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Abstract. One challenge faced by many Inductive Logic Programming (ILP) 
systems is poor scalability to problems with large search spaces and many 
examples. Randomized search methods such as stochastic clause selection 
(SCS) and rapid random restarts (RRR) have proven somewhat successful at 
addressing this weakness. However, on datasets where hypothesis evaluation is 
computationally expensive, even these algorithms may take unreasonably long 
to discover a good solution.  We attempt to improve the performance of these 
algorithms on datasets by learning an approximation to ILP hypothesis 
evaluation.   We generate a small set of hypotheses, uniformly sampled from 
the space of candidate hypotheses, and evaluate this set on actual data.  These 
hypotheses and their corresponding evaluation scores serve as training data for 
learning an approximate hypothesis evaluator.  We outline three techniques that 
make use of the trained evaluation-function approximator in order to reduce the 
computation required during an ILP hypothesis search.  We test our 
approximate clause evaluation algorithm using the popular ILP system Aleph. 
Empirical results are provided on several benchmark datasets.  We show that 
the clause evaluation function can be accurately approximated. 

1   Introduction 

Inductive Logic Programming (ILP) systems [1] have been widely used in 
classification, data mining, and information extraction tasks.  Their natural treatment 
of relational data, harnessing the expressive power of first-order logic, makes them 
useful for working with databases containing multiple relational tables.  ILP systems 
combine background domain knowledge and categorized training data in constructing 
a set of rules in the form of first-order logic clauses.  Formally, given a training set of 
positive examples E+, negative examples E-, and background knowledge B, all as sets 
of clauses in first-order logic, ILP's goal is to find a hypothesis (a set of clauses in 
first-order logic) h, such that  

−+ � /∪�∪ EhBEhB          (1) 

That is, given the background knowledge and the hypothesis, one can deduce al l of 
the positive examples, and none of the negative examples.  In real world applications, 
these constraints are typically relaxed, allowing h to explain most positive examples 
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and few negative examples. ILP systems have been successfully employed in a 
number of varied domains including molecular biology [2,3], engineering design [4], 
natural language processing [5], and software analysis [6]. 

One challenge many ILP systems face is scalability to large datasets with large 
hypothesis spaces.  We define a general framework for learning a function that 
estimates the goodness of a hypothesis without looking at actual data.  We suggest a 
number of ways in which such an approximation may be employed.  One possible 
application eliminates poor hypotheses without wasting time evaluating them.  
Another uses the approximate hypothesis evaluator to guide the generation of 
promising new candidate hypotheses.  Yet another application mines the estimator 
function itself for rules that can be used to invent useful predicates. 

The remainder of the paper is structured as follows.  Section 2 provides a 
background and related work on scaling up ILP.  Section 3 describes construction of 
the hypothesis evaluation estimator.  Section 4 describes in detail possible uses of 
such an estimator function.  Section 5 shows some results of estimator learning on 
benchmark datasets, and Section 6 presents future research directions. 

2   ILP Background and Related Work 

The algorithm underlying most ILP systems is basically the same – it treats 
hypothesis generation as a local search in the subsumption lattice [7].  The 
subsumption lattice is constructed based on the idea of specificity of clauses.  
Specificity here refers to implication; a clause C is more specific than a clause S i f 

CS � .  In general, it is undecidable whether or not one clause in first-order logic 
implies another [8], so ILP systems use the weaker notion of Plotkin's θ-subsumption.    
Subsumption of candidate clauses puts a partial ordering on all clauses in hypothesis 
space.  With this partial ordering, a lattice of clauses can be built, as in Figure 1.   ILP 
implementations perform some type of local search over this lattice when considering 
candidate hypotheses.  

The major distinction separating various ILP implementations is the strategy used 
in exploring the subsumption lattice.  Algorithms fall into two main categories (with 

true �  pos(X) 

h(X) �  pos(X) f(X,Y) �  pos(X) g(X,Y) �  pos(X) 

h(X) ∧ f(X,Y) �  pos(X) f(X,Y) ∧ g(X,Z) �  pos(X) 

⊥ 
Figure 1. This illustrates an example of the subsumption lattice over which many ILP 
implementations search.  The lattice is bounded above by true, and below by the bottom 
clause.  Many ILP systems treat clause discovery as local search, moving along lattice edges. 



some exceptions): general -to-specific ("top-down") [9] and specific-to-general 
("bottom-up") exploration of the subsumption lattice [10].  Within these two 
frameworks, a variety of common local search strategies have been employed, 
including breadth-first search [11], depth-first search, heuristic-guided hill-climbing 
variants [10,11], uniform random sampling [12], rapid random restarts [13], and 
genetic algorithms [14].  Our work provides a general framework for increasing the 
speed of any ILP algorithm, regardless of the order candidate clauses are evaluated.   

