
Appears in Advances in Neural Information Processing Systems Vol. 17
MIT Press, Cambridge, MA, 2005

 Pictorial Structures for Molecular
Modeling: Interpreting Density Maps

 Frank DiMaio, Jude Shavlik George Phillips
 Department of Computer Sciences Department of Biochemistry
 University of Wisconsin-Madison University of Wisconsin-Madison
 {dimaio,shavlik}@cs.wisc.edu phillips@biochem.wisc.edu

Abstract

X-ray crystallography is currently the most common way protein
structures are elucidated. One of the most time-consuming steps in
the crystallographic process is interpretation of the electron density
map, a task that involves finding patterns in a three-dimensional
picture of a protein. This paper describes DEFT (DEFormable
Template), an algorithm using pictorial structures to build a
flexible protein model from the protein's amino-acid sequence.
Matching this pictorial structure into the density map is a way of
automating density-map interpretation. Also described are several
extensions to the pictorial structure matching algorithm necessary
for this automated interpretation. DEFT is tested on a set of
density maps ranging from 2 to 4Å resolution, producing root-
mean-squared errors ranging from 1.38 to 1.84Å.

1 Introduction

An important question in molecular biology is what is the structure of a particular
protein? Knowledge of a protein’s unique conformation provides insight into the
mechanisms by which a protein acts. However, no algorithm exists that accurately
maps sequence to structure, and one is forced to use "wet" laboratory methods to
elucidate the structure of proteins. The most common such method is x-ray
crystallography, a rather tedious process in which x-rays are shot through a crystal
of purified protein, producing a pattern of spots (or reflections) which is processed,
yielding an electron density map. The density map is analogous to a three-
dimensional image of the protein. The final step of x-ray crystallography – referred
to as interpreting the map – involves fitting a complete molecular model (that is, the
position of each atom) of the protein into the map. Interpretation is typically
performed by a crystallographer using a time-consuming manual process. With
large research efforts being put into high-throughput structural genomics,
accelerating this process is important. We investigate speeding the process of x-ray
crystallography by automating this time-consuming step.

When interpreting a density map, the amino-acid sequence of the protein is known
in advance, giving the complete topology of the protein. However, the intractably
large conformational space of a protein – with hundreds of amino acids and
thousands of atoms – makes automated map interpretation challenging. A few
groups have attempted automatic interpretation, with varying success [1,2,3,4].

 1Å 2Å 3Å 4Å 5Å

Figure 1: This graphic
illustrates density map
quality at various reso-
lutions. All resolutions
depict the same alpha
helix structure

Confounding the problem are several sources of error that make automated
interpretation extremely difficult. The primary source of difficulty is due to the
crystal only diffracting to a certain extent, eliminating higher frequency components
of the density map. This produces an overall blurring effect evident in the density
map. This blurring is quantified as the resolution of the density map and is
illustrated in Figure 1. Noise inherent in data collection further complicates
interpretation. Given minimal noise and sufficiently good resolution – about 2.3Å
or less – automated density map interpretation is essentially solved [1]. However,
in poorer quality maps, interpretation is difficult and inaccurate, and other
automated approaches have failed.

The remainder of the paper describes DEFT (DEFormable Template), our
computational framework for building a flexible three-dimensional model of a
molecule, which is then used to locate patterns in the electron density map.

2 Pictorial structures

Pictorial structures model classes of objects as a single flexible template. The
template represents the object class as a collection of parts linked in a graph
structure. Each edge defines a relationship between the two parts it connects. For
example, a pictorial structure for a face may include the parts "left eye" and "right
eye." Edges connecting these parts could enforce the constraint that the left eye is
adjacent to the right eye. A dynamic programming (DP) matching algorithm of
Felzenszwalb and Huttenlocher (hereafter referred to as the F-H matching
algorithm) [5] allows pictorial structures to be quickly matched into a two-
dimensional image. The matching algorithm finds the globally optimal position and
orientation of each part in the pictorial structure, assuming conditional
independence on the position of each part given its neighbors.

Formally, we represent the pictorial structure as a graph G = (V,E), V = {v1,v2,…,vn}
the set of parts, and edge eij ∈ E connecting neighboring parts vi and vj if an explicit
dependency exists between the configurations of the corresponding parts. Each part
vi is assigned a configuration li describing the part's position and orientation in the
image. We assume Markov independence: the probability distribution over a part's
configurations is conditionally independent of every other part's configuration,
given the configuration of all the part's neighbors in the graph. We assign each edge
a deformation cost dij(li,lj), and each part a "mismatch" cost mi(li,I). These functions
are the negative log likelihoods of a part (or pair of parts) taking a specified
configuration, given the pictorial structure model.

