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ABSTRACT

One particularly time-consuming step in protein crystallography is inter-

preting the electron density map; that is, fitting a complete molecular

model of the protein into a 3D image of the protein produced by the

crystallographic process. In poor-quality electron density maps, the

interpretation may require a significant amount of a crystallographer’s

time. Our work investigates automating the time-consuming initial back-

bone trace in poor-quality density maps. We describe ACMI (Automatic

Crystallographic Map Interpreter), which uses a probabilistic model

knownas a Markov field to represent the protein.Residuesof the protein

are modeled as nodes in a graph, while edges model pairwise structural

interactions. Modeling the protein in this manner allows the model to be

flexible, considering an almost infinite number of possible conforma-

tions, while rejecting any that are physically impossible. Using an effi-

cient algorithm for approximate inference—belief propagation—allows

the most probable trace of the protein’s backbone through the density

maptobedetermined.WetestACMIonasetof tenproteindensitymaps

(at 2.5 to 4.0 Å resolution), and compare our results to alternative

approaches. At these resolutions, ACMI offers a more accurate back-

bone trace than current approaches.

Contact: dimaio@cs.wisc.edu

1 INTRODUCTION

Determining the folding of a protein—that is, the three-dimensional

spatial configuration of the atoms in a protein—has long been an

important problem in biochemistry. With some exceptions, a pro-

tein’s structure is uniquely determined from its linear amino-acid

sequence. Unfortunately, no known algorithm can determine this

unique structure from sequence, and scientists are forced to rely

upon laboratory methods in order to determine protein structures.

Several experimental methods exist, the most popular of which—

accounting for about 80% of protein structures determined to

date—is x-ray crystallography.

There has been significant recent interest in high-throughput

structure determination [1]. One particularly time-consuming step

in crystallography is interpretation of the electron map, that is,

finding the location of all the protein’s atoms in a three-dimensional

image of the protein. In this paper, we describe ACMI (Automatic

Crystallographic Map Interpreter), an algorithm that automates the

process of tracing the backbone in electron density maps.

ACMI consists of two main components: a local matching
component that locates individual amino acids in the density

map, and a global constraint component that uses prior knowledge

of the protein’s structure to eliminating false positives from the local

matching. ACMI combines these two with an efficient inference

algorithm that can infer the protein’s backbone in an electron den-

sity map. ACMI’s model is probabilistic: throughout the interpreta-

tion it represents each residue as a probability distribution over the

electron density map. This property—not being contrained to force

each residue to a single location—is advantageous as it naturally

handles noise in the map, errors in the input sequence, and disor-

dered regions in the protein.

2 CRYSTALLOGRAPHY BACKGROUND

Protein crystallography is a very labor-intensive undertaking. First,

the protein must be produced in large quantities and purified. Protein

crystals then have to be grown, which usually requires testing a

significant number of crystallization conditions and solvents. Once

the crystals are finally available, a beam of x-rays is fired through

the crystal. The lattice of protein molecules that comprise the crystal

diffracts this x-ray beam, and produces a pattern of spots on a plate.

These spots represent the intensities of a Fourier-transformed pic-

ture of the protein. Further laboratory experiments are used to

determine the phases corresponding to these intensities. Finally,

a Fourier transform converts these intensities into an electron
density map: a three-dimensional image of the protein.

The final step in x-ray crystallography is interpreting this electron

density map, converting it into a representation that is usable by

biologists. During interpretation, the crystallographer must locate—

given the amino-acid sequence of the protein—the coordinates of

the centers of all the protein’s atoms. This interpretation can be

extremely time-intensive; a crystallographer may spend weeks

(even months!) interpreting a poor-quality electron density map.

The electron density map is defined on a 3D lattice of points

covering the unit cell, or basic repeating unit in the protein crystal.

The crystal’s unit cell may contain multiple copies of the protein

related by crystallographic symmetry, one of the 65 regular ways a

protein can pack into the unit cell. Rotation/translation operators

relate one region in the unit cell (the asymmetric unit) to all other

symmetric copies. Furthermore, the protein may form a multimeric

complex (e.g. a dimer, tetramer, etc.) within the asymmetric unit. In

all these cases is up to the crystallographer to isolate and interpret a

single copy of the protein.

