
Learning an Approximation to Inductive Logic
Programming Clause Evaluation

Frank DiMaio and Jude Shavlik

Computer Sciences Department, University of Wisconsin - Madison,
1210 W. Dayton St., Madison, WI 53706

{ dimaio,shavlik} @wisc.edu

Abstract. One challenge faced by many Inductive Logic Programming (ILP)
systems is poor scalability to problems with large search spaces and many
examples. Randomized search methods such as stochastic clause selection
(SCS) and rapid random restarts (RRR) have proven somewhat successful at
addressing this weakness. However, on datasets where hypothesis evaluation is
computationally expensive, even these algorithms may take unreasonably long
to discover a good solution. We attempt to improve the performance of these
algorithms on datasets by learning an approximation to ILP hypothesis
evaluation. We generate a small set of hypotheses, uniformly sampled from
the space of candidate hypotheses, and evaluate this set on actual data. These
hypotheses and their corresponding evaluation scores serve as training data for
learning an approximate hypothesis evaluator. We outline three techniques that
make use of the trained evaluation-function approximator in order to reduce the
computation required during an ILP hypothesis search. We test our
approximate clause evaluation algorithm using the popular ILP system Aleph.
Empirical results are provided on several benchmark datasets. We show that
the clause evaluation function can be accurately approximated.

1 Introduction

Inductive Logic Programming (ILP) systems [1] have been widely used in
classification, data mining, and information extraction tasks. Their natural treatment
of relational data, harnessing the expressive power of first-order logic, makes them
useful for working with databases containing multiple relational tables. ILP systems
combine background domain knowledge and categorized training data in constructing
a set of rules in the form of first-order logic clauses. Formally, given a training set of
positive examples E+, negative examples E-, and background knowledge B, all as sets
of clauses in first-order logic, ILP's goal is to find a hypothesis (a set of clauses in
first-order logic) h, such that

−+ � /∪�∪ EhBEhB (1)

That is, given the background knowledge and the hypothesis, one can deduce al l of
the positive examples, and none of the negative examples. In real world applications,
these constraints are typically relaxed, allowing h to explain most positive examples

Appears in the Proceedings of the 14th International Conference on Inductive Logic Programming (2004)

and few negative examples. ILP systems have been successfully employed in a
number of varied domains including molecular biology [2,3], engineering design [4],
natural language processing [5], and software analysis [6].

One challenge many ILP systems face is scalability to large datasets with large
hypothesis spaces. We define a general framework for learning a function that
estimates the goodness of a hypothesis without looking at actual data. We suggest a
number of ways in which such an approximation may be employed. One possible
application eliminates poor hypotheses without wasting time evaluating them.
Another uses the approximate hypothesis evaluator to guide the generation of
promising new candidate hypotheses. Yet another application mines the estimator
function itself for rules that can be used to invent useful predicates.

The remainder of the paper is structured as follows. Section 2 provides a
background and related work on scaling up ILP. Section 3 describes construction of
the hypothesis evaluation estimator. Section 4 describes in detail possible uses of
such an estimator function. Section 5 shows some results of estimator learning on
benchmark datasets, and Section 6 presents future research directions.

2 ILP Background and Related Work

The algorithm underlying most ILP systems is basically the same – it treats
hypothesis generation as a local search in the subsumption lattice [7]. The
subsumption lattice is constructed based on the idea of specificity of clauses.
Specificity here refers to implication; a clause C is more specific than a clause S i f

CS � . In general, it is undecidable whether or not one clause in first-order logic
implies another [8], so ILP systems use the weaker notion of Plotkin's θ-subsumption.
Subsumption of candidate clauses puts a partial ordering on all clauses in hypothesis
space. With this partial ordering, a lattice of clauses can be built, as in Figure 1. ILP
implementations perform some type of local search over this lattice when considering
candidate hypotheses.

The major distinction separating various ILP implementations is the strategy used
in exploring the subsumption lattice. Algorithms fall into two main categories (with

true � pos(X)

h(X) � pos(X) f(X,Y) � pos(X) g(X,Y) � pos(X)

h(X) ∧ f(X,Y) � pos(X) f(X,Y) ∧ g(X,Z) � pos(X)

⊥
Figure 1. This illustrates an example of the subsumption lattice over which many ILP
implementations search. The lattice is bounded above by true, and below by the bottom
clause. Many ILP systems treat clause discovery as local search, moving along lattice edges.

some exceptions): general -to-specific ("top-down") [9] and specific-to-general
("bottom-up") exploration of the subsumption lattice [10]. Within these two
frameworks, a variety of common local search strategies have been employed,
including breadth-first search [11], depth-first search, heuristic-guided hill-climbing
variants [10,11], uniform random sampling [12], rapid random restarts [13], and
genetic algorithms [14]. Our work provides a general framework for increasing the
speed of any ILP algorithm, regardless of the order candidate clauses are evaluated.

One challenge ILP systems face is that they scale poorly to large datasets.
Srinivasan [12] investigated the performance of various ILP algorithms, and found
that the running-time depends on two factors: (1) the size of the subsumption lattice
and (2) the time required for clause evaluation, which in turns depends on the number
of examples in the background corpus.

The first factor – the size of the subsumption lattice – mainly depends on the
number of terms in a specific example's saturation. Saturation is used to put a lower
bound on the subsumption lattice. The process is performed on a single positive
example. Using the background knowledge, saturation constructs the most specific,
ful ly-ground clause that entails the chosen example. It is constructed by applying all
possible substitutions for variables in the background knowledge B with ground terms
in B. This clause is called the chosen example's bottom clause, and it serves as the
bottom element (⊥) in the subsumption lattice (Figure 1) over which ILP searches.
That is, all clauses considered by ILP (in the subsumption lattice) subsume ⊥.

