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Abstract 

he motivation behind multi-relational data mining is 
wledge discovery in relational databases containing 
tiple related tables. One difficulty relational data 
ing faces is managing intractably large hypothesis 
ces.  We attempt to overcome this difficulty by first 
pling the hypothesis space. We generate a small set of 
otheses, uniformly sampled from the space of 
didate hypotheses, and evaluate this set on actual 
. These hypotheses and their corresponding 

luation scores serve as training data in learning an 
roximate hypothesis evaluator.  We use this 
roximate evaluation to quickly rate potential 
otheses without needing to score them on actual data.  
test our approximate clause evaluation algorithm 
g the popular Inductive Logic Programming (ILP) 
em Aleph.  We use a neural network to approximate 
hypothesis-evaluation function. The trained neural 
ork replaces Aleph’s hypothesis evaluation on actual 
, scoring potential rules in time independent of the 
ber of examples.  Our approximate evaluator can 
 be used in a heuristic search to help escape local 
ima.  We test the neural network's ability in learning 
hypothesis-evaluation function on four benchmark ILP 
ains; the neural network is able to accurately 
roximate the hypothesis-evaluation function. 

ntroduction and Background 
ost data mining techniques assume that the data 

ts in a form that can be easily converted into a set of 
d-length feature vectors (where each example is 
verted into a fixed-size array of real numbers, integers, 
 nominal attributes).  For many multi-relational 
sets, such a conversion – when even possible – is 
egant and scales poorly.  Conversely, Inductive Logic 
gramming (ILP) [1] natively handles multi-relational 
.  ILP's natural treatment of multi-relational datasets 
ids the problems associated with converting examples 
 feature vectors.  As a further advantage, its rules have 
full expressive power of first-order logic, making for 
 and human-readable hypotheses. 
LP systems have been proven quite successful in 
structing a set of accurate rules, even on datasets with 
y relations.  Such systems have been successfully 
loyed in a number of varied domains, including 

molecular biology, engineering design, natural language 
processing, and software analysis.   

ILP systems combine background domain knowledge 
and categorized training data in constructing a set of rules 
(hypotheses) in first-order logic.  Formally, given a 
training set of positive examples E+, negative examples  
E-, and background knowledge B, all as set of clauses in 
first-order logic, ILP's goal is finding a hypothesis (a set 
of clauses in first-order logic) h, such that  

−+ ⇒/∪⇒∪ EhBEhB          (1) 

That is, given the background knowledge and the 
hypothesis, one can deduce all of the positive examples, 
and none of the negative examples.  In real world 
applications, these constraints are usually relaxed 
somewhat, allowing h to explain most positive examples 
and few negative examples. 

The algorithm underlying most ILP systems is 
basically the same.  It searches for a clause in the 
subsumption lattice [2], evaluating candidate clauses on 
the training data.  The search begins with an initial 
candidate clause, and considers hypothesis generation as a 
local search problem in the subsumption lattice.  The 
starting point for the search and the type of local search 
depends on the implementation of the ILP system. 

The subsumption lattice is constructed based on the 
idea of specificity of clauses.  Specificity here refers to 
implication; a clause C is more specific than a clause S if 
S ⇒ C.  In general, it is undecidable whether or not one 
clause in first-order logic implies another [3], so ILP 
systems use the weaker notion of Plotkin's θ-
subsumption.  Subsumption implies implication, but 
implication does not imply subsumption.  Subsumption of 
candidate clauses puts a partial ordering on all clauses in 
hypothesis space.  With this partial ordering, a lattice of 
clauses can be built.   ILP implementations perform some 
type of local search over this lattice when considering 
candidate hypotheses. 

Most ILP implementations also use a standard greedy 
covering algorithm.  After completing a local search of 
the subsumption lattice, the best rule evaluated is 
accepted, and all the positive examples covered 
(explained) by the rule are removed from the dataset.  The 
process is repeated until every positive example is 
covered.   



The major distinction separating various ILP 
implementations is the strategy used in exploring the 
subsumption lattice.  Algorithms fall into two main 
categories (with some exceptions): general-to-specific 
("top-down") [4] and specific-to-general ("bottom-up") 
enumeration of the subsumption lattice [5].  Within this 
framework, a variety of common local search strategies 
have been employed, including breadth-first search [6], 
depth-first search, heuristic-guided hill-climbing variants 
[5,6], uniform random sampling [7], and rapid random 
restarts [8].  Our work provides a general framework for 
increasing the speed of any ILP algorithm, regardless of 
the order candidate clauses are evaluated.   