An overview of the interpretation task is illustrated in Figures 1

and 2. In both figures, the electron density map—a 3D function over

the unit cell—is illustrated as an isocontoured surface. Figure 1a�To whom correspondence should be addressed.
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illustrates a small portion of the electron density map. The sticks in

Figure 1b show the location of bonds between atoms. Figure 1c

shows only the lines between adjacent Ca atoms of the protein. This

Ca trace (or backbone trace) is the main concern of this paper.

Finally, Figure 2 shows the scale of the problem, illustrating a

complete unit cell’s electron density. This map contains two crys-

tallographically symmetric copies of a protein.

One measure of overall quality of an electron density map is the

resolution of the map. When placed in an x-ray beam, some protein

crystals diffract the beam better than others. In general, the more the

crystal diffracts the beam, the better quality the map. This is illus-

trated in Figure 3, which shows a short protein’s electron density at a

variety of resolutions (lower values of resolution mean a higher-

quality electron density map). At high resolutions (2s or better

resolution) individual atoms are visible, and automated interpreta-

tion is straightforward [2]. However, above about 2.5s, details of

individual atoms are smeared, and atom-based methods tend to fail.

Several approaches have attempted automatically interpreting these

maps [3,4] and have met with some success. However, interpreta-

tions produced by these methods are often messy and require sig-

nificant crystallographer effort to ‘‘fill in the gaps.’’

3 OVERVIEW OF THE ALGORITHM

A high-level overview of ACMI’s two main components is illus-

trated in Table 1. ACMI includes a local matching component,

where individual residues are probabilistically located in the

map, independent of all other residues, and a global constraint

component, where the backbone chain is built up, also probabilis-

tically, from the local matches, taking into account the chemical

laws governing the physical structure of proteins.

The local-matching component of our algorithm makes use of a

library of existing sequence-specific 5-mer templates. That is, when

searching for an individual residue, we actually look for all common

conformations of the 5-mer centered at that residue. The local

search has high sensitivity, usually matching well to the residue’s

correct location. However, it suffers from low specificity, producing

a significant number of false positives.

ACMI’s global-constraint component probabilistically refines

these local search results to takes into account prior knowledge

of protein structure. Using this prior knowledge, it adjusts the

local-match probabilities based on the local match probabilities

of other residues. It produces a physically feasible interpretation

that maximizes the probabilities from the local matching.

ACMI models this physical feasibility with a pairwise Markov

field, which represents the probability of a conformation as the

product of probabilities between pairs of residues. This pairwise

potential is analogous to the pairwise potential energy calculations

used in molecular dynamics [5] (although our model does not

optimize physical energy but rather statistical ‘‘energy’’).

4 LOCAL MATCHING

Local matching in ACMI is used to locate individual protein resi-

dues in an electron density map. In the poor-quality maps for which

ACMI is designed, simple atom-based-refinement methods [2] per-

form poorly. Empirically, methods using rotamer searching [6],

skeletonization [7], or critical points [8] also perform poorly in

Fig. 3. The electron density map for the same protein fragment at (a) 2s, (b)

3s, and (c) 4s map resolution.

Fig. 1. An over view of electron density map interpretation. Given the amino acid sequence of the protein and a density map (a), the crystallographer’s goal is to

find the positions of all the proteins atoms (b). Alternatively, a backbone trace (c), reduces each residue to a single point. ACMI automates determination of the

backbone trace.

Fig. 2. The electron density map over an entire unit cell. One copy of the

protein is indicated. This unit cell contains two symmetric copies, which wrap

around the map boundary.
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these low-resolution maps. The methods that have had the most

success in low-resolution maps are those based upon finding large

fragments of protein electron density [9]. Thus, we use sequence-
specific 5-mer search to locate individual residues in the electron

density map.

Our method is divided into two basic parts, illustrated in Figures 4

and 5. First, we use previously solved structures from the Protein

Data Bank to construct a basis set of sequence-specific 5-mer tem-

plates. We then perform a 6D (rotation + translation) search in the

map for each of the 5-mers in our basis set. The output of this local

search is—for each residue—an estimated probability distribution

of that residue’s presence over the unit cell.

Constructing a Sequence-Specific 5-mer Basis Set. ACMI begins

this step—illustrated in Figure 4—by walking along the one-

dimensional protein sequence, considering a 5-mer centered at

each residue. Given this 5-mer, we search a non-redundant subset
of the PDB [10] (restricted to have less than 25% sequence simi-

larity) for three-dimensional instances of that 5-mer. If there are less

than 50 such instances then we search for near neighbors to the 5-mer

using increasing PAM distance [11] until we have 50 structures.