As a simple example, suppose we are given background knowledge (using Prolog
notation where ground atoms are denoted with an initial lowercase letter and variables
are denoted with an initial uppercase letter):

f(e,b) g(b,c)
∀X,Y,Z f(X,Y) ∧ g(Y,Z) � h(Y)

We are also given the current positive example, e.
We first begin saturation by letting all ground atoms in H imply e:

f(e,b) ∧ g(b,c) � positive(e)

Then we apply all possible consistent substitutions, i.e., if we make the
substitutions {e/X, b/Y, c/Z} (using the notation { atom/Variable} to indicate 'atom'
is being substituted for 'Variable'), we can apply the rule given in the third line of our
background knowledge, that is:

f(e,b) ∧ g(b,c) � h(b)

Finally, combining gives us the saturation of e:

f(e,b) ∧ g(b,c) ∧ h(b) � positive(e)

Clearly, the size of the subsumption lattice is directly related to the size of ⊥. If we
ignore multiple variablizations of a single ground literal and consider only hypotheses
that contain less than c terms, then the size of the subsumption lattice − given a
bottom clause ⊥ − is at most)(

c⊥Ο [12]. Taking into account multiple
variablizations introduces an additional factor, exponential in the number of constants
in the bottom clause.

The second factor – the evaluation time of a clause – is more complicated to
analyze. Srinivasan simplifies the analysis by assuming that every clause can be
evaluated on an example in constant time β; thus, the evaluation of a clause against
the entire training set occurs in time)O(EE =β where E is the set of training
examples. An exhaustive search of the subsumption lattice for a single clause, then,
takes worst-case running time)O(E

c⊥ .
However, for most datasets clause evaluation is even worse than O(|E|).

Srinivasan's work assumed that deducing each candidate hypothesis takes constant
time. However, even with just one recursive rule and one background fact, deduction
can be undecidable [15]. Restricting ourselves to the simpler case where function
symbols are not considered (i.e., Datalog) and not allowing recursive clauses,
evaluating a candidate clause against a set of ground background facts is NP-complete
[16]. Most ILP datasets fall into this simpler, function-free category, where
evaluation time is exponential (unless P=NP) in the number of variables, which
relates to the length of the expression. In other words, a long hypothesis wil l take
significantly longer to test against the examples in the background knowledge than
will a shorter hypothesis. For many large datasets, it is precisely these long
hypotheses that are most interesting. As a result, approaches to scaling up ILP [9,10]
have focused upon one of these two factors: reducing the number of clauses
considered, or decreasing the time spent on clause evaluations.

In reducing the number of clauses considered, the simplest techniques employ
general AI search strategies, such as A*, i terative deepening, or beam search, to
reduce the number of clauses in the subsumption lattice considered. For example,
using a beam reduces the worst-case running time to ()E⊥O . However, for
extremely large datasets where |⊥| may be in the thousands and |E| in the hundred
thousands, even this may take prohibitively long.

A novel approach at reducing the number of clauses in the subsumption lattice
considered has been successfully employed by Srinivasan. It uses a random sampling
strategy that considers sampling n clauses from the subsumption lattice, where the
value of n chosen is independent of the size of the subsumption lattice. This gives
worst-case running time of O(|E|) for finding a single clause. However, Srinivasan's
idea only works for domains where there are a sizable number of "sufficiently good"
solutions. Recent work by Zelezny et al. [13] has coupled random clause generation
method with heuristic search using the idea of rapid random restarts (RRR) to
explore the subsumption lattice. They repeatedly generates random clauses followed
by a short local search. Rückert and Kramer [17] have also had success using
stochastic search for bottom-up rule learning, outperforming GSAT and WalkSAT.

Other ILP optimizations focus instead on decreasing the time spent on clause
evaluations: the |E| term in ILP's running time. Several improvements to Prolog's
clause evaluation function have been developed. Blockeel et al. [18] consider
reordering candidate clauses to reduce the number of redundant queries. Santos Costa
et al. [19] developed several techniques for intelligently reordering terms within
clauses to reduce backtracking. Srinivasan [20] developed a set of techniques for
working with a large number of examples that only considers using a fraction of all
available examples in the learning process. Sebag and Rouveirol [21] use stochastic

matching to perform approximate inference in polynomial (as opposed to exponential)
time. Maloberti and Sebag [22] provide an alternative to Prolog's SLD resolution for
θ-subsumption. They instead treat θ-subsumption as a constraint satisfaction problem
(CSP), then use a combination of CSP heuristics to quickly perform θ-subsumption.

Our work is distinct from all of these techniques. We describe a method for
learning a function that estimates the clause evaluation function, which can be used in
several different ways. It can reduce the evaluation time of a clause by quickly
approximating the goodness of a clause, in an amount of time independent of the
number of training examples. We can couple it with Zelezny et al.'s rapid random
restart method in order to bias restarts toward better regions in the search space. We
can use it in a manner similar to Boyan and Moore's STAGE algorithm [23] to escape
local maxima in a heuristic search. Finally, we can extract hypotheses and perform
predicate invention using the estimator itself.

3 Learning the Clause Evaluation Function

Heuristic approaches to exploring the subsumption lattice all make use of a scoring
function to represent the goodness of a hypothesis at explaining the training data.
Given a hypothesis (a candidate clause in first-order logic) h, a set of categorized
training examples { }−+= EEE , , E

evalfn
� maps clause h to h 's score on training set E

under scoring metric evalfn:

ℜ→hE
evalfn :� (2)

We use a multilayer, feed-forward neural network described in Section 3.1 to learn
an approximate scoring function E

evalfn
� ˆ . Some preliminary testing revealed that other

machine learning algorithms (e.g. naïve Bayes, linear regression, C4.5) were
significantly less accurate at approximating the clause evaluation function.
Furthermore, a neural network with a single hidden layer is capable of approximating
any bounded continuous function with arbitrarily small error [24]. We use an online
training algorithm detailed in the Section 3.2 to train the neural network.