The matching algorithm places the model into the image using maximum-likelihood.
That is, it finds the configuration L of parts in model Θ in image I maximizing

 () () ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞⎜

⎝
⎛= ∑∑ ∈∈ΘΘ∝Θ EV II),(,mexp,mexp1

)(),(),(
jviviv iiii ll

Z
LPLIPILP (1)

By monotonicity of exponentiation, this minimizes () ()∑∑ ∈∈ + EV I),(,d,m
jviviv .

The F-H matching algorithm places several additional limitations on the pictorial
structure. The object's graph must be tree structured (cyclic constraints are not
allowed), and the deformation cost function must take the form

jiijii lll

)()(ji ll jiij TT − , where
Tij and Tji are arbitrary functions and ||·|| is some norm (e.g. Euclidian distance).

Figure 2. An "interpreted" density map.
The right figure shows the arrangement of
atoms that generated the observed density.

N
C α

C C β
O

O

N
Cα

Cβ

C

Figure 3. An example of the
construction of a pictorial structure
model given an amino acid.

3 Building a f lexible atomic model

Given a three-dimensional map containing a large molecule and the topology (i.e.,
for proteins, the amino-acid sequence) of that molecule, our task is to determine the
Cartesian coordinates in the 3D density map of each atom in the molecule. Figure 2
shows a sample interpreted density map. DEFT finds the coordinates of all atoms
simultaneously by first building a pictorial structure corresponding to the protein,
then using F-H matching to optimally place the model into the density map. This
section describes DEFT's deformation cost function and matching cost function.

DEFT's deformation cost is related to the probability of observing a particular
configuration of a molecule. Ideally, this function is proportional to the inverse of
the molecule's potential function, since configurations with lower potential energy
are more likely observed in nature. However, this potential is quite complicated and
cannot be accurately approximated in a tree-structured pictorial structure graph.

Our solution is to only consider the relationships between covalently bonded atoms.
DEFT constructs a pictorial structure graph where vertices correspond to non-
hydrogen atoms, and edges correspond to the covalent bonds joining atoms. The
cost function each edge defines maintain invariants – interatomic distance and bond
angles – while allowing free rotation around the bond. Given the protein's amino
acid sequence, model construction, illustrated in Figure 3, is trivial. Each part's
configuration is defined by six parameters: three translational, three rotational
(Euler angles α, β, and γ). For the cost function, we define a new connection type
in the pictorial structure framework, the screw-joint, shown in Figure 4.

The screw-joint's cost function is mathematically specified in terms of a directed
version of the pictorial structure's undirected graph. Since the graph is constrained
by the fast matching algorithm to take a tree structure, we arbitrarily pick a root
node and point every edge toward this root. We now define the screw joint in terms
of a parent and a child. We rotate the child such that its z axis is coincident with the
vector from child to parent, and allow each part in the model (that is, each atom) to
freely rotate about its local z axis. The ideal geometry between child and parent is
then described by three parameters stored at each edge, xij = (xij, yij, zij). These three
parameters define the optimal translation between parent and child, in the
coordinate system of the parent (which in turn is defined such that its z-axis
corresponds to the axis connecting it to its parent).

In using these to construct the cost function dij, we define the function Tij, which
maps a parent vi's configuration li into the configuration lj of that parent's ideal child
vj. Given parameters xij on the edge between vi and vj, the function is defined
 () jjjjjjiiiiii zyxzyx γβαγβα ,,,,,,,,,, =ijT

(2)

with
ij αα = , ()zyxj ′−′+′= ,atan2 22β , ()xyj ′′+= ,atan22πγ , and

〉′′′〈+〉〈=〉〈 zyxzyxzyx iiijjj ,,,,,,

where (x', y', z') is rotation of the bond parameters (xij, yij, zij) to world coordinates.
That is, (ijijijiii γ,, with TT zyxzyx βαR=′′′),,(),, iii γ,β,αR the rotation matrix corresponding to
Euler angles (αi, βi, γi). The expressions for βj and γj define the optimal orientation
of each child: +z coincident with the axis that connects child and parent.