It is infeasible to search for all 50+ conformations in the electron

density map, so we instead cluster the structures and represent each

cluster as a centroid fragment and a weight. When clustering the

fragments, we use rotationally-aligned all-atom RMS deviation

between fragments as a distance metric (quickly computed as an

optimization problem [12]). We use complete-linkage hierarchical

Fig. 5. An overview of the 5-mer template matching process. After we have

extracted a representative et of 5-mers for each residue i, we perform a 6D

(rotation + translation) search for the fragment in the density map. By also

matching the fragment to a tuning set of known structures, we can use Bayes’

rule (see Equation 3) to determine the probability distribution of the residue

over the density map.

Table 1. A pseudocode overview of ACMI’s algorithm

Procedure ACMI

Given: sequence ‘seq’ and electron density map ‘M’

Find: putative backbone trace W¼{ wi }

foreach residue i do

P(Mjwi)  doLocalMatch(seqi, M)

P(W)  enforceGlobalConstraints(P(Mjwi))

optimal_trace  {wi
�j 8i wi

� ¼ argmax (P(wi))

Procedure doLocalMatch(seq, M)

Given: sequence ‘seq’ and electron density map ‘M’

Find: prob. dist. P(Mjwi) of each residue over map

� Consider 5-mer centered at each residue

� Extract instances of 5-mer from PDB, cluster to characterize 5-mer’s

conformational space

� Perform a 6D search for 5-mer over density map

� Use a tuning set to convert squared density differences to probabilities

P(Mjwi) for each residue i

Procedure enforceGlobalConstraints(P(Mjwi))
Given: individual residue probability distributions

Find: marginal probabilities given structure constraints

� Model protein backbone structure as a graph
* Nodes model a-carbon positions
* Edges enforce structural constraints

� Probability of an interpretation W ¼ fwig given as the product of node

potentials and edge potentials

PðW jMÞ /
Y

residues i‚ j

Pðwi‚wjÞ
Y

residues i

PðM jwiÞ

� Infer marginal probs. given structural constraints

Fig. 4. The 5-mer clustering process. Walking along the amino-acid

sequence, we consider a 5-mer centered at each position. We search the

database for instances of that 5-mer, and cluster them. Finally, we extract

a representative member from each cluster. This characterizes the con-

formational space of the 5-mer sequence.
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clustering, limiting clusters to have a maximum diameter of 3s.

Any cluster with under 10% representation is thrown out (to limit

CPU time in the next step); in all remaining clusters we find a

centroid (i.e. representative) fragment. We also record the cluster

weight with each centroid fragment, that is, the percent of structures

that fell into that cluster. Depending on the ‘‘sequence structural

entropy’’ of the 5-mer [13], anywhere from 1 to 7 clusters (and

resultant centroid fragments) are produced.

The cluster centroids and the weights determined by ACMI rep-

resent the conformational space of each specific 5-mer fragment.

Using fragments of length five is our way of balancing the trade-off

between template size and template specificity. Larger fragments

are preferred for recognition in poor-quality maps, but larger frag-

ments have lower representation in the set of already-solved struc-

tures. Our non-redundant PDB subset contains about 20% of the

3.2 · 106 possible 5-mers.

Searching for 5-mer centroid fragments. Once the clustering is

complete and the cluster centroids have been extracted, we search

for instances of the centroids in the electron density map. This

process is illustrated in Figure 5. Given a fragment and a target

resolution, we can build a map corresponding to what we would

expect to see, given the fragment. Then, at each map location, we

can compute the mean squared electron density difference tð*xÞ
between the map and the fragment. We compute this difference

over all points *x ¼ < xi‚yi‚zi > in the electron density map within

some distance of the fragment,

tð*xÞ¼
X
y

«f ð*yÞ r0f ð*yÞ�
1

srð*xÞ
½rð*y�*xÞ��rrð*xÞ�

� �2

ð1Þ

where rð*xÞ is the map in which we are searching, r0f ð*xÞ is

the standardized fragment electron density, «ð*xÞ is a masking

function that is nonzero only for points near the fragment, and

srð*xÞ scales the standard deviations of the fragment and map

densities,

s2
rð*xÞ¼

X
y

«f ð*yÞ½rð*y�*xÞ��rrð*yÞ�2
�X

y

«f ð*yÞ ð2Þ

We need to perform the fragment search as a 6D search over all

rotations plus all translations; fortunately, we can compute tð*xÞ
quickly at a single rotation using FFTs [14]. Additionally, at

each position we store the best-matching 5-mer fragment, and

the corresponding rotation, for later use.

