the sites at which RNA polymerase binds
to the DNA sequence. These sites are widely accepted as being the regions that provide
the defining characteristics of promoters. Additionally, the rule set specified patterns for
several other upstream regions whose significance is controversial. This latter group of rules,
called the conformation rules, attempts to capture the effect of the helical structure of DNA
on the spatial alignment of the -10 and -35 regions. Although this promoter rule set repre-
sented textbook characteristics of promoters, it did not correctly classify any of the promoter
sequences in the set of instances used to train and test the algorithm. Through neural net-
work training, however, the rules were refined so that they more accurately represented the
essential characteristics of promoters.

Towell et al. compared networks initialized using the KBANN algorithm to conventional
neural networks, decision trees, and nearest-neighbor classifiers (these approaches are dis-
cussed later in this article). They found that the KBANN networks generalized better than all
of the other approaches. Their results indicate that the approximately-correct, task-specific
rules used by KBANN assist neural-network learning by identifying some of the important
problem features and significant relationships among them. Another interesting finding of
their experiments was that the networks learned to discard the conformation rules during
training. This result indicates that the conformation rules do not represent a salient aspect
of promoters.

10

position 8 =7

/A
A C G T
/ \
donor negative
position 3="? position9="?
AN /A
A C G T A C G T
S VN A NN
negative negative donor negative negative donor negative negative

Figure 6: A simple decision tree. Each node in the tree represents a test applied to one of the problem
features. Each leaf of the tree represents a predicted class; in this example the classes are donor, and negative

(i-e., not a donor).

4.3 Splice Junctions

Because eukaryotic genes may contain introns, the problem of determining the extent of cod-
ing regions in eukaryotic DNA involves more than simply finding initiation codons. Recall
that introns are sequences that are spliced out of mRNA before it is translated. Introns range
in length from less than 100 to more than 1000 nucleotides. An important problem in eukary-
otic sequence analysis is to identify the splice junctions, or boundary points where splicing
occurs. Biologists commonly call the exon/intron borders donors, and the intron/exon bor-
ders acceptors. Identifying splice junctions is important because, in order to determine the
protein produced by a gene, it is necessary to precisely demarcate the segments of the DNA
sequence that are eventually translated.

Lapedes and his colleagues applied several machine learning approaches to the problem
of recognizing splice junctions in human DNA [6]. In addition to artificial neural networks,
they also used decision trees and k-nearest neighbor classifiers on this problem. Lapedes
et al. used the ID3 algorithm [7] to induce decision trees. As illustrated in Figure 6, each
internal node in a decision tree represents a test applied to one of the problem features. The
branches emanating from a node represent the possible outcomes of the test. With nominal
features, for example, the test commonly results in a branch for each possible feature value.
Each leaf of the tree represents a predicted class. Classification using a decision tree involves
following a path from the root of the tree down to a leaf using the decisions made at each
node to determine which branches are followed. Decision-tree learning is a recursive process
that involves adding nodes to a tree until it sufficiently separates the training data by class.
The learning algorithm selects a feature to branch on at each node, and then makes recursive
calls to build subtrees for each created branch. All of the training instances are used to select
the test at the root node, but smaller subsets of the training data are used to select the tests
at subsequent nodes. Specifically, as the tree is constructed, it is also used to classify the
training instances; only those training instances that reach a node are used to select the test
at the node. The ID3 algorithm uses an information-theoretic measure to determine which
feature is branched on at each node.

11

Lapedes and his colleagues also applied a k-nearest neighbor approach [8] to the problem
of splice-junction recognition. The k-nearest neighbor method is a simple learning technique
that does not require any training per se. The concept representation is simply the entire
training set. In order to classify a new instance, the k£ “nearest” training instances are
identified and the class label associated with the majority of these instances is the predicted
class. The effectiveness of the approach is highly dependent upon the metric used to measure
the distance between two instances. Lapedes et al. used a clever weighted Hamming distance.
An ordinary Hamming metric defines the distance between two instances as the number of
window positions in which the instances have different nucleotides. A weighted Hamming
distance is calculated by associating a weight with each window position, where the weight
is calculated by an information-theoretic metric that uses the training instances to measure
the average amount of information contributed by each window position.