3.1 Neural Network Topology

Before constructing our clause evaluation function approximator, we need a
method for encoding clauses as neural network inputs. Our encoding is based on the
top-down lattice exploration used by a number of popular ILP implementations. In
such implementations, a positive example is chosen at random from the training set.
The chosen example is then saturated, building a bottom clause (⊥). Recall that this
bottom clause consists of only fully ground literals. An ILP system constructs
candidate hypotheses by choosing a subset of these fully-ground literals and
"variablizing," replacing ground atoms with variables in a manner that replaces
multiple instances of a single ground atom with a single variable (our approach does

not consider multiple – or split - variablizations of a single set of ful ly-ground
l iterals). Approaches differ in how they select ground literals from the bottom clause.

Our neural-network inputs are comprised of a set of features derived from the
candidate clause both before and after variablization. When saturating an example,
each li teral in that example's bottom clause is associated with an input in the neural
network. This input is set to 1 i f the corresponding l iteral in the bottom clause was
used in constructing the clause, and set to 0 otherwise. Notice that there may be
multiple sets of li terals from the bottom clause that, when variablized, yield the same
clause. This means there may be many different input representations for a single
clause. However, we only use the input representation corresponding to the specific
l iterals that were actually chosen when constructing the candidate clause.

Formally, let candidate clause C be chosen by selecting some subset of literals
from the most-specific bottom clause ⊥i for current example ei. We treat this clause
as a vector },,{ 1 i

xxx ⊥= ��
 in i⊥ -dimensional space, with:

�� �
=

otherwise 0

C ngconstructiin chosen k literal ground if 1
kx (3)

This vector x� is a subset of the inputs to our neural network. One important
aspect of the input vector is that every possible candidate clause − that is, every clause
in the subsumption lattice − has a unique input vector representation. However, the
mapping does not work in the other direction: not every possible bit vector
corresponds to a legal clause. In many cases, the majority of bit vectors correspond to
i llegal clauses, which contain unbound input variables. (Algorithms using the neural
network to search the space of bit vectors, as in Section 4.2, need to be aware of this).

Additionally, we give each predicate a specific input in the network, as well. Here,
we consider a vector y� , in which each dimension corresponds to a predicate
appearing in ⊥i. Construction of y� is based upon the number of times a particular
predicate is used in a candidate clause, that is:

yj = # of ground literals in C of predicate j (4)

Finally, a third set of inputs to the neural network comes from features extracted
from the variablized clause C'. These features include

• length - number of l iterals in C'.
• nvars - number of distinct variables in C'.
• nshared_vars - number of distinct variables appearing more than once in C'.
• avg_var_freq - average number of times each variable appears in C'.
• max_var_chain - longest variable chain appearing in C', i.e., the clause

 f(A):-g(A,B),h(B,C) has max chain 3 (A � B � C).

The neural network consists of one (fully-connected) hidden layer and a two output
units. The output units correspond to P and N, the predicted positive and negative
coverage of a clause (that is, the number of examples from E+ and E-, respectively,
deduced from the hypothesis). Given these predicted values and a scoring function,
computation of the predicted output E

evalfn
� ˆ is trivial. For example, commonly used

evaluation functions include coverage (P−N) and accuracy (NPP +). Thus, we can

evaluate a clause on the neural network by converting it to the vector notation
specified in Equations (3) and (4), forward-propagating it on a trained neural network
to estimate P̂ and N̂ , and calculating E

evalfn
� ˆ from P̂ and N̂ . Figure 2 presents this

network topology graphically.

3.2 Online Training

The neural network's initial training makes use of Srinivasan's random uniform
sampling [12]. The user specifies a burn-in length b, and the algorithm uniformly
randomly selects b clauses from the space of legal clauses (up to a given maximum
clause length). We evaluate these clauses on the training data, thereby creating
input/output pairs for training. Using uniform sampling to generate I/O pairs ensures
that the neural network approximation is reasonably accurate over the entire search
space. Using other local search methods tends to bias the neural network's
approximation toward some local region in the search space. Table 1a contains an
overview of the algorithm used to initially train the neural network.

The methods we present in the Section 4 – that use our approximation to explore
the subsumption lattice – continue to evaluate clauses (on actual data) once the

Figure 2. An overview showing the neural network's topology, and an example of input
vector construction. Notice that the vector x� is constructed by the literals chosen from the
fully-ground bottom clause, not the candidate clause. It is quite possible for several different
sets of selected literals to correspond to the same candidate clause; we only consider the set that
was actually chosen in the clause's construction.

 pos(X) :-
 f(X,Y),
 f(Y,Z),
 g(Z).

pos(a) :-
 f(a,b), f(a,c),
 f(b,c), g(a),
 g(c).

f(a,b)

f(b,c)

g(c)

Bottom Selected Lits. Clause

f(a,c)

f(b,c)

g(a)

f(a,b

ΣΣΣΣ

g(c)

g

f

nvars

len

Predicted
% POS
coverage

1
0
1
0
1

2
1

4

3

x
�

y
�

ΣΣΣΣ
Predicted
% NEG
coverage

relatively short burn-in period is concluded. It seems wasteful to just throw this
potential training data for the network approximation away. Our algorithm uses an
online learning algorithm to make use of these clause evaluations – that occur as part
of ILP's regular search – to improve the accuracy of the approximation. This allows
us to generate a virtually unlimited number of I/O pairs for our network by simply
scoring clauses on actual data.