The F-H matching algorithm requires our cost function to take a particular form,
specifically, it must be some norm. The screw-joint model sets the deformation cost
between parent vi and child vj to the distance between child configuration lj and
Tij(li), the ideal child configuration given parent configuration li (Tji in equation (2)
is simply the identity function). We use the 1-norm weighted in each dimension,

().)()()(

),atan(2)(),atan()(

)(

)(),(

22

zzzyyyxxxw

xyzyxw

w

llll

jijiji
translate
ij

ijji
orient
ij

ji
rotate
ij

jiji

′−−+′−−+′−−+

⎟
⎠
⎞⎜

⎝
⎛ ′′+−−+′−′+′+−+

−=

−=

πγγββ

αα
ijij Td

(3)

In the above equation, ijw is the cost of rotating about a bond, ij is the cost
of rotating around any other axis, and ijw is the cost of translating in x, y or z.
DEFT's screw-joint model sets w to 0, and and w to +100.

rotate orientw
translate

rotate
ij

orient
ijw translate

ij

DEFT's match-cost function implementation is based upon Cowtan's fffear
algorithm [4]. This algorithm quickly and efficiently calculates the mean squared
distance between a weighted 3D template of density and a region in a density map.
Given a learned template and a corresponding weight function, fffear uses a Fourier
convolution to determine the maximum likelihood that the weighted template
generated a region of density in the density map.

For each non-hydrogen atom in the protein, we create a target template
corresponding to a neighborhood around that particular atom, using a training set of
crystallographer-solved structures. We build a separate template for each atom type
– e.g., the β-carbon (2nd sidechain carbon) of leucine and the backbone oxygen of
serine – producing 171 different templates in total. A part's m function is the fffear-
computed mismatch score of that part's template over all positions and orientations.

Once we construct the model, parameters – including the optimal orientation xij
corresponding to each edge, and the template for each part – are learned by training

vi

vj
(x',y',z')

(βi,γi)

(βj,γj) (xi,yi,zi)

(xj,yj,zj)

αj

αi Figure 4: Showing the screw-joint
connection between two parts in the
model. In the directed version of the
MRF, vi is the parent of vj. By
definition, vj is oriented such that
its local z-axis is coincident with it's
ideal bond orientation

ijijij
T),,(ij zyx=xv in vi. Bond para-

meters x are learned by DEFT. ij
v

the model on a set of crystallographer-determined structures. Learning the
orientation parameters is fairly simple: for each atom we define canonic coordinates
(where +z corresponds to the axis of rotation). For each child, we record the
distance r and orientation (θ,φ) in the canonic coordinate frame. We average over
all atoms of a given type in our training set – e.g., over all leucine β-carbon’s – to
determine average parameters ravg, θavg, and φavg. Converting these averages from
spherical to Cartesian coordinates gives the ideal orientation parameters xij.

A similarly-defined canonic coordinate frame is employed when learning the model
templates; in this case, DEFT's learning algorithm computes target and weight
templates based on the average and inverse variance over the training set,
respectively. Figure 5 shows an overview of the learning process. Implementation
used Cowtan's Clipper library.

For each part in the model, DEFT searches through a six-dimensional conformation
space (x,y,z,α,β,γ), breaking each dimension into a number of discrete bins. The
translational parameters x, y, and z are sampled over a region in the unit cell.
Rotational space is uniformly sampled using an algorithm described by Mitchell [6].

4 Model Enhancements

Upon initial testing, the pictorial-structure matching algorithm performs rather
poorly at the density-map interpretation task. Consequently, we added two routines
– a collision-detection routine, and an improved template-matching routine – to
DEFT's pictorial-structure matching implementation. Both enhancements can be
applied to the general pictorial structure algorithm, and are not specific to DEFT.

4 .1 Col l i s ion Detec t ion

Our closer investigation revealed that much of the algorithm's poor performance is
due to distant chains colliding. Since DEFT only models covalent bonds, the
matching algorithm sometimes returns a structure with non-bonded atoms
impossibly close together. These collisions were a problem in DEFT's initial
implementation. Figure 6 shows such a collision (later corrected by the algorithm).

Given a candidate solution, it is straightforward to test for spatial collisions: we
simply test if any two atoms in the structure are impossibly (physically) close
together. If a collision occurs in a candidate, DEFT perturbs the structure. Though

O

N N

O

C

Cα

N

Cβ

fffear Target Template Map

Averaged Bond Geometry

Standard
Orientation

N

C-1 Cα

C Cβ

O N+1

Alanine Cα

C

Cα

N

Cβ

r = 1.53
θ = 0.0°
φ = -19.3°

r = 1.51
θ = 118.4°
φ = -19.7°

Figure 5: An overview of the parameter-learning process. For each atom of a given
type – here alanine Cα – we rotate the atom into a canonic orientation. We then
average over every atom of that type to get a template and average bond geometry.

the optimal match is no longer returned, this approach works well in practice. If
two atoms are both aligned to the same space in the most probable conformation, it
seems quite likely that one of the atoms belongs there. Thus, DEFT handles
collisions by assuming that at least one of the two colliding branches is correct.
When a collision occurs, DEFT finds the closest branch point above the colliding
nodes – that is, the root y of the minimum subtree containing all colliding nodes.
DEFT considers each child xi of this root, matching the subtree rooted at xi, keeping
the remainder of the tree fixed. The change in score for each perturbed branch is
recorded, and the one with the smallest score increase is the one DEFT keeps.

