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Abstract

We argue that despite being an actively researched area
for nearly a decade, rule-extraction technology has not
made as significant of an impact as it should have. A
confluence of trends, however, has made the ability
to extract comprehensible descriptions from complex
learned models more important now than ever. We
argue that rule-extraction methods can have a signifi-
cant impact in the overlapping data-mining, machine-
learning and neural-network communities if research
is focused on several commonly overlooked issues. We
then briefly describe how we have tried to address these
issues in our own work.

Introduction

For nearly a decade, researchers have been investigat-
ing the task of converting learned neural-network mod-
els into more easily understood representations (An-
drews, Diederich, & Tickle 1995). This type of work is
commonly referred to as rule extraction since the rep-
resentation language used to describe learned neural-
net models by these methods is typically some form of
propositional inference rules like those used in many
“symbolic” Al systems. Although the problem of un-
derstanding trained neural networks is widely consid-
ered an important area of research, the rule-extraction
community has had relatively little impact in the fields
of data mining, machine learning, and neural networks.
In this paper, we argue that there is great opportunity
for the rule-extraction community to have a significant
impact on machine-learning research and practice, but
in order for the community to have this impact it will
have to refocus its research effort on some widely ne-
glected issues. We discuss these issues in detail, ar-
gue why they are important, and where applicable, de-
scribe how we have addressed them in our own rule-
extraction work (Craven & Shavlik 1996; Craven 1996;
Craven & Shavlik 1997)

We argue that the great opportunity that currently
exists for the rule-extraction community derives from
two notable trends. The first is the data-mining boom
(Fayyad & Uthurusamy 1996). Increasingly, companies
operating in every sector and in every part of the world
are interested in exploiting the useful information em-
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bedded in their databases. Similarly, many scientific
disciplines are becoming increasingly data-driven, and
thus there is great interest in eliciting new knowledge
from scientific databases. Two paramount criteria for
most data-mining applications are that learned models
have good predictive accuracy and that they be com-
prehensible.

The second trend of note is the recent interest in en-
semble methods, such as bagging (Breiman 1996), boost-
ing (Freund & Schapire 1997), and error-correcting out-
put codes (Dietterich & Bakiri 1995). These methods
learn models that are composed of multiple constituent
models. They have generated a lot of attention and ex-
citement because they often significantly improve the
predictive accuracy of learned models, and there are
solid theoretical underpinnings explaining why this is
the case. A downside of these ensemble methods, how-
ever, is that they usually produce models that are very
complex and difficult to understand.

The confluence of these two trends means that for
many applications, (i) the most accurate models tend
to be complex and incomprehensible, but (ii) the com-
prehensibility of learned models is of growing impor-
tance. This situation presents a unique opportunity
for the rule-extraction community since the researchers
in this community have a large amount of shared ex-
pertise in extracting comprehensible descriptions from
complex models. Unfortunately, however, most current
rule-extraction algorithms are not able to fulfill this
challenge. In the next section, we discuss several short-
falls common to most rule-extraction algorithms, and
recommend several lines of research to address these
weaknesses.

Overlooked Issues

In our own research in rule extraction, we have evalu-
ated our algorithms along several dimensions:

o Comprehensibility: The extent to which extracted
representations are humanly comprehensible.

e Fidelity: The extent to which extracted representa-
tions accurately model the networks from which they
were extracted.



e Accuracy: The ability of extracted representations
to make accurate predictions on previously unseen
cases.

e Scalability: The ability of the method to scale to net-
works with large input spaces and large numbers of
units and weighted connections.

e (Generality: The extent to which the method requires
special training regimes or restrictions on network ar-
chitecture.

Most other researchers in the field have also evaluated
their methods using the first three criteria, but scala-
bility and generality have been the focus of much less
attention. In this section we argue that the impact of
rule-extraction methods will hinge on how well these
two issues are addressed in the near future. Addition-
ally, we consider one other important issue, software
availability, that we believe is key to the success of rule-
extraction methods.

Scalability

Obviously, rule-extraction technology will have a
greater impact if the available methods can be applied
to a wide range of learned models in a wide range of
application domains. In part, this means being able to
apply rule-extraction methods to problems that are, in
some sense “big.” Thus, we would like to have rule-
extraction algorithms that are scalable. In particular,
we are interested in the following definition:

Scalability refers to how the running time of a rule-
extraction algorithm and the comprehensibility of
its extracted models vary as a function of such fac-
tors as network, feature-set and training-set size.

