
T
kno
mul
min
spa
sam
hyp
can
data
eva
app
app
hyp
We
usin
syst
the
netw
data
num
also
max
the
dom
app

1. I

M
exis
fixe
con
and
data
inel
Pro
data
avo
into
the
rich

I
con
man
emp
Appears in the Proceedings of the ICDM Workshop on Foundations and New Directions of Data Mining, November 2003
Speeding Up Relational Data Mining by Learning to
 Estimate Candidate Hypothesis Scores

Frank DiMaio and Jude Shavlik
Computer Sciences Department, University of Wisconsin – Madison,

1210 W. Dayton St., Madison, WI 53706
{dimaio, shavlik}@cs.wisc.edu

Abstract

he motivation behind multi-relational data mining is
wledge discovery in relational databases containing
tiple related tables. One difficulty relational data
ing faces is managing intractably large hypothesis
ces. We attempt to overcome this difficulty by first
pling the hypothesis space. We generate a small set of
otheses, uniformly sampled from the space of
didate hypotheses, and evaluate this set on actual
. These hypotheses and their corresponding

luation scores serve as training data in learning an
roximate hypothesis evaluator. We use this
roximate evaluation to quickly rate potential
otheses without needing to score them on actual data.
test our approximate clause evaluation algorithm
g the popular Inductive Logic Programming (ILP)
em Aleph. We use a neural network to approximate
hypothesis-evaluation function. The trained neural
ork replaces Aleph’s hypothesis evaluation on actual
, scoring potential rules in time independent of the
ber of examples. Our approximate evaluator can
 be used in a heuristic search to help escape local
ima. We test the neural network's ability in learning
hypothesis-evaluation function on four benchmark ILP
ains; the neural network is able to accurately
roximate the hypothesis-evaluation function.

ntroduction and Background
ost data mining techniques assume that the data

ts in a form that can be easily converted into a set of
d-length feature vectors (where each example is
verted into a fixed-size array of real numbers, integers,
 nominal attributes). For many multi-relational
sets, such a conversion – when even possible – is
egant and scales poorly. Conversely, Inductive Logic
gramming (ILP) [1] natively handles multi-relational
. ILP's natural treatment of multi-relational datasets
ids the problems associated with converting examples
 feature vectors. As a further advantage, its rules have
full expressive power of first-order logic, making for
 and human-readable hypotheses.
LP systems have been proven quite successful in
structing a set of accurate rules, even on datasets with
y relations. Such systems have been successfully
loyed in a number of varied domains, including

molecular biology, engineering design, natural language
processing, and software analysis.

ILP systems combine background domain knowledge
and categorized training data in constructing a set of rules
(hypotheses) in first-order logic. Formally, given a
training set of positive examples E+, negative examples
E-, and background knowledge B, all as set of clauses in
first-order logic, ILP's goal is finding a hypothesis (a set
of clauses in first-order logic) h, such that

−+ ⇒/∪⇒∪ EhBEhB (1)

That is, given the background knowledge and the
hypothesis, one can deduce all of the positive examples,
and none of the negative examples. In real world
applications, these constraints are usually relaxed
somewhat, allowing h to explain most positive examples
and few negative examples.

The algorithm underlying most ILP systems is
basically the same. It searches for a clause in the
subsumption lattice [2], evaluating candidate clauses on
the training data. The search begins with an initial
candidate clause, and considers hypothesis generation as a
local search problem in the subsumption lattice. The
starting point for the search and the type of local search
depends on the implementation of the ILP system.

The subsumption lattice is constructed based on the
idea of specificity of clauses. Specificity here refers to
implication; a clause C is more specific than a clause S if
S ⇒ C. In general, it is undecidable whether or not one
clause in first-order logic implies another [3], so ILP
systems use the weaker notion of Plotkin's θ-
subsumption. Subsumption implies implication, but
implication does not imply subsumption. Subsumption of
candidate clauses puts a partial ordering on all clauses in
hypothesis space. With this partial ordering, a lattice of
clauses can be built. ILP implementations perform some
type of local search over this lattice when considering
candidate hypotheses.

