

Computer
Sciences
Department

Probabilistic Methods for Interpreting
Electron-Density Maps

Frank Paul DiMaio

Technical Report #1617

October 2007

PROBABILISTIC METHODS FOR INTERPRETING ELECTRON-DENSITY MAPS

by

Frank Paul DiMaio

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2007

i

ACKNOWLEDGMENTS

I am fortunate to have been assisted by many people during my graduate career.

I first would like to acknowledge my advisor, Jude Shavlik, who has been a wonderful teacher

and mentor. He has played a very important role in my graduate career, and a great majority of

what I learned in graduate school is due to him.

I would also like to thank the members of my committee, all of whom have been great sources

of guidance: George Phillips, Mark Craven, David Page, and Chuck Dyer. I learned an incredible

amount of biology from conversations with George. Mark and David, as part of the machine

learning group, have both had tremendous influence on my graduate career. What was to become

this thesis began as a class project in Chuck’s class.

I would also like to thank my collaborators, Ameet Soni, Dmitry Kondrashov, Ed Bitto and

Craig Bingman. Many important ideas in this thesis began as conversations with Ameet and

Dmitry.

I would like to thank all of the people who were fellow students in the machine learning group

at one time or another during my graduate career: Soumya Ray, Joe Bockhorst, Aaron Darling,

Sean McIlwain, Yue Pan, Adam Smith, Mark Goadrich, Burr Settles, Michael Waddell, Mike

Molla, Keith Noto, Louis Oliphant, Trevor Walker, Lisa Torrey, Jesse Davis, Beverly Seavey, Irene

Ong, Dave Andrzejewski and Eric Lantz.

Finally, I want to thank my sources of funding, the University of Wisconsin Graduate School

and the National Library of Medicine (1R01 LM008796 and 1T15 LM007359). I would also like

to acknowledge the Computation and Informatics in Biology and Medicine Training Program and

Louise Pape.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ALGORITHMS . xi

ABSTRACT . xii

1 Introduction . 1

1.1 Electron-density map interpretation . 1
1.2 Probabilistic reasoning . 3
1.3 Thesis statement . 4
1.4 Outline . 4

2 Background and Related Work . 6

2.1 Background . 6
2.1.1 Protein structure . 7
2.1.2 X-ray crystallography . 9
2.1.3 Algorithmic background . 13
2.1.4 Undirected graphical models . 15

2.2 Alternative approaches to automatic density-map interpretation 18
2.2.1 ARP/WARP . 20
2.2.2 RESOLVE . 25
2.2.3 TEXTAL . 32
2.2.4 Summary of approaches . 37

2.3 Discussion . 38

3 A Probabilistic Approach to Protein-Backbone Tracing 39

3.1 Overview of the algorithm . 39
3.2 Local matching . 41

iii

Page

3.2.1 Constructing a sequence-specific 5-mer basis set 41
3.2.2 Searching the map for 5-mer template structures 42
3.2.3 Additional sources of local information 45
3.2.4 Discussion . 46

3.3 Global constraints . 46
3.3.1 Pairwise Markov-field model . 48
3.3.2 ACMI-BP’s inference algorithm . 52
3.3.3 Technical challenges . 53

3.4 Experiments . 55
3.5 Conclusions and future work . 57

4 Improved Template Matching Using Spherical Harmonics 60

4.1 The goal of template matching . 60
4.2 Spherical harmonics and the fast rotation function 61
4.3 A method for fast template matching . 63

4.3.1 Overview of the approach . 63
4.3.2 Advantages of rotational “convolution” 66
4.3.3 Modified pentapeptide templates . 67

4.4 Results . 68
4.4.1 Errors in band-limiting density . 69
4.4.2 First-pass filtering . 70
4.4.3 Template matching . 71
4.4.4 Comparison of protein models produced 72

4.5 Conclusions and future work . 72

5 Creating All-Atom Protein Models using Particle Filtering 75

5.1 Shortcomings in ACMI-BP’s model . 75
5.2 Particle-filtering overview . 77
5.3 ACMI-PF’s protein-particle model . 78

5.3.1 Using ACMI-BP-computed marginals to place Cα’s 79
5.3.2 Using sidechain templates to sample sidechains 83
5.3.3 Sampling order . 85

5.4 Experiments . 86
5.4.1 Methodology . 86
5.4.2 ACMI-NAÏVE versus ACMI-PF . 87
5.4.3 Comparison to other algorithms . 89

5.5 Iterative phase improvement with ACMI-PF . 91
5.5.1 The phase problem . 91

iv

Page

5.5.2 Using ACMI-PF for phase improvement 92
5.5.3 Multiple iterations of ACMI-PF . 93

5.6 Conclusions and future work . 94

6 Pictorial Structures for Atom-level Models . 97

6.1 Pictorial structures . 97
6.2 Building a flexible atomic model . 98
6.3 Model enhancements . 102

6.3.1 Collision detection . 103
6.3.2 Improved template matching . 103

6.4 Experimental studies . 105
6.5 Conclusions and future work . 105

7 Improving the Efficiency of Belief Propagation . 107

7.1 Introduction . 107
7.2 Modeling 3D objects . 108
7.3 Scaling belief propagation . 110

7.3.1 BP message aggregation . 110
7.3.2 Message representation . 112

7.4 Experiments . 116
7.4.1 Protein-fragment identification . 116
7.4.2 Synthetic-object recognition . 118

7.5 Conclusions and future work . 124

8 Conclusion . 125

8.1 Probabilistic protein-backbone tracing . 126
8.2 Improved template matching in density maps . 126
8.3 Constructing protein models using particle filtering 127
8.4 Atom-level matching using pictorial structures . 128
8.5 A general object-recognition framework . 128
8.6 Final wrapup . 128

APPENDICES

Appendix A: Datasets . 130
Appendix B: Supplementary experiments . 134

GLOSSARY . 137

v

Page

LIST OF REFERENCES . 139

vi

LIST OF TABLES

Table Page

2.1 The rotation-invariant features used by TEXTAL . 34

5.1 The use of multiple protein structures reduces phase errors more than a single structure 94

A.1 The four proteins in Dataset 1 . 130

A.2 The ten proteins in Dataset 2 . 131

A.3 The ten proteins in Dataset 3 . 133

vii

LIST OF FIGURES

Figure Page

1.1 An overview of density-map interpretation . 2

2.1 Proteins are constructed by joining chains of amino acids in peptide bonds 7

2.2 A protein’s primary, secondary, and tertiary structure 8

2.3 An overview of the crystallographic process . 9

2.4 An all-atom protein model and corresponding Cα trace 10

2.5 A tryptophan residue’s density at several resolutions 11

2.6 A tryptophan residue’s density as mean phase error varies 12

2.7 A simple pairwise Markov-field model . 16

2.8 The 2.5Å resolution electron-density map of the 95-amino-acid protein 1XMT 21

2.9 A flowchart of ARP/WARP’s WARPNTRACE . 22

2.10 Intermediate steps in ARP/WARP’s structure determination 23

2.11 A flowchart of RESOLVE . 25

2.12 The averaged helix and strand fragment used in RESOLVE’s initial matching step . . . 26

2.13 Intermediate steps in RESOLVE’s structure determination 27

2.14 A flowchart of TEXTAL . 32

2.15 Intermediate steps in TEXTAL’s structure determination 35

3.1 The 5-mer clustering process . 42

3.2 An overview of the 5-mer template matching process 43

viii

Figure Page

3.3 Backbone traces maximizing prior probabilities and posterior probabilities 47

3.4 The structure of ACMI-BP’s graphical model . 48

3.5 An illustration of an amino acid’s internal rotational parameters 50

3.6 The angular constraint function pΘ . 51

3.7 A simple example of message passing using belief propagation 53

3.8 An illustration of occupancy message aggregation . 55

3.9 Graphs comparing ACMI’s, TEXTAL’s, and RESOLVE’s interpretation 57

3.10 A scatterplot showing ACMI’s performance on a protein-by-protein basis 58

3.11 An illustration of predicted versus actual structure on ACMI’s sixth-best prediction
(out of ten) at 3.5Å resolution . 58

4.1 The real and imaginary components of several low-order spherical harmonics 62

4.2 An overview of spherical-harmonic decomposition 63

4.3 ACMI-SH’s improved template-matching algorithm 64

4.4 Differences between ACMI-FF’s and ACMI-SH’s density templates 68

4.5 The average squared density difference between a region of sampled density and the
bandwidth-limited region . 69

4.6 A comparison of four different filters for quickly eliminating some portion of the
density map . 70

4.7 A comparison of ACMI-SH’s and ACMI-FF’s template matching 71

4.8 A comparison of ACMI-SH+BP’s protein models with three other methods 73

5.1 One case where a maximum-marginal trace may be undesirable 76

5.2 A pictorial look at particle filtering . 78

5.3 Conditional dependencies in sidechain and Cα layout 79

ix

Figure Page

5.4 An overview of the backbone forward-sampling step 82

5.5 An overview of the sidechain sampling step . 84

5.6 A comparison of the Rfree of ACMI-NAÏVE and ACMI-PF 88

5.7 A comparison of ACMI-PF’s model completeness to three other automatic interpreta-
tion methods . 89

5.8 A comparison of ACMI-PF’s free R factor to three other automatic interpretation
methods . 90

5.9 An overview of iterative phase improvement in crystallographic density maps 92

5.10 A scatterplot comparing the error of ACMI-PF’s calculated phases with the error of
the experimentally estimated phases . 93

5.11 Scatterplots comparing results after one and two iterations of ACMI 95

5.12 Mean phase error as a function of iteration . 95

6.1 DEFT’s construction of the pictorial-structure graph given an amino acid 99

6.2 The screw-joint, which connects atoms in DEFT’s model 99

6.3 DEFT’s parameter-learning process . 102

6.4 An example of DEFT’s collision correction . 103

6.5 DEFT’s leave-one-protein-out testset errors . 106

7.1 A graphical model for recognizing a person in an image 110

7.2 AGGBP’s message aggregation . 113

7.3 A comparison of memory and CPU time usage between AGGBP and LOOPYBP . . . 116

7.4 A comparison of AGGBP to LOOPYBP at each iteration of message passing 117

7.5 RMS error of AGGBP and LOOPYBP as a function of protein fragment size 117

x

Figure Page

7.6 A scatterplot comparing log likelihoods of AGGBP’s and LOOPYBP’s maximum-
marginal backbone models . 119

7.7 Four graph-topology parameters that one may vary using my graph generator 120

7.8 Observation potentials are generated by drawing scores from two distributions 120

7.9 A comparison of AGGBP and LOOPYBP using the synthetic-object generator 122

A.1 Data was downsampled by smoothly diminishing reflection intensities 131

A.2 A scatterplot showing experimental data quality in terms of the map resolution and
mean phase error . 132

B.1 A comparison of a single template’s contribution to the observation potential ψi to the
mixture-of-Gaussian approximation . 135

B.2 A comparison of ACMI’s observation potential ψi to the mixture-of-Gaussian approx-
imation . 136

B.3 The KL-divergence of AGGBP’s messages versus LOOPYBP’s messages as a function
of Cα–Cα distance . 136

xi

LIST OF ALGORITHMS

Algorithm Page

2.1 Belief propagation . 17

2.2 WARPNTRACE’s model-building algorithm . 24

2.3 RESOLVE’s chain-assembly algorithm . 29

2.4 RESOLVE’s sidechain-placement algorithm . 31

2.5 TEXTAL’s CAPRA subroutine for calculating the initial backbone trace 34

2.6 TEXTAL’s LOOKUP subroutine for placing sidechains 36

3.1 ACMI’s algorithm for inferring protein Cα locations 40

4.1 ACMI-SH’s template matching . 65

5.1 ACMI-PF grows a protein model in two phases . 80

5.2 ACMI-PF generates multiple models through multiple independent runs 86

6.1 DEFT’s collision-handing routine . 104

7.1 Aggregate belief propagation . 114

xii

ABSTRACT

With recent advances in structural genomics, there has been considerable interest in the rapid de-
termination of protein structures in a high-throughput setting. One bottleneck in this process arises
in protein crystallography, and deals with interpretation of the electron-density map, the three-
dimensional “picture” of the protein that crystallography produces. This thesis presents a novel
solution to this important problem of electron-density map interpretation. I apply probabilistic
methods to automate the interpretation of poor-quality electron-density maps.

I show my probabilistic approach to density-map interpretation leads to more complete and
more accurate protein models, in terms of the fraction of the protein automatically interpreted,
as well as the RMS error of my method’s inferred models versus “ground truth” (the deposited
structure), than do other automated approaches. My probabilistic approach is also amenable to
production of multiple protein models that explain the observed density. I show that multiple static
conformations generated by my framework do a better job of explaining the observed density
than does a single structure, based on the Rfree metric, which measures the difference between
observed and predicted crystallographic reflection data on a testset of held-aside data. My method
accurately interprets 3-4Å density maps, further extending the resolution of density maps that can
be automatically interpreted.

This thesis also describes several computational contributions. I describe a significant improve-
ment over previous work in three-dimensional template matching in electron-density maps. I use
the spherical-harmonic decomposition of a template to rapidly search for all rotations of the tem-
plate. This offers both improved efficiency and accuracy compared to previous work, producing
better models in 60% of the running time. I present a novel joint type as well as improved meth-
ods for collision-handling in part-based object-recognition. Finally, I present a general part-based
object-recognition framework specialized for identifying topologically complex objects in large
three-dimensional images. My framework introduces an algorithm that improves the efficiency
of current probabilistic inference algorithms. This improved efficiency allows recognition of ob-
jects with hundreds of parts. Although originally developed for density-map interpretation, these
computational contributions may be beneficial in other problem domains.

1

Chapter 1

Introduction

In recent years, considerable investment into high-throughput determination of protein struc-
tures has yielded a wealth of new data. The demand for rapid structure solution is growing, and
automated methods are being deployed at all stages of the structure determination process. New
technologies includes cell-free methods for protein production [100], the use of robotics to en-
able massive arrays of crystallization conditions [104], and software for automated building of
macromolecular models based on the electron-density map [27, 55, 84, 110].

My thesis concerns this last problem: given an electron-density map – a three-dimensional
image of a protein – one wants to identify the location of each atom in the protein in this im-
age. Traditionally, a human performs this interpretation, perhaps aided by a graphics display.
Recently, however, algorithms for automatically constructing such a model have come into general
use. If the image quality is sufficiently good, these algorithms produce quite accurate models with
little human intervention. However, when the image quality is poor, significant human input is
required. Methods for accurate model construction in noisy, poor-quality maps are important to
high-throughput protein-structure determination.

Additionally, rich three-dimensional data commonly arises in other biological domains, partic-
ularly with recent advancements in biological-imaging techniques. For example, fMRI scans [102]
produce detailed 3D images of the brain. Confocal microscopy [92] constructs high-quality 3D
images of tissues. Electron cryomicroscopy (cryo-EM) [12] gives detailed images of large macro-
molecular complexes. This three-dimensional data often contains objects comprised of many parts,
connected with some complex topology.

With easier acquisition of detailed biological imagery, techniques to accurately interpret such
images are needed. A vascular biologist may want to automatically locate all the blood vessels in
a kidney section. A virologist may want to identify the 3D geometry of a virus capsid from a cryo-
EM scan. Even rich two-dimensional data, such as detailed satellite imagery, may contain complex
objects that cannot be fully interpreted using current methods. As with density-map interpretation,
methods for automatically analyzing this complex, three-dimensional data are critically important.

1.1 Electron-density map interpretation

The electron-density map is a real-valued function defined on a three-dimensional grid of points
covering the unit cell, which is the basic repeating unit in the protein crystal. A crystallographer

2

(a) (b)

Figure 1.1 An overview of density-map interpretation. (a) A raw density map, with contours
enclosing regions of higher density, and (b) with a model of predicted protein structure, where
sticks indicate bonds between atoms.

starts with the amino-acid sequence of the protein, and attempts to place these amino acids in the
unit cell, based on the shape of the electron-density contours.

My thesis addresses the use of probabilistic reasoning to automatically produce an all-atom
protein model from an electron-density map. The general task I address is:

Given: electron-density map M
amino-acid sequence seq

Predict: 3D coordinates (x, y, z) of each atom in the protein

The task is depicted graphically in Figure 1.1. Given the electron-density map – illustrated as
an isocontoured surface – in Figure 1.1a, I want to automatically produce the model illustrated
in Figure 1.1b, that is, a model of atomic positions consistent with the electron-density (sticks
indicate bonds between atoms). This task is biologically challenging for several reasons:

• The difficulty in coercing certain proteins to crystallize often leads to the production of
small, poor-quality crystals. The data one can collect from such crystals is limited, leading to
poor density-map resolution. In these poor-resolution maps, individual atoms are no longer
visible.

• Due to phasing error, density maps often suffer from significant noise. Before a map is com-
puted, a crystallographer must measure reflection intensity and estimate reflection phases.

3

Phasing error is due to the fact that experimentally determined phases are typically inac-
curate [97], leading to distortion in the density map [15]. Noise in data collection may also
introduce distortion into the density map. Identifying and isolating a single copy, while com-
bining information from multiple copies is challenging from a computational perspective.

• An electron-density map is really an “average” over a 3D matrix of protein molecules in the
crystal. Flexible regions in the protein are averaged out in this image, producing portions
of the protein chain for which little or no density is visible. Crystallographers can use their
structural “background knowledge” to fill in gaps, but in many maps, large portions of the
protein molecule are left unstructured, even in the final model deposited in the Protein Data
Bank [3].

Throughout the remainder of my thesis, I show that a probabilistic approach to the problem of
density-map interpretation is able to address each of these difficulties. By building a model based
on the amino-acid sequence of a protein, and finding the most-probable position of each atom
given the sequence and the density map, I am able to more accurately interpret poor-quality maps.

1.2 Probabilistic reasoning

Probabilistic models [6, 60], such as Bayesian networks and Markov fields, provide a natural
way of representing uncertainty in the outcome of an event. These models are particularly well-
suited to handling noisy data, hidden (i.e., unobserved) states, and complex interactions between
variables. They have been successfully applied to a number of biological problems [51], where
these types of complexities are common. A key reason for their success is their expressive power.

Probabilistic reasoning, or inference, tries to say something about some variable in a proba-
bilistic model, given some observations. While probabilistic models are expressively powerful,
inference becomes more difficult as model complexity increases. One key challenge in machine
learning is inference in complex probabilistic models [48].

Density-map interpretation is computationally challenging for several reasons:

• There is significant local redundancy in the data. A particular amino acid may appear in
dozens of places in the density map; with the exception of several large, ring-containing
amino acids, many amino acids appear quite similar. To align the sequence to the map
requires one take global view of the protein.

• Proteins are quite large – often containing several thousand amino acids – and flexible. No
two atoms can occupy the same 3D location, so one cannot easily employ a divide-and-
conquer strategy, placing portions of the protein independently.

• Density maps are quite large. Accurately modeling probability distributions over a density
map requires one make significant simplifying assumptions.

4

My thesis proposes several novel machine-learning contributions to deal with these computa-
tional challenges. A key contribution is the idea of aggregating amino-acids in the protein, and
approximating their combined probability distribution with a single probability distribution.

The inference techniques I develop also address the more general problem of identifying com-
plex, highly flexible objects from images. I develop a general framework for identifying part-based
models in image data. I extend the idea of “part aggregation” to generic part-based object models,
enabling tractable inference for complex objects with many flexible parts.

1.3 Thesis statement

I hypothesize that a probabilistic approach to density-map interpretation will lead to more com-
plete protein models, in terms of fraction of the protein placed in the density map, and more accu-
rate protein models, in terms of sidechain identification and RMS deviation versus “ground truth”
(the structure deposited in the protein data bank [3]), than other automated approaches. I propose a
probabilistic method to automate the interpretation of poor-quality electron-density maps. A prob-
abilistic model known as a pairwise Markov random field represents amino acids of the protein
as nodes in a graph, while spatial constraints between pairs of amino-acids are modeled as edges.
My probabilistic approach is also amenable to production of multiple protein models that explain
the observed density. I hypothesize that multiple static conformations do a better job explaining
the observed density than does a single structure, based on the Rfree metric, which measures the
difference between observed and predicted reflections on a testset of held-aside reflections.

1.4 Outline

The remainder of my thesis is organized in the following manner:

• Chapter 2 contains relevant background material. I first present essential computational and
probabilistic material, followed by a detailed description of density-map interpretation. In
this chapter, I also present in detail three alternate approaches (of others) from the literature,
illustrating how each algorithm approaches this task.

• Chapter 3 describes a probabilistic model for inferring a coarse protein structural model. I
describe construction of my probabilistic model – based on a protein’s amino-acid sequence
– that assigns a probability to each potential structure, and how I infer the most-probable
structure under such a model.