One challenge ILP systems face is that they scale poorly to large datasets.  
Srinivasan [12] investigated the performance of various ILP algorithms, and found 
that the running-time depends on two factors: (1) the size of the subsumption lattice 
and (2) the time required for clause evaluation, which in turns depends on the number 
of examples in the background corpus.   

The first factor – the size of the subsumption lattice – mainly depends on the 
number of terms in a specific example's saturation.  Saturation is used to put a lower 
bound on the subsumption lattice.  The process is performed on a single positive 
example.  Using the background knowledge, saturation constructs the most specific, 
ful ly-ground clause that entails the chosen example. It is constructed by applying all 
possible substitutions for variables in the background knowledge B with ground terms 
in B.  This clause is called the chosen example's bottom clause, and it serves as the 
bottom element (⊥) in the subsumption lattice (Figure 1) over which ILP searches.  
That is, all clauses considered by ILP (in the subsumption lattice) subsume ⊥. 

As a simple example, suppose we are given background knowledge (using Prolog 
notation where ground atoms are denoted with an initial lowercase letter and variables 
are denoted with an initial uppercase letter): 

f(e,b)     g(b,c)      
∀X,Y,Z  f(X,Y) ∧ g(Y,Z) �  h(Y) 

We are also given the current positive example, e. 
We first begin saturation by letting all ground atoms in H imply e: 

f(e,b) ∧ g(b,c) �  positive(e) 

Then we apply all possible consistent substitutions, i.e., if we make the 
substitutions {e/X, b/Y, c/Z}  (using the notation { atom/Variable}  to indicate 'atom' 
is being substituted for 'Variable'), we can apply the rule given in the third line of our 
background knowledge, that is: 

f(e,b) ∧ g(b,c) �  h(b) 

Finally, combining gives us the saturation of  e: 

f(e,b) ∧ g(b,c) ∧ h(b)  �   positive(e) 

Clearly, the size of the subsumption lattice is directly related to the size of ⊥.  If we 
ignore multiple variablizations of a single ground literal and consider only hypotheses 
that contain less than c terms, then  the size of the subsumption lattice − given a 
bottom clause ⊥ − is at most )(

c⊥Ο [12].  Taking into account multiple 
variablizations introduces an additional factor, exponential in the number of constants 
in the bottom clause. 



The second factor – the evaluation time of a clause – is more complicated to 
analyze.  Srinivasan simplifies the analysis by assuming that every clause can be 
evaluated on an example in constant time β; thus, the evaluation of a clause against 
the entire training set occurs in time )O( EE =β  where E is the set of training 
examples.  An exhaustive search of the subsumption lattice for a single clause, then, 
takes worst-case running time )O( E

c⊥ .   
However, for most datasets clause evaluation is even worse than O(|E|).  

Srinivasan's work assumed that deducing each candidate hypothesis takes constant 
time.  However, even with just one recursive rule and one background fact, deduction 
can be undecidable [15].   Restricting ourselves to the simpler case where function 
symbols are not considered (i.e., Datalog) and not allowing recursive clauses, 
evaluating a candidate clause against a set of ground background facts is NP-complete 
[16].  Most ILP datasets fall into this simpler, function-free category, where 
evaluation time is exponential (unless P=NP) in the number of variables, which 
relates to the length of the expression.  In other words, a long hypothesis wil l take 
significantly longer to test against the examples in the background knowledge than 
will a shorter hypothesis.  For many large datasets, it is precisely these long 
hypotheses that are most interesting.  As a result, approaches to scaling up ILP [9,10] 
have focused upon one of these two factors: reducing the number of clauses 
considered, or decreasing the time spent on clause evaluations.    

In reducing the number of clauses considered, the simplest techniques employ 
general AI search strategies, such as A*, i terative deepening, or beam search, to 
reduce the number of clauses in the subsumption lattice considered.  For example, 
using a beam reduces the worst-case running time to ( )E⊥O .  However, for 
extremely large datasets where |⊥| may be in the thousands and |E| in the hundred 
thousands, even this may take prohibitively long. 

A novel approach at reducing the number of clauses in the subsumption lattice 
considered has been successfully employed by Srinivasan. It uses a random sampling 
strategy that considers sampling n clauses from the subsumption lattice, where the 
value of n chosen is independent of the size of the subsumption lattice.  This gives 
worst-case running time of O(|E|) for finding a single clause.  However, Srinivasan's 
idea only works for domains where there are a sizable number of "sufficiently good" 
solutions.  Recent work by Zelezny et al. [13] has coupled random clause generation 
method with heuristic search  using the idea of rapid random restarts (RRR) to 
explore the subsumption lattice.  They repeatedly generates random clauses followed 
by a short local search.  Rückert and Kramer [17] have also had success using 
stochastic search for bottom-up rule learning, outperforming GSAT and WalkSAT. 