Lapedes et al. used windows of 11, 21 and 41 nucleotides to evaluate the neural network,
decision tree, and nearest-neighbor approaches. Separate classifiers were trained to recognize
the donor and acceptor classes. The instances were aligned so that the splice junctions were
in the center of the window. For both donors and acceptors there is a pair of nucleotides
that is highly conserved (GT for donors, and AG for acceptors) on the intron side of the
splice junction. A highly-conserved sequence is one that occurs with high frequency in a
given location. The negative training instances, which were taken from known exons, were
selected so that they also had either AG or GT in the center of the window. Selecting negative
instances in this way prevented the classifiers from learning a trivial distinction such as: AG
in the center of the window indicates acceptor.

Lapedes and his colleagues found that neural networks achieved higher test-set predic-
tion accuracies than either decision trees or k-nearest neighbor classifiers. The acceptor-
recognition networks correctly classified 91% of the instances in the test set, and the donor-
recognition networks correctly classified 95% of these instances. Although the decision trees
were not as accurate as the neural networks, they offered an advantage in that their concept
representations are much more comprehensible. A decision tree can be easily transformed
into a set of conjunctive rules. Lapedes et al. found that the rule sets obtained from the
trained splice-junction trees were relatively small and biologically interpretable.

5 Search by Content

Unlike search-by-signal approaches, which look for specific functional sites in DNA, search-
by-content methods identify genes by recognizing general patterns that occur in their nu-
cleotide sequences. The objective of search-by-content methods is to identify the regions of
DNA sequences that are translated to protein. For prokaryotic DNA, this involves distin-
guishing genes from the noncoding regions that are interspersed between them. For eukary-
otic DNA, the goal is not only to distinguish genes from inter-genic noncoding regions, but
also to distinguish introns from exons. There are three separate questions that search-by-
content methods address: which regions are coding, and for a given region, which strand
and which reading frame encode the protein. Recall that the reading frame of a gene refers
to how consecutive nucleotides are grouped into triplets.

There are several properties that can be exploited to distinguish coding and noncoding

12

regions. The overriding constraint that is placed on a coding region is that, by definition, it
encodes a protein. The fact that some amino acids are used more frequently than others in
proteins thus influences the nucleotide composition of coding regions. A second influence on
the composition of coding regions is that there are different numbers of codons for different
amino acids. This fact is due to the degeneracy of the genetic code. There are 64 different
codons, since there are four different nucleotides and each codon consists of three nucleotides.
Sixty-one of the codons map to amino acids; the other three are the stop codons. There
are, however, only 20 amino acids. Consequently, many amino acids are encoded by several
different codons. A third influence on the nucleotide composition of coding sequences is
that the codons that map to a given amino acid are not used equally in most organisms.
This bias is termed the codon preference of the organism. Another simple constraint that is
placed on coding regions is that they cannot contain stop codons. Finally, the function of a
protein is largely determined by its shape, and its shape is partly determined by electrostatic
interactions among neighboring amino acids. This influence means that some amino acids
are more likely to be neighbors than others, and thus some codons are more likely to neighbor
each other. The effect of all of these constraints is that the composition of coding regions
is often significantly different from the nucleotide compositions of introns and inter-genic
noncoding regions.

As with the search-by-signal approaches discussed in the previous section, the search-by-
content methods that we describe make predictions based on a fixed-sized input window. By
sliding the window of a trained classifier along a sequence, predictions can be generated for
the entire length of the sequence.