Most ILP implementations also use a standard greedy
covering algorithm. After completing a local search of
the subsumption lattice, the best rule evaluated is
accepted, and all the positive examples covered
(explained) by the rule are removed from the dataset. The
process is repeated until every positive example is
covered.

The major distinction separating various ILP
implementations is the strategy used in exploring the
subsumption lattice. Algorithms fall into two main
categories (with some exceptions): general-to-specific
("top-down") [4] and specific-to-general ("bottom-up")
enumeration of the subsumption lattice [5]. Within this
framework, a variety of common local search strategies
have been employed, including breadth-first search [6],
depth-first search, heuristic-guided hill-climbing variants
[5,6], uniform random sampling [7], and rapid random
restarts [8]. Our work provides a general framework for
increasing the speed of any ILP algorithm, regardless of
the order candidate clauses are evaluated.

One complaint levied against ILP systems is that they
scale poorly to large datasets. Srinivasan [7] investigated
the performance of ILP algorithms in general, and found
that the worst-case running-time depends on both the size
of the subsumption lattice and the time required for clause
evaluation. The first factor – the search space size –
depends on the maximum allowed clause length and the
number of terms in an example's saturation.

The idea of saturation is used by a number of ILP
systems to put a bound on the size of the subsumption
lattice. Saturation involves first choosing a positive
example from the training set. Using the background
knowledge, saturation constructs the most specific, fully-
ground clause that entails the chosen example. It is
constructed by applying all possible substitutions for
variables in B with ground terms in B. This clause is
called the chosen example's bottom clause, and it serves
as the bottom element (⊥) in the subsumption lattice over
which ILP searches. That is, all clauses considered by
ILP (in the subsumption lattice) subsume (and thus imply)
the saturated example.

As a simple example, suppose we are given
background knowledge (using Prolog notation where
ground atoms are denoted with an initial lowercase letter
and variables are denoted with an initial uppercase letter):

f(e,b)
g(b,c)
∀X,Y,Z f(X,Y) ∧ g(Y,Z) ⇒ h(Y)

And the current positive example, e.
We first begin saturation by letting all ground atoms in

H imply e:
f(e,b) ∧ g(b,c) ⇒ positive(e)

Then we apply all possible consistent substitutions,
i.e., if we make the substitutions {e/X, b/Y, c/Z} (using
the notation {atom/Variable} to indicate 'atom' is being
substituted for 'Variable'), we can apply the rule given in
the third line of our background knowledge, that is:

f(e,b) ∧ g(b,c) ⇒ h(b)

Finally, combining gives us the saturation of e:
f(e,b) ∧ g(b,c) ∧ h(b) ⇒ positive(e)

Returning to the matter of runtime complexity, given
maximum clauselength c and bottom clause ⊥, the worst
case size of the subsumption lattice over which the ILP
algorithm will search is given by [7]:

)(
1

11
c

c

⊥Ο=
−⊥
−⊥ +

. (2)

The other factor affecting ILP's performance is the
evaluation time of a clause. This aspect is more
complicated to analyze. Srinivasan simplifies the analysis
by assuming that every clause can be evaluated on an
example in constant time β; thus, the evaluation of a
clause against the entire training set occurs in time

)O(EE =β where E is the set of training examples. An
exhaustive search of the subsumption lattice for a single
clause, then, takes worst-case running time)O(Ec⊥ .

It is important to note that the situation is a bit worse
than the O(|E|) running time makes it seem. Srinivasan's
work assumed that deduction of a goal clause against a set
of background relations takes a constant amount time.
However, even with just one recursive rule and one
background fact, deduction can be undecidable [9].
Restricting ourselves to the simpler case where function
symbols are not considered (i.e., Datalog) and not
allowing recursive clauses, evaluating a candidate clause
against a set of ground background facts is NP-complete
[10]. Most ILP datasets fall into this simpler, function-
free category, where evaluation time is exponential
(unless P=NP) in the number of variables, which relates to
the length of the expression. As more difficult problems
are encountered, it seems likely longer hypotheses will be
required in order to cover all the positive examples,
resulting in an execution time worse than O(|E|) indicates.