One complaint levied against ILP systems is that they 
scale poorly to large datasets.  Srinivasan [7] investigated 
the performance of ILP algorithms in general, and found 
that the worst-case running-time depends on both the size 
of the subsumption lattice and the time required for clause 
evaluation.  The first factor – the search space size – 
depends on the maximum allowed clause length and the 
number of terms in an example's saturation. 

The idea of saturation is used by a number of ILP 
systems to put a bound on the size of the subsumption 
lattice.  Saturation involves first choosing a positive 
example from the training set.  Using the background 
knowledge, saturation constructs the most specific, fully-
ground clause that entails the chosen example. It is 
constructed by applying all possible substitutions for 
variables in B with ground terms in B.  This clause is 
called the chosen example's bottom clause, and it serves 
as the bottom element (⊥) in the subsumption lattice over 
which ILP searches.  That is, all clauses considered by 
ILP (in the subsumption lattice) subsume (and thus imply) 
the saturated example. 

As a simple example, suppose we are given 
background knowledge (using Prolog notation where 
ground atoms are denoted with an initial lowercase letter 
and variables are denoted with an initial uppercase letter): 

f(e,b) 
g(b,c) 
∀X,Y,Z  f(X,Y) ∧ g(Y,Z) ⇒ h(Y) 

And the current positive example, e. 
We first begin saturation by letting all ground atoms in 

H imply e: 
f(e,b) ∧ g(b,c) ⇒ positive(e) 

Then we apply all possible consistent substitutions, 
i.e., if we make the substitutions {e/X, b/Y, c/Z} (using 
the notation {atom/Variable} to indicate 'atom' is being 
substituted for 'Variable'), we can apply the rule given in 
the third line of our background knowledge, that is: 

f(e,b) ∧ g(b,c) ⇒ h(b) 

Finally, combining gives us the saturation of  e: 
f(e,b) ∧ g(b,c) ∧ h(b)  ⇒  positive(e) 

Returning to the matter of runtime complexity, given 
maximum clauselength c and bottom clause ⊥, the worst 
case size of the subsumption lattice over which the ILP 
algorithm will search is given by [7]: 

)(
1

11
c

c

⊥Ο=
−⊥
−⊥ +

. (2) 

The other factor affecting ILP's performance is the 
evaluation time of a clause.  This aspect is more 
complicated to analyze.  Srinivasan simplifies the analysis 
by assuming that every clause can be evaluated on an 
example in constant time β; thus, the evaluation of a 
clause against the entire training set occurs in time 

)O( EE =β  where E is the set of training examples.  An 
exhaustive search of the subsumption lattice for a single 
clause, then, takes worst-case running time )O( Ec⊥ .   

It is important to note that the situation is a bit worse 
than the O(|E|) running time makes it seem.  Srinivasan's 
work assumed that deduction of a goal clause against a set 
of background relations takes a constant amount time.  
However, even with just one recursive rule and one 
background fact, deduction can be undecidable [9].   
Restricting ourselves to the simpler case where function 
symbols are not considered (i.e., Datalog) and not 
allowing recursive clauses, evaluating a candidate clause 
against a set of ground background facts is NP-complete 
[10].  Most ILP datasets fall into this simpler, function-
free category, where evaluation time is exponential 
(unless P=NP) in the number of variables, which relates to 
the length of the expression.  As more difficult problems 
are encountered, it seems likely longer hypotheses will be 
required in order to cover all the positive examples, 
resulting in an execution time worse than O(|E|) indicates. 

Many improvements to ILP [4,5] have focused upon 
finding a better search strategy, thereby reducing the 
fraction of the search space explored.  For example, using 
hill-climbing to explore the search space reduces the 
worst-case running time to ( )E⊥O .  To this end, a 
number of heuristic functions have been used to guide 
ILP searches.  Many of these attempts have proven quite 
successful.  Srinivasan employs a random sampling 
strategy that considers sampling n clauses from the 
subsumption lattice.  The value of n is chosen so one is 
reasonably sure the best clause found is in the top k% of 
all clauses in the subsumption lattice up to a specified 
maximum length.  Interestingly enough, the value of n is 
independent of the size of the subsumption lattice.  This 
gives a much-improved worst-case running time of O(|E|) 
for generating a single clause.  However, Srinivasan's idea 
– based upon ordinal optimization [11] – only works for 
domains where there are a sizable number of "sufficiently 
good" solutions.  His technique is not appropriate for 
needle-in-the-haystack problems. 