Our online training algorithm is shown in Table 1b. When a clause is evaluated by
ILP, generating an I/O pair for training our neural network, our online learning
algorithm adds the pair to a cache of recently evaluated clauses. The cache typically
stores 1000 to 10000 recently evaluated clauses, and, once full, elements in the cache
are randomly removed to make room for incoming elements. At regular intervals
(typically every 50-100 insertions) the neural network is updated by backpropagation,
using the entire cache for a fixed number of epochs (typically 10). The continually
changing training set, relatively short training intervals, and small number of hidden
units (typically 5-10) prevent overtraining.

While the goal of our approximation is to learn an approximation of the clause
evaluation function over the entire subsumption lattice, we are especially concerned
with high accuracy of this approximation in high-scoring regions of the subsumption
lattice. To ensure this accuracy, we also maintain a cache of the best clauses seen so

Table 1: The Neural Network burn-in training and online training algor ithms. (a) The
burn-in training algorithm. Given bottom clause ⊥i, a set of training examples E, and the size
of the training set trainset_size, train a neural network to learn the clause evaluation function

E
evalfn

� . We use early stopping to avoid overtraining, returning the learned network. (b) The
online training algorithm, called for each I/O pair <C,{pos,neg}> that ILP generates. The
algorithm keeps a cache of recent and best-scoring clauses. At some regular interval (every
arrivals_between_updates arrivals), the algorithm updates trained network NN for a preset
number of epochs (epochs_per_update). When a new arrival overflows the cache, it removes
old items at random.

BurninTraining(⊥i, E, burnin)
 IOPairs � ∅
 NN � new NeuralNetwork
 minError � +inf

 for i = 1 to burnin
 C � rand. clause built from ⊥i
 {pos,neg} � evaluate(evalfn, C, E)
 add <C,{pos,neg}> to IOPairs

 Split IOPairs into TrainSet and TuneSet

 for j = 1 to MAX_EPOCHS
 foreach <ex,{pos,neg}> in TrainSet
 run backprop on NN using <ex,{pos,neg}>
 error � SSE of NN on TuneSet
 if (error < minError)
 minError � error
 bestNN � NN

 return bestNN

OnlineTrainingArrival(NN, <C,{pos,neg}>)
 if full(recent_cache)
 delete_random(recent_cache)
 insert <C,{pos,neg}> into recent_cache

 if score(pos,neg) > min(best_cache)
 insert <C,{pos,neg}> sorted into best_cache

 num_arrivals � num_arrivals + 1
 if (num_arrivals = arrivals_between_updates)
 num_arrivals � 0

 for j = 1 to epochs_per_arrival
 foreach <ex,{p,n}> in recent_cache
 run backprop on NN using <ex,{p,n}>
 foreach <ex,{p,n}> in best_cache
 run backprop on NN using <ex,{p,n}>

 return NN

(a) (b)

far. This cache is typically 10% of the size of the recent-clauses cache, and when this
cache is full, the lowest-scoring element is always removed to make room for
incoming, higher-scoring clauses. When the neural network is updated, clauses in the
best-scoring cache are also added to the training set and used to update the neural
network as well.

4 Using the Clause Evaluation Approximation

This section describes three methods for using our clause approximator to scale ILP to
larger datasets, and speed discovery of high-scoring hypotheses. These methods are:

(1) approximately evaluating clauses during the search of the subsumption lattice
(2) using the evalfn surface defined by the neural network to escape local maxima

and to bias random restarts
(3) extracting hypotheses and performing predicate invention using the

approximator function

4.1 Rapidly Exploring the Subsumption Lattice Using the Clause Approximator

This first method allows us to piggyback on just about any other local search method
(though not stochastic methods). We perform our search in the usual manner;
however, when we expand a node, instead of evaluating successor clauses on the
complete set of examples, we use the neural network to compute the approximate
clause evaluation score E

evalfn
� ˆ . We then choose the next node to expand depending

on our search strategy and the approximate scores. If this next node was
approximately scored on the network, we then score it on actual data (and cache it for
future training). We expand this new node and repeat the process. Recall that
approximate evaluation takes O(1) running time, not the)O(E running time required
to perform the actual evaluation on the training data.

Interestingly enough, the behavior of this technique varies quite a bit depending on
the search strategy employed. For a branch-and-bound search, this method serves to
optimize the order in which clauses are evaluated – coupled with pruning, this could
significantly reduce the total number of)O(E real evaluations required. With A*
search, this instead lets one "throw away" clauses that don't seem promising without
wasting time evaluating them on actual data. Clauses that the neural network predicts
to score poorly will never reach the font of the open list and will never be evaluated
on the actual data (Note that this does break the guaranteed optimality of A*).

Nix and Weigend have developed a technique for using a neural network to predict
not only a regression value, but also to place an error bar on its prediction [25]. Using
their technique, we can instead approximately score clauses, storing them in the open
list with a 95% confidence bound instead of simply their predicted score. This tends
to favor evaluation of clauses that the neural network cannot accurately predict –
areas that should probably be thoroughly explored (but still seem promising!).

4.2 Biasing Random Restarts towards Favorable Regions of Search Space

Additionally, we can use the surface defined by the trained neural network to guide
our search. The function encoded by a neural network with fixed weights defines a
smooth surface in the space of network inputs. We can employ this neural-network
designed surface in a stochastic search. For example, we can use this surface to
perform "biased" rapid random restarts (hereafter referred to as biased-RRR): instead
of randomly selecting literals, we perform stochastic gradient ascent on the neural-
network defined surface. That is, starting from a random clause, we perform
stochastic gradient ascent on this surface. The endpoint is our "random restart": the
point from which we begin evaluating clauses on the actual training examples. These
"guided" restarts bias search toward better regions of the search space.