Other ILP optimizations focus instead on decreasing the time spent on clause 
evaluations: the |E| term in ILP's running time.  Several improvements to Prolog's 
clause evaluation function have been developed.  Blockeel et al. [18] consider 
reordering candidate clauses to reduce the number of redundant queries.  Santos Costa 
et al. [19] developed several techniques for intelligently reordering terms within 
clauses to reduce backtracking.  Srinivasan [20] developed a set of techniques for 
working with a large number of examples that only considers using a fraction of all 
available examples in the learning process.  Sebag and Rouveirol [21] use stochastic 



matching to perform approximate inference in polynomial (as opposed to exponential) 
time.  Maloberti and Sebag [22] provide an alternative to Prolog's SLD resolution for 
θ-subsumption.  They instead treat θ-subsumption as a constraint satisfaction problem 
(CSP), then use a combination of CSP heuristics to quickly perform θ-subsumption. 

Our work is distinct from all of these techniques.  We describe a method for  
learning a function that estimates the clause evaluation function, which can be used in 
several different ways.  It can reduce the evaluation time of a clause by quickly 
approximating the goodness of a clause, in an amount of time independent of the 
number of training examples.  We can couple it with Zelezny et al.'s rapid random 
restart method in order to bias restarts toward better regions in the search space.  We 
can use it in a manner similar to Boyan and Moore's STAGE algorithm [23] to escape 
local maxima in a heuristic search.  Finally, we can extract hypotheses and perform 
predicate invention using the estimator itself. 

3   Learning the Clause Evaluation Function 

Heuristic approaches to exploring the subsumption lattice all make use of a scoring 
function to represent the goodness of a hypothesis at explaining the training data.  
Given a hypothesis (a candidate clause in first-order logic) h, a set of categorized 
training examples { }−+= EEE , ,  E

evalfn
�  maps clause h to h 's score on training set E 

under scoring metric evalfn: 

ℜ→hE
evalfn :�  (2) 

We use a multilayer, feed-forward neural network described in Section 3.1 to learn 
an approximate scoring function E

evalfn
� ˆ .  Some preliminary testing revealed that other 

machine learning algorithms (e.g. naïve Bayes, linear regression, C4.5) were 
significantly less accurate at approximating the clause evaluation function.  
Furthermore, a neural network with a single hidden layer is capable of approximating 
any bounded continuous function with arbitrarily small error [24].  We use an online 
training algorithm detailed in the Section 3.2 to train the neural network. 

3.1   Neural Network Topology 

Before constructing our clause evaluation function approximator, we need a 
method for encoding clauses as neural network inputs.  Our encoding is based on the 
top-down lattice exploration used by a number of popular ILP implementations.  In 
such implementations, a positive example is chosen at random from the training set.  
The chosen example is then saturated, building a bottom clause (⊥).  Recall that this 
bottom clause consists of only fully ground literals.  An ILP system constructs 
candidate hypotheses by choosing a subset of these fully-ground literals and 
"variablizing," replacing ground atoms with variables in a manner that replaces 
multiple instances of a single ground atom with a single variable (our approach does 



not consider multiple – or split - variablizations of a single set of ful ly-ground 
l iterals).  Approaches differ in how they select ground literals from the bottom clause. 

Our neural-network inputs are comprised of a set of features derived from the 
candidate clause both before and after variablization.  When saturating an example, 
each li teral in that example's bottom clause is associated with an input in the neural 
network.  This input is set to 1 i f the corresponding l iteral in the bottom clause was 
used in constructing the clause, and set to 0 otherwise.  Notice that there may be 
multiple sets of li terals from the bottom clause that, when variablized, yield the same 
clause.  This means there may be many different input representations for a single 
clause.  However, we only use the input representation corresponding to the specific 
l iterals that were actually chosen when constructing the candidate clause. 

Formally, let candidate clause C be chosen by selecting some subset of literals 
from the most-specific bottom clause ⊥i for current example ei.  We treat this clause 
as a vector },,{ 1 i

xxx ⊥= ��
 in i⊥ -dimensional space, with: 

�� �
=

otherwise   0

C ngconstructiin chosen k   literal ground if   1
kx  (3) 

This vector x�  is a subset of the inputs to our neural network.  One important 
aspect of the input vector is that every possible candidate clause − that is, every clause 
in the subsumption lattice − has a unique input vector representation.  However, the 
mapping does not work in the other direction: not every possible bit vector 
corresponds to a legal clause.  In many cases, the majority of bit vectors correspond to 
i llegal clauses, which contain unbound input variables.  (Algorithms using the neural 
network to search the space of bit vectors, as in Section 4.2, need to be aware of this). 

Additionally, we give each predicate a specific input in the network, as well.  Here, 
we consider a vector y� , in which each dimension corresponds to a predicate 
appearing in ⊥i. Construction of y�  is based upon the number of times a particular 
predicate is used in a candidate clause, that is: 

yj = # of ground literals in C of predicate j (4) 

Finally, a third set of inputs to the neural network comes from features extracted 
from the variablized clause C'.  These features include 

• length - number of l iterals in C'. 
• nvars - number of distinct variables in C'. 
• nshared_vars - number of distinct variables appearing more than once in C'. 
• avg_var_freq - average number of times each variable appears in C'. 
• max_var_chain - longest variable chain appearing in C', i.e., the clause   

    f(A):-g(A,B),h(B,C) has max chain 3 (A � B � C). 