Still more ILP optimizations focus on decreasing the 
time spent on clause evaluations: the |E| term in ILP's 
running time.  Several improvements to Prolog's clause 
evaluation function have been developed.  Blockeel et al. 
[12] consider reordering candidate clauses to reduce the 
number of redundant queries.  Santos Costa et al. [13] 
developed several techniques for intelligently reordering 
terms within clauses to reduce backtracking.  Srinivasan 
[14] developed a set of techniques for working with a 
large number of examples that only considers using a 
fraction of all available examples in the learning process. 
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Figure 1. A graphical representation of the function 
learned by the neural network.  Exploring this surface 
may help escape local maxima in the surface defined 
by the clause evaluation function. 

Our work is more closely related to the latter group, 
with our effort spent reducing the time used by clause 
evaluations.  By learning a function that estimates the 
clause evaluation function, we can quickly approximate 
the goodness of a clause, in an amount of time 
independent of the number of training examples. 

We make use of a multilayer, feed-forward neural 
network in approximating the ILP scoring function 

: E
evalfnπ

ℜ→hE
evalfn :π , (3) 

with h a candidate clause, E  the set of categorized 
training examples, and  mapping clause h to h's 
score on training set E under scoring metric evalfn.  This 
score represents the goodness of the hypothesis h at 
explaining the training data. 

E
evalfnπ

We train the neural network until it approximates 
with sufficient accuracy (Section 2 contains 

specifics of the network topology and the training 
process).  The search is performed in the usual manner; 
however, instead of evaluating candidate clauses on the 
complete set of examples, we use the neural network to 
compute the approximate clause evaluation score .  
We proceed with the algorithm as if the clause had been 
scored on the actual training data.  Notice that this method 
allows clause evaluation in O(1) running time, not the 

E
evalfnπ

E
evalfnπ̂

)O( E  running time required to perform the actual 
evaluation on the training data. 

Additionally, we can use the surface defined by the 
trained neural network to guide our search.  The function 
encoded by a neural network with fixed weights defines a 
smooth surface in the space of network inputs.    Figure 1 
presents this surface graphically.  Because of the 
smoothing nature of the approximation, the neural 
network can be used in order to escape from local maxima 
when using a heuristic to search the subsumption lattice. 

This idea of using function approximation to 
intelligently guide a local search is not a new one.  
Though not in the domain of ILP, Boyan and Moore [15] 
use quadratic regression to approximate a function 
mapping points in feature space to the endpoint of a 
trajectory of some local search starting at that point.  They 
use this approximation to escape local maxima in a 

heuristic search.  Their algorithm ran in less time, and 
reported better test-set accuracy than solutions discovered 
using local search alone. 

It is important to note that empirically, this paper's only 
concern is with learning the approximation .  We 
have not yet thoroughly investigated using  to speed 
up local searches over the subsumption lattice, or to 
intelligently escape local maxima when searching the 
hypothesis space. 

E
evalfnπ̂

E
evalfnπ̂

2. Learning the Clause Evaluation Function 
The first step in building our clause evaluation function 

approximator is construction of the neural network.  This 
requires choosing the network inputs as well as the 
network topology. We base network construction on the 
top-down lattice exploration used by a number of popular 
ILP implementations.  In such implementations, a positive 
example is chosen at random from the training set.  The 
chosen example is then saturated, building a bottom 
clause e :- B.  (Note that we use Prolog notation where  
e :- B means B ⇒ e). Recall that this bottom clause 
consists of only fully ground literals.  An ILP system 
constructs candidate hypotheses by choosing a subset of 
these fully-ground literals and "variablizing," replacing 
ground atoms with variables in a manner that replaces 
multiple instances of a single ground atom with a single 
variable.  Approaches differ regarding how they select 
ground literals from the bottom clause.  Figure 2 
illustrates this process. 