One issue that arises is that the neural network contains two separate output units –
one that predicts positive coverage and one that predicts negative coverage – and we
want to perform gradient ascent over the surface of some scoring function that is a
(possibly nonlinear) combination of the two. Fortunately, for all of the common
scoring functions we can derive a simple expression relating the derivative of the
scoring function to the derivative of the two output units. The derivatives of each
output unit with respect to the input – ixP ∂∂ and ixN ∂∂ – are easily computed with
a backpropagation variant (backprop computes ijP wErr ∂∂ and ijN wErr ∂∂). Table
2 summarizes these expressions for commonly used scoring functions.

An interesting variant of this approach uses the network-defined surface to escape
local maxima while performing a standard ILP best-first search. We can think of this
as equivalent to the biased rapid random restart above; however, instead of some

Scoring
Function ππππ Gradient Ascent Equation

compression NP −
iii x

N

x

P

x ∂
∂−

∂
∂=

∂
∂π

coverage 1+−− LNP
iii x

N

x

P

x ∂
∂−

∂
∂=

∂
∂π

accuracy
NP

P

+

()
���

�����
∂
∂⋅−

∂
∂⋅

+
=

∂
∂

iii x

N
P

x

P
N

NPx 2

1π

Laplace
2

1

++
+
NP

P
() () () ���

�		
�
∂
∂⋅+−

∂
∂⋅+

++
=

∂
∂

iii x

N
P

x

P
N

NPx
11

2

1
2

π

entropy �����
++

−�����
++

−
NP

N

NP

N

NP

P

NP

P
loglog

()

������
+

−
+

⋅���
�����

∂
∂⋅−

∂
∂⋅⋅

+
=

∂
∂

PN

P

PN

N

x

N
P

x

P
N

NPx iii

lnln
1

2

π

GINI ������
+

−
+

⋅
NP

P

NP

P
12

 ()
()

���
 !!"#

∂
∂⋅−

∂
∂⋅⋅

+
−=

∂
∂

iii x

P
N

x

N
P

NP

NP

x 3

2π

Table 2. This table expresses the gradient of several common scor ing functions ππππevalfn in
terms of the gradients of the two network output units – predicted posit ive and predicted
negative coverage. Stochastic gradient ascent uses one of these equations to compute the
network-surface gradient under some scoring function. In the equations below, P denotes
positive coverage, N denotes negative coverage, and L denotes clause length.

random point, the starting point for our network-guided gradient ascent is the ending
point from the previous period of ILP's standard search (on real data). That is, in this
variation we rapidly alternate between brief periods of ILP's standard (best-first)
search and stochastic gradient ascent on the neural-network-defined surface. This
variation is illustrated in Figure 3.

This idea of intelligent rapid random restarts to escape local maxima is not a new
one. Though not in the domain of ILP, Boyan and Moore's STAGE algorithm [23]
use quadratic regression to approximate search "trajectories." That is, they learn a
function mapping points in feature space to the endpoint of a local search starting at
that point. They use this approximation to escape local maxima in a heuristic search.
Their algorithm ran in less time, and reported better test-set accuracy than solutions
discovered using local search alone.

4.3 Extracting Concepts from the Function Approximation

Finally, we can extract concepts from the neural network itself. Craven and Shavlik
[26] have developed a method to extract a decision tree from a trained neural network.
Running their algorithm on the (thresholded) trained clause-evaluation approximator
would produce a theory – a set of clauses – that we could variablize and score on the
actual data set.

The neural network, in fi tting a nonlinear surface to the scoring function, wil l
hopefully find pairs and triplets of terms that – while individually not helpful – lead to
a highly accurate rule when combined. Two terms that share one or more variables
and are connected to the same single hidden unit via a highly-weighted edge that
possibly have an impact on the accuracy of the rule when taken together. Such a pair
of terms is a likely candidate for terms of an invented predicate. The neural network
approximation could be used to find such predicates using only one or a few seeds;
then the invented predicates could be added to the background knowledge for the
search over the remaining seeds' subsumption lattices.

Neural Network
 Approx. evalfnπ̂

Actual Scoring

 Function evalfnπ

Space of Candidate Clauses

Score
under
evalfn

1

2

3

Figure 3. This graphic illustrates our algor ithm using stochastic gradient ascent on the
sur face defined by the neural network to escaping a local minima in ILP's standard best-
first search. The search alternates between periods of ILP's best-first search (1 and 3), and
stochastic gradient ascent on the network-defined surface (2). The only difference between this
variant and our biased-RRR search is the starting point of the stochastic gradient ascent.
Biased-RRR begins each period of stochastic gradient ascent at a random point in search space.

5 Results and Discussion

This section presents our results on several benchmark datasets. We first show that
the neural network is indeed capable of learning an approximation to the clause
evaluation function. We then use the network in a rapid-random-restart search to bias
restarts towards more promising regions of search space, as described in Section 4.2.

5.1 Benchmar k Dataset Overview

We tested clause evaluation function approximation on four standard ILP
benchmark datasets. The tasks included predicting mutagenic activity [27] and
carcinogenic activity [28] in compounds, predicting the smuggling of nuclear and
radioactive materials, and predicting metabolic activity of proteins. A brief
description of the four datasets follows.

Mutagenesis. This task is concerned with predicting the mutagenicity of certain
compounds. The ILP learner is provided background knowledge consisting of the
chemical properties of 188 compounds, as well as general chemical knowledge in the
form of first-order logic relations. The dataset is a popular benchmark, and explores a
reasonably large search space.