The neural network consists of one (fully-connected) hidden layer and a two output 
units.  The output units correspond to P and N, the predicted positive and negative 
coverage of a clause (that is, the number of examples from E+ and E-, respectively, 
deduced from the hypothesis).  Given these predicted values and a scoring function, 
computation of the predicted output E

evalfn
� ˆ  is trivial.  For example, commonly used 

evaluation functions include coverage (P−N) and accuracy ( NPP + ).  Thus, we can 



evaluate a clause on the neural network by converting it to the vector notation 
specified in Equations (3) and (4), forward-propagating it on a trained neural network 
to estimate P̂  and N̂ , and calculating E

evalfn
� ˆ  from  P̂  and N̂ .  Figure 2 presents this 

network topology graphically. 

3.2   Online Training 

The neural network's initial training makes use of Srinivasan's random uniform 
sampling [12].  The user specifies a burn-in length b, and the algorithm uniformly 
randomly selects b clauses from the space of legal clauses (up to a given maximum 
clause length).  We evaluate these clauses on the training data, thereby creating 
input/output pairs for training.  Using uniform sampling to generate I/O pairs ensures 
that the neural network approximation is reasonably accurate over the entire search 
space.  Using other local search methods tends to bias the neural network's 
approximation toward some local region in the search space.  Table 1a contains an 
overview of the algorithm used to initially train the neural network. 

The methods we present in the Section 4 – that use our approximation to explore 
the subsumption lattice – continue to evaluate clauses (on actual data) once the 

Figure 2. An overview showing the neural network's topology, and an example of input 
vector  construction.  Notice that the vector x�  is constructed by the literals chosen from the 
fully-ground bottom clause, not the candidate clause.  It is quite possible for several different 
sets of selected literals to correspond to the same candidate clause; we only consider the set that 
was actually chosen in the clause's construction. 

 pos(X) :-  
   f(X,Y),  
   f(Y,Z),  
   g(Z). 

pos(a) :- 
   f(a,b), f(a,c),  
   f(b,c), g(a),  
   g(c). 

f(a,b)  
    

f(b,c) 

g(c) 

Bottom Selected Lits. Clause 

 

f(a,c) 

f(b,c) 

g(a) 

f(a,b

ΣΣΣΣ 
 

 

 

g(c) 

g 

f 

nvars 

len 

Predicted  
% POS 
coverage 

1 
0 
1 
0 
1 

2 
1 

4 

3 

x
�

y
�

 

ΣΣΣΣ 
Predicted  
% NEG 
coverage 



relatively short burn-in period is concluded.  It seems wasteful to just throw this 
potential training data for the network approximation away.  Our algorithm uses an 
online learning algorithm to make use of these clause evaluations – that occur as part 
of ILP's regular search – to improve the accuracy of the approximation.  This allows 
us to generate a virtually unlimited number of I/O pairs for our network by simply 
scoring clauses on actual data. 

Our online training algorithm is shown in Table 1b.  When a clause is evaluated by 
ILP, generating an I/O pair for training our neural network, our online learning 
algorithm adds the pair to a cache of recently evaluated clauses.  The cache typically 
stores 1000 to 10000 recently evaluated clauses, and, once full, elements in the cache 
are randomly removed to make room for incoming elements.  At regular intervals 
(typically every 50-100 insertions) the neural network is updated by backpropagation, 
using the entire cache for a fixed number of epochs (typically 10).  The continually 
changing training set, relatively short training intervals, and small number of hidden 
units (typically 5-10) prevent overtraining. 

While the goal of our approximation is to learn an approximation of the clause 
evaluation function over the entire subsumption lattice, we are especially concerned 
with high accuracy of this approximation in high-scoring regions of the subsumption 
lattice.  To ensure this accuracy, we also maintain a cache of the best clauses seen so 

Table 1:  The Neural Network burn-in training and online training algor ithms.  (a) The 
burn-in training algorithm.  Given bottom clause ⊥i, a set of training examples E, and the size 
of the training set trainset_size, train a neural network to learn the clause evaluation function 

E
evalfn

� .  We use early stopping to avoid overtraining, returning the learned network.  (b) The 
online training algorithm, called for each I/O pair <C,{pos,neg}> that ILP generates. The 
algorithm keeps a cache of recent and best-scoring clauses.  At some regular interval (every 
arrivals_between_updates arrivals), the algorithm updates trained network NN for a preset 
number of epochs (epochs_per_update).  When a new arrival overflows the cache, it removes 
old items at random. 