• Chapter 4 investigates further one particular subtask of the backbone-inference problem:
how to rapidly search the entire map for a small density template. I describe the use of
spherical harmonics to rapidly search a density map for all rotations of a template. I show
that using a spherical harmonic decomposition to search for small templates locates template
instances more accurately and in less time than previous approaches.

5

• Chapter 5 describes how an all-atom protein model is constructed from the inferred backbone
using particle-filtering methods. I consider growing an ensemble of protein models one
amino acid at a time, resampling the ensemble at regular intervals to maintain a set of high-
probability partial models. I empirically show that the resultant models are more accurate
than those produced by other methods.

• Chapter 6 explores at an alternate approach to constructing an all-atom model, using a part-
based model similar to the backbone model of Chapter 3. I describe a new joint type for
modelling covalently bonded atoms. An efficient dynamic programming-algorithm finds
the most likely placement of individual atoms in the model. Several variations improve the
quality of atom placement.

• Chapter 7 generalizes the framework introduced Chapter 3, describing a generic part-based
object-recognition model. I also introduce the idea of “message aggregation” for belief
propagation, which makes inference tractable in objects – like proteins – with many flexible
connections.

• Chapter 8 concludes my thesis, describing contributions, lessons learned, and summarizes
some interesting possible directions for future research.

• Two appendices present additional material outside the scope of the thesis: Appendix A
describes the various datasets I used for testing, while Appendix B presents some supple-
mentary experimental data. A glossary defines frequently used terminology.

6

Chapter 2

Background and Related Work

The purpose of this chapter is to present a brief background of biological and computational
material relevant to the remainder of this thesis. This chapter begins with a brief introduction
to structural biology and X-ray crystallography. I describe the problem of electron-density map
interpretation in detail, and introduce several other algorithms used for automatic interpretation.
In this chapter, I also describe three widely used methods in greater detail. I apply each algo-
rithm to a sample density map, illustrating each algorithm’s intermediate steps and the resulting
interpretation. For each algorithm, I present pseudocode and program-flow diagrams, and discuss
advantages and shortcomings.

2.1 Background

Knowledge of a protein’s fold – that is, the sequence-determined, three-dimensional structure –
is valuable to biologists. A protein’s structure provides great insight into the mechanisms by which
a protein acts, and knowing these mechanisms helps increase our basic understanding of the under-
lying biology. Structural knowledge is increasingly important in disease treatment, and has led to
the creation of catalysts with industrial uses. No existing computer algorithm can accurately map
sequence to 3D structure; however, several experimental (i.e., “wet lab”) techniques exist for deter-
mining macromolecular structure. The most commonly used method, employed for about 80% of
structures currently known, is X-ray crystallography. This time-consuming and resource-intensive
process uses the pattern of X-rays diffracted off of a crystallized matrix of protein molecules to
produce an electron-density map. This electron-density map is a three-dimensional “picture” of
the electron clouds surrounding each protein atom. Producing a protein structure is then a matter
of identifying the location of each of the protein’s atoms in this 3D picture.

Density map interpretation – traditionally performed by a crystallographer – is time-consuming
and, in noisy or poor-quality maps, often error-prone. Recently, a number of research groups have
looked into automatically interpreting electron-density maps, using ideas from machine learning
and computer vision. These methods have played a significant role in high-throughput structure
determination, allowing novel protein structures to more quickly be elucidated.

7

H N

H

C

H

C

O

CH2

OH

N

H

C

H

C

O

CH

H3C

N

H

C

H

C

O

CH2

SH CH3

OH

Amino end
(N -terminus)

Carboxyl end
(C -terminus)

Peptide
bond

Sidechains

Backbone

Alpha
carbon

Amino-acid residue

Figure 2.1 Proteins are constructed by joining chains of amino acids in peptide bonds. A chain of
three amino-acid residues is illustrated.

2.1.1 Protein structure
Proteins (also called polypeptides) are constructed from a set of building blocks called amino

acids. Each of the twenty naturally-occurring amino acids consists of an amino group and a car-
boxylic acid group on one end, and a variable chain on the other. When forming a protein, adjacent
amino groups and carboxylic acid groups condense to form a repeating backbone (or mainchain),
while the variable regions become dangling sidechains. Each condensed amino acid in the protein
is referred to as an amino-acid residue, or simply a residue for short. The atom at the interface
between the sidechain and the backbone is known as the alpha carbon, or Cα (see Figure 2.1). The
linear list of amino acids composing a protein is often referred to as the protein’s primary structure
(see Figure 2.2a).

A protein’s secondary structure (see Figure 2.2b) refers to the common three-dimensional struc-
tural motifs taken by continuous segments in the protein. There are two such motifs: α-helices, in
which the peptide chain folds in a corkscrew, and β-strands, where the chain stretches out linearly.
In most proteins, several β-strands run parallel or antiparallel to one another. These regular struc-
tural motifs are connected by less-regular structures, called loops (or turns). A protein’s secondary
structure can be predicted somewhat accurately from its amino-acid sequence [98].

Finally, a protein’s three-dimensional conformation – also called its tertiary structure (see Fig-
ure 2.2c) – is uniquely determined from its amino-acid sequence (with some exceptions). No
existing computer algorithm can accurately map sequence to tertiary structure; instead, one must
rely on experimental techniques, primarily X-ray crystallography, to determine tertiary structure.

8

(c)

MET−SER−SER−SER−SER−SER−VAL−PRO−ALA−TYR−LEU−GLY−ALA−
LEU−GLY−TYR−MET−ALA−MET−VAL−PHE−ALA−CYS−...

(a)

(b)

MET−SER−SER−SER−SER−SER−VAL−PRO−ALA−TYR−LEU−GLY−ALA−

LEU−GLY−TYR−MET−ALA−MET−VAL−PHE−ALA−CYS−...

Figure 2.2 An illustration of (a) a protein’s primary structure, the linear amino-acid sequence of
the protein, (b) a protein’s secondary structure, which describes local structural motifs such as
alpha helices and beta sheets, and (c) a protein’s tertiary structure, the global three-dimensional
conformation of the protein.

9

Data
collection

Phasing
experiments

X-ray
diffraction

FFT

Interpretation

NREFlections= 13624
ANOMalous= FALSe
DECLare NAME=IOBS DOMAin=RECIprocal TYPE=REAL END
DECLare NAME=SIGI DOMAin=RECIprocal TYPE=REAL END
DECLare NAME=FOBS DOMAin=RECIprocal TYPE=REAL END
DECLare NAME=SIGMA DOMAin=RECIprocal TYPE=REAL END
INDEx= 0 0 2 IOBS= 877.50 SIGI= 44.00
 FOBS= 29.62 SIGMA= 0.75
INDEx= 0 0 3 IOBS= 20114.70 SIGI= 994.60
 FOBS= 141.83 SIGMA= 3.55
INDEx= 0 0 4 IOBS= 17701.90 SIGI= 794.10
 FOBS= 133.05 SIGMA= 3.02
INDEx= 0 0 5 IOBS= 380.90 SIGI= 24.70
 FOBS= 19.52 SIGMA= 0.64
INDEx= 0 0 6 IOBS= 6762.20 SIGI= 266.70
 FOBS= 82.23 SIGMA= 1.64
INDEx= 0 0 7 IOBS= 2333.80 SIGI= 108.40
 FOBS= 48.31 SIGMA= 1.14

 0 0 2 29.62 0.00 0.00
 0 0 3 141.83 0.00 0.00
 0 0 4 133.05 0.00 0.00
 0 0 5 19.52 0.00 0.00
 0 0 6 82.23 0.00 0.00
 0 0 7 48.31 0.00 0.00
 0 0 8 73.36 0.00 0.00
 0 0 9 108.23 0.00 0.00
 0 0 10 160.50 0.00 0.00
 0 0 11 4.77 0.00 0.00

Protein
Crystal

Collection Plate

List of Phases

List of Reflections

Density Map

Protein Structure

Figure 2.3 An overview of the crystallographic process.

2.1.2 X-ray crystallography
An overview of protein crystallography appears in Figure 2.3. Given a suitable target for struc-

ture determination, a crystallographer must produce and purify this protein in significant quanti-
ties. Then, for this particular protein, one must find a very specific setting of conditions (i.e., pH,
solvent type, solvent concentration) under which protein crystals will form. Once a satisfactory
crystal forms, it is placed in front of an X-ray source. Here, this crystal diffracts a beam of X-rays,
producing a pattern of spots on a collector. These spots – also known as reflections or structure
factors – represent the Fourier-transformed electron-density map. Unfortunately, the experiment
can only measure the intensities of these (complex-valued) structure factors; the phases are lost.

Determining these missing phases is known as the phase problem in crystallography, and can be
solved to a reasonable approximation using computational or experimental techniques [97]. Only
after estimating the phases can one compute the electron-density map .

The electron-density map (which I will refer to as a density map or simply map for short) is
defined on a 3D lattice of points covering the unit cell, the basic repeating unit in the protein crys-
tal. The crystal’s unit cell may contain multiple copies of the protein related by crystallographic
symmetry, one of the 65 regular ways a protein can pack into the unit cell. Rotation/translation
operators relate one region in the unit cell (the asymmetric unit) to all other symmetric copies.
Additionally, the protein may form a multimeric complex (e.g. a dimer, tetramer, etc.) within the
asymmetric unit. In all these cases it is up to the crystallographer to isolate and interpret a single
copy of the protein.

Figure 1.1 (in the previous chapter) shows a sample fragment from an electron-density map,
and the corresponding interpretation of that fragment. The amino-acid (primary) sequence of the
protein is typically known by the crystallographer before interpreting the map. In a high-quality
map, every single (non-hydrogen) atom in the protein can be placed in the map.

10

(a) (b)

Figure 2.4 (a) An all-atom protein model and (b) the corresponding backbone trace, which repre-
sents each residue by its Cα location.

However, in a poor-quality map it may only be possible to determine the location of a single key
atom, the alpha carbon or Cα, in each residue. This is known as a backbone trace or a Cα trace.
Figure 2.4 shows an all-atom protein model and the corresponding backbone trace. A backbone
trace – though not as comprehensive as an all-atom model – is still valuable to biologists.

The quality of an electron-density map is limited by its resolution, which, at its high limit,
corresponds to the smallest interplanar distance between diffracting planes. The highest resolution
for a data set depends on the order in the crystalline packing, the detector sensitivity, and the
brightness of the X-ray source. Figure 2.5 illustrates the electron density around a tryptophan
sidechain at varying resolution, with “ideal” phases computed from a complete all-atom model.
Note that at 1 Å resolution, the spheres of individual atoms are clearly visible, while at 4 Å even
the overall shape of the tryptophan sidechain is distorted. Typical resolution for protein structures
lies in the 1.5 – 2.5 Å range.

Another factor that affects the quality of an electron-density map is the accuracy of the com-
puted phases. To obtain an initial approximation of the phases, crystallographers use techniques
based on the special features in X-ray scattering produced by heavy atoms, such as multiple-
wavelength [44] or single-wavelength anomalous diffraction [46] (MAD or SAD) and multiple
isomorphous replacement (MIR) [8]. This allows the computation of an initial electron-density
map, the quality of which greatly depends on the fidelity of the initial phasing. Artifacts produced
by phase error are similar to those of worsening resolution; additionally, high spatial frequency
noise is also present.

As the model is built, these phases are iteratively improved [1], producing a better quality
map, which may require resolving large portions of the map. Figure 2.6 illustrates the effect poor

11

1Å 2Å

3Å 4Å

Figure 2.5 A tryptophan residue’s density at several resolutions.

phasing has on density-map quality. This figure was generated by adding Gaussian noise to each
reflection phase, and recomputing the density map. In addition, noise in diffraction-pattern data
collection also introduces errors into the resulting density map.

Finally, the density map produced from X-ray crystallography is not an image of a single
molecule, but rather an average over an ensemble of all the molecules contained within a single
crystal. Flexible regions in the protein are not visible at all, because they are averaged out.

For most proteins, this interpretation is done by an experienced crystallographer, who can, with
high-quality data, fit about 100 residues per day in an interactive computer graphics environment
[59, 79]. However, for poor-quality density maps, interpretation can be an order of magnitude
slower. The interpretation of a poorly phased map can be very difficult even for a trained expert.

Given some putative atomic structure, one can compute the model-determined (or calculated)
structure factors Fcalc as the scattering one would expect to see. It is calculated by summing the
contribution of each individual atom in the model to the overall X-ray scattering. Typically, each
atom is modeled as a single sphere of electron density; each atom’s scattering factor is modeled
with a single Gaussian (or four Gaussians with high-resolution maps) [19]. These Gaussians are
different for each atom, and are based on a fit to experimental scattering data.

12

0° 30°

60° 75°

Figure 2.6 A tryptophan residue’s density as mean phase error varies.

This allows one to compute a model-determined (or calculated) density map: the electron
density one would expect to see, given some atomic structure. Calculated density maps are used
for training by many automated methods (including my own) since many more protein structures
are available than experimental density maps [3].

A key question for computational methods for interpreting density maps is the following: how
are candidate 3D models scored? Crystallographers typically use a model’s R factor (for residual
index) to evaluate the quality of an interpretation. Formally, the R factor is defined [97], given
experimentally determined structure factors Fobs and model-determined structure factors Fcalc, as:

R =

∑
i,j,k

∣∣∣ ∣∣∣F (i,j,k)
obs

∣∣∣− ∣∣∣F (i,j,k)
calc

∣∣∣ ∣∣∣∑
i,j,k

∣∣∣F (i,j,k)
obs

∣∣∣ (2.1)

The R factor measures how well the proposed 3D structure explains the observed electron-
density data. Crystallographers usually strive to get R factors under 0.2 (or lower, depending on
map resolution), while also building a physically feasible (i.e. valid bond distances, torsion angles,
etc.) protein model, all without adding too many free water molecules. One can always reduce

13

the R factor by placing extra water molecules in the density map; these reductions are a result
overfitting the model to the data, and do not correspond to a physically feasible interpretation.

Another commonly used measure is free R factor, or Rfree [10]. Here, 5-10% of reflections
are randomly held out as a test set before refinement. Rfree is the R factor for these held-aside
reflections. Using Rfree tends to avoid overfitting the protein’s atoms to the reflection data.

2.1.3 Algorithmic background
Algorithms for automatically interpreting electron-density maps draw heavily from the ma-

chine learning and statistics communities. These communities have developed powerful frame-
works for modeling uncertainty, reasoning from prior examples, and statistically modeling data,
all of which have been used by researchers in crystallography. This section briefly describes the
statistical and machine-learning methods used by the interpretation methods presented throughout
my thesis. This section is intended as a basic introduction to these topics. Russell and Norvig’s
text [99] or Mitchell’s text [82] provides a thorough overview of these topics.

2.1.3.1 Probabilistic models
A model here refers to a system that simulates a real-world event or process. Probabilistic

models simulate uncertainty by producing different outcomes with different probabilities. In such
models, the probabilities associated with certain events is generally not known, and instead has to
be estimated from a training set, a set of previously solved problem instances. Using maximum
likelihood estimation, the probability of a particular outcome is estimated as the frequency at which
that outcome occurs in the training set.

The unconditional or prior probability of some outcome A is denoted P (A). Assigning some
value to this probability, say P (A) = 0.3, means that in the absence of any other information, the
best assignment of probability of outcome A is 0.3. As an example, when flipping a (fair) coin,
P (“heads”) = 0.5. In this section, I use “outcome” to mean the setting of some random variable;
P (X = xi) is the probability that variable X takes value xi. Throughout my thesis, I will use the
shorthand P (xi) to refer to this value.

The conditional or posterior probability is used when other, previously unknown, information
becomes available. If other information, B, relevant to event A is known, then the best assignment
of probability to event A is given by the conditional P (A|B). This reads as “the probability of A,
given B.” If more evidence, C, is uncovered, then the best probability assignment is P (A|B,C)
(where “,” denotes “and”).

The joint probability of two or more events is the probability of both events occurring, and – for
two events A and B – is denoted P (A,B) and is read as “the probability of A and B”. Conditional
and joint probabilities are related using the expression:

P (A,B) = P (A|B)P (B) = P (B|A)P (A) (2.2)

14

This relation holds for any events A and B. Two events are independent if their joint probability is
the same as the product of their unconditional probabilities, P (A,B) = P (A)P (B). If A and B
are independent one also has P (A|B) = P (A), that is, knowing B tells us nothing about A.

One computes the marginal probability by taking the joint probability and summing out one
or more variables. That is, given the joint distribution P (A,B,C), one computes the marginal
distribution of A as:

P (A) =
∑
B

∑
C

P (A,B,C) (2.3)

Above, the sums are over all possible outcomes of events B and C. The marginal distribution is
important because it provides information about the distribution of some variables (A above) in
the full joint distribution, without requiring one to explicitly compute the (possibly intractable) full
joint distribution.

Finally, Bayes’ rule allows one to reverse the direction of a conditional:

P (A|B) =
P (B|A)P (A)

P (B)
(2.4)

Bayes’ rule is useful for computing a conditional P (A|B) when direct estimation (using frequen-
cies from a training set) is difficult, but when P (B|A) can be estimated accurately. Often, one
drops the denominator, and instead computes the relative likelihood of two outcomes, for example,
P (A = a1|B) versus P (A = a2|B). If a1 and a2 are the only possible outcomes for A, then exact
probabilities can be determined by normalization; there is no need to compute P (B).

2.1.3.2 Case-based reasoning
Broadly defined, case-based reasoning (CBR) attempts to solve a new problem by using so-

lutions to similar past problems. Algorithms for case-based reasoning require a database of pre-
viously solved problem instances, and some distance function to calculate how “different” two
problem instances are. There are two key aspects of CBR systems. First, learning in such systems
is lazy: the models only generalize to unseen instances when presented with such a new instance.
Second, they only use instances “close” to the unseen instance when categorizing it.

The most common CBR algorithm is k-nearest neighbor (kNN). In kNN, problem instances
are typically feature vectors, that is, points in some n-dimensional space. The learning algorithm,
when queried with a new problem instance S = 〈s1, . . . , sn〉 for classification or regression, finds
the k previously solved problem instances closest to the query in Euclidean space. That is, one
chooses the examples minimizing the distance:

d(S, T) =

√√√√ n∑
i=1

(si − ti)2 (2.5)

Then, the k neighbors “vote” on the query instance’s label: usually the majority class label (for
classification) or average label (for regression) of the k neighbors is used. One variant of kNN
weights each neighbor’s vote by its similarity to the query. Another variant learns weights for each
dimension, to be used when computing the distance between two instances.

15

2.1.4 Undirected graphical models
Although the topic of undirected graphic models could be placed in the “computational back-

ground” subsection, it is central enough to my thesis to warrant its own subsection. Graphical
models, such as Bayesian networks and Markov fields, represent the joint probability distribution
over a set of variables as a function defined over some graph. A pairwise undirected graphical
model (or pairwise Markov field) constructs an undirected graph where each vertex is associated
with one or more hidden variables. Given this model, the probability of some setting of the random
variables is the product of potential functions defined on each edge and vertex in the graph.

Formally, the graph G = (V , E) consists of a set of nodes s ∈ V connected by edges (s, t) ∈ E .
Each node in the graph is associated with a (hidden) random variable xs ∈ x, and the graph is
conditioned on a set of observation variables y. For object recognition, these xs’s are the 3D
position of part s. Each vertex has a corresponding observation potential ψs(xs, y), and each edge
is associated with a structural potential ψst(xs, xt). Then, one represents the full joint probability
as:

p(x|y) ∝
∏

(s,t)∈E

ψst(xs, xt)×
∏
s∈V

ψs(xs|y) (2.6)

In many applications, one is most concerned with finding the maximum marginal assignment, that
is, the labels xs ∈ x that maximize this joint probability for some value of y.

Figure 2.7 illustrates a simple Markov field model with just 5 vertices. Given that each vertex
i is associated with a single variable xi, then the probability of some setting of these five variables
is:

P (x1, x2, x3, x4, x5) =
1

Z
× ψ1(x1)× ψ12(x1, x2)× ψ2(x2)× ψ13(x1, x3)× ψ2(x3)×

× ψ24(x2, x4)× ψ34(x3, x4)× ψ4x4 × ψ45(x4, x5)× ψ5(x5)

The function Z (arguments omitted for clarity) is the partition function, and is used to normalize
the product of potential functions to sum to unity over all possible settings of every variable.

2.1.4.1 Inference in undirected graphical models
Given a graphical model, inference attempts to find the most-probable setting of each of the

variables in the model. Several different inference algorithms have been successfully used in undi-
rected graphical models. If the graph (as well as the state space of each variable) is small, then
exhaustive enumeration of states may be sufficient. If the graph is large but has no loops, then
dynamic programming will infer both marginal probabilities, using the forward algorithm, and the
maximum-likelihood path, using the Viterbi algorithm [114]. Finally, if the graph is large and has
loops, then exact methods will not work, and one is forced to use approximate inference algo-
rithms. Three types of algorithms that are commonly used include: (a) Monte Carlo algorithms,
such as Markov-chain Monte Carlo [88] and Gibbs sampling [36], (b) variational methods [61],
and (c) (loopy) belief propagation [78, 93].