Many improvements to ILP [4,5] have focused upon
finding a better search strategy, thereby reducing the
fraction of the search space explored. For example, using
hill-climbing to explore the search space reduces the
worst-case running time to ()E⊥O . To this end, a
number of heuristic functions have been used to guide
ILP searches. Many of these attempts have proven quite
successful. Srinivasan employs a random sampling
strategy that considers sampling n clauses from the
subsumption lattice. The value of n is chosen so one is
reasonably sure the best clause found is in the top k% of
all clauses in the subsumption lattice up to a specified
maximum length. Interestingly enough, the value of n is
independent of the size of the subsumption lattice. This
gives a much-improved worst-case running time of O(|E|)
for generating a single clause. However, Srinivasan's idea
– based upon ordinal optimization [11] – only works for
domains where there are a sizable number of "sufficiently
good" solutions. His technique is not appropriate for
needle-in-the-haystack problems.

Still more ILP optimizations focus on decreasing the
time spent on clause evaluations: the |E| term in ILP's
running time. Several improvements to Prolog's clause
evaluation function have been developed. Blockeel et al.
[12] consider reordering candidate clauses to reduce the
number of redundant queries. Santos Costa et al. [13]
developed several techniques for intelligently reordering
terms within clauses to reduce backtracking. Srinivasan
[14] developed a set of techniques for working with a
large number of examples that only considers using a
fraction of all available examples in the learning process.

Pr

ed
ict

ed
 S

co
re

Space of Clauses

Figure 1. A graphical representation of the function
learned by the neural network. Exploring this surface
may help escape local maxima in the surface defined
by the clause evaluation function.

Our work is more closely related to the latter group,
with our effort spent reducing the time used by clause
evaluations. By learning a function that estimates the
clause evaluation function, we can quickly approximate
the goodness of a clause, in an amount of time
independent of the number of training examples.

We make use of a multilayer, feed-forward neural
network in approximating the ILP scoring function

: E
evalfnπ

ℜ→hE
evalfn :π , (3)

with h a candidate clause, E the set of categorized
training examples, and mapping clause h to h's
score on training set E under scoring metric evalfn. This
score represents the goodness of the hypothesis h at
explaining the training data.

E
evalfnπ

We train the neural network until it approximates
with sufficient accuracy (Section 2 contains

specifics of the network topology and the training
process). The search is performed in the usual manner;
however, instead of evaluating candidate clauses on the
complete set of examples, we use the neural network to
compute the approximate clause evaluation score .
We proceed with the algorithm as if the clause had been
scored on the actual training data. Notice that this method
allows clause evaluation in O(1) running time, not the

E
evalfnπ

E
evalfnπ̂

)O(E running time required to perform the actual
evaluation on the training data.

Additionally, we can use the surface defined by the
trained neural network to guide our search. The function
encoded by a neural network with fixed weights defines a
smooth surface in the space of network inputs. Figure 1
presents this surface graphically. Because of the
smoothing nature of the approximation, the neural
network can be used in order to escape from local maxima
when using a heuristic to search the subsumption lattice.

This idea of using function approximation to
intelligently guide a local search is not a new one.
Though not in the domain of ILP, Boyan and Moore [15]
use quadratic regression to approximate a function
mapping points in feature space to the endpoint of a
trajectory of some local search starting at that point. They
use this approximation to escape local maxima in a

heuristic search. Their algorithm ran in less time, and
reported better test-set accuracy than solutions discovered
using local search alone.

It is important to note that empirically, this paper's only
concern is with learning the approximation . We
have not yet thoroughly investigated using to speed
up local searches over the subsumption lattice, or to
intelligently escape local maxima when searching the
hypothesis space.