Our definition departs from what most researchers in
the community think of as scalability in that it includes
the comprehensibility of extracted models as well as the
running time of the method. Since comprehensibility is
of fundamental importance in rule extraction, however,
methods that scale well in terms of running time, but
not in terms of comprehensibility will be of little value.
In our experience, developing an algorithm that scales
well in terms of comprehensibility is at least as hard
as developing one that scales well in terms of running
time. Whereas the latter issue has been the focus of
much attention (e.g., Alexander & Mozer, 1995), the
former has not.

Scaling in terms of comprehensibility is a hard
problem for several reasons. Decompositional rule-
extraction methods (Andrews, Diederich, & Tickle
1995), which extract rules by analyzing individual com-
ponents of networks (e.g., hidden and output units),
have a built-in tendency to produce rule sets whose size
is proportional to the network size. In cases where the
problem domain has a large number of features, how-
ever, even non-decompositional methods tend to pro-
duce large rule sets since “big” networks often represent
complicated functions.

To address the issue of scalability in comprehensi-
bility, we recommend that rule-extraction researchers

pursue several lines of research that have not been ad-
equately explored:

e Methods for controlling the comprehensibility/fidelity
trade-off. Omne approach to extracting comprehen-
sible rule sets from large, complex neural networks
is to improve the comprehensibility of an extracted
rule set by compromising on its fidelity to the net-
work from which it was extracted. For example,
our TREPAN algorithm (Craven & Shavlik 1996;
Craven 1996) which extracts decision-tree descrip-
tions of trained neural nets, incorporates a “knob”
that allows the user to control the size of the tree re-
turned. This knob allows the user to directly control
the trade-off between comprehensibility and fidelity.
We consider this particular mechanism to be only a
first step in the direction of exploring such compre-
hensibility /fidelity knobs.

e Methods for anytime rule extraction. We conjecture
that the comprehensibility of an extracted rule set
can often be improved by investing more computa-
tion in exploring alternative representations of the
rule set. For example, a given rule set may be re-
expressed using a variety of truth-preserving trans-
formations such as inventing new terms correspond-
ing to frequently used conjunctions. This kind of
concept transformation has been investigated in the
constructive induction literature (Muggleton 1987).
In general we argue that a productive line of research
would be to develop anytime (Dean & Boddy 1988)
rule-extraction algorithms. Such algorithms could be
interrupted at any point in their computation and
still provide a solution (i.e., an extracted rule set),
but given more time they would generally find better
(i.e., more comprehensible) solutions.

Generality

Most of the rule-extraction algorithms that have been
developed to date can be applied only to networks
within a narrow architectural class, or to networks
that have been trained using a special training regime.
We argue that, in order to have a large impact, rule-
extraction methods will have to exhibit a high level of
generality. That is, they should be applicable to neural
networks that employ a wide array of topologies, trans-
fer functions, input and output encodings, and training
methods. In short, they should be applicable to net-
works developed by others without any initial intention
of applying rule-extraction methods to them.

Taking this argument one step further, we argue that
rule-extraction methods should be so general that they
do not assume that the models they are trying to de-
scribe are even neural networks. As stated in the Intro-
duction, with the rising popularity of ensembles, there
are now many learned models which are not neural
networks but which call for rule-extraction-type algo-
rithms to elicit comprehensible descriptions of them.
Indeed, several researchers have already recognized this
need and have developed initial methods for translat-



ing ensemble models into more comprehensible decision
trees (Breiman & Shang 1996) and rule sets (Domingos
1998).

In summary, we make the following recommendations
to rule-extraction researchers:

e Seek out collaborators who already have models they
want to understand, and apply rule-extraction meth-
ods to these models. Pursuing this task will entail
first developing rule-extraction methods that are gen-
eral enough that they can be applied to a wide variety
of learned models.

e Develop extraction methods that are applicable to en-
sembles and other hard-to-understand models. The
prevalence of learned ensemble models is rapidly in-
creasing. The need for methods able to provide com-
prehensible descriptions of these models is growing
accordingly.

Software Availability

Finally, another factor that we believe will be significant
in determining the impact of rule-extraction methods
is the extent to which researchers make their methods
available to potential users. One way to make such a
method available is to provide portable source code to
users who can download, install and run it on their own
machines. Quinlan’s C4.5 (Quinlan 1993) and FoiL
(Quinlan 1990) programs serve as good models here.
Both algorithms have gained widespread prominence in
the machine-learning community, in part because ro-
bust, portable C code is available to those who want
to use the programs. Making source code available has
the added advantage that users can easily investigate
algorithm variants and develop new functionality.

Another model for making rule-extraction methods
readily available is to set them up as on-line servers.
Providing this type of service places less of a burden
on users, since they do not have to download and in-
stall code, but it imposes a possibly significant compu-
tational cost on the service provider. Good models for
this type of method availability can be found through-
out the computational biology community where heav-
ily used, and highly visible, servers perform such func-
tions as DNA sequence analysis (Xu et al. 1996) and
protein structure prediction (Rost 1996). These servers
have had a large impact in the field of molecular biology
because they provide valuable services, but are easy to
use.