A variety of Monte Carlo algorithms have been developed and applied to probabilistic inference
problems [72,91]. These algorithms use sampling from a Markov chain to explore high-probability

16

1 2

3 4 5

Figure 2.7 A simple pairwise Markov-field model.

regions in state space. These algorithms, which include the Metropolis-Hastings algorithm [42],
Gibbs sampling [4, 36], and simulated annealing [65], are attractive because of their simplicity of
implementation and guaranteed convergence, but are often slow to converge.

Variational methods formulate inference as an optimization problem; solving the optimization
problems gives bounds on some probability of interest. Variational methods refer not to a single
approach, but rather a whole class of methods, including mean-field methods [95], variational
EM [89], variational Bayes [120], and variational PCA [5]. Further discussion of these methods
are well beyond the scope of this thesis; interested readers will want to consult Jordan’s tutorial on
variational methods [61] or Bishop’s text [6].

Finally, belief propagation (BP) is a message-passing algorithm, originally proposed by Pearl
[93] for exact inference in tree-structured model. Loopy belief propagation is the application of
Pearl’s polytree algorithm to graphs with arbitrary topologies. There are no guarantees of conver-
gence – and convergence may not be to anything reasonable – but it has been shown to work well
in practice [85].

2.1.4.2 Belief propagation
Belief propagation is central to the inference methods presented my thesis; this section presents

BP in more detail. In addition to this section, Section 3.3.2 illustrates BP graphically (using the
framework introduced in Chapter 3).

Belief propagation – based on Pearl’s polytree algorithm [93] – computes the marginal proba-
bility over each random variable xs by passing a series of local messages. Recall that the marginal
probability refers to the joint probability, where all but one variable is summed out, that is:

bs(xs|y) =
∑
x1

. . .
∑
xs−1

∑
xs+1

. . .
∑
xN

P (x|y) (2.7)

Pseudocode for BP inference appears in Algorithm 2.1. At each iteration, a vertex in the graph
computes the product of all incoming messages, then passes a convolution of this product to its

17

Algorithm 2.1 Belief propagation.
input: Observational potentials ψs(xs|y) and structural potentials ψst(xs, xy)

output: An approximation to the marginal b̂s(xs|y) ≈
∑
x1

. . .
∑
xs−1

∑
xs+1

. . .
∑
xN

P (x|y)

// Initialize messages to uniform

initialize messages to 1

// Repeat until convergence (or until some iteration limit)

while b̂’s have not converged do
// For each vertex in the graph (in some predetermined order)

foreach part s = 1 . . . N do
// Set s’s belief to its vertex potential

b̂ns (xs|y)← ψs(xs|y)
// For each neighbor of s in the undirected graph

foreach vertex t ∈ Γ(s) do
// If neighbor t’s belief has been updated since the last

// message computation, update the message from t to s

if b̂nt has been updated then
mn

t→s(xs)←
∫

xt
ψst × (b̂nt /m

n−1
s→t) dxt

end
// Multiply s’s belief by the incoming message from t

b̂ns (xs|y)← b̂ns (xs|y)×mn
t→s(xs)

end
end

end

neighbors (for clarity, the message’s dependence on y is usually dropped):

mn
t→s(xs) ∝

∫
xt

ψst(xs, xt)× ψt(xt|y)×
∏

u∈Γ(t)\s

mn−1
u→t(xt) dxt (2.8)

Here, Γ(t)\s denotes all neighbors of t in the graph excluding s. Messages are normalized so that
the probabilities sum to unity. Koller et al. [66] suggest assigning some order to the nodes, and up-
dating the belief at each node sequentially (though recent evidence suggests dynamic ordering may
be preferable [108]). At any iteration, the algorithm computes an approximation to the marginal as
the product of incoming messages and the node’s observation potential ψs,

b̂ns (xs|y) ∝ ψs(xs|y)×
∏

u∈Γ(t)

mn
u→t(xt) (2.9)

In tree-structured graphs (graphs without cycles), this algorithm is exact. Unfortunately, for
many tasks, this limitation is overly restrictive. This algorithm may be applied to graphs with

18

arbitrary topologies; however, there are no guarantees to the convergence of this algorithm – and
convergence may not be to the correct solution – but empirical results show that “loopy BP” often
produces good estimates in practice [85, 118].

Several papers have explored circumstances under which loopy BP’s convergence or optimality
can be guaranteed. Weiss has shown a category of graphical models with a single loops in which
optimality is guaranteed [117]. More recent work [121] has shown the existence of fixed-points in
loopy BP, but they are neither unique nor optimal. Heskes [47] has developed sufficient conditions
for the uniqueness of BP’s fixed-points. Others have characterized the fixed-points in loopy BP
[109].

Others have explored message approximation in loopy BP. When exact message computation is
intractable, stochastic approximation of messages [66] as well as message simplification [14] have
been investigated. Additionally, when dealing with continuous-valued variables, some sort of ap-
proximation or simplifying assumptions must be made [56,105]. Ihler et al. [52] have explored the
consequences of approximating messages in BP, placing bounds on accumulated message errors
as BP progresses.

A recent paper [105] investigates the special case where the labels xt are continuously valued.
Using ideas from particle filtering [29], these authors develop nonparametric belief propagation
(NBP), which uses weighted Gaussian probability density estimates for both messages and beliefs.
That is, given a set of weights wi

s, i = 1 . . . N , a set of Gaussian centers µi
s and a covariance matrix

Λs, an estimate of the belief is given by

b̂ns (xs|y) =
∑

w(i)
s ×N (xs;µ

(i)
s ,Λs) (2.10)

Their message computation uses an efficient Gibbs sampling routine. The Gibbs sampler [52] ap-
proximates the product of k Gaussian mixtures – each with M components – as an M -component
mixture. This sampling is used to compute BP message products. For the BP convolution opera-
tion, forward sampling is employed. Their inference algorithm was applied to several vision tasks.
Isard [56] makes use of a similar technique, with a sampling routine specialized to mixture-of-
Gaussian edge potentials.

2.2 Alternative approaches to automatic density-map interpretation

Several research groups have investigated automating the interpretation of electron-density
maps. This section presents a high-level overview of some of these methods, while the remainder
of this chapter takes an in-depth look at three of these methods, describing algorithmically how
they have approached this problem.

By far the most commonly used method is ARP/WARP [71,83,94]. This “atom-based” method
heuristically places atoms in the map, connects them, and refines their positions. To handle poor
phasing, ARP/WARP uses an iterative algorithm, consisting of alternating phases in which (a) a
model is built from a density map, and (b) the density map’s phases are improved using the con-
structed model. This algorithm is widely used, but has one drawback: fairly high resolution data,

19

about 2.3Å or better, is needed. Given this high-resolution data, the method is extremely accurate;
however, many protein crystals fail to diffract to this extent.

Several approaches represent the density map in an alternate form, in the process making the
map more easily interpretable for both manual and automated approaches. One of the earliest
such methods, skeletonization, was proposed for use in protein crystallography by Greer’s BONES

algorithm [40]. Skeletonization, similar to the medial-axis transformation in computer vision,
gradually thins the density map until it is a narrow ribbon approximately tracing the protein’s
backbone and sidechains. More recent work by Leherte et al. [73], represents the density map as an
acyclic graph: a minimum spanning tree connecting all the critical points (points where the gradient
of the density is 0) in the electron-density map. This representation accurately approximates the
backbone when given 3Å or better data, and separates protein from solvent up to 5Å resolution.

Cowtan’s FFFEAR efficiently locates rigid templates in the density map [17]. It uses fast Fourier
transforms (FFTs) to quickly match a learned template over all locations in a density map. Cowtan
provides evidence showing it locates alpha helices in poorly-phased 8Å maps. Unfortunately, the
technique is limited in that in can only locate large rigid templates (e.g. those corresponding to
secondary-structure elements). One must trace loops and map the fit to the sequence manually.
However, several methods use FFFEAR as a template-matching subroutine in a larger interpretation
algorithm.

X-AUTOFIT, part of the QUANTA [90] package, uses a gradient-refinement algorithm to place
and refine the protein’s backbone. Their refinement takes into account the density map as well as
bond geometry constraints. They report successful application of the method at resolutions ranging
from 0.8 to 3.0Å.

Terwilliger’s RESOLVE contains an automated model-building routine [110, 111]. It uses a
hierarchical procedure in which helices and strands are located and fitted, then are extended in
an iterative fashion using a library of tripeptides. Finally, RESOLVE applies a greedy fragment-
merging routine to overlapping extended fragments. The approach is able to place approximately
50% of the protein chain in a 3.5Å resolution density map.

Levitt’s MAID [75] approaches map interpretation “as a human would,” by first finding the
major secondary structures, alpha helices and beta sheets, connecting the secondary-structure el-
ements, and mapping this fit to the provided sequence. MAID reports success on density maps at
around 2.8Å resolution.

Ioerger’s TEXTAL [38, 53, 54] attempts to interpret poor-resolution (2.2 to 3.0Å) density maps
using ideas from pattern recognition. Ioerger constructs a set of 15 rotation-invariant density fea-
tures. Using these features at several radii, a subroutine, CAPRA, trains a neural network to identify
Cα atoms. TEXTAL then identifies sidechains by looking at the electron-density around each pu-
tative alpha carbon, efficiently finding the most similar region in a database, and placing into the
model the corresponding sidechain.

Finally, ACMI, the algorithm introduced in this thesis, takes a probabilistic approach to density
map interpretation [27]. Residues of the protein are modeled as nodes in a graph, while edges
model pairwise structural interactions arising from chemistry. An efficient inference algorithm
determines the most probable backbone trace conditioned on these interactions. A particle-filtering

20

algorithm places individual sidechains, growing the model one amino acid at a time. ACMI locates
accurate models in 3.0 to 4.0Å density maps.

The rest of this chapter further describes three of these methods – ARP/WARP, RESOLVE and
TEXTAL – in detail. Each section presents a method, describing strengths and weaknesses. High-
level pseudocode clarifies important subroutines. Throughout the chapter, a small running example
is employed to illustrate intermediate steps of the various algorithms. The example uses the density
map of protein 1XMT, a 95-amino-acid protein with two symmetric copies in the unit cell. The
2.5Å density map and its crystallographer-determined solution appears in Figure 2.8 (masked so
that only one symmetric copy is displayed).

The running example is not meant as a test of the algorithms, but rather as a real-world illus-
trative example. The example map is natively at 1.15Å resolution. Full native resolution is used
for ARP/WARP; the map is artificially downsampled to 2.5Å resolution for RESOLVE and for
TEXTAL (as these algorithms were designed for poor-resolution data).

2.2.1 ARP/WARP

The ARP/WARP (automated refinement procedure) software suite is a crystallographic tool
for the interpretation and refinement of electron-density maps. ARP/WARP’s WARPNTRACE pro-
cedure was the first automatic interpretation tool successfully used for protein models. Today, it
remains one of the most used tools in the crystallographic community for 3D protein-image in-
terpretation. ARP/WARP concentrates on the best placement of individual atoms in the map: no
attempt is made to identify higher-order constructs like residues, helices, or strands. ARP/WARP’s
“atom-level” method requires high-quality data, however. In general, ARP/WARP requires maps
at a resolution of 2.3Å or higher to produce an accurate trace.

Figure 2.9 illustrates an overview of WARPNTRACE. WARPNTRACE begins by creating a free
atom model – a model containing only unconnected atoms – to fill in the density map of the protein.
It then connects some of these atoms using a heuristic, creating a hybrid model. This hybrid model
consists of a partially-connected backbone, together with a set of unconstrained atoms. This hybrid
model is refined, producing a map with improved phase estimates. The process iterates using this
improved map. At each iteration, WARPNTRACE removes every connection, restarting with a free-
atom model.

2.2.1.1 Free-atom placement
ARP/WARP contains an atom-placement method based on ARP, an interpretation method

for general molecular models. ARP randomly places unconnected atoms into the density map,
producing a free-atom model, illustrated in Figure 2.10a.

To initialize the model, ARP begins with a small set of atoms in the density map. It slowly
expands this model by looking for areas above a density threshold, at a bonding distance away from
existing atoms. The density threshold is slowly lowered until ARP places the desired number of
free atoms.

21

(a)

(b)

Figure 2.8 (a) The 2.5Å resolution electron-density map of the 95-amino-acid protein 1XMT.
(b) The crystallographer-determined solution. For clarity, the backbone is modeled using a thicker
ribbon, while the thinner segments indicated bonds between sidechain atoms. The model is colored
by structure (α-helices/β-sheets shaded and loops white). This density map, at several resolutions,
will be used as a running example throughout the section.

22

electron density map

Place free atoms into map

Join chains of free atoms (autotrace)

Refine model using connectivity constraints

Trace sidechains

free atoms model

hybrid model

complete backbone model

hybrid
model

complete all-atom model

Figure 2.9 A flowchart of ARP/WARP’s WARPNTRACE.

For small molecules, ARP’s next step is refining the free-atom model; that is, iteratively mov-
ing atoms to better explain the density map. Free-atom refinement ignores stereochemical infor-
mation, and moves each atom independently to produce a complete structure. ARP’s free-atom
refinement, in addition to moving atoms, considers adding or removing atoms from the model.
Multiple randomized initial structures are used to improve robustness. Further details are available
from Perrakis et al. [94].

However, with molecules as large as proteins, free-atom refinement alone is insufficient to
produce an accurate model. Performing free-atom refinement with tens of thousands of atoms
leads to overfitting, producing a model that is not physically feasible. For determining protein
structures, ARP/WARP makes use of connectivity information in its refinement, using free-atom
placement as a starting point. The procedure WARPNTRACE adds connectivity information to the
free atom model.

2.2.1.2 Backbone tracing
Given a free-atom model of a protein, one can form a crude backbone trace by looking for

pairs of free atoms the proper distance apart. WARPNTRACE formalizes this procedure, called
autotracing, using a heuristic method. The method is outlined in Algorithm 2.2. WARPNTRACE

assigns a score – based on density values – to each free atom. The highest scoring atom pairs
3.8 ± 0.5Å apart become candidate Cα’s. The algorithm verifies candidate pairs by overlaying
them with a peptide template. If the template matches the map, WARPNTRACE saves the candidate
pair.

After computing a list of Cα pairs, WARPNTRACE constructs the backbone using a database of
known backbone conformations (taken from solved protein structures). Given a chain of candidate

23

(a) (b)

(c)

Figure 2.10 Intermediate steps in ARP/WARP’s structure determination: (a) the free atom model,
where waters are placed in the map, (b) the hybrid model, after some connections are determined,
and (c) the final predicted structure.

Cα pairs, WARPNTRACE considers all backbone conformations in the database with matching Cα
positions, ordered by length. The longest candidate backbone is then added to the model. The
algorithm connects the corresponding free atoms, and removes these atoms from the free-atom
pool. The process repeats as long as there remain candidate Cα chains at least 5 residues in length.

Autotracing produces a hybrid model, shown in Figure 2.10b. A hybrid model contains a set
of connected chains together with a set of free atoms. Autotracing identifies some atom types
and connectivity, which enables the use of some stereochemical information in refinement. Added
restraints increase the number of observations available, and increase the probability of producing
a good model. The tracing is initially very conservative, with many free atoms remaining in the
model. Adding too many restraints too early leads to overfitting the model.

Finally, a modified version of ARP refines this hybrid model. ARP uses the refined struc-
ture to improve the experimentally determined phases, making the map clearer to interpret. At

24

Algorithm 2.2 WARPNTRACE’s model-building algorithm.
input: electron-density map M, free-atom model F, sequence seq
output: all-atom protein model

for i = 1 to nIterations do
// initialize hybrid model

H← F
// find candidate Cα pairs

CA pairs← highest-scoring atom pairs 3.8± 0.5Å apart
// verify Cα pairs by matching to a template

foreach ci ∈ CA pairs do
if (ci does not match backbone template) then

delete ci from CA pairs
end

end

// connect long chains in hybrid model

while a Cα chain of length ≥ 5 remains in CA pairs do
bestChain← longest fragment in DB overlapping CA pairs
remove bestChain’s atoms from CA pairs, H
add bestChain to H

end

// refine hybrid model

H′ ← refine(H)
F← remove connections from hybrid model H′

end
model← sidechainTrace(H′)

each iteration of this “autotrace–refine–recompute phases” cycle, WARPNTRACE returns to a free-
atom model, by removing previous connections. Since the map is better-phased, autotracing may
produce a more complete model. This, in turn, provides a better refinement, further improving
phasing.

This cycle continues for a fixed number of iterations, or until a complete trace is available.
Finally, WARPNTRACE adds on side-chains by identifying patterns of free atoms around each Cα.
It aligns these free-atom patterns to the sequence to produce a complete model. Figure 2.10c
illustrates the complete ARP/WARP-determined trace on our running example.

2.2.1.3 Discussion
ARP/WARP is the preferred method for automatically interpreting electron-density maps, as-

suming sufficiently high-resolution data is available. Its placement of individual atoms, followed
by atom-level refinement, produces an extremely accurate trace with no user action required in

25

electron density map

Identify helix/strand template matches

Extend matches iteratively

Assemble chain from fragments

Trace sidechains

helix/strand list

protein fragment list

backbone model

partial
model

complete all-atom model

Figure 2.11 A flowchart of RESOLVE.

2.3Å or better density maps. It is widely used by crystallographers to rapidly construct a protein
model. Unfortunately, many protein crystals fail to produce maps of sufficient quality, and one
must consider alternate methods.

2.2.2 RESOLVE

While ARP/WARP is extremely accurate with high-resolution data, many protein crystals fail
to diffract to a sufficient level for accurate interpretation. In general, ARP/WARP requires indi-
vidual atoms to be visible in the density map, which happens at about 2.3Å resolution or better.
The next two methods – RESOLVE and TEXTAL – both aim to solve maps with > 2.3Å resolution.
Both methods take a different approach to the problem; however, both – in contrast to ARP/WARP
– consider higher-level constructs than atoms when building a protein model. This allows accurate
interpretation even when individual atoms are not visible.

RESOLVE is a method developed by Terwilliger for automated model-building in poor-quality
electron-density maps [110, 111]. Figure 2.11 outlines the complete hierarchical approach. RE-
SOLVE’s method uses two (learned) model secondary-structure fragments – a short α-helix and
β-strand – for its initial matching, searching over all rotations and translations of these fragments.
After placing a small set of overlapping model fragments into the map, the algorithm considers
a much larger template set as potential extensions. RESOLVE joins overlapping fragments and,
finally, identifies sidechains corresponding to each Cα, conditioned on the input sequence, and
places individual atoms into the model.

26

Figure 2.12 The averaged helix (left) and strand (right) fragment used in RESOLVE’s initial match-
ing step.

2.2.2.1 Secondary-structure search
Given an electron-density map, RESOLVE begins its interpretation by searching all translations

and rotations in the map for a model 6-residue α-helix and a model 4-residue β-strand. RESOLVE

constructs these fragments by aligning a collection of helices (or strands) from solved structures;
it computes the electron-density for each at 3Å resolution, and averages the density across all
examples. The “average” models used by RESOLVE are illustrated in Figure 2.12.

Given these model fragments, RESOLVE considers placing them at each position in the map.
At each position it considers all possible rotations (at a 30◦ or 40◦ discretization) of the fragment,
and computes a standardized squared-density difference between the fragment’s electron-density
and the map:

t(~x) =
∑

~y

εf (~y)
(
ρ′f (~y)−

1

σf (~x)

[
ρ(~y − ~x)− ρ̄(~x)

])
(2.11)

Above, ρ(~x) is the map in which I am searching, ρ′f (~x) is the standardized fragment electron-
density, εf (~x) is a masking function that is nonzero only for points near the fragment, and ρ̄(~x) and
σf (~x) standardize the map in the masked region εf centered at ~x:

ρ̄(~x) =

∑
~y εf (~y)ρ(~y − ~x)∑

~y εf (~y)

σ2
f (~x) =

∑
~y εf (~y)

[
ρ(~y − ~x)− ρ̄(~x)

]2∑
~y εf (~y)

(2.12)

RESOLVE computes the matching function t(~x) quickly over the entire unit cell by FFT convolution
using FFFEAR [17].

After matching the two model fragments using a coarse rotational step-size, the method gener-
ates a list of best-matching translations and orientations of each fragment (shown in Figure 2.13a).

27

(a) (b)

(c)

Figure 2.13 Intermediate steps in RESOLVE’s structure determination: (a) locations in the map
that match short helical/strand fragments, (b) the same fragments after refinement and extension,
and (c) the final predicted structure.