5.1 Bayesian Approaches

Several search-by-content methods, including Staden and McLachlan’s codon usage method
[9], are based on Bayes’ theorem. Given a window of nucleotides, their approach estimates
the probability that each of the three reading frames of the strand encodes a protein. For
a given sequence S occupying the window, the probability that frame i is coding (C;) is
calculated by:

_ P(S]Cy) x P(Cy)
P(C; | S) = Z§°=1 P(S | Cy) x P(Cy)

The prior probability that each frame is coding, P(C;), is estimated as the number of triplets
in the window in frame i, divided by the number of triplets that can be formed in the window
in all three frames. (As the window size increases, P(C;) approaches 5 for all three frames.)
Each conditional probability, P(S | C;), is the probability that we would get the particular
sequence S if we arbitrarily selected a coding sequence of the same length as S. These
conditional probabilities are estimated by compiling a table of the frequencies of each codon
in known genes of the organism. The frequency value for each codon is an estimate of the
conditional probability that the codon occupies a given position in a sequence S, given that S
encodes a protein. Staden and McLachlan make the simplifying assumption that the codons
that compose a gene are independent of each other, and thus arrive at the following estimate:

P(S| C;) = H P(S.(j) | C)

13

= Lo V

frame 2 f
0

frame 3 M
0

Figure 7: Reading frame plots. Each plot shows the predicted probability that the corresponding frame

DNA sequence position

encodes a protein. The hypothetical set of signals in this figure shows the beginning of a protein coding

region in frame 1, and a frameshift error that shifts the predicted reading frame to frame 2.

S;(4), in this equation, is the jth triplet in frame ¢ in sequence S, and n is the number of
triplets in frame ¢ in S. This formula states that in order to determine the probability of
finding sequence S in a coding region, calculate the joint probability of finding the individual
codons of S in a coding region.

This approach assumes that the given sequence encodes a protein in one of the three
reading frames on the strand under consideration. Although this assumption is not gener-
ally valid since the window may be positioned over a noncoding region, the approach still
works well in practice, for reasons explained below. Moreover, it is straightforward to extend
the codon usage method so that noncoding is considered as one of the possible hypotheses.
Doing so requires estimating the prior probability of the noncoding hypothesis, as well as the
conditional probabilities of each of the codons given the noncoding hypothesis. Estimating
these probabilities is problematic for some species, however. Sequencing efforts often con-
centrate on areas that are dense with genes, thus there is a dearth of noncoding sequence
data for some organisms. Additionally, it is sometimes difficult to ascertain that a stretch
of putative noncoding DNA really does not contain a gene.

Typically, the codon usage method is used to generate a plot for each reading frame.
As illustrated in Figure 7, each plot consists of a series of connected points that represent
predicted probabilities for each window position. Coding-region boundaries are indicated by
sharp changes in these plots. For example, the start of a coding region in the first frame
would correspond to a steep increase in the predicted probabilities for the topmost plot.
Even though the codon usage method assumes that a given sequence encodes a protein in
one of its reading frames, noncoding regions can usually be detected because they tend to
produce wildly fluctuating predictions, whereas coding regions result in consistently high
probabilities.

The plots generated by the codon usage method have an additional use besides delimiting
the boundaries and identifying the reading frames of coding regions. They are also able
to detect frameshift errors in sequences. A frameshift error is not actually a feature of a
DNA sequence itself, but instead is a laboratory error that occurs during the sequencing

14

process. A frameshift error involves the mistaken insertion or deletion of a nucleotide in the
sequence data. Because of the triplet nature of the genetic code, a frameshift error can have
a devastating effect on the prediction of the amino-acid sequence translated from a given
gene. Once the computed translation is out of frame, the predicted protein will bear no
resemblance to the actual protein. Frameshift errors are often detectable, however, in plots
such as those generated by the codon usage method. A frameshift error is indicated by a
sharp drop in the plot of one reading frame accompanied by a steep increase in the plot of
another frame.