A Case Study in Rule Extraction
In this section we give a brief overview of an algorithm
we have developed, TREPAN (Craven & Shavlik 1996;
Craven 1996), and discuss how it addresses the issues
presented in the previous section. We also describe an
application of TREPAN that illustrates these points.

The TREPAN Algorithm

TREPAN takes a trained neural network and a set of
training data as inputs. As output, it produces a

TREPAN
Input: trained network, training set used for network

initialize the tree as a leaf node
while stopping criteria not met
pick the most promising leaf node to expand
draw a sample of instances
use the network to label the instances
select a splitting test for the node
for each possible outcome of the test
make a new leaf node

Return: extracted decision tree

Figure 1: The TREPAN algorithm.

decision tree that provides a close approximation to
the function represented by the network. The task
of TREPAN then, is to induce the function represented
by the trained network. In many respects, TREPAN is
similar to conventional decision-tree algorithms, such
as CART (Breiman et al. 1984) and C4.5 (Quinlan
1993), which induce trees directly from training data.
TREPAN’s learning task differs in several key respects,
however. First, the target concept to be learned by
TREPAN is the function represented by the network.
This means that TREPAN uses the network to label
(i.e., get the predicted output value of) all instances.
Second, because TREPAN can use the network to label
instances, it learns not just from a fixed set of training
data, but from arbitrarily large samples.

Figure 1 provides a sketch of the TREPAN algorithm.
The basic idea of the method is to progressively refine
an extracted description of a neural net by incremen-
tally adding nodes to a decision tree that characterizes
the network. Initially, TREPAN’s description of the net-
work is a single leaf node that predicts the class that the
network itself predicts most often. This crude descrip-
tion of the network is refined by iteratively selecting a
leaf node of the tree to expand into an internal node
with leaves as children.

In order to decide which node to expand next,
TREPAN uses an evaluation function to rank all of the
leaves in the current tree and then picks the best one.
The notion of the best node, in this case, is the one
at which there is the greatest potential to increase the
fidelity of the extracted tree to the network. The func-
tion used to evaluate node N is:

F(N) = reach(N) x (1 — fidelity(N))

where reach(N) is the estimated fraction of instances
that reach N when passed through the tree, and
fidelity(N) is the estimated fidelity of the tree to the
network for those instances. The motivation for ex-
panding an extracted tree in this best-first manner is
that it gives the user a fine degree of control over the
size of the tree to be returned: a tree of arbitrary size
(in terms of the number of internal nodes) can be se-
lected to describe a given network.

Expanding a node in the tree involves two key tasks:



determining a logical test with which to partition the
instances that reach the node, and determining the class
labels for the leaves that are children of the newly ex-
panded node. In order to make these decisions, TREPAN
ensures that it has a reasonably large sample of in-
stances. It gets these instances from two sources. First,
it uses the network’s training examples that reach the
node. Second, TREPAN constructs a model (using the
training examples) of the underlying distribution of
data in the domain, and uses this model in a gener-
ative manner to draw instances. These instances are
randomly drawn but are subject to the constraint that
they would reach the node being expanded if they were
classified by the tree. In both cases, TREPAN queries
the neural network to get the class labels for the in-
stances.

Selecting a test for an internal node in a decision tree
involves deciding how to partition the part of the input
space covered by the internal node. In order to select
a splitting test from a set of candidates, TREPAN uses
information gain as an evaluation measure.

An Application of TREPAN

TREPAN has been used to extract trees from networks
trained in a wide variety of problem domains, includ-
ing several in which the neural-networks were devel-
oped by others: elevator control (Crites & Barto 1996;
Crites 1996), exchange-rate prediction (Weigend, Zim-
mermann, & Neuneier 1995) and climate modeling
(Trimble, Santee, & Neidrauer 1997). In all of these
cases, the networks were developed without any prior
intention of applying rule-extraction methods to them.
Here we briefly describe the application of TREPAN to
Crites and Barto’s elevator-control network. This net-
work represented one of the first practical successes of
reinforcement learning.

The elevator-control network operates in a simulated
10-story building with four elevator cars. The state
of the system that is presented to this neural network
includes information about such things as which hall
buttons were pushed at what times, and the locations
and speeds of the cars in the system. This information
is encoded using 19 real-valued and 12 discrete-valued
features. The network has 47 input units, 20 hidden
units with logistic transfer functions, and two output
units with linear transfer functions. The elevator car
has a default control policy that specifies constraints
on what actions it can take in various situations. The
task for the reinforcement learner is to decide, given the
current measurable state, whether a car should stop or
continue on its current path. It does this by predict-
ing two real-valued numbers representing the expected
utility of taking the two possible actions.