Figure 6. This illustrates the
collision avoidance algorithm. On
the left is a collision (the predicted
molecule is in the darker color).
The amino acid's sidechain is
placed coincident with the back-
bone. On the right, collision
avoidance finds the right structure.

Table 1 describes the collision-avoidance algorithm. In the case that the colliding
node is due to a chain wrapping around on itself (and not two branches running into
one another), the root y is defined as the colliding node nearest to the top of the tree.
Everything below y is matched anew while the remainder of the structure is fixed.

4 .2 Improved templa te match ing

In our original implementation, DEFT learned a template by averaging over each of
the 171 atom types. For example, for each of the 12 (non-hydrogen) atoms in the
amino-acid tyrosine we build a single template – producing 12 tyrosine templates in
total. Not only is this inefficient, requiring DEFT to match redundant templates
against the unsolved density map, but also for some atoms in flexible sidechains,
averaging blurs density contributions from atoms more than a bond away from the
target, losing valuable information about an atom's neighborhood.

DEFT improves the template-matching algorithm by modeling the templates using a
mixture of Gaussians, a generative model where each template is modeled using a
mixture of basis templates. Each basis template is simply the mean of a cluster of
templates. Cluster assignments are learned iteratively using the EM algorithm. In
each iteration of the algorithm we compute the a priori likelihood of each image
being generated by a particular cluster mean (the E step). Then we use these
probabilities to update the cluster means (the M step). After convergence, we use
each cluster mean (and weight) as an fffear search target.

Table 1. DEFT's collision handing routine.

Given: An illegal pictorial structure configuration L = {l1,l2,…,ln}
Return: A legal perturbation L'
Algorithm:
 X ← all nodes in L illegally close to some other node
 y ← root of smallest subtree containing all nodes in X
 for each child xi of y
 Li ← optimal position of subtree rooted at xi fixing remainder of tree
 scorei ← score(Li) – score(subtree of L rooted at xi)
 imin ← arg min (scorei)
 L' ← replace subtree rooted at xi in L with Limin

 return L'

5 Experimental Studies

We tested DEFT on a set of proteins provided by the Phillips lab at the University
of Wisconsin. The set consists of four different proteins, all around 2.0Å in
resolution. With all four proteins, reflections and experimentally-determined initial
phases were provided, allowing us to build four relatively poor-quality density
maps. To test our algorithm with poor-quality data, we down-sampled each of the
maps to 2.5, 3 and 4Å by removing higher-resolution reflections and recomputed the
density. These down-sampled maps are physically identical to maps natively
constructed at this resolution. Each structure had been solved by crystallographers.

For this paper, our experiments are conducted under the assumption that the
mainchain atoms of the protein were known to within some error factor. This
assumption is fair; approaches exist for mainchain tracing in density maps [7].
DEFT simply walks along the mainchain, placing atoms one residue at a time
(considering each residue independently).

We split our dataset into a training set of about 1000 residues and a test set of about
100 residues (from a protein not in the training set). Using the training set we built
a set of templates for matching using fffear. The templates extended to a 6Å radius
around each atom at 0.5Å sampling. Two sets of templates were built and
subsequently matched: a large set of 171 produced by averaging all training set
templates for each atom type, and a smaller set of 24 learned through by the EM
algorithm. We ran DEFT's pictorial structure matching algorithm using both sets of
templates, with and without the collision detection code.

Although placing individual atoms into the sidechain is fairly quick, taking less than
six hours for a 200-residue protein, computing fffear match scores is very CPU-
demanding. For each of our 171 templates, fffear takes 3-5 CPU-hours to compute
the match score at each location in the image, for a total of one CPU-month to
match templates into each protein! Fortunately the task is trivially parallelized; we
regularly do computations on over 100 computers simultaneously.

The results of all tests are summarized in Figure 7. Using individual-atom
templates and the collision detection code, the all-atom RMS deviation varied from
1.38Å at 2Å resolution to 1.84Å at 4Å. Using the EM-based clusters as templates
produced slight or no improvement. However, much less work is required; only 24
templates need to be matched to the image instead of 171 individual-atom templates.
Finally, it was promising that collision detection leads to significant error reduction.