Carcinogenesis. Similar to the mutagenesis task, but an inherently more difficult
problem, this task's main concern is predicting carcinogenic activity compounds from
potential carcinogenic compounds. The database for this problem consists of 332
labeled examples, of which about half are carcinogenic.

Nuclear Smuggling. This dataset, based on reports of Russian nuclear materials
smuggling, is interesting in its highly-relational nature, with over 40 relational tables.
The task is concerned with predicting when two smuggling events are l inked. The
dataset we use is a subset of the complete dataset, 192 examples split evenly into
positive and negative examples.

Protein Metabolism. This task is taken from the gene-function prediction task of
the 2001 KDD Cup challenge (www.cs.wisc.edu/~dpage/kddcup2001/). While the
challenge involves learning 14 different protein functions, our sub-task is only
concerned with predicting which proteins are responsible for metabolism. Here we
also use a subset of the complete dataset, 230 examples split evenly between positives
and negatives.

5.2 Learning the Clause Evaluation Function

This section details empirical evaluation of the neural network learning task. Our
goal is to ascertain whether a neural network can learn the ILP clause evaluation
function. To simplifying the task, in our experiments we only consider a batch
learning process, not the online learning process outl ined in Section 3.2.

We use the ILP system Aleph (web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/aleph_toc.html) to generate 10 sets of 1000 randomly sampled
clauses for each of the four datasets, corresponding to 10 different positive examples

that were used in construction of the bottom clause. These 10 "seed examples" were
chosen randomly. We considered a maximum clauselength c=6 for all but the
Nuclear Smuggling task; we considered a larger value of c=10 for this task. Clauses
were scored using a standard scoring metric, a variant of Aleph’s compression
heuristic; that is, a clause's score is given by

() () ()
()exs. pos. total

1thclauselengcovered exs. neg.covered exs. pos.
score

+−+= (6)

Unlike Aleph's compression (which does not include the term in the denominator), we
convert scores into a good range for neural networks by dividing by the total number
of positive examples. This also allows comparison of scores across datasets.

For each dataset, these clauses and their corresponding scores were used to train
the neural network. Using the machine learning package WEKA [29], we generated
learning curves using 10-fold cross-validation. For all datasets, the neural network
was constructed with 10 hidden units. The learning rate was fixed at 0.2. We added
early stopping to WEKA to avoid overtraining. For each cross-validation fold, we set
aside 33% of each training set as a tuning set. Then, after 200 epochs, we kept the
neural network that performed best on the tuning set. WEKA 's numeric feature
normalization was enabled for all numeric features.

The learning curves for each of the four datasets appear in Figure 4. The “All
Data” curves show the mean root-mean-squared (RMS) error over the 10 different
sets of examples. (Section 3.4 explains the other two curves in each of these graphs.)

For all four datasets, the hypothesis evaluation function E
evalfn

� was learned with
reasonable accuracy. In all four datasets, as more data is added to the training set, the
neural network more accurately learns the evaluation function. It is interesting to
note, however, that the number of examples required to accurately learn the
approximator, and the accuracy of the final classifier varies amongst the datasets.

The absolute accuracy of the approximator varies across the datasets as well. For
protein metabolism, the fully-trained network averages 0.005 RMS error; for
mutagenesis, the results are an order of magnitude worse, at 0.05. Sti ll, it seems
promising that the worst performing approximator saw an RMS error of just 0.05.

So far, we have assumed no transfer of knowledge between seed examples, i.e., we
learn a new neural network from scratch for each saturated example. However,
several of the features we employ are independent of the example selected for
saturation. In particular, every feature except the ground l iterals selected (the vector
x

�

 described in Section 3) is instance-independent (or at least has an instance
independent representation). These features can be shared when generating different
rules from different seed examples, and, for all rules after the first, this allows us to
bootstrap an initial classifier based on knowledge garnered from previous rules.

Consequently, we looked at the contribution of each subset of features on each of
the four datasets. In particular, we wanted to see how instance-independent features
contributed to the learning task. As before, we used WEKA to construct two learning
curves for each dataset. These two learning curves correspond to training the network
on (1) only instance-independent features, and (2) only instance-dependent features.

As Figure 4 i llustrates, with the exception of protein metabolism, training on the
instance-independent features alone did not produce as accurate a classi fier as training

on the instance-dependent features alone, or on the complete set of features.
Furthermore, on all four datasets, using the complete set of features did not produce a
significantly more accurate network approximator than using the instance-dependent
features alone did. This suggests that the instance-independent features are unlikely
to help transfer learning for one seed example to the next seed example, and that
better approaches need to be developed.

Although these graphs illustrate that we are capable of learning the clause
evaluation function, they do not show the degree to which the function is learned.
Figure 5 compares the RMS error of the network approximation to the RMS error
obtained by using a random sampling of training examples to approximately score
clauses. This provides an alternate method for computation reduction against which
we compare our method. It also allows us to determine the number of evaluations the
neural network is "worth." This number varies significantly across the four datasets,
ranging from between 25% and 50% sampling to well beyond 90% sampling. As
these are all fairly small benchmark datasets, it remains an open question how our
method will compare to sampling the training examples in larger problems (with both
larger hypothesis spaces as well as datasets). This includes large problems that often
arise in the biological sciences and text extraction [30].

Figure 4. Learning curves showing test-set accuracy over four domains compar ing the
roles of instance-dependent versus instance-independent features. Learning curves were
generated only using a subset of the complete set of features, and the results were compared to
the case where all features were used to train the network.