E
evalfnπ̂

E
evalfnπ̂

2. Learning the Clause Evaluation Function
The first step in building our clause evaluation function

approximator is construction of the neural network. This
requires choosing the network inputs as well as the
network topology. We base network construction on the
top-down lattice exploration used by a number of popular
ILP implementations. In such implementations, a positive
example is chosen at random from the training set. The
chosen example is then saturated, building a bottom
clause e :- B. (Note that we use Prolog notation where
e :- B means B ⇒ e). Recall that this bottom clause
consists of only fully ground literals. An ILP system
constructs candidate hypotheses by choosing a subset of
these fully-ground literals and "variablizing," replacing
ground atoms with variables in a manner that replaces
multiple instances of a single ground atom with a single
variable. Approaches differ regarding how they select
ground literals from the bottom clause. Figure 2
illustrates this process.

Our neural-network inputs are comprised of a set of
features derived from the candidate clause both before
and after variablization. When saturating an example,
each literal in that example's bottom clause is associated
with an input in the neural network. This input is set to 1
if the corresponding literal in the bottom clause was used
in constructing the clause, and set to 0 otherwise. Notice
that there may be multiple sets of literals from the bottom
clause that, variablized, yield the same clause. However,
we only set to 1 the input units for the specific literals that
were actually used to construct the candidate clause.

Formally, let candidate clause C be chosen by selecting
some subset of literals from the most-specific bottom
clause ⊥i for current example ei. We treat this clause as a
vector { }

i
xxx ⊥= ,,1 K

v in i⊥ -dimensional space, with:

Bottom Clause (⊥) of Fully Ground Literals
cyclic(g_23) :-
 node(g_23,n1), node(g_23,n2), node(g_23,n3),
 arc(g_23,n3,n2), arc(g_23,n2,n1), arc(g_23,n1,n3),
 path(g_23,n3,n2), path(g_23,n3,n1), path(g_23,n3,n3),
 path(g_23,n2,n1), path(g_23,n2,n3), path(g_23,n2,n2),
 path(g_23,n1,n3), path(g_23,n1,n2), path(g_23,n1,n1).

Selected Subset of Literals
node(g_23,n3) arc(g_23,n3,n2) path(g_23,n2,n1)

Candidate Clause
cyclic(X) :- node(X,A), arc(X,A,B), path(X,B,C)

saturation

pick a subset of literals from ⊥

variablization

Background Knowledge

path(G,X,Y) :- arc(G,X,Y).
path(G,X,Y) :- arc(G,X,Z),
 path(G,Z,Y),
 not X=Z, not Y=Z.

node(g23,n1). arc(g23,n3,n2).
node(g23,n2). arc(g23,n2,n1).
node(g23,n3). arc(g23,n1,n3). n1

n2 n3

Positive Example
cyclic(g23)

Figure 2. An overview of the process by which many ILP algorithms construct clauses. The bottom clause is
constructed by applying all possible substitutions of ground terms for variables in B. A subset of literals from the
bottom clause is chosen, and through variablization, these literals are converted into a candidate hypothesis.
Variablization replaces multiple instances of a single atom with a single variable. We use the Prolog notation for
clauses, where e :- B means B ⇒ e, ground atoms are denoted with an initial lowercase letter, and variables are
denoted with an initial uppercase letter.

⎩⎨
⎧= otherwise

 ngconstructi in chosen literal ground if
 0
 1 Ckxk

 (4)

This vector xv is part of the inputs to our neural network.
One important aspect of the input vector is that every
possible candidate clause - that is, every clause in Aleph's
hypothesis space - has a unique input vector
representation.

Additionally, we give each functor (function name) a
specific input in the network, as well. Here, we consider
a vector yv , in which each dimension corresponds to a
functor appearing in ⊥i. Construction of yv is based upon
the number of times a particular functor is used in a
candidate clause, that is:

yj = # of ground literals in C with functor j (5)
Finally, a third set of inputs to the neural network

comes from features extracted from the variablized clause
C'. These features include
• length, the number of literals in C'.

• nvars, the number of distinct variables in C'.
• nshared_vars, the number of distinct variables

appearing more than once in C'.
• avg_var_freq, the average number of times each

variable appears in C'.
• max_var_chain, the longest variable chain appearing

in C', i.e., for the clause f(A):-g(A,B),h(B,C)
the maximum chain length is 3 (A→B→C).