A related statistical method, the Markov chain model, has also been applied to gene
recognition [10]. This approach, like the Bayesian method, is based on computing the like-
lihoods of encountering a given sequence in each reading frame and in noncoding DNA. In
the Markov chain approach, however, a DNA sequence is viewed as being generated by a
state-based model. For example, Borodovsky and Mclninch use a four-state model where
each state corresponds to one of the four nucleotides. The prior probabilities of the states
and the probabilities of the transitions are calculated from the training set. The likelihood
of a given sequence is then calculated as the product of the initial state probability (i.e.,
the probability of the first element in the sequence) and the probabilities of successive state
transitions. The statistics employed by a Markov chain model may describe sequences of
transitions through several states: a kth order model uses statistics that describe transition
chains that link £ 4 1 states.

5.2 Neural Network Approaches

The assumption of the independence of codons in the window is perhaps the most prob-
lematic assumption made by the Bayesian codon usage method. Because interactions among
neighboring amino acids partly determine the shape, and hence the function of a protein,
neighboring codons are certainly not independent. Farber, Lapedes, and Sirotkin have shown
that better coding-region predictions can be gained by taking into account the joint prob-
abilities of neighboring codons [11]. The problem that they addressed in their experiments
was to distinguish introns from exons. They demonstrated that perceptrons are able to
outperform Bayesian approaches because they can account for some of the dependence be-
tween neighboring codons. They also showed that even better prediction accuracies can be
obtained using a feature representation that explicitly represents adjacent codons.

In one experiment, Farber et al. compared the prediction accuracies of a Bayesian method
to perceptrons with sigmoid activation functions. The sigmoid activation function, defined

1
= n i ntin roximation of a threshol
as ap; o -, w10 can be viewed as a continuous approximation of a threshold

function. The Bayesian method they employed formulated the prediction task as a two-
class problem: given a sequence, determine whether it occurs in an intron or an exon.
This formulation of the problem assumes that the reading frame of the gene is known; the
classifiers must simply distinguish introns from exons. Given a sequence S, probabilities are
calculated in the following way:

P(S | Exon) x P(Ezon)
(S| Exon) x P(Exon) + P(S | Intron) x P(Intron)

P(Ezon | S) = 2

15

The conditional probabilities P(S | Exon) and P(S | Intron) are estimated using the inde-
pendence assumption and codon frequencies tabulated from sets of known introns and exons.
The perceptrons use the same feature representation as the Bayesian approach. Specifically,
this representation consists of 64 features that represent the frequency of occurrence of each
codon. These features are represented using 64 input units, where the activation of each
input unit is effectively a count of the number of times that the codon represented by the
unit occurs in the window.

Farber et al. compared these two approaches using windows that ranged from 5 to 90
codons in length. The predictions of the perceptrons were significantly more accurate than
those of the Bayesian method, especially with larger windows. The reason the perceptrons
outperform the Bayesian approach is that they are not bound by the assumption of the
independence of the codons. Farber, Lapedes and Sirotkin show that it is possible to set
the weights of a perceptron by hand so that it calculates the same probabilities as Bayes
Theorem under the independence assumption. These weights, however, are not optimal
when the independence assumption is not true, as is the case for this problem. The training
algorithm for perceptrons, however, is able to find optimal weights for the given training
instances and feature representation, even when the assumption of independence is violated.

In a second experiment, Farber and his colleagues trained perceptrons that captured some
codon dependencies in their feature representation. The features used in this experiment were
all of the possible dicodons; that is, adjacent pairs of codons. Since there are 64 different
codons, there are 64 x 64 = 4096 different dicodons. The perceptrons used in this experiment
thus had 4096 input units, where each unit represented the frequency of occurrence of each
dicodon. These perceptrons were trained using the same training sets and window sizes as in
the first experiment. The generalization performance of these perceptrons was significantly
better than the performance of the perceptrons that used only codon features. This result
illustrates a common theme in machine-learning research: the ability of a learning system
to find a good solution to a problem is highly dependent on the representation used for the
features of the problem. Farber et al. found that even when hidden units were added to
the networks that used the single-codon feature representation, the networks did not learn
to represent dicodon frequency information well enough to match the performance of the
networks that used the dicodon feature representation. Similarly, they found that using a
feature representation of the individual nucleotides in the input window resulted in networks
that did not generalize nearly as well as those that used a feature representation of codons.