 

BurninTraining(⊥i, E, burnin) 
 IOPairs �  ∅ 
 NN �  new NeuralNetwork 
 minError �  +inf 
 
 for i = 1 to burnin 
  C �  rand. clause built from ⊥i 
 {pos,neg} �  evaluate(evalfn, C, E) 
  add <C,{pos,neg}> to IOPairs 
 
 Split IOPairs into TrainSet and TuneSet 
 
 for j = 1 to MAX_EPOCHS 
  foreach <ex,{pos,neg}> in TrainSet 
   run backprop on NN using <ex,{pos,neg}> 
  error �  SSE of NN on TuneSet 
  if (error < minError) 
   minError �  error 
   bestNN �  NN 
 
 return bestNN 

OnlineTrainingArrival(NN, <C,{pos,neg}>) 
 if full(recent_cache) 
  delete_random(recent_cache) 
 insert <C,{pos,neg}> into recent_cache 
 
 if score(pos,neg) > min(best_cache) 
  insert <C,{pos,neg}> sorted into best_cache 
 
 num_arrivals �  num_arrivals + 1 
 if (num_arrivals = arrivals_between_updates) 
  num_arrivals �  0 
   
  for j = 1 to epochs_per_arrival 
   foreach <ex,{p,n}> in recent_cache 
    run backprop on NN using <ex,{p,n}> 
   foreach <ex,{p,n}> in best_cache 
    run backprop on NN using <ex,{p,n}> 
 
 return NN 
 

(a) (b) 



far.  This cache is typically 10% of the size of the recent-clauses cache, and when this 
cache is full, the lowest-scoring element is always removed to make room for 
incoming, higher-scoring clauses.  When the neural network is updated, clauses in the 
best-scoring cache are also added to the training set and used to update the neural 
network as well.  

4   Using the Clause Evaluation Approximation 

This section describes three methods for using our clause approximator to scale ILP to 
larger datasets, and speed discovery of high-scoring hypotheses.  These methods are:  

(1) approximately evaluating clauses during the search of the subsumption lattice 
(2) using the evalfn surface defined by the neural network to escape local maxima 

and to bias random restarts  
(3) extracting hypotheses and performing predicate invention using the 

approximator function 

4.1   Rapidly Exploring the Subsumption Lattice Using the Clause Approximator 

This first method allows us to piggyback on just about any other local search method 
(though not stochastic methods).  We perform our search in the usual manner; 
however, when we expand a node, instead of evaluating successor clauses on the 
complete set of examples, we use the neural network to compute the approximate 
clause evaluation score E

evalfn
� ˆ .  We then choose the next node to expand depending 

on our search strategy and the approximate scores.  If this next node was 
approximately scored on the network, we then score it on actual data (and cache it for 
future training).  We expand this new node and repeat the process.  Recall that 
approximate evaluation takes O(1) running time, not the )O( E  running time required 
to perform the actual evaluation on the training data. 

Interestingly enough, the behavior of this technique varies quite a bit depending on 
the search strategy employed.  For a branch-and-bound search, this method serves  to 
optimize the order in which clauses are evaluated – coupled with pruning, this could 
significantly reduce the total number of )O( E real evaluations required.  With A* 
search, this instead lets one "throw away" clauses that don't seem promising without 
wasting time evaluating them on actual data.  Clauses that the neural network predicts 
to score poorly will never reach the font of the open list and will never be evaluated 
on the actual data (Note that this does break the guaranteed optimality of A*). 

Nix and Weigend have developed a technique for using a neural network to predict 
not only a regression value, but also to place an error bar on its prediction [25].  Using 
their technique, we can instead approximately score clauses, storing them in the open 
list with a 95% confidence bound instead of simply their predicted score.  This tends 
to favor evaluation of clauses that the neural network cannot accurately predict – 
areas that should probably be thoroughly explored (but still seem promising!).  



4.2   Biasing Random Restarts towards Favorable Regions of Search Space 

Additionally, we can use the surface defined by the trained neural network to guide 
our search.  The function encoded by a neural network with fixed weights defines a 
smooth surface in the space of network inputs.  We can employ this neural-network 
designed surface in a stochastic search.  For example, we can use this surface to 
perform "biased" rapid random restarts (hereafter referred to as biased-RRR): instead 
of randomly selecting literals, we perform stochastic gradient ascent on the neural-
network defined surface.  That is, starting from a random clause, we perform 
stochastic gradient ascent on this surface.  The endpoint is our "random restart": the 
point from which we begin evaluating clauses on the actual training examples.  These 
"guided" restarts bias search toward better regions of the search space. 

One issue that arises is that the neural network contains two separate output units – 
one that predicts positive coverage and one that predicts negative coverage – and we 
want to perform gradient ascent over the surface of some scoring function that is a 
(possibly nonlinear) combination of the two.  Fortunately, for all of the common 
scoring functions we can derive a simple expression relating the derivative of the 
scoring function to the derivative of the two output units.  The derivatives of each 
output unit with respect to the input – ixP ∂∂  and ixN ∂∂ – are easily computed with 
a backpropagation variant (backprop computes ijP wErr ∂∂  and ijN wErr ∂∂ ).  Table 
2 summarizes these expressions for commonly used scoring functions.  