The neural network consists of one (fully-connected)
hidden layer and a single output unit. The output
corresponds to predicted output evalfn . Thus, we can
evaluate a clause on the neural network by converting it to
the vector notation specified in (4) and (5), and forward-
propagating it on a neural network trained to approximate

. Figure 3 details the network topology.

Eπ̂

E
evalfnπ

2.1. Training the Neural Network
Table 1 contains the algorithm used to train the neural

network. A training set size is specified, and a number of

NeuralNetworkTraining(⊥i, E, evalfn, burnin)
 IOPairs ← ∅
 NN ← new NeuralNetwork
 minError ← +inf
 for i = 1 to trainset_size
 C ← random clause from the subsumption lattice of ⊥i
 n ← evaluate(evalfn, C, E)
 add <C,n> to IOPairs
 Split IOPairs into TrainSet and TuneSet
 for j = 1 to NUM_EPOCHS
 foreach <ex,score> in TrainSet
 run backpropogation algorithm on NN using <ex,score>
 error ← score NN on TuneSet
 if (error < minError)
 minError ← error
 bestNN ← NN

return bestNN

Table 1: The Neural Network
training algorithm. Given a bottom
clause ⊥i, a set of training examples
E, a heuristic function evalfn, and a
number of training clauses
trainset_size, train a neural network
to learn the clause evaluation
function evalfn . Use early stopping
to avoid overtraining, and return the
network learned.

Eπ

clauses are uniformly randomly selected from the space of
legal clauses (up to a given maximum clause length). We
evaluate these randomly selected clauses on the training
data, thereby creating input/output pairs for training.

The neural network's training process makes use of
Srinivasan's random uniform sampling [7]. Using
uniform sampling to generate I/O pairs ensures that the
neural network approximation is reasonably accurate over
the entire search space. Using other local search methods
could bias the neural network's approximation toward
some local region of the search space.

2.2. Speeding up Searching in ILP by Using a
Trained Neural Network

Once training is complete, we can use the neural
network to approximate clause scores whenever ILP's
search requires a clause evaluation. When a solution is
finally found, we score the best clause on actual data to
determine the coverage of the solution the search located.

However, empirical evidence suggests that this
problem might be better treated as an adaptive sampling
problem. After the burn-in, instead of evaluating every
clause on the network, we let some small percentage k of
candidate clauses bypass the neural network. We
compute these clauses' actual scores. Each clause that
bypasses the network, together with its computed score,
forms another I/O pair used to train the neural network.
By storing some subset of recently-scored I/O pairs, every
time a clause bypasses the neural network, another epoch
of training occurs on all stored I/O pairs. To avoid
overtraining the network on specific examples, after some
time I/O pairs are removed from the set of stored pairs.

As most strategies explore more favorable regions of
search space as the search progresses, adaptive sampling
will learn with greatest accuracy the higher-scoring
regions of the search space. Additionally, it will continue
to improve the accuracy of the neural network as the
search progresses. Assuming that the time required to

evaluate a clause is much greater than the time required to
approximate a clause on the neural network, this allows a
factor (1/k) speedup. Given enough training examples,
this assumption is valid. Implementing and testing such
usage of the approximator is a topic of our future work.

2.3. Using the Trained Neural Network to Escape
Maxima in Local Search

We are also currently developing a search strategy to
directly use the trained neural network in determining
candidate clauses. The trained neural network defines
some surface in the network’s input space. The network's
sigmoidal units will have a smoothing effect on the actual
evaluation function . We can take advantage of
this smoothing by using the neural-network
approximation to escape local minima in hill-climbing
search. This technique is suggestive of the approach
taken by Boyan and Moore [15] in their STAGE
algorithm. Like their approach, one can envision
alternating iterations of hill-climbing using the actual
evaluation function and hill-climbing using the neural-
network approximation. The neural network's smoothing
will tend to guide the search towards the global maximum
in hypothesis space.