The electron density difference function tð*xÞ is a good measure of

similarity between regions of density, but we need a way to convert

these scores into probability distributions, that is, the probability

Pð*xi j scoreiÞ that there is an instance of a specific 5-mer cluster i at

location *xi given match score scorei. ACMI computes this using a

tuning set and the application of Bayes’ rule. Bayes’ rule states that

this probability is given as

Pð*xi j scoreiÞ ¼ Pðscorei j*xiÞ ·
Pð*xiÞ

PðscoreiÞ
ð3Þ

The terms on the right-hand side are computed or estimated as

follows. The probability distribution of match scores over the

map, PðscoreiÞ, is derived from the actual distribution of match

scores over the (unsolved) map. The prior probability on a residue’s

location over the map, Pð*xiÞ, is simply a normalization term: we

already know (by knowing the protein’s sequence) the number of

copies of the 5-mer in the electron density map, and we normalize

probabilities over the map to sum to this value. However, the first

term—the distribution of scores when the 5-mer matches the map—

is trickier to compute. ACMI estimates this term using a tuning set

derived from different protein structures from the PDB. This tuning

set contains other instances from the 5-mer cluster for which we are

searching. We match each cluster centroid’s density map with each

tuneset density map in that centroid’s cluster to estimate the dis-

tribution of scores given a 5-mer match.

At the end of the local matching procedure, ACMI has

computed—for each residue—a probability distribution over the

unit cell. That is, for each point in 3D space, we have a probability

that each specific 5-mer is positioned at that location. The remainder

of the paper describes how our algorithm uses prior knowledge

about the structure of the protein to estimate the most probable

backbone trace given these probability distributions. Run times

for the local matching are significant: for each fragment we have

to search �1900 rotations (20-degree discretization) over the entire

electron density map. The total compute time is on the order of

CPU-weeks; however, 5-mer matching is trivially parallelized [15].

5 GLOBAL CONSTRAINTS

In Section 4, we computed—for each residue i—the probability

distribution over every position x in the unit cell. We can think

of this probability as the probability that this map was generated by

residue i at location and rotation *wi, that is, PðM j*wiÞ. One could

presumably select, for each residue, the *wi that maximized this

probability. However, the resultant trace would likely look like

that in Figure 6a. ACMI somehow needs to account for the struc-
tural probability on the model. That is, it needs to ensure that the

proposed structure is a physically feasible protein molecule. What

we ultimately want to find—given map M—is the configuration of

Fig. 6. Two possible backbone traces. The trace (a) maximizes the product of

5-mer match probabilities; however, the resultant protein is physically im-

possible. We would prefer trace (b) with a lower 5-mer match probability, but

which corresponds to a physically-possible structure.
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all residues W ¼ f*w1‚ . . .‚*wNg, such that

arg max
W¼f*w1‚ ...‚*wNg

PðW jMÞ / PðWÞ ·
Y

i¼1...N

PðM j*wiÞ ð4Þ

The first term accounts for this physical feasibility, in which a

proposed structure like that of Figure 6b would have a much higher

probability of configuration than Figure 6a.

5.1 Markov field model

To model this "global constraint" probability ACMI uses a pairwise
Markov field model [16]. A pairwise Markov field model G ¼ ðV‚EÞ
consists of a set of nodes i 2 V connected by edges ði‚ jÞ 2 E. Each

node in the graph is associated with a (hidden) random variable
*wi 2W. The graph is conditioned on observation variables M. Each

vertex has a corresponding observation potential cið*wi‚MÞ, and

each edge is associated with a conformational potential cijð*wi‚
*wjÞ.

We can represent the full joint probability as

pðW jMÞ ¼
Y
ði‚ jÞ2E

cijð*wi‚
*wjÞ ·

Y
i2V

cið*wi‚MÞ ð5Þ

We are concerned with finding the *wi 2W maximizing this proba-

bility, given some M.