Figure 2 shows the tree extracted by TREPAN from
the elevator-control network. This tree consists of only
four internal nodes and a total of 14 feature references.
Since four of the five leaves of the tree predict the same
action, that the tree can easily be simplified into a sin-
gle rule. Note that two of the nodes in the tree have

1 of {location_direction in {2d, 3d, 4d, 5d, 6d, 7d},
footprint[10] > 0.15, highest_queue=true}

T F

1 of {footprint[2] > 0.59, pushed_time[3] > 0.21,
footprint[9] <= 0.07, pushed_time[10] > 0.17}

location_direction = 8d

~

location_direction = 9d

& e

Figure 2: The tree extracted by TREPAN from the elevator-
control network.

Table 1: TREPAN test-set fidelity for the elevator domain.
| fidelity (%) |

| traffic profile

down traffic only 89.4
down and up traffic 90.8
down and 2x up traffic 91.9

disjunctive tests; TREPAN can use m-of-n tests in trees
as well.

Table 1 shows the test-set fidelity measurements for
the tree extracted by TREPAN. Each line in the ta-
ble represents the fidelity of the tree to the network
when measured under a different traffic distribution in
the building (i.e., different test sets). The results in
this table indicate that the action selected by the tree
agrees with the network in approximately 90% of en-
countered states, and furthermore this level of fidelity
is fairly consistent across states that come from different
types of traffic conditions. Nearly all of the cases where
the TREPAN-extracted tree disagrees with the network
are cases where the network predicts that the expected
utility of taking the two actions is about the same.

To evaluate the predicted accuracy of our extracted
tree, we used it as a policy to control the elevator
simulator under the same conditions that Crites and
Barto used to evaluate their networks. Table 2 shows
the performance of the TREPAN-extracted tree, and the
performance of the network and several conventional
controllers. For all three performance measures, lower
numbers are better. From this table, one can see that
the performance of the extracted tree is nearly identical
to the neural network For all three traffic profiles, the
network and the extracted tree outperform the conven-
tional control strategies considered.



Table 2: Performance of Various Elevator-Control
Policies. Results are shown for three different performance
measures on one of the testing traffic profiles. The first seven
rows represent conventional elevator scheduling algorithms.

System
algorithm Wait | Wait? Time
SECTOR 30.3 1643 59.5
DLB 22.6 880 55.8
BASIC HUFF || 23.2 875 54.7
LQF 23.5 877 53.5
HUFF 22.8 884 55.3
FIM 20.8 685 53.4
ESA 20.1 667 52.3
network 18.7 582 45.8
TREPAN 18.6 577 45.8

Discussion

We have argued that there is a great opportunity
for rule-extraction research to have a large impact in
the data-mining, machine-learning, and neural-network
communities given the increasing prevalence of com-
plex models and the increasing importance of compre-
hensible models. However, to meet this opportunity,
rule-extraction research should greatly increase its em-
phasis on the issues of scalability and generality. Fur-
thermore the community should make greater efforts to
make its software products publicly available, either by
distributing source code or by setting up on-line servers.
Our own research has led to the development of the
TREPAN algorithm, which was designed, in part, to ad-
dress the generality and scalability issues. TREPAN is
quite general in that it it makes few assumptions about
the architecture of a given network, and it does not re-
quire a special training method for the network. In fact,
TREPAN does not even require that the model be a neu-
ral network. TREPAN can be applied to a wide variety
of hard-to-understand models including ensembles.
TREPAN is also scalable in terms of running time and
in terms of the comprehensibility of its learned mod-
els. Regarding the first scalability criterion, the com-
putational complexity of expanding a decision tree node
in TREPAN is a low-order polynomial in the sample
size, the number of features and the maximum num-
ber of values for a discrete feature. It does not de-
pend in any significant way on any other parameters
of the given model. Regarding the second scalability
criterion, TREPAN gives the user fine control over the
complexity of the descriptions it returns. This capa-
bility derives from the fact that TREPAN represents its
extracted models using decision trees, and it expands
these trees in a best-first manner. TREPAN first ex-
tracts a very simple (i.e., one-node) description of a
trained network, and then successively refines this de-
scription to improve its fidelity to the network. In this
way, TREPAN explores increasingly more complex, but
higher fidelity, descriptions of the given network.

The source code for TREPAN is freely available, and
can be retrieved from:
http://www.cs.cmu.edu/ craven/trepan.sh.

We consider TREPAN to be only a first step towards
the goal of general, scalable, and widely available rule-
extraction methods. We encourage other researchers in
the community to direct their efforts toward this same
goal.
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