E
evalfnπ

3. Results and Discussion
This section details empirical evaluation of the neural
network learning task. Our goal is to ascertain whether a
neural network can learn the ILP clause evaluation
function. To simplifying the task, in our experiments we
only consider a batch learning process, not the
incremental learning process outlined in Section 2.

3.1. Datasets
We tested neural network learning on four standard

ILP benchmarks. The tasks included predicting
mutagenic activity [16] and carcinogenic activity [17] in
compounds, predicting the smuggling of nuclear and
radioactive materials [18], and predicting metabolic

activity of proteins. A brief description of the four
datasets follows.

Mutagenesis. This task is concerned with predicting
the mutagenicity of certain compounds. The ILP learner
is provided background knowledge consisting of the
chemical properties of 188 compounds, as well as general
chemical knowledge in the form of first-order logic
relations. The dataset is a popular benchmark, and
explores a reasonably large search space.

Carcinogenesis. Similar to the mutagenesis task, but
an inherently more difficult problem, this task's main
concern is predicting carcinogenic activity compounds
from potential carcinogenic compounds. The database for
this problem consists of 332 labeled examples, of which
about half are carcinogenic.

Nuclear Smuggling. This dataset, based on reports of
Russian nuclear materials smuggling, is interesting in its
highly-relational nature, with over 40 relational tables.
The task is concerned with predicting when two
smuggling events are linked. The dataset we use is a
subset of the complete dataset, 192 examples split evenly
into positive and negative examples.

Protein Metabolism. This task is taken from the gene
function prediction task of the 2001 KDD Cup challenge
(www.cs.wisc.edu/~dpage/kddcup2001/). While the
challenge involves learning 14 different protein functions,
our sub-task is only concerned with predicting which
proteins are responsible for metabolism. Here we also use

a subset of the complete dataset, 230 examples split
evenly between positives and negatives.

3.2. Learning the Clause Evaluation Function
We use the ILP system Aleph (web.comlab.ox.ac.uk

/oucl/research/areas/machlearn/Aleph/aleph_toc.html) to
generate 10 sets of 1000 randomly sampled clauses for
each of the four datasets, corresponding to 10 different
positive examples that were used in construction of the
bottom clause. These 10 "seed examples" were chosen
randomly. We considered a maximum clauselength c=6
for all but the Nuclear Smuggling task; we considered a
larger value of c=10 for this task. Clauses were scored
using a variant of Aleph’s compression heuristic; that is, a
clause's score is given by

()

()examples positive total

thclauselengcovered
exs. negative

covered
exs. positive

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛

=
1

Score
 (6)

Unlike Aleph's compression (which does not include the
term in the denominator), we convert scores into a good
range for neural networks by dividing by the total number
of positive examples. This also allows comparison of
scores across datasets.

For each dataset, these clauses and their corresponding
scores were used to train the neural network. Using the
machine learning package Weka [19], we generated
learning curves using 10-fold cross-validation. For all
datasets, the neural network was constructed with 10
hidden units. The learning rate was fixed at 0.2, with the

pos(X) :-
 f(X,Y), f(Y,Z), h(Z).

pos(a) :-
 f(a,b), f(a,c),
 f(b,c), g(a),
 g(c).

f(a,b)

f(b,c)

g(c)

Bottom Clause Selected Literals Candidate Clause

f(a,c)

f(b,c)

g(a)

f(a,b)

Σ g(c)

g

f

nvars

len

Predicted output

1
0
1
0
1

2
1

4
3

xv

yv

Figure 3. An ove view showing the neural network's topology, and an example of input vector construction. Notice
that the vector

r
xv is constructed by the literals chosen from the fully-ground bottom clause, not the candidate

clause. It is quite possible for several different sets of selected literals to correspond to the same candidate
clause; we only consider the set that was actually chosen in the clause's construction.

momentum set to 0. We added early stopping to Weka to
avoid overtraining. For each cross-validation fold, we set
aside 33% of each training set as a tuning set. Then, after
200 epochs, we kept the neural network that performed
best on the tuning set. Weka's numeric feature
normalization was enabled for all numeric input features.