Mutagenesis

0.0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000
Training Set Size

R
el

at
iv

e
R

M
S

 E
rr

or

All Data

Instance-independent only

Instance-dependent only

Protein Metabolism

0.000

0.006

0.012

0.018

0.024

0.030

0 200 400 600 800 1000
Training Set Size

R
el

at
iv

e
R

M
S

 E
rr

or

Nuclear Smuggling

0.000

0.005

0.010

0.015

0.020

0 200 400 600 800 1000

Training Set Size

R
el

at
iv

e
R

M
S

 E
rr

or

Carcinogenesis

0.00

0.02

0.04

0.06

0.08

0 200 400 600 800 1000

Training Set Size

R
el

at
iv

e
R

M
S

 E
rr

or

5.3 Using the Evaluation Function Approximator to Guide Random Search

This section details the use of trained neural network to bias the random restarts in a
rapid random restart search. Our goal here is to find the best-scoring clause in the
subsumption lattice using as few clause evaluations as possible. Thus, results in this
section are only concerned with maximizing some evaluation function over the
training data. Assuming a well-designed evaluation function, this corresponds with
good test-set performance.

We implemented the previous-described online learning algorithm in Aleph. To
enable biased random restarts, we also implemented a stochastic gradient ascent
algorithm. Our gradient ascent implementation, at each step, only considered flipping
an input bit on or off, and did not allow flipping a bit on if the clause length was
already at its maximum. The probability of a bit fl ip of input xi is given by:

() () ix

i

E
evalfn

i xZ
xP 1

ˆ1
exp

1
 flip

2
−⋅�

�

�

�

�
�

�

�

∂
∂

⋅=
π

σ x

 (7)

In this formula, σ2 determines the "softness" of the gradient ascent. For our results, it
was set such that we were 100 times more l ikely to flip the "best" li teral than the
"worst." The x)1(− term simply flips the sign of the gradient when we consider
flipping a bit off (since this is a move in the negative direction).

In order to test the performance of our algorithm, we attempt to find the clause that
maximizes the coverage scoring function, defined as the number of positive examples
covered minus the number of negative examples covered. We used stochastic
gradient ascent to bias RRR search towards with 1000 restarts and 10 steps per restart,
and compare the biased-RRR versus normal RRR with the same parameters. For the
biased-RRR, the "burn-in period" consisted of a single random restart and the local
moves following. We report results on three of the four datasets from the previous

Figure 5. Compar ing the RM S er ror of the neural-network approximation with that
obtained by using a random sampling of training examples to approximate clauses. The
error of the neural-network approximation varies widely, but in all cases does better than a
25% sampling of examples, and for two of the four datasets, does better than a 90% sampling.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Protein
Metabolism

Carcinogenesis Mutagenesis Nuclear
Smuggling

R
M

S
 E

rr
or

10% sampling
25% sampling
50% sampling
90% sampling
Neural Netw ork

section, omitting mutagenesis as it too quickly converges: over 80% of seeds found
their best clause in the very first restart. For each dataset we explored the
subsumption lattices of 100 different seed examples. Our neural network consisted of
10 hidden units. Finally, each rapid random restart began at the endpoint of the
previous local search and finished after a fixed number of random steps. Aleph search
parameters are left at default whenever possible.

Figure 6 shows the results for each of the three datasets. In each of the three
graphs, the x-axis shows the number of clauses evaluated, and the y-axis shows the
average coverage over all seeds of the best example found thus far. As the plots
show, for two of the datasets – carcinogenesis and protein metabolism – biased-RRR
found a better clause quicker than did traditional RRR. However, in the third task,
nuclear smuggling, biased-RRR did worse than the default implementation. The
reasons for this are unclear, as the neural network was clearly able to learn the
evaluation function approximator in this domain.

6 Conclusion and Future Work

We demonstrated that the use of a neural network for clause evaluation is a useful
tool for improving runtime efficiency when handling large search spaces in ILP. As
ILP is confronted with increasingly larger problems, the need for methods like the
ones we present grows. So far, we have treated the network learning and evaluation
tasks as computationally "free" operations, which is not entirely true. However, it is
true that the running time of neural network evaluation (and training) is independent

Figure 6. Per formance of the biased-
RRR search versus a traditional RRR
search. The x-axis shows the number of
clauses evaluated, and the y-axis displays
the average coverage of the best clause
found at that x value. For carcinogenesis
and protein metabolism, the biased-RRR
performs better, but for nuclear
smuggling it is clearly outperformed.

Carcinogenesis

0

5

10

15

20

25

30

35

0 500 1000 1500 2000

Clause Evaluations

A
v

er
ag

e
C

ov
er

ag
e

biased-RRR

RRR

Protein Metabolism

0

10

20

30

40

0 100 200 300 400

Clause Evaluations

A
ve

ra
ge

 C
ov

e
ra

ge

Nuclear Smuggling

0

10

20

30

40

50

0 2000 4000 6000 8000 10000

Clause Evaluations

A
ve

ra
ge

 C
o

ve
ra

ge

of the number of ILP examples in the dataset. This means that given enough
examples in the ILP training set, neural-network evaluation can be made virtually
free. This strategy can be used to decrease the runtime of ILP systems on large tasks.

The most pressing work that remains is implementing and evaluating the other
strategies for taking advantage of the clause-evaluation approximator outlined in
Sections 4.1 and 4.3. Clearly accuracy is lost in approximating the clause-evaluation
function, but it is difficult to determine how it affects solutions generated by using it
to quickly evaluate clauses in a typical ILP search. Another open question is whether
useful information can be extracted from the trained neural network itself [26].

Also, Botta et al. [31] have characterized hypothesis space, discovering a critical
region they have named the phase transition. In this critical region, the computational
complexity of inference increases, and clauses generated in this region tend to have
poor generalization to unseen test examples. This phase transition is a difficult region
for ILP algorithms; our algorithm's performance here specifically needs exploration.