Figure 7 shows how we encode a protein in a Markov field model.

Each node i represents an amino-acid residue in the protein. The

label *wi ¼ h*xi‚*qii for each amino-acid residue consists of seven

terms: the 3D Cartesian coordinates *xi of the residue’s alpha
Carbon (Ca), and four internal parameters *qi (an alternate parame-

terization of three rotational parameters plus the ‘‘bend’’ angle

formed by three consecutive residues). The observation potential
cið*wi‚yÞ associated with each residue is the 5-mer probability

PðM j*wiÞ computed in Section 4.

The conformation potentials cijð*wi‚
*wjÞ, which model the proba-

bility of a particular conformation of the residues in the protein, are

further divided into two basic types. Following Suddereth et al.’s
hand-tracking model [17], ACMI defines adjacency potentials asso-

ciated with each edge connecting neighboring residues (Figure 7b).

These potentials ensure that adjacent residues maintain the proper

3.8s spacing and the proper Ca—Ca—Ca angle. ACMI also defines

occupancy potentials between non-adjacent residues (Figure 7c),

which prevent two residues from occupying the same region in

three-dimensional space. Thus, our joint probability is now defined

pðW‚MÞ ¼
Y

*wi‚
*wj2W

i‚ j adjacent

cadjð*wi‚
*wjÞ ·

Y
*wi‚

*wj2W
i‚ j nonadjacent

coccð*wi‚
*wjÞ

·
Y

*wi2W
PðM j*wiÞ

ð6Þ

Because residues distant on the protein chain are not necessarily

distant in space, the graph must be fully connected; that is, every

pair of residues is joined by an edge in the Markov field model.

5.1.1 Adjacency potentials The adjacency potentials, which

connect every adjacent pair of residues, are further broken down

into the product of two constraining functions, a distance constraint

function and a rotational constraint function

cadjð*wi‚
*wjÞ ¼ pxðk*xi � *xjkÞ · p�ð*wi‚

*wjÞ ð7Þ

The distance constraint is based on the physical fact that, in proteins,

the Ca—Ca distance is a nearly invariant 3.8s. Thus, the potential

px takes the form of a tight Gaussian around this ideal value.

The internal parameters *qi model the 3D rotation of each

residue and the angle formed by the residue triple centered at

residue i. To simplify the definition of p� , we choose to para-

meterize these four degrees of freedom as two pairs of �-w spherical

coordinates: the most likely direction of the forward (i + 1) residue

and the backward (i � 1) residue. Our local 5-mer matching of

Section 4—in addition to computing the probability at a specific

location—also remembers the most likely 5-mer centroid and

rotation of that centroid. At each location in the map, we store

four values—�f, wf, �b, and wb—indicating the direction of both

adjacent residues, based on the direction of these residues in this

rotated, best-matching 5-mer.

The angular constraint function p�, illustrated in Figure 8, is

then—at each position xi in the map—just a fixed-width Gaussian

on a sphere, centered on this preferred orientation. That is, given

residue i at the center of the sphere, the highest potential p� is when

residue i+1 is located on the lightest points on the sphere, at h�f ‚wf i.

5.1.2 Occupancy potentials Occupancy potentials are in place to

ensure that two residues do not occupy the same location in space.

They are defined independently of orientation, and are merely a step

function that constrains two (nonadjacent) Ca’s be at least 3.0s

apart (the closest distance two nonadjacent residues may get),

coccðwi‚wjÞ ¼
1 kxi � xjk � 3:0
0 otherwise

�
ð8Þ

It is in this structural potential function that ACMI deals with

crystallographic symmetry. We can slightly modify our potential

function so that—given symmetric operators K ¼ {Kn}—two

residues may not occupy the same space, nor may any of their

Fig. 7. The structure of our graphical model. The joint probability of a con-

formation of residues is the product of (a) an observation potential at each

node, (b) an adjacency potential between adjacent residues, and (c) an occu-

pancy potential between all pairs of non-adjacent residues.
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symmetric copies:

coccðwi‚wjÞ ¼ 1 min
symmetric

transforms K

kxi � KnðxjÞk
 !

� 3:0

0 otherwise

8><
>: ð9Þ

Multiple chains in the asymmetric unit are also handled by ACMI:

separate chains are fully connected by edges enforcing occupancy

constraints.