The learning curves for each of the four datasets appear
in Figure 4. The “All Data” curves show the mean root-
mean-squared (RMS) error over the 10 different sets of
examples. (Section 3.4 explains the other two curves in
each of these graphs.)

3.3. Discussion of Results
As Figure 4 illustrates, for all four datasets, the

hypothesis evaluation function was learned with
reasonable accuracy. In all four datasets, as more data is
added to the training set, the neural network more
accurately learns the evaluation function. It is interesting
to note, however, that the number of examples required to
accurately learn the approximator, and the accuracy of the
final classifier varies amongst the datasets.

E
evalfnπ

The absolute accuracy of the approximator varies
across the datasets as well. For protein metabolism, the
fully-trained network averages 0.005 RMS error; for
mutagenesis, the results are an order of magnitude worse,

at 0.05. Still, it seems promising that the worst performing
approximator saw an RMS error of just 0.05.

3.4. Instance-independent vs. Instance-dependent
Features

So far, our concern has been with learning the clause
evaluation function on a rule-by-rule basis, i.e., learning a
new neural network for each saturated example.
However, several of the features we employ are
independent of the example selected for saturation. In
particular, every feature except the ground literals selected
(the vector xv described in Section 1) is instance-
independent (or at least has an instance independent
representation). These features can be shared when
generating different rules from different seed examples,
and, for all rules after the first, this allows us to bootstrap
an initial classifier based on knowledge generated when
learning previous rules.

Therefore, we looked at the contribution of each subset
of features on each of the four datasets. In particular, we
wanted to see how much the instance-independent
features contributed to the learning task. Using the same
methodology as in the Section 3.2, we used Weka to
construct two additional learning curves for each of the
four datasets. These two learning curves correspond to

M utagenesis

0.0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000

Training Set Size

R
M

S
Er

ro
r

A ll Data
Instance-independent only

Instance-dependent only

Prote in M etabolism

0.000

0.006

0.012

0.018

0.024

0.030

0 200 400 600 800 1000

Training Set Size

R
M

S
Er

ro
r

Nuclear Smuggling

0.000

0.005

0.010

0.015

0.020

0 200 400 600 800 1000

Training Set Size

R
M

S
Er

ro
r

Carcinogenesis

0.00

0.02

0.04

0.06

0.08

0 200 400 600 800 1000

Training Set Size

R
M

S
Er

ro
r

Figure 4. Learning curves showing test set accuracy over four domains. The plots show how the root-mean-
squared (RMS) distance between predicted and actual score improved as more examples were added to our
training set. All four plots also show learning when we only consider instance-dependent features or instance-
independent features.

training the network on (1) only instance-independent
features, and (2) only instance-dependent features.

With the exception of protein metabolism, training on
the instance-independent features alone did not produce
as accurate a classifier as training on the instance-
dependent features alone, or on the complete set of
features. Furthermore, on all four datasets, using the
complete set of features did not produce a significantly
more accurate network approximator than using the
instance-dependent features alone did. This suggests that
the instance-independent features are unlikely to help
transfer learning for one seed example to the next seed
example, and that better approaches need to be developed.

4. Conclusion and Future Work
The use of a neural network for clause evaluation

seems to be a powerful tool for improving runtime
efficiency when handling large search spaces in ILP. As
ILP is confronted with increasingly larger problems, the
need for methods like the ones we present in this paper
grows. So far, we have treated the network learning and
evaluation tasks as computationally "free" operations,
which is not entirely true. However, it is true that the
running time of neural network evaluation (and training as
well) is independent of the number of ILP examples in the
dataset. This means that given enough examples in the
ILP training set, neural-network evaluation can be made
virtually free. Thus, this strategy can be used to decrease
the running time of ILP systems on very large tasks.

The most pressing work that remains is implementing
and evaluating the strategies for taking advantage of the
clause-evaluation approximator outlined in Sections 2.2
and 2.3. Clearly some accuracy is lost in approximating
the clause-evaluation function, but it is difficult to
determine how it will affect the quality of solutions
generated by using it to quickly evaluate clauses in a
typical ILP search. Another open question is whether or
not we can use the network's approximation to better
chose where in the hypothesis space to search.