Processing these matches in order, RESOLVE refines each fragment’s position and rotation to max-
imize the real-space correlation coefficient (RSCC) between template and map:

RSCC(ρf , ρ) =
〈ρf · ρ〉 − 〈ρf〉〈ρ〉√

〈ρ2
f〉 − 〈ρf〉2

√
〈ρ2〉 − 〈ρ〉2

(2.13)

Here, 〈ρ〉 indicates the map mean over a fragment mask. RESOLVE only considers refined matches
with an RSCC above some threshold.

28

2.2.2.2 Iterative fragment extension
At this point, RESOLVE has a set of putative helix and strand locations in the density map.

The next phase of the algorithm extends these using a much larger library of fragments, producing
a model like that in Figure 2.13b. Specifically, RESOLVE makes use of four such libraries for
fragment extension:

(a) 17 α-helices between 6 and 24 amino acids in length

(b) 17 β-strands between 4 and 9 amino acids in length

(c) 9,232 tripeptides containing backbone atoms only for N-terminus extension

(d) 4,869 tripeptides containing a partial backbone (the chain Cα − C − O with no terminal N)
plus two full residues for C-terminus extension

RESOLVE learns these fragment libraries from a set of previously solved protein structures. It
constructs the two tripeptide libraries by clustering a larger dataset of tripeptides.

α-helix/β-strand extension. For each potential model’s placement in the map, RESOLVE consid-
ers extending it using each fragment in either set (a), if the model fragment is a helix, or set (b), if
the model fragment is a strand. For each fragment, RESOLVE chooses the longest segment of the
fragment such that every atom in the fragment has a density value above some threshold.

To facilitate comparison between these 17 segments of varying length (one for each fragment
in the library), each matching segment is given a score Q = 〈ρ〉

√
N , with 〈ρ〉 the mean atom

density, and N the number of atoms. The algorithm computes a Z-score:

Z =
Q− 〈Q〉
σ(Q)

(2.14)

RESOLVE only considers segments with Z > 0.5. Notice there may be a large number of overlap-
ping segments in the model at this point.

Loop extension using tripeptide libraries. For each segment in the model, RESOLVE attempts
to extend the segment in both the N-terminal and C-terminal direction using the tripeptide library.
RESOLVE tests each tripeptide in the library by superimposing the first residue of the tripeptide on
the last residue of the current model segment. It then tests the top scoring “first-level” fragments
for overlap with the current model segment (i.e., self-collisions). For those with no overlap, a
look-ahead step considers this first-level extension as a starting point for a second extension. The
score for each first-level extension is:

scorefirst-level = 〈ρfirst-level〉+ max
second-level

〈ρsecond-level〉 (2.15)

Above, 〈ρfirst-level〉 denotes the average map density at the atoms of the first-level extension.
RESOLVE accepts the best first-level extension – taking the look-ahead term into account –

only if the average density is above some threshold density value. If the density is too low, and

29

Algorithm 2.3 RESOLVE’s chain-assembly algorithm.
input: electron-density map M, set of high scoring fragments F
output: putative backbone trace X = {~xi} including Cβ positions

// extend matches until no candidate chains remain

repeat
fragbest ← top scoring unused segment

// look for pairs of chains with overlapping Cα’s
for each fragi ∈ {F\fragbest} do

if fragi and fragbest overlap at ≥ 2 Cα positions
and extension does not cause steric clashes then

extend fragbest by fragi

end
end

until no candidates remain

the algorithm rejects the best fragment, several “backup procedures” consider additional first-level
fragments, or stepping back one step in the model segment. If these backup procedures fail, RE-
SOLVE rejects further extensions.

2.2.2.3 Chain assembly
Given this set of candidate model segments, RESOLVE next assembles a continuous chain. To

do so, it uses an iterative method, outlined in Algorithm 2.3. The outermost loop repeats un-
til no more candidate segments remain. At each iteration, the algorithm chooses the top-scoring
candidate segment not overlapping any others. It considers all other segments in the model as ex-
tensions: if at least two Cα’s between the candidate and extension overlap, then RESOLVE accepts
the extension. Once accepted, the extension becomes the current candidate.

2.2.2.4 Sidechain placement
RESOLVE’s final step is, given a set of Cα positions in some density map, to identify the

corresponding residue type, and to trace all the sidechain atoms [111]. This sidechain tracing
is the first time that RESOLVE uses the protein’s sequence. RESOLVE’s sidechain tracing uses a
probabilistic method, finding the most likely layout conditioned on the input sequence. RESOLVE’s
sidechain tracing procedure is outlined in Algorithm 2.4.

RESOLVE’s sidechain tracing relies on a rotamer library. This library consists of a set of low-
energy conformations – or rotamers – that characterizes each amino-acid type. RESOLVE builds
a rotamer library from the sidechains in 574 protein structures. Clustering produces 503 different
low-energy side-chain conformations. For each cluster member, the algorithm computes a density
map; each cluster’s representative map is the average of its members.

30

For each Cα, RESOLVE computes a probability distribution of the corresponding residue type.
Probability computation begins by first finding the correlation coefficient (see Equation 2.13) be-
tween the map and each rotamer. For each rotamer j, the correlation coefficient at the kth Cα is
given by ccjk. A Z-score is computed, based on rotamer j’s correlation at every other Cα:

Zrot
jk =

ccjk − 〈ccj〉
σj

(2.16)

The algorithm only keeps a single best-matching rotamer of each residue type. That is, for residue
type i:

Zres
ik = max

fragment j is of type i
Zrot

jk (2.17)

RESOLVE uses a Bayes rule to compute a probability from the Z-score. Amino-acid distribu-
tions in the input sequence provide the a priori probability P0j of residue type j. Given a set of
correlation coefficients at some position, RESOLVE computes the probability that the residue type
is i by taking the product of probabilities that all other correlation coefficients were generated by
chance. It estimates this probability using the Z-score:

P (ccik) ∝ exp(−(Zresik)
2/2) (2.18)

Substituting and simplifying, the probability of residue type i at position k is:

Pik ← Pi0 ·
exp

(
(Zres

ik)2/2
)∑

l Pl0 · exp
(
(Zres

lk)2/2
) (2.19)

Finally, given these probabilities, RESOLVE finds the alignment of sequence to structure that
maximizes the product of probabilities. The final step is, given an alignment-determined residue
type at each position, placing the sidechain conformation of the correct type with the highest
correlation coefficient Z-score. RESOLVE’s final predicted structure on the running example is
illustrated in Figure 2.13c.

2.2.2.5 Discussion
Unlike ARP/WARP, RESOLVE uses higher-order constructs than individual atoms in tracing a

protein’s chain. Searching for helices and strands in the map lets RESOLVE produce accurate traces
in poor-quality maps, in which individual atoms are not visible. This method is also widely used by
crystallographers. RESOLVE has been successfully used to provide a full or partial interpretation at
maps with as poor as 3.5Å resolution. Because the method is based on heuristics, when map quality
gets worse, the heuristics fail and the interpretation is poor. Typically, the tripeptide extension is
the first heuristic to fail, resulting in RESOLVE traces with many disconnected secondary structure
elements. In poor maps, RESOLVE may have difficulty identifying sidechain types. However,
RESOLVE is able to successfully use background knowledge from structural biology in order to
improve interpretation in poor-quality maps.

31

Algorithm 2.4 RESOLVE’s sidechain-placement algorithm.
input: map M, backbone trace X = {~xi} (including Cβ’s),

sidechain library F, sequence seq
output: all-atom protein model

// align each sidechain in the library to each predicted Cα
for each sidechain fj ∈ F do

for each Cα ~xk ∈ X do
// compute correlation, see Equation 2.13
ccjk ← RSCC(M(~xk), fj))
Zjk ← (ccjk − 〈ccj〉)/σj

end
end

// Estimate probabilities Pik that residue type i is at position k
for each residue type i do

Pi0 ← a priori distribution of residue type i
Zik ← max

fragment j of type i
Zjk

for each alpha carbon ~xk ∈ X do
Pik ← Pi0 · exp(Z2

ik/2) /
∑

l Pl0 · exp(Z2
lk/2)

end
end

// Align trace to sequence, place individual atoms

align seq to chains maximizing product of Pik’s
if (good alignment exists) then

place best-fit sidechain of alignment-determined type at each position
else

return backbone-only model
end

32

electron density map

Skeletonize density map

Extract rotation-invariant features

Identify Cα’s using a trained neural network

Trace sidechains

pseudo-atom list

feature vector list

backbone model

complete all-atom model

Build, patch, and stitch chains

predicted distances to Cα

Figure 2.14 A flowchart of TEXTAL.

2.2.3 TEXTAL

TEXTAL is another method for poor-quality density map interpretation, developed by Ioerger et
al. Much like RESOLVE, TEXTAL seeks to expand the limit of interpretable density maps to those
with medium to low resolution (2 to 3Å). TEXTAL uses computer vision and machine learning
techniques to match patterns of density in an unsolved map against a database of known density
patterns. Matching two regions of density, however, requires an expensive rotational alignment.
To deal with this, TEXTAL uses of a set of rotationally invariant numerical features to characterize
regions of density. The electron-density in a region around each point in the map is converted to a
vector of 76 features sampled several radii that remain constant as the region rotations. The vector
consists of descriptors of density, moments of inertia, statistical variation, and geometry.

TEXTAL’s algorithm – outlined in Figure 2.14 – attempts to mimic the process by which crys-
tallographers identify protein structures. The first step is to identify the backbone – the location of
each Cα – of the protein. Tracing the backbone is done by a subroutine called CAPRA (C-Alpha
Pattern Recognition Algorithm), which uses a neural network – a nonlinear function approximator
– to estimate the distance from each point in the map to the nearest Cα in the protein. These puta-
tive Cα locations are then sent into the second part of the algorithm, LOOKUP, which identifies the
sidechains corresponding to each Cα’s. Finally, postprocessing corrects flipped segments as well
as improving sidechain identification by aligning the model to the input sequence.

2.2.3.1 Feature extraction
A key component of TEXTAL is its extraction of a set of numerical features from a region

of density. These numerical features allow rapid identification of similar regions from different

33

(solved) maps. A key aspect of TEXTAL’s feature set is that these features are invariant to rota-
tions of the region. This eliminates the need for an expensive rotational search for each fragment;
additionally, a discrete rotational search is likely to underestimate some match scores if the true
rotation falls between rotational samples.

TEXTAL uses 76 such numerical features to describe a region of density in a map. These
features include 19 rotationally invariant features at each of four different radii: 3, 4, 5 and 6Å.
The use of multiple radii is critical for differentiation between sidechains: large residues often look
similar at smaller radii but greatly differ at 6Å, while small amino acids may have no density in
the outer radii and thus are only differentiated at 3 and 4Å.

These 19 rotation-invariant features fall into four basic classes, shown in Table 2.1. The first
class describes statistical properties of these neighborhoods of density, treating density values in
the neighborhood as a probability distribution. These features include mean, standard deviation,
skewness, and kurtosis, the last two of which provide descriptions of the lopsidedness and peaked-
ness of the distribution of density values. The second class of features is really just a single feature:
the distance from the center of mass to the center of the neighborhood.

A third class of descriptors includes moments of inertia (MOI), which provides six features de-
scribing how elliptical is the density distribution. Moments of inertia are calculated as the Eigen-
vectors of the inertia matrix I:

I =
∑

i

ρi

∣∣∣∣∣∣
y2

i + z2
i −xiyi −xizi

−xiyi x2
i + z2

i −yizi

−xizi −yizi x2
i + y2

i

∣∣∣∣∣∣

Above, ρi is the density at point 〈xi, yi, zi〉. As a rotation-invariant description, TEXTAL only
considers the moments and the ratios between moments, not the axes themselves (the Eigenvectors
of the inertia matrix).

The final class of features represent higher-level geometrical descriptors of the region. Three
“spokes of maximal density” are extended from the center of the region, spaced> 75◦ apart. These
aim to approximate the direction of the backbone N-terminus, the backbone C-terminus, and the
sidechain. Rotation-invariant features derived from these spokes include the minimum, median
and maximum angle, the sum of the angles, the density sum along each spoke, and the area of the
triangle formed by connecting the end points of the spokes.

2.2.3.2 Backbone tracing
CAPRA, a component of TEXTAL, produces the initial Cα trace. CAPRA constructs a backbone

chain using a neural network. An overview of the process is illustrated in Algorithm 2.5.
In order to accurately compare maps, CAPRA begins by first normalizing density values in the

map, ensures feature values from different maps are comparable. Next, CAPRA skeletonizes the
map, creating a trace of pseudo-atoms along the medial axis (or skeleton) of some density map
contour. Figure 2.15a illustrates this skeletonization. This trace is a very crude approximation of
the backbone, and may traverse the side-chains or form multiple distinct chains.

34

Table 2.1 The rotation-invariant features used by TEXTAL.
Class Description Quantity
Statistical Features of Density 4

average, standard deviation, skewness, kurtosis
Center of Mass 1

distance from center of sphere to center of mass
Moments of Inertia 6

magnitude of primary, secondary, tertiary moments;
ratios between these moments

Spokes/Geometry of Density 8
angles between three “spokes of maximal density”
sum of angles, radial densities of each spoke,
area of triangle formed by spokes

Algorithm 2.5 TEXTAL’s CAPRA subroutine for calculating the initial backbone trace.
input: electron-density map M
output: putative backbone trace X = {~xi}
// consider all skeleton points as potential Cα’s
pseudoAtoms← skeletonize(M)

// use neural network to predict dist-to-Cα for each skeleton point

for pi ∈ pseudoAtoms do
F← rotation-invariant features in a neighborhood around pi

distance-to-Cα ← neuralNetwork(F)
end
// using a heuristic, assemble chains from predicted distances

X← construct chain using predicted distances-to-Cα

A feed-forward neural network – a nonlinear function approximator used for both classification
and regression – is trained to learn which pseudo-atoms correspond to actual Cα’s. Training is done
using the backpropagation algorithm, which learns network parameters using (stochastic) gradient
ascent in parameter space.

Specifically, the network is trained on a set of previously solved maps to predict the distance
of each pseudo-atom to the nearest Cα. The rotation-invariant features are inputs to the network;
a single output node estimates the distance to the closest Cα. A hidden layer of 20 sigmoidal units
fully connects input and output layers.

Given a predicted distance-to-Cα for each pseudo-atom, CAPRA uses a greedy trace to find a
linear chain linking Cα’s together. Further post-processing has been added to improve performance
of CAPRA, including mainchain refinement and patching missing pieces. CAPRA’s output on the
sample map at 2.5Å resolution, is shown in Figure 2.15b.

35

(a) (b)

(c)

Figure 2.15 Intermediate steps in TEXTAL’s structure determination: (a) the skeletonized density
map, which crudely approximates the protein backbone, (b) a backbone trace, which TEXTAL

builds by determining Cα’s from the skeleton points, and (c) the final predicted structure.

2.2.3.3 Sidechain placement
After CAPRA returns its predicted backbone trace, TEXTAL must next identify the residue

type associated with each Cα. This identification is performed by a subroutine LOOKUP. Algo-
rithm 2.6 shows a pseudocode overview of LOOKUP. Essentially, the subroutine compares the
density around each Cα to a database of solved maps to identify the residue type. LOOKUP uses
TEXTAL’s rotation-invariant features, and builds a database of feature vectors corresponding to
Cα’s in solved maps. To determine the residue type of an unknown region of density, LOOKUP

finds the nearest neighbors in the database, using weighted Euclidian distance:

D(ρ1, ρ2) =
[∑

i

λi ·
(
Fi(ρ1)− Fi(ρ2)

)2
]1/2

(2.20)

36

Algorithm 2.6 TEXTAL’s LOOKUP subroutine for placing sidechains.
input: electron-density map M, backbone trace X = {xi}
output: all-atom protein model

// place a sidechain on each putative Cα
for ~xi ∈ X do

// find k sidechain conformations matching density at ~xi

// use rotation-invariant representation

F← rotation-invariant features in a neighborhood around xi

N← k examples in DB minimizing weighted Euclidean distance

// compute correlation to each neighbor

for ~ni ∈ N do
~n′i ← optimal superposition of ~ni into map at ~xi

scorei ← RSCC(ni,M(~xi))
end
// add best-matching conformatino to model

Choose n′i maximizing scorei

Add individual atoms of n′i to model
end

Above, Fi refers to the ith rotation-invariant feature, while ρ1 and ρ2 are two regions of den-
sity. Feature weights λi are learned to maximize similarity between matching regions and mini-
mize similarity between non-matching regions (ground truth is the optimally-aligned RSCC, see
Equation 2.13). TEXTAL sets weights using the SLIDER algorithm [39] which considers features
pairwise to determine a good set of weights.

Since information is lost when representing a region as a rotation-invariant feature vector,
the nearest neighbor in the database does not always correspond to the best-matching region.
Therefore, LOOKUP lookup considers the k closest regions in the database, and performs a time-
consuming rotational alignment on each of these. Ideally, LOOKUP wants to find the rotation of
each of the k regions to maximize the correlation coefficient. It quickly approximates this optimal
rotation and translation by aligning moments of inertia between template density region ρ1 and
target density region ρ2, computing the real-space correlation at this alignment. LOOKUP selects
the candidate (of the k choices) with highest correlation.

2.2.3.4 Post-processing routines
Since each residue’s atoms are copied from previous examples and glued together in the den-

sity map, the model produced by LOOKUP may contain some physically infeasible bond lengths,
bond angles, or φ−ψ torsion angles. TEXTAL’s final step is improving the model using a few sim-
ple post-processing heuristics. First, LOOKUP often reverses the backbone direction of a residue;

37

TEXTAL’s post-processing makes sure that all chains are oriented in a consistent direction. Re-
finement, like that of ARP/WARP, corrects improper bond lengths and bond angles, iteratively
moving individual atoms to fit the density map better. Finally, TEXTAL takes into account the
target protein’s sequence to fix mismatched residues.

TEXTAL makes use of a provided sequence by aligning the map-determined model sequence
to the provided input sequence, using a Smith-Waterman dynamic-programming alignment [103].
If there is agreement between the sequences above some threshold, then a second LOOKUP pass
corrects residues where the alignment disagrees. In this second pass, LOOKUP is restricted to only
consider residues of the type indicated by the sequence alignment. Like RESOLVE, TEXTAL’s end
result is a complete all-atom protein model, illustrated for our example map in Figure 2.15c.

2.2.3.5 Discussion
TEXTAL – like RESOLVE – uses higher-order constructs than atoms in order to successfully

solve low-quality maps. In practice, TEXTAL works well on maps at around 3Å resolution. TEX-
TAL’s key contribution is the use of rotation-invariant features to recognize patterns in the map.
This feature representation allows accurate Cα identification using a neural network; it also does
well at classification of amino-acid type. TEXTAL tends to do better than RESOLVE at sidechain
identification due to this feature set. One key shortcoming, however, is limiting the initial back-
bone trace to skeleton points in the density map. In very poor maps, skeletonization inaccurately
traces the backbone. This is in part responsible for TEXTAL’s failure in maps worse than 3Å.
However, TEXTAL has successfully employed previously solved structures and domain knowledge
from structural biology to produce an accurate map interpretation.

2.2.4 Summary of approaches
A key step in determining protein structures is interpreting electron-density maps. In this area,

bioinformatics has played a key role. This chapter describes how three different algorithms have
approached the problem of electron-density map interpretation:

• The WARPNTRACE procedure in ARP/WARP was the first method developed for automatic
density-map interpretation. Today, it is still the most widely used method by crystallogra-
phers. ARP/WARP uses an “atom-level” technique in which free atoms are first placed into
the density map, free atoms are next linked into chains introducing constraints, and finally,
the combined model is refined to better explain the map. The method iterates through these
three phases, at each iteration using the partial model to improve the map. Because it works
at the level of individual atoms, it requires 2.3Å or better map resolution.

• RESOLVE is a method that searches for higher-level constructs – amino acids and secondary-
structure elements – as opposed to ARP/WARP’s atom-level method. Consequently, it
produces accurate traces in poor-quality (around 3Å) electron-density maps, unsolvable by
ARP/WARP. It, too, is widely used by crystallographers. RESOLVE begins by matching
short secondary-structure fragments to the maps, then uses a large fragment library to extend

38

these matches. Finally, overlapping matches are merged in a greedy fashion, and sidechains
are traced. Incorporating structural domain knowledge is key to this method’s success.

• TEXTAL also accurately interprets medium to low resolution (2 to 3Å), using residue-level
matching. It represents regions of density as a vector of rotation-invariant features. This
alternate representation serves several purposes. It is used to learn a classifier to identify
Cα’s, and it is also used to recognize the residue type of each putative Cα through a database
comparison. The classifier is also very well suited to identifying the residue type in a given
region, making it more accurate than RESOLVE in this respect. Additionally, TEXTAL’s
rotation-invariant representation enables fast matching of regions of density. This allows
TEXTAL to easily make use of previously solved structures (via the information retained
by the trained neural network) in its map interpretation, providing accurate traces even in
poor-quality maps.