Finally, we have discussed learning the evaluation approximation in a least-
squared-error sense. However, what may be more important for ILP is the relative
ranking of candidate clauses. Thus, an approach l ike Caruana and Baluja's Rankprop
algorithm [32] – an alternative to backprop concerned with correctly predicting the
ranking of the output variables – may be more natural.

7 Acknowledgements

This work was supported by National Library of Medicine (NLM) grant 1T15 LM007359-
01, DARPA Grant F30602-01-2-0571, United States Air Force Grant F30602-01-2-0571, and
NLM grant 1R01 LM07050-01. The authors would also like to thank the UW Condor Team
and the anonymous reviewers.

References

1. N. Lavrac & S. Dzeroski (1994). Inductive Logic Programming. Ellis Horwood.
2. R. King, S. Muggleton & M. Sternberg (1992). Predicting protein secondary structure

using inductive logic programming. Protein Engineering, 5:647-657.
3. A. Srinivasan, R. King, S. Muggleton & M. Sternberg (1997). The predictive toxicology

evaluation challenge. Proc. 15th Intl. Joint Conf. on Artificial Intelligence, 1-6.
4. B. Dolsak & S. Muggleton (1991). The application of ILP to finite element mesh design.

Proc. 1st Intl. Workshop on ILP, 225-242.
5. J. Zelle & R. Mooney (1993). Learning semantic grammars with constructive inductive

logic programming. Proc. 11th Natl. Conf. on Artificial Intelligence, 817-822.
6. I. Bratko & M. Grobelnik (1993). Inductive learning applied to program construction and

verif ication. Proc. 3rd Intl. Workshop on Inductive Logic Programming, 169-182.
7. S. Nienhuys-Cheng & R. de Wolf (1997). Foundations of Inductive Logic Programming.

Springer-Verlag.
8. M. Schmidt-Schauss (1988). Implication of clauses is undecidable. Theoretical Computer

Science, 59:287-296.

9. J. Quinlan (1990). Learning logical definitions from relations. Machine Learning, 239-
266.

10. S. Muggleton & C. Feng (1990). Efficient induction of logic programs. Proc. 1st Conf. on
Algorithmic Learning Theory, 368-381.

11. S. Muggleton (1995). Inverse Entailment and Progol. New Generation Computing,
13:245-286.

12. A. Srinivasan (2000). A study of two probabilistic methods for searching large spaces with
ILP. Tech. Report PRG-TR-16-00. Oxford Univ. Computing Lab.

13. F. Zelezny, A. Srinivasan & D. Page (2002). Lattice-search runtime distributions may be
heavy-tailed. Proc. 12th Intl. Conf. on Inductive Logic Programming, 333-345.

14. A. Giordana, L. Saitta & F. Zini (1994). Learning disjunctive concepts by means of genetic
algorithms. Proc. 11th Intl. Conf. on Machine Learning, 96-104.

15. P. Hanschke & J. Wurtz (1993). Satisfiability of the smallest binary program. Info. Proc.
Letters, 496:237-241.

16. E. Dantsin, T. Eiter, G. Gottlob & A. Voronkov (2001). Complexity and expressive power
of logic programming. ACM Computing Surveys, 33:374-425.

17. U. Rückert & S. Kramer (2003). Stochastic local search in k-term DNF learning. Proc.
20th Intl. Conf. on Machine Learning, 648-655.

18. H. Blockeel, L. Dehasp, B. Demoen, G. Janssens, J. Ramon & H. Vandecasteele (2002).
Improving the eff iciency of inductive logic programming through the use of query packs.
J. AI Research, 16:135-166.

19. V. Santos Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen, G. Janssens, J.
Struyf, H. Vandecasteele & W. Van Laer (2003). Query transformations for improving the
efficiency of ILP systems, J. Machine Learning Research, 4:465-491.

20. A. Srinivasan (1999). A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery, 3:95-123.

21. M. Sebag & C. Rouveirol (2000). Resource-bounded relational reasoning: induction and
deduction through stochastic matching. Machine Learning, 38:41-62.

22. J. Maloberti & M. Sebag (2001). Theta-subsumption in a constraint satisfaction perspective.
Proc. 11th Intl. Conf. on Inductive Logic Programming, 164-178.

23. J. Boyan & A. Moore (2000). Learning evaluation functions to improve optimization by
local search. J. Machine Learning Research, 1:77-112.

24. K. Hornik, M. Stinchcombe & H. White (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2:359-366.

25. D. Nix & A. Weigend (1995). Learning local error bars for nonlinear regression. Advances
in Neural Information Processing Systems. MIT Press.

26. M. Craven & J. Shavlik (1995). Extracting tree-structured representations of trained
networks. Advances in Neural Information Processing Systems. MIT Press.

27. R. King, S. Muggleton, A. Srinivasan & M. Sternberg (1996). Structure-activity
relationships derived by machine learning. PNAS, 93:438-442.

28. A. Srinivasan, R. King, S. Muggleton & M. Sternberg (1997). Carcinogenesis predictions
using ILP. Proc. 7th Intl. Workshop on Inductive Logic Programming, 273-287.

29. I. Witten & E. Frank (1999). Data Mining. Morgan Kaufmann Publishers.
30. M. Goadrich, L. Oliphant & J. Shavlik (2004). Learning ensembles of first-order clauses for

recall-precision curves: a case study in biomedical information extraction. Proc. 14th Intl.
Conf. on Inductive Logic Programming.

31. M. Botta, A. Giordana, L. Saitta & M. Sebag (2003). Relational learning as search in a
critical region. J. Machine Learning Research, 4:431-463.

32. R. Caruana & S. Baluja (1996). Using the future to 'sort out' the present. Advances in
Neural Information Processing Systems. MIT Press.