Another possible direction for future work uses another
approach idea from Boyan and Moore's STAGE
algorithm [14]. Recent work in ILP search function has
focused on using GSAT with rapid random restarts (RRR)
to explore the subsumption lattice [8]. In this paper, we
tried to learn to approximate the clause evaluation
function, but perhaps, like Boyan and Moore, we should
instead concentrate on learning GSAT trajectories starting
in various locations of the subsumption lattice. As Boyan
and Moore showed, the trajectory approximation function
provides would provide even more of a smoothing effect
over the search space than does the neural-network
evaluation approximator, which could prove beneficial.

In conclusion, our experiments that suggest that ILP’s
clause-evaluation function can be approximated

reasonably well using a neural network. It seems clear
that as ILP problems with larger and larger datasets are
encountered, strategies such as this will become
increasingly important.

5. Acknowledgements
This work was supported by NLM grant 1T15 LM007359-

01, DARPA EELD Grant F30602-01-2-0571, and NLM grant
1R01 LM07050-01

6. References
[1] N. Lavrac & S. Dzeroski (1994). Inductive Logic

Programming: Techniques and Applications. Ellis
Horwood.

[2] S. Nienhuys-Cheng & R. de Wolf (1997). Foundations of
Inductive Logic Programming. Springer-Verlag.

[3] M. Schmidt-Schauss (1988). Implication of clauses is
undecidable. Theoretical Computer Science, 59:287-296.

[4] J. Quinlan (1990). Learning logical definitions from
relations. Machine Learning, 5:239-266.

[5] S. Muggleton & C. Feng (1990). Efficient induction of
logic programs. Proc. 1st Conf. on Algorithmic Learning
Theory, 368-381.

[6] S. Muggleton (1995). Inverse entailment and Progol.
New Generation Computing, 13:245-286.

[7] A. Srinivasan (2000). A study of two probabilistic
methods for searching large spaces with ILP. Tech. Report
PRG-TR-16-00. Oxford Univ. Computing Lab.

[8] F. Zelezny, A. Srinivasan & D. Page (2002). Lattice-
search runtime distributions may be heavy-tailed. Proc.
12th Intl. Conference on ILP, 333-345.

[9] P. Hanschke & J. Wurtz (1993). Satisfiability of the
smallest binary program. Info. Proc. Letters, 496:237-241.

[10] E. Dantsin, T. Eiter, G. Gottlob & A. Voronkov (2001).
Complexity and expressive power of logic programming.
ACM Computing Surveys, 33:374-425.

[11] Y. Ho, R. Sreenivas & P Vakili (1992). Ordinal
optimization in DEDS. Discrete Event Dynamic Systems:
Theory and Applications, 2:61-68.

[12] H. Blockeel et al. (2002). Improving the efficiency of
inductive logic programming through the use of query
packs. J. AI Research, 16:135-166.

[13] V. Santos Costa et al. (2003). Query transformations for
improving the efficiency of ILP systems, J. Machine
Learning Research, 4:465-491.

[14] A. Srinivasan (1999). A study of two sampling methods
for analysing large datasets with ILP. Data Mining and
Knowledge Discovery, 3:95-123.

[15] J. Boyan & A. Moore (2000). Learning evaluation
functions to improve optimization by local search. J.
Machine Learning Research, 1:77-112.

[16] R. King, S. Muggleton, A. Srinivasan & M. Sternberg
(1996). Structure-activity relationships derived by
machine learning. PNAS, 93:438-442.

[17] B. Dolsak & S. Muggleton (1991). The application of ILP
to finite element mesh design. Proc. 1st Intl. Workshop on
Inductive Logic Programming, 225-242.

[18] S. McKay, P. Woessner & T. Roule (2001). Evidence
extraction and link discovery seedling project, database
schema description. Veridian Technical Report 2862.

[19] I. Witten & E. Frank (1999). Data Mining. Morgan
Kaufmann Publishers.