2.3 Discussion

This chapter gave a brief background on important structural biology concepts, as well as an
introduction to probabilistic reasoning and inference. I described the problem of electron-density
map interpretation, and introduced several other algorithms used in automatic interpretation. I also
took a detailed look at three widely used methods for automatic density-map interpretation.

The remainder of my thesis describes a novel approach to automatic density-map interpreta-
tion. Using probabilistic reasoning, my approach will find the most likely protein structure for
some particular sequence in a given density map. This contrasts with the approaches presented in
this chapter, which separate the tasks of tracing the protein backbone and aligning the predicted
backbone to the given input sequence. The result is a method that – at poor map resolutions –
has better sidechain identification and more complete, less fragmented models than the approaches
presented above.

39

Chapter 3

A Probabilistic Approach to Protein-Backbone Tracing

In this chapter, I describe ACMI1 (Automatic Crystallographic Map Interpreter), an algorithm
that automates backbone tracing in electron-density maps. This chapter describes two main com-
ponents: ACMI-FF, a local matching component that locates individual amino acids in the density
map, and ACMI-BP, a global constraint component that uses prior knowledge of the protein’s
structure to eliminating false positives from the local matching. ACMI-BP implements an effi-
cient inference algorithm that can infer the protein’s backbone layout in an electron-density map.
Throughout this chapter, “ACMI” will refer to the sequential application of these two components,
ACMI-FF and ACMI-BP.

My model is probabilistic: throughout the interpretation it represents each residue as a prob-
ability distribution over the electron-density map. This property – not being constrained to force
each residue to a single location – is advantageous as it naturally handles noise in the map and
disordered regions in the protein. An earlier version of this chapter was previously published [27].

3.1 Overview of the algorithm

A high-level overview of ACMI’s two main components is illustrated in Algorithm 3.1. ACMI

includes a local-matching component, ACMI-FF (for fast-Fourier matching) where individual
residues are probabilistically located in the map, independent of all other residues, and a global-
constraint component, where the backbone chain is built up, also probabilistically, from the local
matches, taking into account the chemical laws governing the physical structure of proteins.

The local-matching component of my algorithm makes use of a library of existing sequence-
specific 5-mer (5-amino-acid long) templates. That is, when searching for an individual residue, I
actually look for all common conformations of the 5-mer centered at that residue. The local search
has high sensitivity, usually matching well to the residue’s correct location. However, it suffers
from low specificity, producing a significant number of false positives.

ACMI’s global-constraint component, ACMI-BP (for belief propagation) probabilistically re-
fines these local search results to take into account prior knowledge of protein structure. Using

1Throughout the thesis, I will use the notation ACMI-XX to refer to individual components of ACMI (e.g., ACMI-
FF, ACMI-SH, ACMI-BP, and ACMI-PF). I will refer to the entire map-interpretation pipeline using ACMI, making
sure to specify which individual components I am using.

40

Algorithm 3.1 ACMI’s algorithm for inferring protein Cα locations. Vector symbols are
dropped for clarity.

input: Sequence seq and electron-density map M
output: Putative backbone trace U∗ = {u∗i }
// The variable u∗i describes the position of amino-acid i’s Cα
// and orientation

foreach amino-acid i do
P (M|ui)← doLocalMatch(seqi,M)

end
P (U)← enforceGlobalConstraints(seq, {P (M|ui)})
U∗ ← {u∗i |∀iu∗i = arg maxui

P (ui)}

// Search the map for a set of templates corresponding to each

// amino acid in the protein

procedure doLocalMatch(seq,M)
input: 5-mer sequence seqi and electron-density map M
output: Prob. distribution P (M|ui) of each residue i over map M

fragments← extract all conformations of seqi from PDB
(centroids,weights)← cluster fragments using all-atom RMSd
foreach centroidj ∈ centroids do

tj(~x,Θ)← mismatch between density map at ~x and centroidj rotated by Θ
Pj(~x,Θ)← use tuning set to convert tj’s to probabilities

end
P (~x,Θ)←

∑
j weightj · Pj(~x,Θ)

// Given local-match probabilities and structural constraints,

// infer each amino acid’s location

procedure enforceGlobalConstraints(seq, {P (M|ui)})
input: Individual amino-acid prior distributions
output: Marginal (posterior) probabilities p̂i(~ui) under structural constraints

G ← Construct undirected graph from protein sequence
Vertices V model Cα positions
Edges E enforce (pairwise) structural constraints

p̂i(~ui)← Belief-propagation inference on G

41

this prior knowledge, it adjusts the local-match probabilities based on the local-match probabilities
of other residues. It produces a physically feasible interpretation that maximizes the probabilities
from the local matching.

ACMI-BP models this physical feasibility with a pairwise Markov field [36], which represents
the probability of a conformation as the product of potential functions between pairs of residues.
This pairwise potential is analogous to the pairwise potential-energy calculations used in molec-
ular dynamics [62] (although my model does not optimize physical energy but rather statistical
“energy”).

3.2 Local matching

I developed ACMI-FF to locate individual protein residues in an electron-density map. In the
poor-quality maps for which ACMI-FF is designed, simple atom-based refinement methods [94]
perform poorly. Empirically (reported in the respective method’s publications), methods using
rotamer searching [111], skeletonization [40], or critical points [73] also perform poorly in these
low-resolution maps. The methods that have had the most success in low-resolution maps are those
based upon finding large fragments of protein electron-density [17]. Thus, I use sequence-specific
5-mer search to locate individual residues in the electron-density map.

My method is divided into two basic parts, illustrated in Figures 3.1 and 3.2. First, I use
previously solved structures from the Protein Data Bank [3] to construct a basis set of sequence-
specific 5-mer templates. I then perform a 6D (rotation + translation) search in the map for each
of the 5-mers in my basis set. The output of this local search is – for each residue – an estimated
probability distribution of that residue’s presence over the unit cell. The remainder of this section
presents one approach to searching for a set of density templates in the electron-density map;
Chapter 4 presents an improved approach.

3.2.1 Constructing a sequence-specific 5-mer basis set
ACMI-FF begins this step – illustrated in Figure 3.1 – by walking along the one-dimensional

protein sequence, considering a 5-mer centered at each residue. Given this 5-mer, ACMI-FF
searches a non-redundant subset of the PDB [115] (restricted to have less than 25% sequence
similarity) for three-dimensional instances of that 5-mer. If there are less than 50 such instances
then ACMI-FF considers structures with similar 5-amino-acid sequences. Similarity is determined
using PAM distance [58], an amino-acid distance metric based on the probability that a particular
amino acid will mutate into another. ACMI-FF considers increasing the PAM-distance thresh-
old until there are at least 50 structures with PAM distance to the target less than or equal to the
threshold.

It is infeasible to search for all 50+ conformations in the electron-density map, so alternately,
ACMI-FF clusters the structures and represents each cluster as a centroid fragment and a weight.
When clustering the fragments, I use rotationally-aligned, all-atom RMS deviation between frag-
ments as a distance metric (quickly computed as an optimization problem [63]). Clustering uses

42

…LSAWCVKFD…

Protein
Database

0.67
weight

0.33
weight

Figure 3.1 My 5-mer clustering process. Walking along the given amino-acid sequence, I con-
sider a 5-mer centered at each position. I search the database for instances of that 5-mer, and
cluster them. Finally, I extract a representative member from each cluster. This characterizes the
conformational space of the 5-mer sequence.

complete-linkage hierarchical clustering [57], limiting clusters to have a maximum diameter of
3Å. That is – in any cluster – no two structures have an RMSd greater than 3Å.

Any cluster with under 10% representation is thrown out (to limit CPU time in the next step);
in all remaining clusters I find a centroid (i.e. representative) fragment. Each remaining cluster is
assigned a weight proportional to the number of structures the cluster contains. Depending on the
“sequence structural entropy” of the 5-mer [50], ACMI-FF typically produces anywhere from 1 to
7 clusters (and resultant centroid fragments).

The cluster centroids and the weights determined by ACMI-FF represent these “basis tem-
plates” (or “basis fragments”) for each specific 5-mer sequence. Using fragments of length five is
my way of balancing the trade-off between template size and template specificity. Larger fragments
are preferred for recognition in poor-quality maps, but larger fragments have lower representation
in the set of already-solved structures. ACMI-FF’s non-redundant PDB subset contains about 20%
of the 3.2× 106 possible 5-mers.

3.2.2 Searching the map for 5-mer template structures
Once clustering is complete and the cluster centroids have been extracted, ACMI-FF searches

for instances of the centroids in the electron-density map. This process is illustrated in Figure 3.2.
Given a fragment and a target resolution, I build a map corresponding to what I would expect to

43

template
fragment

electron-
density map
to interpret

tuning set
mismatch scores
ti(xi)

prior probability
p(resi at xi | ti[xi])

score distribution

Figure 3.2 An overview of the 5-mer template matching process. After I have extracted a rep-
resentative set of 5-mers for each residue i, I perform a 6D (rotation + translation) search for the
fragment in the density map. By also matching the fragment to a tuning set of known structures, I
use Bayes’ rule (see Equation 3.3) to estimate the probability distribution of the Cα’s location in
the density map.

44

see (a description of this process is given in Section 2.1.2). Then, at each map location, I compute
the mean squared electron-density difference t(~x) between the map and the fragment. I compute
this difference over all points ~x = (xi, yi, zi)

T in the electron-density map in a fragment-shaped
neighborhood around ~x,

t(~x) =
∑

y

εf (~y)
(
ρ′f (~y)−

1

σρ(~x)
[ρ(~y − ~x)− ρ̄(~x)]

)2

. (3.1)

Here, ρ(~x) is the density map in which I am searching (that is, ρ is the electron-density function),
while ρ′f (~y) is the standardized (that is normalized to have mean µ = 0 and variance σ2 = 1)
fragment electron-density. εf (~y) is a masking function that is nonzero only for points in this
fragment-shaped region around ~y, and ρ̄(~x) and σρ(~x) are scaling functions, ensuring that the
masked region of the map and template have the same mean and standard deviation. Specifically,
the function ρ̄ε(~x) is the average density over the mask εf around the point ~x, while σε(~x) scales
the standard deviation of the density map around ~x,

σ2
ε(~x) =

∑
y εf (~y)[ρ(~y − ~x)− ρ̄(~y)]2∑

y εf (~y)
. (3.2)

ACMI-FF needs to perform the fragment search as a 6D search over all rotations plus all transla-
tions; fortunately, I compute this quickly over the whole map (at a single rotation) using FFTs [16].
Additionally, at each position ACMI-FF stores the best-matching 5-mer fragment, and the corre-
sponding rotation, for later use.

The electron-density difference function t(~x) is a good measure of similarity between regions
of density, but I need a way to convert these scores into probability distributions. That is, I want the
probability P (~xi|scorei) that a specific 5-mer cluster i is present at location ~xi, given match score
scorei . ACMI-FF computes this using a tuning set and the application of Bayes’ rule. Bayes’ rule
gives us this probability:

P (~xi|scorei) = P (scorei|~xi)×
P (~xi)

P (scorei)
. (3.3)

. The terms on the right-hand side are computed or estimated as follows. The probability distri-
bution of match scores over the map, P (scorei), is derived from the actual distribution of match
scores over the (unsolved) map. The prior probability on a residue’s location over the map, P (xi),
is simply a normalization term: I already know (by knowing the protein’s sequence) the number of
copies of the 5-mer in the electron-density map, and so I normalize probabilities over the map to
reflect this value.

However, the first term – the distribution of scores when a 5-mer matches the map – is trickier to
compute. ACMI-FF estimates this term using a tuning set derived from different protein structures
from the PDB. This tuning set contains other instances from the same 5-mer cluster for which I am
searching.

I match each centroid’s density with each tuneset example’s density to estimate the distribution
of scores given a 5-mer match. I compute the squared-density difference between: (a) a centroid
and (b) the optimally rotated tuneset example. I assume this distribution is normally distributed,
and choose the maximum-likelyhood parameters µmatch and σ2

match.

45

3.2.3 Additional sources of local information
When manually solving an electron-density map, a crystallographer uses all of the information

available. This includes not just the electron-density map and the protein primary sequence, but
also other sources of “soft” information, such as distant structural analogues, predicted secondary
structures and the locations of heavy atoms from phasing experiments.

In particular, one commonly used experiment to recover phase information for an electron-
density map is multi-wavelength anomalous diffraction (MAD) [44], which uses the property that
certain heavy atoms tend to absorb X-rays at a particular wavelength. Using the scattering patterns
produced by different X-ray wavelengths, one can determine the locations of these heavy atoms,
and use these atoms to determine initial map phases.

Selenium is one such heavy atoms. When solving protein structures that have sulfur-containing
methionine residues, one common source of heavy atoms is to “replace” the sulfur in methionine
with selenium. The protein is grown using the selenium-containing selenomethionine. Using
MAD, the locations of these selenium atoms must be determined before the density map is calcu-
lated.

When solving a density map phased in this manner, a crystallographer is provided the locations
of each of the seleniums in the map; each of the protein’s methionines must be placed coincident
with these locations. A crystallographer can use this knowledge to guide model construction.
However, this must be viewed as a soft constraint, since: (a) not all the seleniums may be found,
and (b) there may be false-positive selenium locations.

ACMI-FF takes advantage of this information – when available – by “up-weighting” selenome-
thionine probabilities around each predicted selenium location (selenomethionine’s Cα is typically
3-4.5Å from its selenium), and “down-weighting” all other probabilities. Specifically, I compute a
modified probability for each selenomethionine (MSE is the three-letter abbreviation for selenome-
thionine):

PMSE(~xi|scorei,SE-locs) = P (scorei,SE-locs|~xi)×
P (~xi)

P (scorei,SE-locs)

= P (scorei|~xi)× P (SE-locs|~xi)×
P (~xi)

P (scorei)× P (SE-locs)

The second line of the equation results from assuming that match scores and selenium locations are
conditionally independent given the 3D structure. The term P (SE-locs) is folded into normaliza-
tion, leaving only the term P (SE-locs|~xi) as an additional computation. ACMI-FF calculates this
term using empirical data (from the PDB), as well as a user-provided “confidence” in the fidelity
of provided Cα locations.

Specifically, ACMI-FF learns a potential function ψMSE(c, s) that gives the probability of ob-
serving a selenomethionine alpha-carbon at 3D location c, and the corresponding selenium at s.
This function is learned from the non-redundant PDB subset used for ACMI-FF’s local matching.
The function only depends on the distance between c and s, and is modeled using the weighted
sum two variable-width Gaussians. I learn a total of 5 parameters (the ratio of weights, two means,
and two variances) describing this distribution using expectation-maximization (EM) [21].

46

The distribution I learn is:

ψMSE(c, s) ∝ w1 · N (||c− s||;µ1, σ
2
1) + (1− w1) · N (||c− s||;µ2, σ

2
2) (3.4)

The parameters I learn are w1 = 0.6, µ1 = 3.3Å, µ2 = 4.2Å, σ1 = 0.1Å, and σ2 = 0.04Å. This
function is normalized to sum to unity over the density map.

Given this potential function, the definition of P (SE-locs|~xi) is straightforward:

P (SE-locs|~xi) =
P0

||SE − locs||
·

∑
sj∈SE-locs

ψMSE(xi, sj) +
1− P0

V
(3.5)

The variable V is the density-map volume (i.e., the number of grid points). The term P0 is a “con-
fidence term”; that is, how confident the crystallographer is in the correctness and completeness
of the list of selenium locations. Since this value is highly variable from map to map – and the
crystallographer may have some insight to its value based on results from phasing experiments
– I make it a user-provided parameter. All experiments using this term (in my thesis, only the
experiments in Chapter 5 make use of it) use P0 = 0.9.

3.2.4 Discussion
At the end of the local-matching procedure, ACMI-FF has computed – for each residue – a

probability distribution over all rotations and translations. That is, for each location ~x in the density
map, and each rotation Θ, I have a probability that each Cα is positioned at that location/rotation.
The remainder of the chapter describes how my algorithm uses prior knowledge about the structure
of the protein to estimate the most probable backbone trace given these probability distributions.

Run times for the local matching are significant: for each fragment I have to search ≈ 1900
rotations (20-degree discretization) over the entire electron-density map. The total compute time
is on the order of CPU-weeks; however, 5-mer matching is trivially parallelized [112], since each
5-mer can be processed separately and independently of one another (further straightforward par-
allelization is possible).

3.3 Global constraints

In Section 3.2, I compute – for each residue i – a probability distribution over every position ~x
and rotation Θ in the unit cell. This rotational variable Θ includes not only the three Euler angles
(α, β, γ), but also an internal “bend” angle δ, defined as the angle formed by three consecutive
Cα’s. For notational convenience, I will refer to this seven-dimensional variable as ~u = (~x,Θ).

This seventh dimension δ is important because – in this second phase – I want to answer the
question: Given one Cα is located at a point ~ui, where can I find the adjacent Cα’s? Without
providing this “bend” angle (which may range from 90◦ to 180◦), the answer is ambiguous.

Alternately, one can think of this probability distribution in a generative sense, as the proba-
bility that this map M was generated by amino-acid i at location and rotation ~ui, that is, as the

47

(a) (b)

Figure 3.3 Two possible backbone traces. The trace (a) maximizes the product of 5-mer match
probabilities; however, the resultant protein is physically impossible. I would prefer trace (b) with
non-optimal local-match probabilities, but which corresponds to a physically realistic structure.
Shading shows progression along the backbone.

probability P (M|~ui). One could presumably select, for each amino-acid i, the ~ui that maximizes
this probability. However, to do so would not take into account that amino acids are not placed
independently, but their locations are in fact highly correlated due to physical-chemical constraints.

Figure 3.3 illustrates this idea. Independently choosing locations ~ui to maximize local match
scores gives a model that looks like Figure 3.3(a). A user would much prefer the model in Fig-
ure 3.3, where not every individual ~ui is maximized, but the overall model corresponds to a physi-
cally realistic protein structure.

I somehow need to account for the structural probability on the model. That is, I needs to
ensure that the proposed structure is a physically feasible protein molecule. What I ultimately want
to find – given map M – is the configuration of all residues U∗ = { ~u∗1, . . . , ~u∗N}, such that

U∗ = arg max
U

P (U|M)

= arg max
U

{
P (U)×

N∏
i=1

P (~ui|M)

}
(3.6)

This first term, P (U), encodes the structure’s physical feasibility, in which a proposed structure
like that of Figure 3.3b would have a much higher probability of configuration than Figure 3.3a.
Recall that the second term – computed by ACMI-FF – assumes independent placement of amino
acids in the model. The first term accounts for this dependency.

48

ALA GLY LYS LEU
ALA GLY LYS LEU

... ... ALA GLY LYS LEU

density map M

(a)

(c)

(b)

Figure 3.4 The structure of ACMI-BP’s graphical model. The joint probability of a conformation
of residues is the product of (a) an observation potential at each node, (b) an adjacency poten-
tial between adjacent residues, and (c) an occupancy potential between all pairs of non-adjacent
residues.

3.3.1 Pairwise Markov-field model
To model the “global constraint” probability, ACMI-BP uses an undirected graphical model

[6]. An undirected graphical model defines the probability distribution of a set of variables on
an undirected graph. ACMI-BP uses a particular type of undirected graphical model known as a
pairwise Markov field [36], where the probability of a particular setting of the random variables in
the graph is the product of potential functions associated with vertices and edges in the graph.

ACMI-BP’s pairwise Markov-field model G = (V , E) consists of a set of nodes i ∈ V con-
nected by edges (i, j) ∈ E . Each node in the graph is associated with a (hidden) random variable
ui. The graph is conditioned on observation variables M. Each vertex has a corresponding obser-
vation potential ψi(~ui,M), and each edge is associated with a conformational potential ψij(~ui, ~uj).
The model represents the full joint probability as the product of these potentials:

P (U|M) =
∏
i∈V

ψi(~ui|M)×
∏

(i,j)∈E

ψij(~ui, ~uj) (3.7)

I am primarily concerned with finding the ~ui’s maximizing this probability, given some density
map M.

Figure 3.4 shows how I encode a protein in a Markov-field model. Each node i represents
an amino-acid residue in the protein. The value ~ui for each amino-acid residue consists of seven
terms: the 3D Cartesian coordinates ~xi of the residue’s alpha Carbon (Cα), and the four internal
rotational parameters Θ.

49

The observation potential ψi(~ui|M) associated with each residue is proportional to the 5-mer
probability P (M|ui), as computed in the previous section.