An interesting variant of this approach uses the network-defined surface to escape 
local maxima while performing a standard ILP best-first search.  We can think of this 
as equivalent to the biased rapid random restart above; however, instead of some 
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Table 2.  This table expresses the gradient of several common scor ing functions ππππevalfn in 
terms of the gradients of the two network output units – predicted posit ive and predicted 
negative coverage.  Stochastic gradient ascent uses one of these equations to compute the 
network-surface gradient under some scoring function.  In the equations below, P denotes 
positive coverage, N denotes negative coverage, and L denotes clause length. 



random point, the starting point for our network-guided gradient ascent is the ending 
point from the previous period of ILP's standard search (on real data).  That is, in this 
variation we rapidly alternate between brief periods of ILP's standard (best-first) 
search and stochastic gradient ascent on the neural-network-defined surface.  This 
variation is illustrated in Figure 3. 

This idea of intelligent rapid random restarts to escape local maxima is not a new 
one.  Though not in the domain of ILP, Boyan and Moore's STAGE algorithm [23] 
use quadratic regression to approximate search "trajectories."  That is, they learn a 
function mapping points in feature space to the endpoint of a local search starting at 
that point.  They use this approximation to escape local maxima in a heuristic search.  
Their algorithm ran in less time, and reported better test-set accuracy than solutions 
discovered using local search alone. 

4.3   Extracting Concepts from the Function Approximation 

Finally, we can extract concepts from the neural network itself.  Craven and Shavlik 
[26] have developed a method to extract a decision tree from a trained neural network.  
Running their algorithm on the (thresholded) trained clause-evaluation approximator 
would produce a theory – a set of clauses – that we could variablize and score on the 
actual data set. 

The neural network, in fi tting a nonlinear surface to the scoring function, wil l 
hopefully find pairs and triplets of terms that – while individually not helpful – lead to 
a highly accurate rule when combined.  Two terms that share one or more variables 
and are connected to the same single hidden unit via a highly-weighted edge that 
possibly have an impact on the accuracy of the rule when taken together.  Such a pair 
of terms is a likely candidate for terms of an invented predicate.  The neural network 
approximation could be used to find such predicates using only one or a few seeds; 
then the invented predicates could be added to the background knowledge for the 
search over the remaining seeds' subsumption lattices. 
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Figure 3.  This graphic illustrates our  algor ithm using stochastic gradient ascent on the 
sur face defined by the neural network to escaping a local minima in ILP's standard best-
first search.  The search alternates between periods of ILP's best-first search (1 and 3), and 
stochastic gradient ascent on the network-defined surface (2).  The only difference between this 
variant and our biased-RRR search is the starting point of the stochastic gradient ascent.  
Biased-RRR begins each period of stochastic gradient ascent at a random point in search space. 



5   Results and Discussion 

This section presents our results on several benchmark datasets.  We first show that 
the neural network is indeed capable of learning an approximation to the clause 
evaluation function.  We then use the network in a rapid-random-restart search to bias 
restarts towards more promising regions of search space, as described in Section 4.2. 

5.1   Benchmar k Dataset Overview 

We tested clause evaluation function approximation on four standard ILP 
benchmark datasets.  The tasks included predicting mutagenic activity [27] and 
carcinogenic activity [28] in compounds, predicting the smuggling of nuclear and 
radioactive materials, and predicting metabolic activity of proteins. A brief 
description of the four datasets follows. 

Mutagenesis.  This task is concerned with predicting the mutagenicity of certain 
compounds.  The ILP learner is provided background knowledge consisting of the 
chemical properties of 188 compounds, as well as general chemical knowledge in the 
form of first-order logic relations.  The dataset is a popular benchmark, and explores a 
reasonably large search space. 

Carcinogenesis.  Similar to the mutagenesis task, but an inherently more difficult 
problem, this task's main concern is predicting carcinogenic activity compounds from 
potential carcinogenic compounds.  The database for this problem consists of 332 
labeled examples, of which about half are carcinogenic. 

Nuclear Smuggling.  This dataset, based on reports of Russian nuclear materials 
smuggling, is interesting in its highly-relational nature, with over 40 relational tables.  
The task is concerned with predicting when two smuggling events are l inked.  The 
dataset we use is a subset of the complete dataset, 192 examples split evenly into 
positive and negative examples. 

Protein Metabolism.  This task is taken from the gene-function prediction task of 
the 2001 KDD Cup challenge (www.cs.wisc.edu/~dpage/kddcup2001/).  While the 
challenge involves learning 14 different protein functions, our sub-task is only 
concerned with predicting which proteins are responsible for metabolism.  Here we 
also use a subset of the complete dataset, 230 examples split evenly between positives 
and negatives. 