Our neural-network inputs are comprised of a set of 
features derived from the candidate clause both before 
and after variablization.  When saturating an example, 
each literal in that example's bottom clause is associated 
with an input in the neural network.  This input is set to 1 
if the corresponding literal in the bottom clause was used 
in constructing the clause, and set to 0 otherwise.  Notice 
that there may be multiple sets of literals from the bottom 
clause that, variablized, yield the same clause.  However, 
we only set to 1 the input units for the specific literals that 
were actually used to construct the candidate clause. 

Formally, let candidate clause C be chosen by selecting 
some subset of literals from the most-specific bottom 
clause ⊥i for current example ei.  We treat this clause as a 
vector { }

i
xxx ⊥= ,,1 K

v  in i⊥ -dimensional space, with: 



Bottom Clause (⊥) of Fully Ground Literals 
cyclic(g_23) :- 
   node(g_23,n1),    node(g_23,n2),    node(g_23,n3), 
   arc(g_23,n3,n2),  arc(g_23,n2,n1),  arc(g_23,n1,n3), 
   path(g_23,n3,n2), path(g_23,n3,n1), path(g_23,n3,n3), 
   path(g_23,n2,n1), path(g_23,n2,n3), path(g_23,n2,n2), 
   path(g_23,n1,n3), path(g_23,n1,n2), path(g_23,n1,n1). 

Selected Subset of Literals 
node(g_23,n3) arc(g_23,n3,n2) path(g_23,n2,n1)

Candidate Clause 
cyclic(X) :- node(X,A), arc(X,A,B), path(X,B,C) 

saturation

pick a subset of literals from ⊥ 

variablization

Background Knowledge 

path(G,X,Y) :- arc(G,X,Y). 
path(G,X,Y) :- arc(G,X,Z), 
               path(G,Z,Y), 
               not X=Z, not Y=Z. 

node(g23,n1).    arc(g23,n3,n2). 
node(g23,n2).    arc(g23,n2,n1). 
node(g23,n3).    arc(g23,n1,n3). n1 

n2 n3 

Positive Example 
cyclic(g23) 

Figure 2.  An overview of the process by which many ILP algorithms construct clauses.  The bottom clause is 
constructed by applying all possible substitutions of ground terms for variables in B. A subset of literals from the 
bottom clause is chosen, and through variablization, these literals are converted into a candidate hypothesis. 
Variablization replaces multiple instances of a single atom with a single variable.  We use the Prolog notation for 
clauses, where e :- B means B ⇒ e, ground atoms are denoted with an initial lowercase letter, and variables are 
denoted with an initial uppercase letter. 

⎩⎨
⎧= otherwise

 ngconstructi in chosen   literal ground if
   0
   1 Ckxk

 (4) 

This vector xv  is part of the inputs to our neural network.  
One important aspect of the input vector is that every 
possible candidate clause - that is, every clause in Aleph's 
hypothesis space - has a unique input vector 
representation. 

Additionally, we give each functor (function name) a 
specific input in the network, as well.  Here, we consider 
a vector yv , in which each dimension corresponds to a 
functor appearing in ⊥i. Construction of yv  is based upon 
the number of times a particular functor is used in a 
candidate clause, that is: 

yj = # of ground literals in C with functor j (5) 
Finally, a third set of inputs to the neural network 

comes from features extracted from the variablized clause 
C'.  These features include 
• length, the number of literals in C'. 

• nvars, the number of distinct variables in C'. 
• nshared_vars, the number of distinct variables 

appearing more than once in C'. 
• avg_var_freq, the average number of times each 

variable appears in C'. 
• max_var_chain, the longest variable chain appearing 

in C', i.e., for the clause  f(A):-g(A,B),h(B,C) 
the maximum chain length is 3 (A→B→C). 

The neural network consists of one (fully-connected) 
hidden layer and a single output unit.  The output 
corresponds to predicted output evalfn .  Thus, we can 
evaluate a clause on the neural network by converting it to 
the vector notation specified in (4) and (5), and forward-
propagating it on a neural network trained to approximate 

.  Figure 3 details the network topology. 