The conformation potentials ψij(~ui, ~uj), which model the probability of a particular conforma-
tion of the residues in the protein, are further divided into two basic types. Following Sudderth
et al.’s hand-tracking model [106], ACMI-BP defines adjacency potentials associated with each
edge connecting neighboring residues (Figure 3.4b). These potentials ensure that adjacent residues
maintain the proper 3.8Å spacing and the proper Cα–Cα–Cα angle. ACMI-BP also defines oc-
cupancy potentials between non-adjacent residues (Figure 3.4c), which prevent two residues from
occupying the same region in three-dimensional space.

Expanding Equation 3.7, ACMI-BP’s full joint probability of some Cα trace is now given as

P (U|M) =
∏

amino-acid i

ψi(~ui|M)×
∏

amino-acids i,j
|i−j|=1

ψadj(~ui, ~uj)
∏

amino-acids i,j
|i−j|>1

ψocc(~ui, ~uj) (3.8)

Because residues distant on the protein chain are not necessarily distant in space, the graph must
be fully connected; that is, every pair of residues is joined by an edge in the Markov-field model.

One can think of this as a “scoring function” for evaluating candidate 3D backbone traces. That
is, given candidate backbone trace U’, which gives a location to every Cα in a protein, Equation 3.8
is used to evaluate the “goodness” of U’, given the density map M and knowledge of how proteins
tend to fold.

3.3.1.1 Adjacency potentials
The adjacency potentials, which connect every adjacent pair of residues, are further broken

down into the product of two constraining functions, a distance constraint function and a rotational
constraint function:

ψadj(~ui, ~uj) = px(||~xi − ~xj||)× pΘ(~ui, ~uj) (3.9)

The distance constraint is based on the physical fact that, in proteins, the Cα–Cα distance is a
nearly invariant 3.8Å. Thus, this first term px takes the form of a tight Gaussian around this ideal
value.

The internal parameters Θ model the 3D rotation of each residue and the angle formed by the
residue triple centered at residue i. To simplify the definition of pΘ, I parameterize these four
degrees of freedom as two pairs of (θ, φ) spherical coordinates: (θf , φf), the most likely direction
of the “forward” (C-terminal) residue, and (θb, φb), the most likely direction of the “backward”
(N-terminal) residue. Figure 3.5 illustrates this parameterization.

ACMI-BP’s local 5-mer matching – in addition to computing the probability at a specific lo-
cation – also remembers, for each translation ~x: (a) the best-matching template fragment, and (b)
the best-matching rotation of that centroid. Then, at each location in the map, I store four values
– θ∗f ,φ∗f , θ∗b , and φ∗b – indicating the direction of the adjacent residues’ Cα’s, based on the direction
of these Cα’s in this rotated, best-matching 5-mer.

50

〈ßi,γi〉

αi

δi

Cαi

Cαi-1 Cαi+1

Cαi

Cαi-1 Cαi+1

〈 θib,φib 〉 〈 θi f,φi f 〉

(a)

(b)

p(θib,φib | xi) p(θi f,φi f | xi)
(c)

Figure 3.5 An illustration of an amino acid’s internal rotational parameters. ACMI-BP param-
eterizes (a) each amino acid’s four degrees of freedom – the three rotational parameters and the
“bend” formed by three consecutive Cα’s – as (b) the direction of the C-terminal and N-terminal
adjacent amino acids. (c) My algorithm assumes that the probability distribution is distributed as a
Gaussian in this 4D space.

51

i

θf

θb

θf
θb

i+1

(a)

i

θf

θb

θf

θb

i+1

(b)

Figure 3.6 The angular constraint function pΘ ensures the probability of (a) a model where (θ∗f , φ
∗
f)

of amino-acid i and (θ∗b , φ
∗
b) of amino-acid i + 1 point at each other is greater than (b) a model

where they do not.

Another way to think about this is that at each location ~x in the map, alpha-carbon i says “if
I am at location ~x, I think alpha-carbon i + 1 is most likely in the direction (θ∗f , φ

∗
f), and alpha-

carbon i − 1 is most likely in the direction (θ∗b , φ
∗
b)”. My algorithm assumes that the probability

distribution in rotational space (that is, in Θ-space) is distributed as a four-dimensional Gaussian
around these stored values, plus some uniform prior probability (justification for this appears in
Section B.1). I add a uniform prior (typically 10% of the probability mass) to account for errors
introduced by estimating this distribution in Θ-space as a single Gaussian.

The angular constraint function pΘ ensures that (θf , φf) in some amino acid i and (θb, φb) in
amino acid (i + 1) point toward one another. The potential is highest when they are antiparallel
(that is, 180◦ apart), and decreases as the angle between them decreases. This idea is illustrated in
Figure 3.6. Again, note that each location ~xi may have a different set of rotational parameters!

3.3.1.2 Occupancy potentials
Occupancy potentials are in place to ensure that two residues do not occupy the same location in

space. They are defined independently of orientation, and are merely a step function that constrains
two (nonadjacent) Cα’s to be at least K Å apart,

ψocc(~ui, ~uj) =

{
1 ||xi − xj|| ≥ K Å
0 otherwise

(3.10)

Crystallographic symmetry [97] is managed in this occupancy potential. The occupancy po-
tential is only non-zero if two amino acids – and all symmetric copies – are sufficiently far apart,

ψocc(~ui, ~uj) =

 1

(
min

symmetric
transforms S

||xi − S(xj)||
)
≥ K Å

0 otherwise
(3.11)

In all experiments, we use a distance cutoff of K = 3Å (based on analysis of solved structures).

52

Finally, multiple chains in the asymmetric unit are also handled by ACMI-BP: separate chains
are fully connected by edges enforcing occupancy constraints.

3.3.2 ACMI-BP’s inference algorithm
The ultimate goal of ACMI-BP is producing a backbone trace: finding the labels U∗ = {u∗i }

that maximize the probability of the local observational potentials and the global conformational
potentials:

U∗ = arg max
U

∏
i∈V

ψi(~ui,M)×
∏

(i,j)∈E

ψij(~ui, ~uj) (3.12)

However, as described in the previous chapter solving this exactly for large graphs with loops is
intractable. ACMI-BP uses belief propagation (BP) to compute an approximation to the marginal
probability Pi(~ui|M) for each amino acid i, then chooses the maximum marginal label for each
residue as the final trace.

Recall that belief propagation is an inference algorithm that computes marginal probabilities
using a series of local messages. At each iteration, a node (i.e., amino acid) computes an estimate
of its marginal distribution (i.e., an estimate of the amino acid’s location in the unit cell) as the
product of its local probability and all incoming messages. This amino acid then passes a convo-
lution of this product with the corresponding edge potential along each outgoing edge. Rewriting
Equation 2.8 in terms of my protein model (EDM refers to the electron density map, i.e., I integrate
over the entire map):

mn
i→j(~uj) =

∫
EDM

ψij(~ui, ~uj)×
p̂n

i (~ui)

mn−1
j→i(~ui)

d~ui (3.13)

Here, p̂n
i (~ui) denotes the estimate of i’s marginal (or i’s belief) at iteration n, that is:

p̂n
i (~ui) = ψi(~ui,M)×

∏
k∈Γ(i)

mn
k→i(~ui) (3.14)

Figure 3.7 illustrates the message-passing with a simple two-dimensional example. In this
example, two residues’ prior probabilities have their probability mass split among several peaks.
Structural knowledge tells us that residue i must be next to residue j. In the first iteration, residue
i passes a message to residue j, that indicates where residue i expects to find residue j (essentially,
in a ring around residue i’s peaks).

Messages in BP are probability distributions marginalized to the message recipient’s random
variables; that is, this message from residue i to residue j is a function over residue j’s position in
the density map. Residue j passes a message back to residue i indicating where j expects to find i.
This example shows that in just two iterations, BP is able to reduce the number of peaks through
the use of structural priors.

53

time

amino
acid i

amino
acid j

2
îp 0

îp

0ˆ jp 1ˆ
jp

1
i jm→ 2

j im →

Figure 3.7 A simple example of message passing using belief propagation. Given prior probabil-
ities p̂0

i and p̂0
j , at each iteration, node i passes a message to a node j indicating i’s belief of j’s

position. For example, a residue knows that an adjacent residue must be 3.8Å away; residue i’s
message to j consists of these 3.8Å “rings” of probability around i’s peaks. As BP iterates, the
matches that are structurally supported by other residues begin to emerge.

3.3.3 Technical challenges
Even with the computational savings afforded by BP compared to exact inference, the size

and complexity of both the graph and the space of labels presented ACMI-BP with a number of
implementation challenges. This section will briefly discuss some of these scaling issues. They
will be described fully in Chapter 7.

3.3.3.1 Representation of potentials
The label associated with each residue is a continuously-valued, 7-dimensional variable. Non-

parametric belief propagation (NBP) [106] is a variant of BP that can handle continuous-valued
labels; previous work represented the belief as the sum-of-Gaussians. My work introduces Fourier-
Series NBP, a variant of NBP which represents messages and belief as a set of 3D Fourier coeffi-
cients in Cartesian space, which offer a number of benefits for this problem domain. These benefits
include natural treatment of periodic boundary conditions and symmetry, no explicit initialization
required (as is required with the sum-of-Gaussians), and an efficient message-passing implemen-
tation.

54

3.3.3.2 Efficient message passing
Each message passed requires integrating over the entire unit cell, which naı̈vely takes running

time of the order O(K2), where K is the number of Fourier coefficients. Unfortunately, for a typ-
ical protein, K may be 106 to 107! For adjacency messages, it is not too much of a problem, as I
only need to integrate over a thin spherical shell where ψadj is nonzero. However, for occupancy
messages, this message computation time is significant. Fortunately, because the occupancy poten-
tial is only a function of the distance between the two connected residues, I can pass the message
in O(K logK) as a multiplication in Fourier-space.

That is, I can write the occupancy potential ψocc(~ui, ~uj) as a function of the difference between
the two amino acids in Cartesian space, i.e., ψocc(xi−xj). Then, to compute an occupancy message
from amino acid i, I take the Fourier transform of i’s belief p̂i(xi) (marginalized over rotations to be
a function of location xi), and multiply it by the (precomputed) Fourier transform of the occupancy
potential (the step function). That is:

mi→j(~xj) = F [p̂i(xi)]×F [ψocc(xi − xj)] (3.15)

Notice that these occupancy messages are uniform over rotations.

3.3.3.3 Occupancy message aggregation
Because ACMI-BP’s protein graph is fully connected, in each iteration O(N2) messages need

to be computed and stored, where N is the number of amino-acid residues in the protein. As each
message is a probability distribution over the entire density map, this is demanding computationally
and in terms of storage. However, the outgoing structural messages (see Equation 3.13) at a given
node are all quite similar: they only differ in the denominator, which serves to avoid double-
counting, making the method exact in tree-structured graphs [118].

In loopy graphs, this double-counting is unavoidable. I can save a significant amount of work
if I aggregate all the non-bonded residues, sending them instead a single structural message. This
aggregate message simply drops the denominator for each outgoing occupancy message. This
approximation, coupled with an accumulator (see Figure 3.8) that stores the product of all nodes
outgoing occupancy messages. This approximation reduces ACMI-BP’s runtime and memory use
to O(N) per iteration. Complete descriptions and additional experiments using message aggrega-
tion are given in Chapter 7.

Combined, these three BP optimizations allow ACMI-BP to handle large proteins with large
unit cells. Typical run times (for BP inference) vary from several hours to several days.

55

(a)

(b)

Accumulator

Accumulator

Figure 3.8 An illustration of occupancy message aggregation: (a) Every amino-acid in the protein
sends an approximate occupancy message to an accumulator. (b) The accumulator allows updat-
ing a node’s (in this example, node 3) belief in constant time, as the accumulator product times
incoming adjacency messages (from nodes 2 and 4), divided by occupancy messages it should not
have received, but did from the accumulator product (here, from nodes 2, 3, and 4).

3.4 Experiments

I obtained a set of ten model-phased2 electron-density maps from the Center for Eukaryotic
Structural Genomics at the University of Wisconsin–Madison. Details of the dataset – including
PDB accession codes – are shown in Section A.2, in Appendix A. I removed maps in the testset
from my database of PDB structures before testing. To test ACMI’s performance on poor-quality
(2.5+ Å) data, I downsampled these maps to R0 = 2.5, 3, 3.5, and 4Å resolution by smoothly
diminishing the intensities of higher-resolution reflections. Details of the truncation are given in
Section A.2.

I compare the performance of ACMI (that is, the sequential application of ACMI-FF and ACMI-
BP) on these maps to two other automated techniques specialized to low-resolution maps: Ioerger’s
TEXTAL [55], and Terwilliger’s RESOLVE [110,111]. I measure each algorithm’s prediction using

2A model-phased map uses the phasing from the final deposited model as opposed to the experimentally estimated
phases to construct the density map. Model-phased maps have no phasing artifacts, and are typically of better quality
than the experimentally phased density map.

56

three different metrics: (a) Cα RMS error between predicted model and ground truth (the crystal-
lographer’s solution), (b) the fraction of Cα’s in the model that were located, and (c) the fraction
of Cα’s that were located and correctly identified.

The distinction between the second and third metric is that often, RESOLVE (and TEXTAL to
a lesser extent) will identify some portion of the backbone, but will be unable to align it to the
provided sequence. Amino-acids in this portion would be identified as correct using metric (b),
but incorrect under metric (c). ACMI, too, will occasionally misidentify residues (for example,
swapping two helices).

The results at each resolution are summarized in Figure 3.9. TEXTAL was unable to run on
one protein’s density maps (at any resolution) – rather than including a terrible score for this map,
I gave the benefit of the doubt to TEXTAL and only report results on the nine maps on which it
ran. In terms of RMS error (Figure 3.9a), my algorithm consistently outperforms TEXTAL at all
resolutions tested. Using a two-tailed paired t test, ACMI outperforms TEXTAL with p values of
0.091, 0.057, 0.012 and 0.11 at 2.5, 3, 3.5, and 4Å, respectively. RESOLVE performs on par with
ACMI at 2.5Å resolution; however, at 3, 3.5 and 4Å, ACMI’s performance is much better: a two-
tailed t test yields p values of 0.0068, 0.00002 and 0.00004, respectively (both of these t tests only
take into account RMS error and not chain coverage).

Figure 3.9b shows that the percent of the chain covered was roughly equivalent for the three
approaches. However, Figure 3.9c shows that my approach is much better than the others at iden-
tifying the proper residue type at a particular location. It is important to point out that these related
methods are not optimizing residue-identification accuracy. RESOLVE, for example, will often
return a long chain of alanine residues if it cannot identify sidechains, but still gives the correct
backbone structure overall. This illustrates a significant difference between ACMI and these alter-
nate approaches: TEXTAL and RESOLVE build a backbone model, then attempt to align the protein
sequence to it. ACMI, alternatively, uses the sequence of the protein to construct the model. The
result is better identification of amino acids in the map.

Figure 3.10 shows scatterplots in which each individually solved electron-density map is a
point. The x-axis indicates ACMI’s error; the y-axis indicates TEXTAL’s (or RESOLVE’s) error.
All points above the diagonal line correspond to maps where ACMI outperformed TEXTAL (or
RESOLVE). On the majority of structures, ACMI’s interpretation has a lower RMS error then both
of the other algorithms. ACMI is outperformed by RESOLVE on some high-resolution maps, how-
ever, ACMI currently does not perform any post-processing on predicted backbones (e.g. real-space
refinement [86], energy minimization [9]); also, Cα’s are restricted on a grid, limiting accuracy to
the grid spacing.

One advantage of ACMI’s probabilistic framework is that, in addition to returning a putative
trace, ACMI also returns a confidence (i.e., probability) level of each predicted residue. This confi-
dence informs the crystallographer what areas in the map need improvement; alternatively, a high
confidence partial trace could be used to improve phasing. Figure 3.11 illustrates this in an exam-
ple trace at 3.5Å resolution, on a structure consisting of two chains of 124 residues each. This is
ACMI’s sixth-best (of the ten) traces at this resolution: ACMI finds nine segments with a Cα RMS
deviation of 2.3Å, covering 94% of the backbone. The model’s shading indicates the likelihood of
its prediction for each Cα location.

57

0

2
4

6

8
10

12

2.0 2.5 3.0 3.5 4.0 4.5

Density map resolution

C
α

RM
S

d
ev

ia
ti

o
n ACMI

Textal
Resolve

(a)

0%

20%

40%

60%

80%

100%

2.0 2.5 3.0 3.5 4.0 4.5

Density map resolution

B
ac

kb
o

n
e

co
m

p
le

te
n

es
s

(b)

0%

20%

40%

60%

80%

100%

2.0 2.5 3.0 3.5 4.0 4.5

Density map resolution

Si
d

ec
h

ai
n

s
co

rr
ec

tl
y

id
en

ti
fie

d

(c)

Figure 3.9 Graphs comparing ACMI’s, TEXTAL’s, and RESOLVE’s interpretation in terms of (a)
average RMS Error, (b) average percent of the chain located, and (c) average percent of residues
correctly identified.

3.5 Conclusions and future work

I describe ACMI, a tool for automatically tracing protein backbones especially designed for
poor-quality electron-density maps. ACMI combines a local matching procedure and a global con-
straint procedure in a probabilistic framework that can efficiently infer the locations of backbone
atoms in an electron-density map. The algorithm provides accurate traces even in poor resolution
electron-density maps, outperforming both TEXTAL and RESOLVE above 3Å map resolution.

One major shortcoming is the significant compute time required by ACMI-FF’s local (5-mer)
matching procedure. I need to search for approximately three 5-mer fragments per residue; for each
fragment I consider≈ 1900 rotations3. Even for medium-sized unit cells, this takes on the order of

3At 20◦ discretization, there are 18×9×18 = 2916 3D rotational samples to consider. Using a shortcut suggested
by Mitchell [80], I am able to reduce this by around 40%.

58

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

ACMI Cα RMS error

TE
X

TA
L

C
α

RM
S

er
ro

r

2.5Å
3.0Å
3.5Å
4.0Å

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

ACMI Cα RMS error
Re

so
lv

e
C
α

RM
S

er
ro

r
(a) (b)

Figure 3.10 A scatterplot showing the performance on a protein-by-protein basis, of ACMI versus
(a) TEXTAL and (b) RESOLVE. Each mark is an interpreted map; the shaded half of each scatterplot
(above the diagonal) shows the region where ACMI provided a more-accurate backbone trace.

Figure 3.11 An illustration of predicted versus actual structure on ACMI’s sixth-best prediction
(out of ten) at 3.5Å resolution. The thin continuous coil is the actual structure, while the thicker
segmented chain is ACMI’s prediction. The predicted structure is colored by log-likelihood, where
Cα placements with higher likelihood are shaded darker.

59

CPU-weeks; larger proteins take CPU-months. ACMI-FF exploits parallelism, running overnight,
using the spare cycles from desktop computers [112]. However, I would like to investigate the use
of machine learning algorithms, such as support vector machines or neural networks, to quickly
match a 5-mer into the density map. I also would like to explore alternative feature representations.

Additionally, I would like to investigate improved methods for managing non-crystallographic
symmetry. Many maps have this type of symmetry, that is, where the protein forms a multimeric
complex in the asymmetric unit. Every copy must be found by the automated method or the crys-
tallographer, although often all copies are in identical or nearly identical conformations. Currently,
my global constraint model, ACMI-BP, places all chains simultaneously, but does not use the
knowledge that chains are likely to take similar conformations. This knowledge, however, is used
by crystallographers in solving such maps, and is valuable in solving very poor density maps. In
the future, I would like to add to ACMI-BP the ability to infer the conformation of just a single
protein chain and one or more transformations relating these multiple copies.

By providing accurate interpretations from lower-resolution maps, ACMI reduces the burden
on crystallographers when only poor-quality density map data is available. Even when it may
be possible to obtain high-resolution density-map data, ACMI allows significant cost savings by
finding accurate solutions with poor-quality maps. In doing so, ACMI speeds up the process of
high-throughput protein structure determination.

60

Chapter 4

Improved Template Matching Using Spherical Harmonics

The previous chapter described ACMI-FF and ACMI-BP, a two-step method for automatically
producing a backbone trace from an electron-density map. A critical component in this method
is ACMI-FF, the local match component. ACMI-FF independently searches the density map for
a set of template fragments, using Fourier convolution to quickly search the entire map for some
rotation of a template. This chapter describes a significant improvement to this template matching
over my original approach to template matching (Section 3.2).

This chapter’s approach to template matching, ACMI-SH, uses the spherical-harmonic decom-
position of the template and some region of the density map. This enables rapidly searching over
all rotations of some fragment at a single location in the density map. An initial filtering algorithm,
unusable in the Fourier convolution framework, reduces computational time by eliminating a ma-
jority of points without performing a costly rotational search. Combining ACMI-SH’s local search
with ACMI-BP’s inference enables more accurate interpretation of poor quality density-map data.
Much of the material in this chapter was previously published [28].