5.2   Learning the Clause Evaluation Function 

This section details empirical evaluation of the neural network learning task.  Our 
goal is to ascertain whether a neural network can learn the ILP clause evaluation 
function.  To simplifying the task, in our experiments we only consider a batch 
learning process, not the online learning process outl ined in Section 3.2.  

We use the ILP system Aleph (web.comlab.ox.ac.uk/oucl/research/areas/ 
machlearn/Aleph/aleph_toc.html) to generate 10 sets of 1000 randomly sampled 
clauses for each of the four datasets, corresponding to 10 different positive examples 



that were used in construction of the bottom clause.  These 10 "seed examples" were 
chosen randomly.  We considered a maximum clauselength c=6 for all but the 
Nuclear Smuggling task; we considered a larger value of c=10 for this task.  Clauses 
were scored using a standard scoring metric, a variant of Aleph’s compression 
heuristic; that is, a clause's score is given by 

( ) ( ) ( )
( )exs. pos. total

1thclauselengcovered exs. neg.covered exs. pos.
score

+−+=  (6) 

Unlike Aleph's compression (which does not include the term in the denominator), we 
convert scores into a good range for neural networks by dividing by the total number 
of positive examples.  This also allows comparison of scores across datasets. 

For each dataset, these clauses and their corresponding scores were used to train 
the neural network.  Using the machine learning package WEKA [29], we generated 
learning curves using 10-fold cross-validation.  For all datasets, the neural network 
was constructed with 10 hidden units.  The learning rate was fixed at 0.2.  We added 
early stopping to WEKA to avoid overtraining.  For each cross-validation fold, we set 
aside 33% of each training set as a tuning set.  Then, after 200 epochs, we kept the 
neural network that performed best on the tuning set.  WEKA 's numeric feature 
normalization was enabled for all numeric features. 

The learning curves for each of the four datasets appear in Figure 4.  The “All 
Data” curves show the mean root-mean-squared (RMS) error over the 10 different 
sets of examples.  (Section 3.4 explains the other two curves in each of these graphs.) 

For all four datasets, the hypothesis evaluation function E
evalfn

� was learned with 
reasonable accuracy.  In all four datasets, as more data is added to the training set, the 
neural network more accurately learns the evaluation function.  It is interesting to 
note, however, that the number of examples required to accurately learn the 
approximator, and the accuracy of the final classifier varies amongst the datasets.  

The absolute accuracy of the approximator varies across the datasets as well.  For 
protein metabolism, the fully-trained network averages 0.005 RMS error; for 
mutagenesis, the results are an order of magnitude worse, at 0.05. Sti ll, it seems 
promising that the worst performing approximator saw an RMS error of just 0.05. 

So far, we have assumed no transfer of knowledge between seed examples, i.e., we 
learn a new neural network from scratch for each saturated example.  However, 
several of the features we employ are independent of the example selected for 
saturation.  In particular, every feature except the ground l iterals selected (the vector 
x

�

 described in Section 3) is instance-independent (or at least has an instance 
independent representation).  These features can be shared when generating different 
rules from different seed examples, and, for all rules after the first, this allows us to 
bootstrap an initial classifier based on knowledge garnered from previous rules. 

Consequently, we looked at the contribution of each subset of features on each of 
the four datasets.  In particular, we wanted to see how instance-independent features 
contributed to the learning task.  As before, we used WEKA to construct two learning 
curves for each dataset.  These two learning curves correspond to training the network 
on (1) only instance-independent features, and (2) only instance-dependent features. 

As Figure 4 i llustrates, with the exception of protein metabolism, training on the 
instance-independent features alone did not produce as accurate a classi fier as training 



on the instance-dependent features alone, or on the complete set of features.  
Furthermore, on all four datasets, using the complete set of features did not produce a 
significantly more accurate network approximator than using the instance-dependent 
features alone did.  This suggests that the instance-independent features are unlikely 
to help transfer learning for one seed example to the next seed example, and that 
better approaches need to be developed. 

Although these graphs illustrate that we are capable of learning the clause 
evaluation function, they do not show the degree to which the function is learned.  
Figure 5 compares the RMS error of the network approximation to the RMS error 
obtained by using a random sampling of training examples to approximately score 
clauses.  This provides an alternate method for computation reduction against which 
we compare our method.  It also allows us to determine the number of evaluations the 
neural network is "worth."  This number varies significantly across the four datasets, 
ranging from between 25% and 50% sampling to well beyond 90% sampling.  As 
these are all fairly small benchmark datasets, it remains an open question how our 
method will compare to sampling the training examples in larger problems (with both 
larger hypothesis spaces as well as datasets).  This includes large problems that often 
arise in the biological sciences and text extraction [30]. 

Figure 4. Learning curves showing test-set accuracy over  four  domains compar ing the 
roles of instance-dependent versus instance-independent features.  Learning curves were 
generated only using a subset of the complete set of features, and the results were compared to 
the case where all features were used to train the network. 
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5.3   Using the Evaluation Function Approximator to Guide Random Search 

This section details the use of trained neural network to bias the random restarts in a 
rapid random restart search.  Our goal here is to find the best-scoring clause in the 
subsumption lattice using as few clause evaluations as possible.  Thus, results in this 
section are only concerned with maximizing some evaluation function over the 
training data.  Assuming a well-designed evaluation function, this corresponds with 
good test-set performance.  