Eπ̂

E
evalfnπ

2.1. Training the Neural Network 
Table 1 contains the algorithm used to train the neural 

network.  A training set size is specified, and a number of 



NeuralNetworkTraining(⊥i, E, evalfn, burnin) 
 IOPairs ← ∅ 
 NN ← new NeuralNetwork 
 minError ← +inf 
 for i = 1 to trainset_size 
  C ← random clause from the subsumption lattice of ⊥i
  n ← evaluate(evalfn, C, E) 
  add <C,n> to IOPairs 
 Split IOPairs into TrainSet and TuneSet 
 for j = 1 to NUM_EPOCHS 
  foreach <ex,score> in TrainSet 
   run backpropogation algorithm on NN using <ex,score> 
  error ← score NN on TuneSet 
  if (error < minError) 
   minError ← error 
   bestNN ← NN 

return bestNN

Table 1: The Neural Network 
training algorithm.  Given a bottom 
clause ⊥i, a set of training examples 
E, a heuristic function evalfn, and a 
number of training clauses 
trainset_size, train a neural network 
to learn the clause evaluation 
function evalfn .  Use early stopping 
to avoid overtraining, and return the 
network learned. 

Eπ

clauses are uniformly randomly selected from the space of 
legal clauses (up to a given maximum clause length).  We 
evaluate these randomly selected clauses on the training 
data, thereby creating input/output pairs for training. 

The neural network's training process makes use of 
Srinivasan's random uniform sampling [7].  Using 
uniform sampling to generate I/O pairs ensures that the 
neural network approximation is reasonably accurate over 
the entire search space.  Using other local search methods 
could bias the neural network's approximation toward 
some local region of the search space.  

2.2. Speeding up Searching in ILP by Using a 
Trained Neural Network 

Once training is complete, we can use the neural 
network to approximate clause scores whenever ILP's 
search requires a clause evaluation.  When a solution is 
finally found, we score the best clause on actual data to 
determine the coverage of the solution the search located. 

However, empirical evidence suggests that this 
problem might be better treated as an adaptive sampling 
problem.  After the burn-in, instead of evaluating every 
clause on the network, we let some small percentage k of 
candidate clauses bypass the neural network.  We 
compute these clauses' actual scores.  Each clause that 
bypasses the network, together with its computed score, 
forms another I/O pair used to train the neural network.  
By storing some subset of recently-scored I/O pairs, every 
time a clause bypasses the neural network, another epoch 
of training occurs on all stored I/O pairs.  To avoid 
overtraining the network on specific examples, after some 
time I/O pairs are removed from the set of stored pairs. 

As most strategies explore more favorable regions of 
search space as the search progresses, adaptive sampling 
will learn with greatest accuracy the higher-scoring 
regions of the search space.  Additionally, it will continue 
to improve the accuracy of the neural network as the 
search progresses.  Assuming that the time required to 

evaluate a clause is much greater than the time required to 
approximate a clause on the neural network, this allows a 
factor (1/k) speedup.  Given enough training examples, 
this assumption is valid. Implementing and testing such 
usage of the approximator is a topic of our future work. 

2.3.  Using the Trained Neural Network to Escape 
Maxima in Local Search 

We are also currently developing a search strategy to 
directly use the trained neural network in determining 
candidate clauses.  The trained neural network defines 
some surface in the network’s input space.  The network's 
sigmoidal units will have a smoothing effect on the actual 
evaluation function .   We can take advantage of 
this smoothing by using the neural-network 
approximation to escape local minima in hill-climbing 
search.  This technique is suggestive of the approach 
taken by Boyan and Moore [15] in their STAGE 
algorithm.  Like their approach, one can envision 
alternating iterations of hill-climbing using the actual 
evaluation function and hill-climbing using the neural-
network approximation.  The neural network's smoothing 
will tend to guide the search towards the global maximum 
in hypothesis space.  

E
evalfnπ

3. Results and Discussion 
This section details empirical evaluation of the neural 
network learning task.  Our goal is to ascertain whether a 
neural network can learn the ILP clause evaluation 
function.  To simplifying the task, in our experiments we 
only consider a batch learning process, not the 
incremental learning process outlined in Section 2.  

3.1. Datasets 
We tested neural network learning on four standard 

ILP benchmarks.  The tasks included predicting 
mutagenic activity [16] and carcinogenic activity [17] in 
compounds, predicting the smuggling of nuclear and 
radioactive materials [18], and predicting metabolic 



activity of proteins. A brief description of the four 
datasets follows. 