5.2 ACMI’s inference algorithm: finding the most

probable backbone trace

The ultimate goal of ACMI is producing a backbone trace: finding

the labels W ¼ {wi} that maximize the probability of the local

observational potentials and the global conformational potentials,

arg max
W¼fwig

Y
residues i‚ j

cijðwi‚wjÞ ·
Y

residue i

ciðwi‚MÞ ð10Þ

However, solving this exactly for arbitrary graphs is infeasible

(dynamic programming can solve this in quadratic time for tree-

structured graphs). As an alternative, ACMI uses belief propagation

(BP) to compute an approximation to the marginal probability

P(wi jM) for each residue i, then chooses the maximum marginal

label for each residue as the final trace.

Belief propagation is an inference algorithm—based on Pearl’s

polytree algorithm [18]—that computes marginal probabilities

using a series of local messages. At each iteration, a node (i.e.,

residue) computes an estimate of its marginal distribution (i.e.,

an estimate of the residue’s location in the unit cell) as the product

of all incoming messages. The residue then passes a convolution of

this product with the corresponding edge potential along each out-

going edge.

mn
i!jðwjÞ /

Z
unitcell

cijðwi‚wjÞ ·
p̂pni ðwiÞ

mn�1
j!i ðwiÞ

dwi ð11Þ

Above, p̂pni denotes the estimation of i’s marginal at iteration n,

that is,

p̂pni ðwiÞ / ciðwi‚MÞ ·
Y

k2GðiÞ
mn

k!iðwiÞ ð12Þ

Figure 9 illustrates the message-passing with a simple two-

dimensional example. In this example, two residues’ prior proba-

bilities have their probability mass split among several peaks. Our

structural knowledge tells us that residue i must be next to residue j.
In the first iteration, residue i passes a message to residue j, that

indicates where residue i expects to find residue j (essentially, in a

ring around residue i’s peaks). Messages in BP are probability

distributions marginalized to the message recipient’s random vari-

ables; that is, this message from residue i to residue j is a function

over residue j’s position in the unit cell. Residue j passes a message

back to residue i indicating where j expects to find i. This example

shows that in just two iterations, BP is able to reduce the number of

peaks through the use of structural priors.

In graphs without cycles, BP is exact. In graphs with arbitrary

topologies, such as ACMI’s protein model, there are no guarantees

of convergence or correctness; however, empirical results show that

loopy BP often produces a good approximation to the true marginal

[19,20].

5.3 Technical challenges

Even with the computational savings afforded by BP, the size and

complexity of both the graph and the space of labels presented

ACMI with a number of implementation challenges. Though

f f

Fig. 8. The angular component p�(wi, wj) of ACMI’s adjacency potential.

When performing our 5-mer matching, ACMI remembers the positions of the

adjacent residues in the most-likely match. The potential p� is a Gaussian on

the sphere’s surface centered on this most likely location of each adjacent

residue. This figure shows p� at a single location xi in the unit cell.

Fig. 9. A simple example of message passing using belief propagation. Given

prior probabilities b̂b0
i and b̂b0

j , at each iteration, a node i passes a message to a

node j indicating i’s belief of j’s position. For example, a residue knows that an

adjacent residue must be 3.8s away; residue i’s message to j consists of these

3.8 s "bubbles" around its peaks. As BP iterates, the matches that are struc-

turally supported by other residues begin to emerge.
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beyond the scope of this paper, the modifications necessary to BP in

order to scale to this problem are discussed in another paper by the

authors [21]. This section will briefly discuss some of these scaling

issues.

5.3.1 Representation of potentials The label associated with

each residue is a continuously-valued, 7-dimensional variable.

Nonparametric belief propagation (NBP) [17] is a variant of BP

that can handle continuous-valued labels; previous work repre-

sented the belief as the sum-of-Gaussians. Our work introduces

Fourier-Series NBP, a variant of NBP which represents messages

and belief as a set of 3D Fourier coefficients in Cartesian space,

which offer a number of benefits for this problem domain. These

benefits include natural treatment of periodic boundary conditions

and symmetry, no explicit initialization required (as is required

with the sum-of-Gaussians), and an efficient message-passing

implementation.