Uberbacher and Mural have also applied neural networks to coding-region recognition
in eukaryotic DNA [12]. Their coding recognition module (CRM) is a component in an
automated sequence-analysis server called GRAIL [13]. The heavily-used GRAIL server ac-
cepts DNA sequences via electronic mail, analyzes them, and then returns e-mail messages
describing the results of its analysis.

Uberbacher and Mural’s research has also focused on finding a set of features that lead
to good coding region predictions. The input features used by the coding recognition module
are calculated by algorithms, called sensors, that evaluate seven different aspects of a given
DNA sequence. The sequence characteristics measured by the sensors include such things as:
the frequency with which each nucleotide occupies each position in a codon; the likelihood
of finding the window’s dicodons in coding and noncoding DNA; and similarity to various
repetitive patterns found in noncoding regions. There is a total of seven sensors, each of

16

which provides a fair indication of the coding potential of the sequence being processed.
During neural-network training, the CRM learns to weight the individual sensors and to
recognize meaningful correlations in their values. Uberbacher and Mural evaluated their
CRM using 19 human genes that were not in the training set. The CRM located 90%
(71/79) of the long exons (more than 100 nucleotides) in these genes.

In addition to the CRM the GRAIL program also employs modules that predict splice
junctions and translation initiation sites. An expert system with a blackboard control struc-
ture is used to assemble the predictions of the individual modules into coherent predictions
of the location and intron/exon structure of genes.

5.3 Case-Based Approaches

Another AI approach to the problem of identifying protein-coding regions is a case-based
approach. Case-based reasoningis a broad Al paradigm that involves several tasks, including
indexing and retrieving cases stored in a memory. The indexing and retrieval aspects of
case-based reasoning have been applied to gene recognition. The cases, in this context, are
the nucleotide or amino-acid sequences of known genes. The case-based approach to gene
recognition takes a new sequence, called the query sequence, and searches the case memory for
similar sequences. A significant partial match between the query sequence and an element of
the case memory can be interpreted as a prediction of a coding region in the query sequence.
The case memory is usually not limited to sequences from the same organism as the query
sequence since, due to evolution, highly similar genes can be found in many different species.
In addition to identifying potential coding regions, a matching gene in the case memory can
also provide insight into the functionality of a newly-discovered gene. This is an interesting
aspect of the case-based approach that distinguishes it from the other methods we have
discussed.

The effectiveness of a case-based algorithm hinges on the method used to assess sequence
similarity. The two most important aspects of similarity determination are: the level of
sequence at which comparisons are made, and the method for assessing similarity. The level
of comparisons refers to whether untranslated nucleotide or translated protein (amino acid)
sequences are compared. Sequence comparisons are more commonly made at the protein
level because it is the level that determines the functionality of a gene. Differences at
the nucleotide level do not necessarily indicate differences at the protein level; due to the
degeneracy of the genetic code, different nucleotide sequences can map to the same amino
acid sequence. There are biologically-justified scoring schemes available for measuring the
similarity of pairs of amino acids. These schemes are based on evolutionary and chemical
similarity.

Unlike the other gene-recognition approaches discussed in this article, the case-based
approach does not use a fixed-size list of features to describe instances. Instead, a query se-
quence of arbitrary size is compared to case sequences of varying lengths. Although dynamic
programming methods are able to find the optimal partial match between two different-sized
sequences, these methods are too expensive to be used with large sequence databases. There
are, however, several fast approximations to dynamic programming that are commonly used
to search for similar sequences [14].

An issue that arises in constructing a case memory is deciding what constitutes a case.