It is interesting to note that
individually using the improved
templates and using the collision
avoidance both improved the
search results; however, using
both together was a bit worse than
with collision detection alone.
More research is needed to get a
synergy between the two
enhancements. Further investi-
gation is also needed balancing
between the number and templates
and template size. The match cost
function is a critically important
part of DEFT and improvements
there will have the most profound
impact on the overall error.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2A 2.5A 3A 4A
Density Map Resolution

Te
st

 P
ro

te
in

 R
M

S
D

ev
ia

tio
n

base
improved templates only
collision detection + improved templates
collision detection only

Figu ies. re 7. Testset error under four strateg

6 Conclusions and future work

DEFT has applied the F-H pictorial structure matching algorithm to the task of
interpreting electron density maps. In the process, we extended the F-H algorithm
in three key ways. In order to model atoms rotating in 3D, we designed another
joint type, the screw joint. We also developed extensions to deal with spatial
collisions of parts in the model, and implemented a slightly-improved template
construction routine. Both enhancements can be applied to pictorial-structure
matching in general, and are not specific to the task presented here.

DEFT attempts to bridge the gap between two types of model-fitting approaches for
interpreting electron density maps. Several techniques [1,2,3] do a good job
placing individual atoms, but all fail around 2.5-3Å resolution. On the other hand,
fffear [4] has had success finding rigid elements in very poor resolution maps, but is
unable to locate highly flexible “loops”. Our work extends the resolution threshold
at which individual atoms can be identified in electron density maps. DEFT's
flexible model combines weakly-matching image templates to locate individual
atoms from maps where individual atoms have been blurred away. No other
approach has investigated sidechain refinement in structures of this poor resolution.

We next plan to use DEFT as the refinement phase complementing a coarser
method. Rather than model the configuration of each individual atom, instead treat
each amino acid as a single part in the flexible template, only modeling rotations
along the backbone. Then, our current algorithm could place each individual atom.

A different optimization algorithm that handles cycles in the pictorial structure
graph would better handle collisions (allowing edges between non-bonded atoms).
In recent work [8], loopy belief propagation [9] has been used with some success
(though with no optimality guarantee). We plan to explore the use of belief propa-
gation in pictorial-structure matching, adding edges in the graph to avoid collisions.

Finally, the pictorial-structure framework upon which DEFT is built seems quite
robust; we believe the accuracy of our approach can be substantially improved
through implementation improvements, allowing finer grid spacing and larger fffear
ML templates. The flexible molecular template we have described has the potential
to produce an atomic model in a map where individual atoms may not be visible,
through the power of combining weakly matching image templates. DEFT could
prove important in high-throughput protein-structure determination.

Acknowledgments
This work supported by NLM Grant 1T15 LM007359-01, NLM Grant 1R01 LM07050-01,
and NIH Grant P50 GM64598.

References
[1] A. Perrakis, T. Sixma, K. Wilson, & V. Lamzin (1997). wARP: improvement and

extension of crystallographic phases. Acta Cryst. D53:448-455.
[2] D. Levitt (2001). A new software routine that automates the fitting of protein X-ray

crystallographic electron density maps. Acta Cryst. D57:1013-1019.
[3] T. Ioerger, T. Holton, J. Christopher, & J. Sacchettini (1999). TEXTAL: a pattern

recognition system for interpreting electron density maps. Proc. ISMB:130-137.
[4] K. Cowtan (2001). Fast fourier feature recognition. Acta Cryst. D57:1435-1444.
[5] P. Felzenszwalb & D. Huttenlocher (2000). Efficient matching of pictorial structures.

Proc. CVPR. pp. 66-73.
[6] J. Mitchell (2002). Uniform distributions of 3D rotations. Unpublished Document.
[7] J. Greer (1974). Three-dimensional pattern recognition. J. Mol. Biol. 82:279-301.
[8] E. Sudderth, M. Mandel, W. Freeman & A Willsky (2005). Distributed occlusion

reasoning for tracking with nonparametric belief propagation. NIPS.
[9] D. Koller, U. Lerner & D. Angelov (1999). A general algorithm for approximate

inference and its application to hybrid Bayes nets. UAI. 15:324-333.

	Introduction
	Pictorial structures
	Building a flexible atomic model
	Model Enhancements
	Collision Detection
	Improved template matching

	Experimental Studies
	Conclusions and future work
	Acknowledgments
	References