5.3.2 Efficient message passing Each message passed requires

integrating over the entire unit cell, which naı̈vely takes running

time of the order O(K2), where K is the number of Fourier coeffi-

cients. Unfortunately, for a typical protein, K may be 106 to 107! For

adjacency messages, it is not too much of a problem, as we only

need to integrate over a thin spherical shell where cadj is nonzero.

However, for occupancy messages, this message computation

time is significant. Fortunately, because the occupancy potential

is only a function of the distance between the two connected

residues, we can pass the message in O(K log K) as a multiplication

in Fourier-space.

5.3.3 Structural message aggregation Because our graph is

fully connected, in each iteration O(N2) messages need to be com-

puted and stored, where N is the number of amino-acid residues in

the protein. As each message is a probability distribution over the

entire unit cell, this is demanding computationally and storage-wise.

However, the outgoing structural messages (see Equation 11) at a

given node are all quite similar: they only differ in the denominator,

which serves to avoid double-counting, making the method exact in

tree-structured graphs [19]. However, in loopy graphs, this double-

counting is unavoidable. Furthermore, the structural potentials are

very diffuse, high-entropy potentials. Other authors have suggested

[22] that approximation errors in graphs with this type of potential

tend to stabilize.

We can save a significant amount of work if we aggregate all the

non-bonded residues, sending them a single structural message (that

is, dropping the denominator). ACMI does this, only sending O(N)

messages per iteration. Combined, these BP optimizations allow

ACMI to handle large proteins with large unit cells. Typical run

times (for the BP inference) vary from several hours to a day.

6 EXPERIMENTS

We obtained a set of ten model-phased electron density maps from

the Center for Eukaryotic Genomics at the University of Wisconsin-

Madison. The maps are all of fairly good resolution—natively 1.5 to

2.5s—and all have crystallographer-determined solutions. To test

ACMI’s performance on poor-quality (2.5+ Å) data, we down-

sampled these maps by smoothly diminishing the intensities of

higher-resolution reflections. To avoid truncation effects, and

give a more realistic model of low-resolution data, we scaled

structure factors by exp ð � K/R2Þ, where R is the resolution of

the structure factor and K is a scaling constant chosen based on

the desired resolution (higher values of K smooth the map more).

We down-sampled each of our maps to 2.5, 3.0, 3.5, and 4.0 s

resolutions, giving us a total of 32 maps on which to test. We chose

K ¼ R2
0, so the signal strength was weakened by 1/e at the point of

truncation.

We compared the performance of ACMI on these maps to two

other automated techniques specialized to low-resolution maps:

Ioerger’s TEXTAL [4], and Terwilliger’s Resolve [3,6]. These

two approaches have had the most success handling interpretation

in poor-quality maps.

TEXTAL is based on ideas from pattern recognition. Ioerger

constructs a set of 15 rotation-invariant density features. Using

these features at several radii, TEXTAL trains a neural network

to identify Ca atoms. Sidechains are identified by looking at the

electron density around each putative alpha carbon, efficiently find-

ing the most similar region in a database, and laying down the

corresponding sidechain.

Terwilliger takes a different approach with Resolve. Resolve first

looks for large secondary-structure elements, places them into the

map, and extends them. A rotamer search places sidechains,

aligning sequence to backbone. Both methods have some success

in 2.5 to 3.5 s maps.

After running all three algorithms on the test set, we measured the

results using three different metrics:

(1) Ca RMS error between predicted and true structure

(2) percent of the chain solved

(3) percent correct residue identity

Ideally, a method would find a trace with low RMS error, high

percent of the chain solved, and high residue identity.

The results at each resolution are summarized in Figure 10. TEX-

TAL was unable to run on one protein’s density maps (at any

resolution)—rather than including a terrible score for this map,

we gave the benefit of the doubt to TEXTAL and only report results

on the nine maps on which it ran. In terms of RMS error

(Figure 10a), our algorithm consistently out performs TEXTAL

at all resolutions tested. Using a two-tailed pair t test, ACMI out-

performs TEXTAL with p values of 0.091, 0.057, 0.012 and 0.11 at

2.5, 3, 3.5, and 4s, respectively. Resolve performs roughly equiva-

lent to ACMI at 2.5s resolution; however, at 3, 3.5 and 4 s,

ACMI’s performance is much better: a two-tailed t test yields p
values of 0.0068, 0.00002 and 0.00004, respectively (both of these t
tests only take into account RMS error and not chain coverage).