We implemented the previous-described online learning algorithm in Aleph.  To 
enable biased random restarts, we also implemented a stochastic gradient ascent 
algorithm.  Our gradient ascent implementation, at each step, only considered flipping 
an input bit on or off, and did not allow flipping a bit on if the clause length was 
already at its maximum.  The probability of a bit fl ip of input xi is given by: 

( ) ( ) ix

i

E
evalfn

i xZ
xP 1

ˆ1
exp

1
 flip

2
−⋅�
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�

�

�
�

�

�

∂
∂

⋅=
π

σ x

 (7) 

In this formula, σ2 determines the "softness" of the gradient ascent.  For our results, it 
was set such that we were 100 times more l ikely to flip the "best" li teral than the 
"worst."  The x)1(− term simply flips the sign of the gradient when we consider 
flipping a bit off (since this is a move in the negative direction). 

In order to test the performance of our algorithm, we attempt to find the clause that 
maximizes the coverage scoring function, defined as the number of positive examples 
covered minus the number of negative examples covered.  We used stochastic 
gradient ascent to bias RRR search towards with 1000 restarts and 10 steps per restart, 
and compare the biased-RRR versus normal  RRR with the same parameters.  For the 
biased-RRR, the "burn-in period" consisted of a single random restart and the local 
moves following.  We report results on three of the four datasets from the previous 

Figure 5.  Compar ing the RM S er ror  of the neural-network approximation with that 
obtained by using a random sampling of training examples to approximate clauses.  The 
error of the neural-network approximation varies widely, but in all cases does better than  a 
25% sampling of examples, and for two of the four datasets, does better than a 90% sampling. 
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section, omitting mutagenesis as it too quickly converges: over 80% of seeds found 
their best clause in the very first restart.  For each dataset we explored the 
subsumption lattices of 100 different seed examples.  Our neural network consisted of 
10 hidden units.  Finally, each rapid random restart began at the endpoint of the 
previous local search and finished after a fixed number of random steps.  Aleph search 
parameters are left at default whenever possible. 

Figure 6 shows the results for each of the three datasets.  In each of the three 
graphs, the x-axis shows the number of clauses evaluated, and the y-axis shows the 
average coverage over all seeds of the best example found thus far.  As the plots 
show, for two of the datasets – carcinogenesis and protein metabolism – biased-RRR 
found a better clause quicker than did traditional RRR.  However, in the third task, 
nuclear smuggling, biased-RRR did worse than the default implementation.  The 
reasons for this are unclear, as the neural network was clearly able to learn the 
evaluation function approximator in this domain. 

6   Conclusion and Future Work 

We demonstrated that the use of a neural network for clause evaluation is a useful 
tool for improving runtime efficiency when handling large search spaces in ILP.  As 
ILP is confronted with increasingly larger problems, the need for methods like the 
ones we present grows.  So far, we have treated the network learning and evaluation 
tasks as computationally "free" operations, which is not entirely true.  However, it is 
true that the running time of neural network evaluation (and training) is independent 

Figure 6. Per formance of the biased-
RRR search versus a traditional RRR 
search.  The x-axis shows the number of 
clauses evaluated, and the y-axis displays 
the average coverage of the best clause 
found at that x value.  For carcinogenesis 
and protein metabolism, the biased-RRR 
performs better, but for nuclear 
smuggling it is clearly outperformed. 
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of the number of ILP examples in the dataset.  This means that given enough 
examples in the ILP training set, neural-network evaluation can be made virtually 
free.  This strategy can be used to decrease the runtime of ILP systems on large tasks.   

The most pressing work that remains is implementing and evaluating the other 
strategies for taking advantage of the clause-evaluation approximator outlined in 
Sections 4.1 and 4.3.  Clearly accuracy is lost in approximating the clause-evaluation 
function, but it is difficult to determine how it affects solutions generated by using it 
to quickly evaluate clauses in a typical ILP search.  Another open question is whether 
useful information can be extracted from the trained neural network itself [26]. 

Also, Botta et al. [31] have characterized hypothesis space, discovering a critical 
region they have named the phase transition.  In this critical region, the computational 
complexity of inference increases, and clauses generated in this region tend to have 
poor generalization to unseen test examples.  This phase transition is a difficult region 
for ILP algorithms; our algorithm's performance here specifically needs exploration. 

Finally, we have discussed learning the evaluation approximation in a least-
squared-error sense.  However, what may be more important for ILP is the relative 
ranking of candidate clauses.  Thus, an approach l ike Caruana and Baluja's Rankprop 
algorithm [32] – an alternative to backprop concerned with correctly predicting the 
ranking of the output variables – may be more natural. 
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