17

Our discussion to this point has assumed that each case is an entire protein sequence. An-
other approach is to store protein domains as cases. Domains are amino-acid sequences that
act as modular components of proteins. Domains are analogous to subroutines in programs:
each domain has a specific function, and different combinations of domains (subroutines)
give rise to different proteins (programs). An advantage of storing domains as cases is that
they provide finer-grained units for predicting the functionality of query sequences.

How can a case memory of proteins and domains be assembled from a database of protein
sequences? Hunter, Harris, and States have developed an unsupervised learning system that
clusters related amino-acid sequences into domains and “families” of proteins [15]. Unlike
the supervised learning methods which have been the focus of this article, unsupervised
learning approaches are not told what the “correct” classes are, but instead they form their
own class definitions. The goal of unsupervised learning is to cluster the training set so
that similar instances are in the same class and dissimilar instances are in different classes.
In an experiment of impressive scale, Hunter et al. applied their method to a set of more
than 60,000 protein sequences. Their unsupervised algorithm formed about 12,000 clusters;
some of these corresponded to protein families, some represented functional domains, and
some contained a mixture of whole and partial proteins. They have developed a tool, called
ClassX [16], that allows novel sequences to be matched against a case memory consisting of
the clusters formed by their unsupervised learning algorithm.

6 Combined Methods

Although we have discussed how each of the search-by-signal and search-by-content prob-
lems is addressed in isolation, the most promising approaches to gene-recognition combine
predictions of several different signals and coding regions. The previously mentioned GRAIL
system is one such multi-strategy approach; another is the Geneld system [17]. Geneld pre-
dicts initiation codons, stop codons, donor sites, and acceptor sites and then assembles these
predictions into possible genes. Geneld, like GRAIL, is publicly available as an e-mail server
on the Internet.

The GeneParser system, developed by Snyder and Stormo [18], also integrates both signal
and content predictions to identify introns and exons in DNA. GeneParser uses a dynamic-
programming algorithm to predict the extent of individual exons and introns in a given DNA
sequence. The dynamic-programming method employs two arrays which contain estimates
of the likelihood that each subsequence of a given sequence is an intron or an exon. Neural
networks, which take as input both content and signal measures, are used to calculate the
estimated likelihood values for these intron and exon arrays.

7 Conclusions

We have described two broad approaches to the problem of computationally identifying genes
in DNA: search by signal and search by content. The search-by-signal approach locates genes
by identifying the important DNA sites that are involved in gene expression. The search-
by-content approach seeks to distinguish protein-coding regions from noncoding regions by

18

recognizing the general patterns that characterize protein-encoding nucleotide sequences. We
have described how a variety of inductive learning methods — neural networks, decision trees,
Bayesian classifiers, and case-based systems — have been applied to both of these approaches.
Additionally, we have briefly discussed several systems which combine search-by-signal and
search-by-content methods to recognize genes.

Although machine learning approaches have shown great promise at recognizing genes
in uncharacterized DNA, there is still much room for improvement. For example, it is
very difficult to train signal classifiers that are both highly sensitive (i.e., predict few false
negatives) and highly specific (i.e., predict few false positives). Similarly, search-by-content
methods often fail to recognize short exons. We believe, however, that applying machine
learning techniques to gene recognition is a fruitful enterprise for both molecular biologists
and computer scientists. Biologists benefit from having effective, automated methods for
analyzing sequence data. Machine learning researchers benefit from having important, real-
world testbeds.? Because of these mutual interests, computational biology is a rapidly-growing
field in its own right (e.g., see [19]). We expect that this marriage of computer science and
biology will continue to advance the state of the art in both fields.

8 Acknowledgements

The research of the authors is partially supported by Department of Energy Grant DE-FGO02-
91ER61129, National Science Foundation Grant IRI-9002413, and Office of Naval Research
Grant N00014-93-1-0998. The authors would like to thank Carolyn Allex, Rich Maclin, and
Steve Gallant for providing helpful comments on a draft of this article.