4.1 The goal of template matching

Recall that ACMI-BP builds a probabilistic protein-backbone model, where the probability of
some backbone model U = {ui} (where ui is the position and orientation of the ith Cα) is given
as

P (U = {ui}) ∝
∏

amino-acid i

ψi(ui)×
∏

amino-acids i,j
i6=j

ψij(ui, uj) (4.1)

For clarity, dependence on the density map M has been dropped. The first product models how well
an amino acid matches some location in the density map; the second models the global structural
constraints on the protein.

The first term in this equation, the vertex potential ψi, results from independently searching
the map for a set of templates corresponding to amino-acid i. It can be thought of as a “prior
probability” on each alpha carbon’s location, given the density map. Another way to think of this
is as there being an “amino-acid-i detector” for each amino-acid i in the protein.

The second term in this equation, the edge potential ψij , enforces structural constraints on the
protein. An inference algorithm (introduced in Chapter 3 and described in detail in Chapter 7)

61

finds the most likely location of each Cα, given the density map. Specifically, for each amino acid
i in the protein, ACMI’s inference algorithm returns a probability distribution over Cα i’s location.

This chapter is concerned with the computation of the first term in Equation 4.1’s product,
the vertex potentials ψi. Accurate “amino-acid detectors” are important to producing an accu-
rate backbone model. These amino-acid detectors search the density map for a set of templates
corresponding to each amino acid. To construct these templates, I consider a 5-mer (that is, a 5-
amino-acid sequence) centered at each position in the protein sequence, and build a set of template
pentapeptides (that is, 5-amino-acid structures).

The previous chapter’s ACMI-FF clusters these pentapeptides, searching the map for a single
representative from each cluster. To quickly match these templates to the density map, ACMI-
FF uses Fourier convolution (like that of Cowtan’s FFFEAR [17]) to compute the squared density
difference of one rotation of a template to the entire density map. I then use a tuning set to convert
squared density differences into a probability distribution over the electron-density map. Although
efficient, one disadvantage of ACMI-FF is that I am forced to search the entire density map for
some template. The Fourier convolution does not allow us to search in only some small region of
the map.

The remainder of this chapter describes ACMI-SH, an alternate approach to searching the den-
sity map for occurrences of some template. Using spherical-harmonic decomposition, ACMI-SH
rapidly searches all rotations of a template at a single location. This framework lets me limit the
locations in which I search to some small subset of the entire density map, addressing a primary
shortcoming of the previous chapter’s approach. In addition, ACMI-SH’s improved efficiency lets
me search for more templates and at higher angular resolution than the previous chapters template-
search method.

4.2 Spherical harmonics and the fast rotation function

My new method for template-matching is based on spherical-harmonic decomposition and is
similar to the fast rotation function used in molecular replacement [20, 113], as well as for shape
matching in other domains [41, 49].

Spherical harmonics Y m
l (θ, φ), with order l = 0, 1, . . . and degree m = −l,−(l − 1), . . . , l,

are the solution to Laplace’s equation1 in spherical coordinates. They are analogous to a Fourier
transform, but on the surface of sphere. They form an orthogonal basis set on the sphere’s surface.
Any spherical function f(θ, φ) can be written

f(θ, φ) =
∞∑
l=0

l∑
m=−l

alm · Y m
l (θ, φ) (4.2)

Figure 4.1 illustrates the real and imaginary components of some low-order spherical harmonics.
Figure 4.2 shows an example of how a spherical function is decomposed using harmonic coeffi-
cients.

1Laplace’s equation,52φ = 0 is a fundamental partial differential equation [30], arising in many different scientific
fields, including fluid dynamics, electromagnetics, and gravitation.

62

(,) (,)
(,) (,)(,) (,)

Y0
0

Y1
-1 Y1

0 Y1
1

Y2
-2 Y2

-1 Y2
0 Y2

1 Y2
2

Figure 4.1 The real and imaginary components of several low-order spherical harmonics. These
basis functions are illustrated such that the radius at a particular angular coordinate indicates the
value at that particular location. Colors indicate sign (gray positive and white negative).

One important property is that the rotation of spherical harmonics of some order is simply a
linear combination of spherical harmonics of the same order. So, using the notation R(~r) · f(θ, φ)
to denote the rotation of a function f by the angles ~r = 〈α, β, γ〉,

R(~r) · Y m
l (θ, φ) =

l∑
k=−l

Y k
l (θ, φ) ·Dl

km(~r) (4.3)

These linear coefficients Dl
km(~r) refer an entry into the Wigner D-matrix (see [119]). This matrix

is rapidly computed using separation of variables and an FFT-like recurrence.
A key advantage of this decomposition arises when I want to rotationally align two spherically

defined functions [69]. That is, given (real) functions f(θ, φ) and g(θ, φ) on the sphere, I want to
compute the cross correlation between them as a function of rotation angles ~r,

Cfg(~r) =

∫ 2π

0

∫ π

0

f(θ, φ) ·R(~r) · g(θ, φ) · sinθ dθ dφ (4.4)

If the functions f and g are band-limited to some maximum bandwidth B (or can be reasonably
approximated as such), then expanding these functions in terms of their spherical-harmonic de-
composition gives this cross-correlation in terms of the Wigner D-matrix (a and b refer to the

63

(,)

(,)

3.71 ×
+ (2.63 – 1.21i) ×
+ 1.36 ×
+ (2.63 + 1.21i) ×
+ ...

Figure 4.2 An overview of spherical-harmonic decomposition. Given the spherically defined
function on the left – illustrated using both shading (top) and radius (bottom) to illustrate function
values – I compute its decomposition as a set of spherical-harmonic coefficients.

spherical-harmonic coefficients of f and g, respectively),

Cfg(~r) =
B−1∑
l=0

l∑
m=−l

l∑
n=−l

al(−m) · bl(−n) · (−1)m−nDl
mn(~r) (4.5)

Thus, computing Cfg(~r) is simply a matter of combining the spherical-harmonic coefficients of f
and g, and computing the inverse of the transformation used to compute the Wigner D’s above. A
full derivation is shown by Kostelec and Rockmore [69].

Several different “fast rotation” algorithms exist to quickly compute this cross correlation
Cfg(~r). If functions f and g have maximum bandwidth B, then these fast rotation functions com-
pute this cross correlation given the spherical-harmonic decomposition of f and g in O(B4) time
or O(B3 log B) time as opposed to the naı̈ve O(B6).

4.3 A method for fast template matching

I derive an improved vertex potential from this fast rotation function. An overview of my
local-match procedure appears in Algorithm 4.1, and is illustrated in Figure 4.3.

4.3.1 Overview of the approach
When searching for some pentapeptide, I begin by computing the density I would expect to see

given the pentapeptide (one models each atom with a Gaussian sphere of density). I then interpolate
this calculated density in concentric spherical shells (uniformly gridding θ−φ space) extending out
to D Å (typically 5 Å, chosen to cover most of the density in an average pentapeptide) in 1Å steps.

64

pentapeptide
template
from PDB

electron-density
map to
interpret

density in
spherical shells

density in
spherical shells

spherical
harmonic

coefficients

spherical
harmonic
coefficients

correlation
as a function
of template rotation

sample region
of density

compute
expected density

spherical harmonic
transform

spherical harmonic
transform

fast rotational
alignment

(,)
a ×0

0 + a ×1
0

+ a ×1
-1

+ ...

(,)
b ×0

0 + b ×1
0

+ b ×1
-1

+ ...

Figure 4.3 ACMI-SH’s improved template-matching algorithm. Given some pentapeptide tem-
plate (left) the expected electron-density is calculated. In the map (right), a spherical region is
sampled. Spherical harmonic coefficients are calculated for both, and the fast rotation function
computes cross correlation as a function of template rotation.

A fast spherical-harmonic transform computes spherical-harmonic coefficients corresponding to
each spherical shell using a recursion similar to that used in fast Fourier transforms [43].

Similarly, I interpolate the density map using the same set of concentric spherical shells around
some grid point, and again, take the spherical-harmonic transform of each spherical shell’s den-
sity. Given these two sets of spherical-harmonic coefficients – one corresponding to the template
and one corresponding to some location in the density map – the previous section’s fast rotation
alignment computes the cross correlation over all rotations of the template pentapeptide, for each
spherical shell. ACMI-SH’s fast rotational correlation uses the implementation of Rockmore and
Kostelec [69].

65

Algorithm 4.1 ACMI-SH’s template matching.
input: amino-acid sequence Seq, density map M
output: vertex potentials ψi(~y, ~r) for i = 1 . . . N
// ψi is a function of location ~y = (x, y, z) and rotation ~r = (α, β, γ)

// Learn parameters to convert correlations to probabilities

(µCC , σCC)← learn-from-tuneset()

foreach residue i do
// Search for pentapeptides corresponding to amino-acid i
PDBfragsi ← lookup-in-PDB(Seqi−2:i+2)

// For each corresponding pentapeptide template

foreach frag ∈ PDBfragsi do
// Compute the template’s density and its decomposition

template← compute-dens(frag)
templCoef ← SH-transform(template)

// Now scan over the density map

foreach point ~yj ∈M do
// if ~yj doesn’t pass filtering criteria, don’t search

if is-filtered-out(~yj) then next ~yj

// Sample the density around ~yj; take its decomposition

signal← sample-dens-around(~yj)
sigCoef ← SH-transform(signal)

// Align density regions using the fast rotation function

CC←fast-rotate(templCoef, sigCoef)
CC? ←sum-over-spherical-shells(CC)

// For each rotation of the template

foreach rotation ~rk ∈ R do
// Convert correlation at rotation rk to a probability

zk ← (µCC − CC?
k)/σCC

pnull ← normCDF (zk)
ψi(~yj, ~rk)← (1− pnull)/pnull

end
end

end
end

66

This gives a cross-correlation (as a function of rotation) for each spherical shell. To combine
scores over the entire region, I take, at each rotation ~r, the weighted sum of each shell’s correlation
coefficient. The weight of each shell corresponds to the surface area of that shell, thus, the outmost
shells have the greatest weight. That is, given the correlation of each spherical shell, CC(~r) =
{CC1(~r), . . . , CCD(~r)}, I compute the correlation over the entire region as:

CC?(~r) =
1∑D

d=1 4πd2

D∑
d=1

4πd2 × CCd(~r) (4.6)

This gives a single correlation coefficient for each rotation of the fragment, over all spherical shells.
After computing the cross correlation, I compute the vertex potential ψi as the probability

that a particular cross-correlation value was not generated by chance. That is, I assume that the
distribution of the cross correlation between some template’s density and some random location in
the density map is normally distributed with mean µ and variance σ2,

Cfg ∼ N (x;µ, σ2) (4.7)

I estimate these parameters µ and σ2 by computing cross correlations between the template and
random locations in the map. Given some cross correlation xc, I compute the expected probability
that I would see score ci or higher by random chance,

pnull(xc) = P (X ≥ xc;µ, σ
2) = 1− Φ((xc − µ)/σ) (4.8)

Here, Φ(x) is the normal cumulative distribution function. Each amino-acid’s potential is then
(1− pnull)/pnull.

For a given template, ACMI-SH scans the density map M, centering the template at every lo-
cation (xi, yi, zi) ∈M. At each location, I sample concentric spheres of density around (xi, yi, zi),
take the spherical-harmonic transform, and compute the cross correlation between the template
and density map around (xi, yi, zi) as a function of 3D rotation angles ~r = (α, β, γ).

ACMI-BP’s inference algorithm only stores a single probability value and a single rotation per
location, assuming a Gaussian distribution in rotational space about this stored location. So for the
final step in my template matching, at each location (xi, yi, zi), I store the maximum probability
over all rotations, as well as the rotation corresponding to this probability. However, this is a
limitation of the inference algorithm, not of template matching. ACMI-SH’s template matching
gives a probability distribution over all locations and rotations of the template fragment.

4.3.2 Advantages of rotational “convolution”
In ACMI-FF, searching for some template in an X × X × X electron-density map (that is,

with X3 grid points for which density values are provided) at an angular bandwidth B requires
that I search the density map for O(B3) rotations of each fragment (the angular bandwidth B here
corresponds to an angular “grid size” of 180◦/B in Chapter 3’s ACMI-FF). Searching for a single
rotation over the map is done using 3 FFT’s, which run in O(X3 logX). Thus, searching the
density map using the previous chapter’s template search takes running time O(X3 logXB3) .

67

Using spherical-harmonic decomposition, ACMI-SH requires that I search for the fragment in
O(X3) locations. Searching for all rotations of some template at one location takes O(B3 logB),
giving ACMI-SH a running time of O(X3B3 logB).

In this application, though, one can think of B as “fixed” with respect to map size, since B
only depends on the size of the template pentapeptide. As protein size (and consequently density
map size) increases, ACMI-SH shows improved scaling, O(X3) versus O(X3 logX).

“Convoluting2” in rotational space rather than Cartesian space (as in FFFEAR [17]) offers sev-
eral advantages. First I only have to search the asymmetric unit of the protein crystal – that is, only
the smallest non-repeated portion of the density map – rather than the entire map. This alone may
offer six to eight-fold runtime savings.

Additionally, ACMI-SH allows the use of a “first-pass filter” that only considers some small
portion of the density map over which I perform a rotational search. Because ACMI-FF searches
the entire map at once using a Fourier convolution, it requires that I search over the entire density
map for each fragment, even if I know a template lies in some small area. Using ACMI-SH, I
instead search all of rotational space at once, allowing me to limit the (x, y, z) locations at which I
search. A comparison of several such filters is presented in the next section.

4.3.3 Modified pentapeptide templates
There are other changes between ACMI-FF and ACMI-SH as well. Because ACMI-SH sam-

ples spherical density shells, the template for which I am searching is a fixed-size sphere around
the center of each template structure. This sphere includes many (but not all) atoms from the pen-
tapeptide; in addition, it includes atoms from other portions of the protein located nearby. This
contrasts with ACMI-FF, where each template was arbitrarily shaped: a mask was extended to
2.5Å away from each atom in the template pentapeptide.

Figure 4.4 compares one such fragment: Panel A shows ACMI-FF’s template density for some
pentapeptide, while Panel B shows ACMI-SH’s template density for the same pentapeptide. I feel
ACMI-SH’s representation is advantageous as it captures the context of each pentapeptide: for
example, if some 5-mer always occurs on the surface of a protein, all of that 5-mer’s templates will
be on the protein surface, and will be reflected in the cross-correlation scores. That is, a template
on the surface of a protein will match best to regions of the map on the surface of the protein.
Alternatively, one could use a fixed-size sphere to align a template to the map, then compute
the correlation coefficient over some arbitrary-shaped region; in my experience this produces no
improvement in matching accuracy, and incurs non-trivial overhead.

A final difference between ACMI-FF and ACMI-SH is that – in ACMI-FF – I cluster the tem-
plate structures (from the PDB) to produce a minimal subset for which I search. ACMI-SH no
longer clusters these templates. In ACMI-FF, clustering serves mainly to reduce computational
costs. Due to improved efficiency of ACMI-SH, I am able to search for a greater number of frag-
ments than before. Even if I wanted ACMI-SH to cluster templates, I would run into trouble.

2I use this term loosely to refer to computation of both ACMI-FF’s squared-density-difference (which is computed
via convolution) and ACMI-SH’s cross-correlation.

68

(a) (b)

Figure 4.4 Differences between ACMI-FF’s and ACMI-SH’s density templates. (a) ACMI-FF’s
templates include all density within 2.5Å of any template atom, while (b) ACMI-SH’s templates
include all density within 5Å of the center Cα, which may include density from atoms not in the
pentapeptide.

ACMI-FF clusters pentapeptides using RMS deviation as a distance metric. In ACMI-SH, tem-
plates are now fixed-sized spheres, which often includes atoms not in the pentapeptide. This makes
RMS deviation, which does not take these atoms into account, an ineffective measure for similarity
between two templates. A measure which took these atoms into account – such as cross-correlation
between templates or searching for atom correspondences – would incur significant performance
penalties (hierarchical clustering of N objects requires O(N2) comparisons; in ACMI-SH often
N > 100).

Therefore, ACMI-SH simply searches for every template pentapeptide in my non-redundant
protein data bank subset corresponding to a particular 5-mer sequence.

4.4 Results

This section evaluates ACMI-SH using four different performance measures. The first two
measures are simple tests of ACMI-SH: I first show the error introduced by band-limiting density
templates, then I compare several different first-pass filters. My third test compares ACMI-FF to
ACMI-SH, in terms of matching accuracy and running time as rotational sampling (the resolution
of the θ–φ grid) varies. Finally, I use both ACMI-FF and ACMI-SH’s matching routines as input to
ACMI-BP’s inference engine, and compare the resulting protein models to other approaches. The
experimental setup in this final section is the same as used in the previous chapter.

As in the previous chapter, I use a set of ten model-phased electron-density maps from the
Center for Eukaryotic Structural Genomics at the University of Wisconsin–Madison. Details of
the dataset – including PDB accession codes – are shown in Section A.2, in Appendix A. Maps
in my testset were removed from my non-redundant PDB subset before testing. To test ACMI’s

69

Bandwidth limit B

A
ve

ra
g

e
sq

u
ar

ed
 d

en
si

ty
 e

rr
o

r

101

0 10 20 30 40

3A resolution
4A resolution

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

Figure 4.5 The average squared density difference between a region of sampled density and the
bandwidth-limited region. The dotted line shows the error between two random regions.

performance on poor-quality (2.5+ Å) data, I downsampled these maps to 3 and 4Å resolution by
smoothly diminishing the intensities of higher-resolution reflections. Details of the truncation are
given in Section A.2.

4.4.1 Errors in band-limiting density
Rotationally aligning two regions of density using spherical harmonics requires that I compute

spherical harmonics of both the density map and the template density up to some band limit B.
This band-limited signal will be somewhat different than the original signal. Figure 4.5 shows
the average squared density difference between the original sampled density and the bandwidth-
limited density asB is varied. The dotted line in this figure shows the squared density between two
random regions, as a baseline (this measure does not depend on bandwidth limit or resolution).

This figure shows a bandwidth limit B = 12 accurately models the original density, with
density difference < 10−3 for 3Å resolution maps and < 10−4 for 4Å resolution maps. The
difference between two random signals is around 2.

As further support, Trepani and Navaza provide a rule of thumb for the bandwidth limit in
Patterson maps [113] (an experimental map related to the electron-density map), where the band
limit B relates to the density-map resolution d and the radius r by the formula

B ≈ 2πr/d (4.9)

In this application, where I use a radius of 5Å (thus B ≈ 10 for a 3Å map and 8 for a 4Å map), the
rule seems to closely match my result in Figure 4.5.

70

(a) (b) Fraction of 4Å map
considered

Fr
ac

ti
o

n
 o

f t
ru

e
C
α'

s
ke

p
t

Fraction of 3Å map
considered

Fr
ac

ti
o

n
 o

f t
ru

e
C
α'

s
ke

p
t

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Point density
2Å sphere density
3Å sphere density
Distance-to-skeleton

Figure 4.6 A comparison of four different filters for quickly eliminating some portion of the
density map. Filter performance is compared on (a) 3Å and (b) 4Å resolution density maps.

4.4.2 First-pass filtering
A significant advantage of ACMI-SH over ACMI-FF is that my new approach allows me to

filter out regions of the map that are very unlikely to have a Cα (the center of each template cor-
responds to a Cα), without needing to perform a computationally expensive rotational alignment.
This section compares four different first-pass filters, all which are quickly computed.

The first three filters are based upon the observation that in density maps, especially poor-
resolution maps, Cα locations correspond to the highest-density points in the map [73]. The first
of these filters considers filtering points based on the individual point’s density, while the other two
consider the density sum in a 2 or 3Å radius around each point.

The fourth and final filter I test is based upon the skeletonization of the density map [40].
Skeletonization, similar to the medial axis transformation in computer vision, gradually “erodes”
the density map until it is a narrow ribbon approximately tracing the protein’s backbone and
sidechains. I consider filtering each point based upon its distance to the closest skeleton point.
This is the first-pass filter used by CAPRA [54] to eliminate points from the density map.