Mutagenesis.  This task is concerned with predicting 
the mutagenicity of certain compounds.  The ILP learner 
is provided background knowledge consisting of the 
chemical properties of 188 compounds, as well as general 
chemical knowledge in the form of first-order logic 
relations.  The dataset is a popular benchmark, and 
explores a reasonably large search space. 

Carcinogenesis.  Similar to the mutagenesis task, but 
an inherently more difficult problem, this task's main 
concern is predicting carcinogenic activity compounds 
from potential carcinogenic compounds.  The database for 
this problem consists of 332 labeled examples, of which 
about half are carcinogenic. 

Nuclear Smuggling.  This dataset, based on reports of 
Russian nuclear materials smuggling, is interesting in its 
highly-relational nature, with over 40 relational tables.  
The task is concerned with predicting when two 
smuggling events are linked.  The dataset we use is a 
subset of the complete dataset, 192 examples split evenly 
into positive and negative examples. 

Protein Metabolism.  This task is taken from the gene 
function prediction task of the 2001 KDD Cup challenge 
(www.cs.wisc.edu/~dpage/kddcup2001/).  While the 
challenge involves learning 14 different protein functions, 
our sub-task is only concerned with predicting which 
proteins are responsible for metabolism.  Here we also use 

a subset of the complete dataset, 230 examples split 
evenly between positives and negatives. 

3.2. Learning the Clause Evaluation Function 
We use the ILP system Aleph (web.comlab.ox.ac.uk 

/oucl/research/areas/machlearn/Aleph/aleph_toc.html) to 
generate 10 sets of 1000 randomly sampled clauses for 
each of the four datasets, corresponding to 10 different 
positive examples that were used in construction of the 
bottom clause.  These 10 "seed examples" were chosen 
randomly.  We considered a maximum clauselength c=6 
for all but the Nuclear Smuggling task; we considered a 
larger value of c=10 for this task.  Clauses were scored 
using a variant of Aleph’s compression heuristic; that is, a 
clause's score is given by 

( )

( )examples positive total

thclauselengcovered
exs. negative

covered
exs. positive

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛

=
1

Score
 (6) 

Unlike Aleph's compression (which does not include the 
term in the denominator), we convert scores into a good 
range for neural networks by dividing by the total number 
of positive examples.  This also allows comparison of 
scores across datasets. 

For each dataset, these clauses and their corresponding 
scores were used to train the neural network.  Using the 
machine learning package Weka [19], we generated 
learning curves using 10-fold cross-validation.  For all 
datasets, the neural network was constructed with 10 
hidden units.  The learning rate was fixed at 0.2, with the 

pos(X) :-  
   f(X,Y), f(Y,Z), h(Z). 

pos(a) :- 
   f(a,b), f(a,c),  
   f(b,c), g(a),  
   g(c). 

f(a,b)  

f(b,c)

g(c)

Bottom Clause Selected Literals Candidate Clause 

f(a,c) 

f(b,c) 

g(a) 

f(a,b) 

Σ g(c) 

g 

f 

nvars 

len 

Predicted output 

1 
0 
1 
0 
1 

2 
1 

4 
3 

xv  

yv  

Figure 3. An ove view showing the neural network's topology, and an example of input vector construction.  Notice 
that the vector

r
xv  is constructed by the literals chosen from the fully-ground bottom clause, not the candidate 

clause.  It is quite possible for several different sets of selected literals to correspond to the same candidate 
clause; we only consider the set that was actually chosen in the clause's construction. 



momentum set to 0.  We added early stopping to Weka to 
avoid overtraining.  For each cross-validation fold, we set 
aside 33% of each training set as a tuning set.  Then, after 
200 epochs, we kept the neural network that performed 
best on the tuning set.  Weka's numeric feature 
normalization was enabled for all numeric input features. 

The learning curves for each of the four datasets appear 
in Figure 4.  The “All Data” curves show the mean root-
mean-squared (RMS) error over the 10 different sets of 
examples.  (Section 3.4 explains the other two curves in 
each of these graphs.) 