2Data sets for several of the gene-finding problems discussed in this article are available by anonymous
ftp from the UC-Irvine Repository of Machine Learning Databases and Domain Theories (ftp.ics.uci.edu).

19

References

1]

2]

[10]

[11]

[12]

[13]

[14]

N. G. Cooper, editor. Los Alamos Science, Number 20: The Human Genome Project. Los
Alamos National Laboratory, Los Alamos, NM, 1992.

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner. Molecular Biology
of the Gene, volume I. Benjamin/Cummings, Menlo Park, CA, fourth edition, 1987.

G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht. Use of the perceptron algorithm
to distinguish translational initiation sites in E. coli. Nucleic Acids Research, 10(9):2997-3011,
1982.

J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation.
Addison-Wesley, Redwood City, CA, 1991.

G. Towell, J. Shavlik, and M. Noordewier. Refinement of approximate domain theories by
knowledge-based neural networks. In Proceedings of the Fighth National Conference on Arti-
ficial Intelligence, pages 861-866. AAAI Press, Menlo Park, CA, 1990.

A. Lapedes, C. Barnes, C. Burks, R. Farber, and K. Sirotkin. Application of neural networks
and other machine learning algorithms to DNA sequence analysis. In G. Bell and T. Marr,
editors, Computers and DNA, SFI Studies in the Sciences of Complexity, vol. VII, pages
157-182. Addison-Wesley, 1989.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEFE Transactions on
Information Theory, 13:21-27, 1967.

R. Staden and A. D. McLachlan. Codon preference and its use in identifying protein coding
regions in long DNA sequences. Nucleic Acids Research, 10(1):141-156, 1982.

M. Borodovsky and J. Mclninch. Predictions of gene locations using DNA Markov chain
models. In H. Lim, J. Fickett, C. Cantor, and R. Robbins, editors, Proceedings of the Second
International Conference on Bioinformatics, Supercomputing, and Complexr Genome Analysis,

pages 231-248. World Scientific, Singapore, 1993.

R. Farber, A. Lapedes, and K. Sirotkin. Determination of eucaryotic protein coding regions
using neural networks and information theory. Journal of Molecular Biology, 226:471-479,
1992.

E. C. Uberbacher and R. J. Mural. Locating protein coding regions in human DNA sequences
by a multiple sensor — neural network approach. Proceedings of the National Academy of
Sciences, 88:11261-11265, 1991.

E. C. Uberbacher, J. R. Einstein, X. Guan, and R. J. Mural. Gene recognition and assem-
bly in the GRAIL system: Progress and challenges. In H. Lim, J. Fickett, C. Cantor, and
R. Robbins, editors, Proceedings of the Second International Conference on Bioinformatics,
Supercomputing, and Compler Genome Analysis, pages 465-476. World Scientific, Singapore,
1993.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215:403-410, 1990.

20

[15]

[16]

[17]

[18]

[19]

L. Hunter, N. Harris, and D. J. States. Efficient classification of massive, unsegmented datas-

treams. In Proceedings of the Ninth International Conference on Machine Learning, pages
224-232. Morgan Kaufmann, San Mateo, CA, 1992.

N. L. Harris, D. J. States, and L. Hunter. ClassX: A browsing tool for protein sequence
megaclassification. In Proceedings of the 26th Hawaii International Conference on System

Sciences, pages 554-563. IEEE Computer Society Press, Los Alamitos, CA, 1993.

R. Guigo, S. Knudsen, N. Drake, and T. Smith. Prediction of gene structure. Journal of
Molecular Biology, 226:141-157, 1992.

E. E. Snyder and G. D. Stormo. Identification of coding regions in genomic DNA sequences: An
application of dynamic programming and neural networks. Nucleic Acids Research, 21(3):607—
613, 1993.

L. Hunter, D. Searls, and J. Shavlik, editors. Proceedings of the First International Conference
on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA, 1993.

21