Figure 10b shows that the percent of the chain covered was

roughly equivalent for the three approaches. However,

Figure 10c shows that our approach is much better than the others

at identifying the proper residue type at a particular location. How-

ever, it is important to point out that these related methods are not

optimizing residue-identification accuracy. Resolve, for example,

will often return a long chain of alanine residues if it cannot identify

sidechains, but still gives the correct backbone structure overall.

This illustrates a significant difference between ACMI and these

alternate approaches: TEXTAL and Resolve build a backbone

model, then attempt to align the protein sequence to it. ACMI,

alternatively, uses the sequence of the protein to construct the
model. The result is better identification of amino acids in the map.
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Additionally, Figure 11 shows scatterplots in which each indi-

vidually solved electron density map is a point. The x-axis indicates

ACMI’s error; the y-axis indicates TEXTAL’s (or Resolve’s). All

points above the diagonal line correspond to maps where ACMI

outperformed TEXTAL (or Resolve). On the majority of structures,

our interpretation has a lower RMS error then both of the other

algorithms. ACMI is outperformed by Resolve on some high-

resolution maps, however, ACMI currently does not perform any

post-processing on predicted backbones (e.g. real-space refinement,

energy minimization); also, residues are restricted on a grid, lim-

iting accuracy to the grid spacing.

One advantage of ACMI’s probabilistic framework is that, in

addition to returning a putative trace, ACMI also returns a

confidence (i.e. probability) level of each predicted residue.

This confidence informs the crystallographer what areas in the

map need improvement; alternatively, a high confidence partial

trace could be used to improve phasing. Figure 12 illustrates this

in an example trace at 3.5 s resolution, on an structure consisting

of two chains of 124 residues each. This is our sixth-best (of ten)

traces at this resolution: ACMI finds nine segments with a Ca

RMS deviation of 2.3 s, covering 94% of the backbone. The trace’s

color indicates the likelihood of its prediction for each residue’s

location.

Fig. 10. Graphs showing a comparison of the three algorithms’ average

interpretation in terms of (a) RMS Error, (b) percent of the chain located,

and (c) percent of residues correctly identified.

Fig. 11. A scatterplot showing the performance on a protein-by-protein basis,

of ACMI versus (a) TEXTAL and (b) Resolve. Each mark is an interpreted

map; points above the diagonal are cases where ACMI provided a more-

accurate backbone trace.
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7 CONCLUSIONS AND FUTURE WORK

We describe ACMI, a tool for automatically tracing protein back-

bones especially designed for poor-quality electron density maps.

ACMI combines a local matching procedure and a global constraint

procedure in a probabilistic framework that can efficiently infer the

locations of backbone atoms in an electron density map. The algo-

rithm provides accurate traces even in poor resolution electron

density maps, outperforming both TEXTAL and Resolve above

3 s map resolution.

One major shortcoming of ACMI is the significant compute time

required by its local (5-mer) matching procedure. We need to search

for approximately three 5-mer fragments per residue; for each frag-

ment we consider �1900 rotations. Even for medium-sized unit

cells, this takes on the order of CPU-weeks; larger proteins take

months. ACMI exploits parallelism, running overnight, using the

spare cycles from desktop computers [15]. However, we would like

to investigate the use of machine learning algorithms, such as sup-

port vector machines or neural networks, to quickly match a 5-mer

into the density map. We also would like to explore alternative

feature representations.

Additionally, as a post-processing step, we would like to augment

ACMI with a refinement and sidechain tracing algorithm. In our

previous work, we used pictorial structures to place sidechain

atoms, given a Ca trace [23]: combining this tool with ACMI

would produce a complete molecular model.

Finally, we would like to explore the use of our probabilistic

model for phase improvement. In some maps, initial phasing is

quite poor. In these maps, a partial structure can be used to signifi-

cantly improve the initial phasing, revealing previously blurred-out

regions in the electron density. Using a high-confidence trace to

iteratively improve phasing is a future research direction of ACMI.

By providing accurate interpretations from lower-resolution

maps, ACMI reduces the burden on crystallographers when only

poor-quality density map data is available. Even when obtaining

higher-resolution electron density map data is possible, ACMI

allows significant cost savings by making do with poorer-quality

maps, speeding up the process of high-throughput protein structure

determination.
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dicted structure is colored by log-likelihood, where least-likely residues are

shown in red, and most-likely in blue.
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