3.3. Discussion of Results 
As Figure 4 illustrates, for all four datasets, the 

hypothesis evaluation function was learned with 
reasonable accuracy.  In all four datasets, as more data is 
added to the training set, the neural network more 
accurately learns the evaluation function.  It is interesting 
to note, however, that the number of examples required to 
accurately learn the approximator, and the accuracy of the 
final classifier varies amongst the datasets.  

E
evalfnπ

The absolute accuracy of the approximator varies 
across the datasets as well.  For protein metabolism, the 
fully-trained network averages 0.005 RMS error; for 
mutagenesis, the results are an order of magnitude worse, 

at 0.05. Still, it seems promising that the worst performing 
approximator saw an RMS error of just 0.05. 

3.4.  Instance-independent vs. Instance-dependent 
Features 

So far, our concern has been with learning the clause 
evaluation function on a rule-by-rule basis, i.e., learning a 
new neural network for each saturated example.  
However, several of the features we employ are 
independent of the example selected for saturation.  In 
particular, every feature except the ground literals selected 
(the vector xv  described in Section 1) is instance-
independent (or at least has an instance independent 
representation).  These features can be shared when 
generating different rules from different seed examples, 
and, for all rules after the first, this allows us to bootstrap 
an initial classifier based on knowledge generated when 
learning previous rules. 

Therefore, we looked at the contribution of each subset 
of features on each of the four datasets.  In particular, we 
wanted to see how much the instance-independent 
features contributed to the learning task.  Using the same 
methodology as in the Section 3.2, we used Weka to 
construct two additional learning curves for each of the 
four datasets.  These two learning curves correspond to 
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Figure 4. Learning curves showing test set accuracy over four domains.  The plots show how the root-mean-
squared (RMS) distance between predicted and actual score improved as more examples were added to our 
training set.  All four plots also show learning when we only consider instance-dependent features or instance-
independent features. 



training the network on (1) only instance-independent 
features, and (2) only instance-dependent features. 

With the exception of protein metabolism, training on 
the instance-independent features alone did not produce 
as accurate a classifier as training on the instance-
dependent features alone, or on the complete set of 
features.  Furthermore, on all four datasets, using the 
complete set of features did not produce a significantly 
more accurate network approximator than using the 
instance-dependent features alone did.  This suggests that 
the instance-independent features are unlikely to help 
transfer learning for one seed example to the next seed 
example, and that better approaches need to be developed. 

4. Conclusion and Future Work 
The use of a neural network for clause evaluation 

seems to be a powerful tool for improving runtime 
efficiency when handling large search spaces in ILP.  As 
ILP is confronted with increasingly larger problems, the 
need for methods like the ones we present in this paper 
grows.  So far, we have treated the network learning and 
evaluation tasks as computationally "free" operations, 
which is not entirely true.  However, it is true that the 
running time of neural network evaluation (and training as 
well) is independent of the number of ILP examples in the 
dataset.  This means that given enough examples in the 
ILP training set, neural-network evaluation can be made 
virtually free.  Thus, this strategy can be used to decrease 
the running time of ILP systems on very large tasks.   

The most pressing work that remains is implementing 
and evaluating the strategies for taking advantage of the 
clause-evaluation approximator outlined in Sections 2.2 
and 2.3.  Clearly some accuracy is lost in approximating 
the clause-evaluation function, but it is difficult to 
determine how it will affect the quality of solutions 
generated by using it to quickly evaluate clauses in a 
typical ILP search.  Another open question is whether or 
not we can use the network's approximation to better 
chose where in the hypothesis space to search. 

Another possible direction for future work uses another 
approach idea from Boyan and Moore's STAGE 
algorithm [14].  Recent work in ILP search function has 
focused on using GSAT with rapid random restarts (RRR) 
to explore the subsumption lattice [8].  In this paper, we 
tried to learn to approximate the clause evaluation 
function, but perhaps, like Boyan and Moore, we should 
instead concentrate on learning GSAT trajectories starting 
in various locations of the subsumption lattice.  As Boyan 
and Moore showed, the trajectory approximation function 
provides would provide even more of a smoothing effect 
over the search space than does the neural-network 
evaluation approximator, which could prove beneficial. 

In conclusion, our experiments that suggest that ILP’s 
clause-evaluation function can be approximated 

reasonably well using a neural network.  It seems clear 
that as ILP problems with larger and larger datasets are 
encountered, strategies such as this will become 
increasingly important. 
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