Figure 4.6 compares the performance of these four simple filters at both 3Å and 4Å resolution.
These plots show, on the x-axis, the portion of the entire map I consider (sorted by my filter
criteria), while the y-axis shows the fraction of true Cα locations included. For example, a point at
coordinates (0.2, 0.9) means a filter for which – at some threshold value – I look at only 20% of the
density map and still find 90% of the true Cα locations. Somewhat surprisingly, the simplest filter,

71

-12

-11

-10

-9

-8

100 1000 10000
-14

-13

-12

-11

-10

-9

-8

100 1000 10000

Algorithm runtime (s)Algorithm runtime (s)

Pe
r-

A
A

 lo
g

-l
ik

el
ih

o
o

d
3Å

 re
so

lu
ti

o
n

 m
ap

s

Pe
r-

A
A

 lo
g

-l
ik

el
ih

o
o

d
4Å

 re
so

lu
ti

o
n

 m
ap

s

ACMI-SH
B=8

B=12
B=16

ACMI-FF θ=30°

θ=20°

θ=15°
ACMI-SH
B=8 B=12 B=16

ACMI-FF θ=30° θ=20° θ=15°

(a) (b)

Figure 4.7 A comparison of ACMI-SH’s and ACMI-FF’s template matching on (a) 3Å and (b)
4Å resolution maps, in terms of average per-amino-acid log-likelihood of the true trace (higher
values are better).

the point density, performs the best. The remainder of my experiments consider using the point-
density as a first-pass filter, eliminating a conservative 80% of the density map from rotational
search, and thus providing a 5-fold speedup in this (time-consuming) process.

4.4.3 Template matching
This section compares ACMI-FF and ACMI-SH’s template-matching performance. I compare

the performance of both algorithms as the angular sampling of each density template is varied.
Given the sequences for each of the ten proteins in my testset, I consider searching for 10 randomly
chosen amino-acids in each protein (100 amino acids total). For each amino acid, I find a minimum
of 50 template pentapeptides with similar 5-mer sequences.

To test ACMI-FF, I cluster these pentapeptides based on the RMS deviation of their optimal
alignment, and select a representative structure from each cluster. Further details are in the previous
chapter. When testing my improved implementation (ACMI-SH), I perform no such clustering.
Instead, I search the entire map for each of the 50+ templates. For ACMI-SH, I filter out all points
below the 80th percentile density, assigning them some low probability.

Figure 4.7 compares the performance of ACMI-FF to ACMI-SH’s search using spherical har-
monics in both 3Å and 4Å density maps. In this plot, the x-axis measures the running time of
the algorithm (in seconds), while the y-axis measures the per-amino-acid log-likelihood of the true
solution. That is, given the deposited backbone model B∗ = {b∗1, . . . , b∗K}, the y-axis measures

llk(B∗) =
1

K

K∑
k=1

log(ψk(b
∗
k)) (4.10)

72

Higher likelihoods are better; the more likely the true model, the more likely its structure will be
recovered by inference.

It is interesting to note here that ACMI-SH, even at its lowest bandwidth limit, offers equal or
better accuracy then the previous approach, in significantly less running time.

4.4.4 Comparison of protein models produced
In the previous chapter, I compared the performance of ACMI-FF+BP (that is, the sequential

application of ACMI-FF and ACMI-BP on these ten maps to two other automated techniques
specialized to low-resolution maps: Ioerger’s TEXTAL and Terwilliger’s RESOLVE, both described
in Chapter 2.

I test ACMI-SH+BP on this same set of maps. Figure 4.8 compares the accuracy of the Cα
model predicted by ACMI-SH+BP with that of ACMI-FF+BP, RESOLVE, and TEXTAL. Fig-
ures 4.8a and 4.8b show the average Cα RMS error and percentage of amino acids located over the
ten structures. Figures 4.8c and 4.8d show scatterplots in which each individually solved electron-
density map is a point. The x-axis indicates ACMI-FF+BP’s error (or percent amino-acids iden-
tified); the y-axis shows the same metric for ACMI-SH+BP. Points in the shaded regions below
the diagonal in Figure 4.8c and above the diagonal in Figure 4.8d correspond to maps in which
ACMI-SH+BP produced the “better” interpretation (under the corresponding scoring criterion).

On these maps, ACMI-FF uses θ = 20◦ angular discretization, while ACMI-SH is run with a
bandwidth B = 12, and a filter that eliminated 80% of points based on the density of each point.

Here ACMI-SH+BP shows a clear improvement over all other approaches. Both Figures 4.7
and 4.8 show the greatest improvement in 4Å-resolution maps. Even with this improved accuracy,
the running time of ACMI-SH is about 60% of that of ACMI-FF (see the middle dots in Figure 4.7).

The accuracy increase in using spherical harmonics likely comes from several different places.
The increased efficiency allows a finer angular sampling: the bandwidth limit B = 12 is analogous
to a 15◦ angular spacing. This increased efficiency also lets us search for each individual template
– without clustering – which may help accuracy somewhat. Searching for a 5Å sphere, which
captures the context of a particular amino acid (i.e., is an amino-acid typically on the surface or in
the core of the protein?) may be improving the matching as well. Finally, band-limiting the signal,
which throws out the highest-frequency components, may help eliminate noise from the density
map.

4.5 Conclusions and future work

I described an improvement over ACMI-FF’s template matching in three-dimensional template
matching in electron-density maps. Chapter 3 describes a method using Fourier convolution to
quickly search over all (x, y, z) coordinates for some rotation of a template. This chapter shows an
alternative approach using the spherical-harmonic decomposition of a template to rapidly search
all rotations of a template at a single (x, y, z) location. Unlike Fourier convolution, this method
allows an initial filtering algorithm to reduce computational time by “masking out” locations in

73

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
0

2

4

6

8

0 2 4 6 8

ACMI-FF Cα RMS error

A
C

M
I-

SH
 C
α

RM
S

er
ro

r

3A reso.

4A reso.

0

2

4

6

8

10

12
ACMI-SH
ACMI-FF
Textal
Resolve

C
α

RM
S

er
ro

r

(a)

(d)(c)

0%

20%

40%

60%

80%

100%

3Å resolution
maps

4Å resolution
maps

B
ac

kb
o

n
e

co
m

p
le

te
n

es
s

(b)

ACMI-FF
backbone completeness

A
C

M
I-

SH

b
ac

kb
o

n
e

co
m

p
le

te
n

es
s

3Å resolution
maps

4Å resolution
maps

Figure 4.8 A comparison of ACMI-SH+BP’s protein models with three other methods. (a)
The average Cα RMS error and (b) percentage of amino acids located. Scatterplots compare
ACMI-FF+BP’s performance with ACMI-SH+BP’s on (c) RMS error and (d) percentage of amino
acids located. The shaded half of each scatterplot shows the region where ACMI-SH+BP is out-
performing ACMI-FF+BP

the density map unlikely to contain an instance of any template. My improved template matching
offers both improved efficiency and accuracy, compared to previous work, finding substantially
better models in about 60% of the running time.

One goal for the future is further improvements in the first-pass filter. Even with the efficient
fast rotation search presented here, rotationally aligning two regions of density is time-consuming.

74

Improved filtering would reduce the number of rotational alignments needed, significantly de-
creasing running time. One idea is to use a classifier based on the rotation-invariant representation
suggested by Kondor [67].

Another future direction made possible by this work involves integrating this template search-
ing and probabilistic inference (in ACMI-BP’s Markov-field model). ACMI-SH makes it possible
to efficiently search for a template at a single location. This suggests an approach where, initially, I
search a small set of locations in some map. As inference in my model proceeds, locations that ap-
pear to be good candidates for Cα’s may emerge. I could then search at these locations, in essence
using the first few iterations of inference as a first-pass filter.

75

Chapter 5

Creating All-Atom Protein Models using Particle Filtering

The previous two chapters described a two-step method for constructing a coarse backbone
model of a protein from an electron density map. ACMI-BP uses probabilistic inference to com-
pute the probability distribution of the coordinates of each amino acid, given this density map.
However, in constructing a protein-backbone model, ACMI-BP makes several simplifications, such
as reducing each amino acid to a single atom (the Cα) and confining the locations to a coarse grid.

To address these limitations, this chapter introduces the use of a statistical sampling method
called particle filtering (PF) [29] to construct all-atom protein models, by stepwise extension of
a set of incomplete models drawn from a distribution computed by ACMI-BP. This results in a
set of probability-weighted, all-atom protein models. The method interprets the density map by
generating a number of distinct protein conformations consistent with the data.

I compare the single model that best matches the density map (without knowing the true so-
lution) with the output of existing automated methods, on multiple sets of crystallographic data
that required considerable human effort to solve. I also show that modeling the data with a set of
structures, obtained from several particle-filtering runs, results in a better fit than using a single
structure from a single particle-filtering run. Particle filtering enables the automated building of
detailed atomic models for challenging protein crystal data, with a more realistic representation
of conformational variation in the crystal. Some of the material in this chapter was previously
published [23].

5.1 Shortcomings in ACMI-BP’s model

The method introduced in Chapter 3, ACMI-BP, produces high-confidence backbone traces
from a poor-quality density maps. Given a density map and the primary amino acid sequence of
the protein contained in this map, ACMI-BP constructs a probabilistic model of the location of
each Cα. Statistical inference on this model gives the most probable backbone trace of the given
sequence in the electron-density map.

Formally, ACMI-BP’s probabilistic inference returns, for each amino-acid i, the marginal prob-
ability distribution p̂i(bi) of that amino acid’s Cα position. Previously, I computed the backbone
trace B∗ = {b∗1, . . . , b∗N} (where bi describes the position and rotation of amino-acid i) as the

76

A

B

prob=0.40

A

B

prob=0.35

A

B

prob=0.25

A

max marginal

Figure 5.1 One case where a maximum-marginal trace may be undesirable. Suppose some protein
takes any of the three conformations on the top row with the indicated probability. The maximum–
marginal locations given this distribution places both sheets on top of each other, chain A with
probability 0.4, and chain B with probability 0.6. This is clearly physically unrealistic.

position of each Cα that maximized ACMI-BP’s belief,

b∗i = arg max
bi

p̂i(bi) (5.1)

This chapter will use the variable B in place of the previous chapters’ U to refer to a putative
backbone model, and bi instead of ui to refer to the location of a single amino-acid i’s Cα.

One obvious shortcoming in my previous approach is that biologists are interested in not just
the position (b∗i) of each Cα, but in the location of every atom in the protein. Naı̈vely, I could take
ACMI-BP’s most-probable backbone model, and simply attach the best-matching sidechain from
a library of conformations to each of the model’s Cα positions. In Section 5.4.2 I show that such a
method works reasonably well.

However, this naı̈ve approach does not address several other problems with ACMI-BP’s back-
bone trace. ACMI-BP’s marginal distributions are computed on a grid, which may lead to non-
physical distances between residues when Cα’s are placed on the nearest grid points. Additionally,
ACMI-BP’s inference is approximate, and errors due to these approximations may produce an
incorrect backbone trace, with two adjacent residues located on opposite sides of the map. Fig-
ure 5.1 illustrates a third problem, dealing with independently selecting the position of each residue
to maximize the marginal. Here, a protein that takes three possible backbone conformations with
some non-negligible probability, leads to a physically unrealistic maximum-marginal trace.

77

Representing each amino acid’s position as a distribution over the map is very expressive, and
is easily able to model multiple backbone conformations. Simply returning the Cα position that
maximizes the marginal ignores a lot of information. This chapter describes the application of
particle filtering to “explain” the density map using multiple, physically feasible traces.

5.2 Particle-filtering overview

I will use a particle-filtering method called statistical importance resampling (SIR) [2, 29],
which approximates the posterior probability distribution of a state sequence x1:K = {x1, . . . , xK}
given observations y1:K as the weighted sum of a finite number of point estimates x(i)

1:K ,

p(x1:K |y1:K) ≈
N∑

i=1

w
(i)
K δ(x1:K − x(i)

1:K) (5.2)

Here, i is the particle index, w(i) is particle i’s weight, K is the number of states (in my application
the number of amino acids), and δ is the Dirac delta1 function. In my application, each xk describes
the position of every non-hydrogen atom in a single amino acid, and each yk is some 3D region of
density in the map.

In my work, the technical term “particle” refers to one specific 3D layout of all the non-
hydrogen atoms in a contiguous subsequence of the protein (e.g., from amino acid 21 to 25).
PF represents the distribution of some subsequence’s layout using a set of distinct layouts for that
subsequence, as illustrated in Figure 5.2 (in practice, several dozen to several hundred particles are
used to represent a set extensionally).

At each iteration of particle filtering, I advance the extent of each particle by one amino acid.
For example, given x21:25 = {x21,x25} the position of all atoms in amino acids 21 through 25
(I will use this shorthand notation for a particle throughout the chapter), PF samples the position
of the next amino acid, in this case x26. Ideally, particle filtering would sample these positions
from the posterior distribution: the probability of x26’s layout given the current particle and the
map. SIR is based on the assumption that this posterior is difficult to sample directly, but easy to
evaluate (up to proportionality). Given some other function (called the importance function) that
approximates the posterior, particle filtering samples from this function instead, then uses the ratio
of the posterior to the importance function to reweigh the particles.

To give an example of an importance function, particle-filtering applications often use the prior
conditional distribution p(xk|xk−1) as the importance function. After sampling the data, yk will
be used to weight each particle. In my application, this is analogous to placing an amino acid’s
atoms using only the layout of the previous amino acid, then reweighing by how well it fits the
map (however, this is not what my approach, described in Section 5.3, does).

I use a particle resampling step to address the problem of degeneracy in the particle ensemble
[68]. As particles are extended, the variance of particle weights tends to increase, until there are

1This function is also known as the impulse function. It takes the value zero everywhere but the origin, where it is
infinite; it is constrained such that

∫ +∞
−∞ δ(x) dx = 1.

78

Figure 5.2 A pictorial look at particle filtering. I fit the density map shown using a set of particles
(i.e. all-atom models). Here, only two particles are shown for clarity, one darker and one lighter.

few particles with non-negligible weights, and much effort is spent updating particles with little or
no weight. To ameliorate this problem, an optional resampling step samples (with replacement) a
new set of N particles at each iteration, with the probability of selecting a particle proportional to
its weight. This ensures most particles remain on high-likelihood trajectories in state space.

One problem with resampling is that if particles are frequently resampled, the population of
particles may become overly homogenized [2]. This is known as sample impoverishment. Others
have developed methods to deal with this problem, including the resample-move algorithm [37]
and regularization (replacing the Dirac δ with some other probability density estimate, such as a
mixture-of-Gaussians) [87].

What makes SIR (and particle filtering methods in general) different from Markov chain Monte
Carlo (MCMC) [88] is that MCMC is concerned with the stationary distribution of the Markov
chain. In particle filtering, one is not concerned with convergence of the point estimates, rather, the
distribution is simply modeled by the ensemble of particles, whether or not they converge. Variants
of particle filtering improve the importance function through the use of auxiliary variables [96].

5.3 ACMI-PF’s protein-particle model

I have developed ACMI-PF, an approach using particle filtering to construct an all-atom protein
model. ACMI-PF wants to find the complete (all-atom) protein model x1:N (recall the variable xi

describes the location of all amino-acid i’s non-hydrogen atoms) that best explains the observed
electron-density map y. To simplify, I parameterize xk as a Cα location bk (the same as bi in
Equation 5.1), and a sidechain placement sk. The sidechain-placement variable contains the 3D
location of every non-hydrogen sidechain atom in amino-acid k, as well as the position of backbone
atoms C, N, and O; sk may contain the 3D coordinates of as many as 14 atoms.

79

. . .

. . .

5
. . .

. . .

2 1 3 7

6 4 8

bk bk+1 bk+2bk-1bk-2

sk sk+1sk-1

Figure 5.3 Conditional dependencies in sidechain (sk) and Cα (bk) layout. Numbers indicate the
order in which labels are sampled, beginning with the middle Cα, and alternately moving forward
and backward. Sidechain orientations are uniquely determined given 〈bk−1, bk, bk+1〉.

Given this parameterization, the Markov process proceeds in two phases, alternating between
placing: (a) Cα positions and (b) sidechain atoms (Figure 5.3). That is, an iteration of particle
filtering first samples bk+1 (Cα of amino-acid k + 1) given b

(i)
k (alternately, growing a particle

toward the N-terminus would sample bj−1 given b(i)j). This sampling makes use of ACMI-BP’s
inferred probability distribution of Cα k + 1 locations (bk+1) to place this amino acid in each
particle. As the protein chain is grown, I decide whether to grow toward the N-terminus (j − 1)
or C-terminus (k + 1) using ACMI-BP’s marginal distributions, preferring to first sample amino
acid’s of which I am most sure ACMI-BP knows the location (details are shown in Section 5.3.3).

At this point, I have the locations of the alpha-carbon triplet b(i)k−1:k+1 for each particle. Given
this, I next sample sidechain conformation sk. Sidechain placement draws sidechain conformations
(or rotamers) from a database of such conformations, and only considers these discrete conforma-
tions for sk.

An overview of the complete algorithm appears in Algorithm 5.1. The following two subsec-
tions describe the backbone and sidechain steps, respectively, for a single particle.

5.3.1 Using ACMI-BP-computed marginals to place Cα’s
In my algorithm’s backbone step I want to sample the position of amino acid k + 1’s Cα, bk+1

(or (j−1)’s Cα, bj−1), given the incomplete Cαmodel from amino-acid j to amino-acid k, b(i)j:k, for
each particle i. That is, I want to define a backbone sampling function q(bk+1|b(i)j , . . . , b

(i)
k , yk). The

variable yk here refers to a region of the electron density map in the neighborhood of amino-acid
k.

Doucet et al. [29] defines the optimal sampling function as the conditional marginal distribution

q(bk+1|b(i)j , . . . , b
(i)
k , y) = p(bk+1|b(i)k , yk) (5.3)

While it is intractable to compute Equation 5.3 exactly, it is straightforward to estimate using
ACMI-BP’s Markov-field model

p(bk+1|b(i)k , yk) ∝
p(b

(i)
k , bk+1|yk)

p(b
(i)
k |yk)

(5.4)

80

Algorithm 5.1 ACMI-PF grows a protein model in two phases.
input: density map y, amino-acid marginals p̂k(bk)

output: set of protein models x(i)
1:K and weights w(i)

K

// start at some AA with high certainty about its location

choose k such that p̂k(b
(i)
k) has minimum entropy

foreach particle i = 1 . . . N do
choose b(i)k at random from p̂k(b

(i)
k)

w
(i)
k ← 1/N

end
foreach residue k do

foreach particle i = 1 . . . N do
// choose bk+1 (or bk−1) given b

(i)
k by subsampling M locations

{b∗mk+1} ← choose M samples from φadj(b
(i)
k , bk+1)

// subsample weights proportional to Acmi-BP’s belief

w∗m ← belief p̂i(b
∗m
k+1)

// choose a subsample with probability proportional to belief

b
(i)
k+1 ← choose b∗mk+1 with probability ∝ w∗m

// update particle weight as sum of subsample weights

w
(i)
k+1 ← w

(i)
k ·

∑M
m=1w

∗m

// choose sk given b
(i)
k−1:k+1 by subsampling L potential locations

{s∗lk } ← all sidechain conformations for amino-acid k

// subsample weights are probability of map given subsample

// EDM[bk] denotes region of density in the neighborhood of bk
p∗lnull ← prob cc(s∗lk ,EDM[bk]) occurred by chance

// choose a subsamples with probability proportional to weight

sk ← choose s∗lk with probability ∝ 1/p∗lnull − 1

// update particle weight as sum of subsample weights

w
(i)
k+1 ← w

(i)
k ·

∑L
l=1 1/p∗lnull − 1

end
end

81

This numerator – the joint marginal of bk and bk+1 – is easily computed in a Markov-field
model. I compute this as the product of k and (k+ 1)’s belief, multiplied by the potential function
between them, ψadj(bk, bk+1). Expanding this:

p(bk+1|b(i)k , yk) ∝
p(b

(i)
k , bk+1|yk)

p(b
(i)
k |yk)

∝ p̂k(b
(i)
k) · ψadj(b

(i)
k , bk+1) · p̂k+1(bk+1)

p̂k(b
(i)
k)

∝ p̂k+1(bk+1) · ψadj(b
(i)
k , bk+1) (5.5)

Here, p̂k+1(bk+1) is the ACMI-BP-computed marginal distribution for amino-acid k + 1 (the de-
pendence of p̂k and p̂k+1 on yk has been dropped for readability).

That is, what I sample – my importance function – is the location of Cα k+1 from the product
of (a) k+ 1’s marginal distribution and (b) the adjacency potential between Cα k and Cα k+ 1. A
(mostly) accurate way of thinking about this is – given that I have the location of the ith Cα (at bi)
– I want to determine likely places for the (i + 1)th Cα. I do this by looking 3.8Å away (I know
Cα’s are separated by this distance), and use ACMI-BP’s distribution of Cα (i + 1)’s location to
help me choose a direction to take.

Doucet’s optimal sampling function has a corresponding weight update

wi
k+1 ∝ wi

k ×
∫
p(yk+1|bk+1, b

(i)
k) dbk (5.6)

This integral, too, is intractable to compute exactly, but can also be approximated using ACMI-
BP’s marginals,

wi
k+1 ∝ wi

k ×
∫
p̂k+1(bk+1) · ψadj(b

(i)
k , bk+1) dbk (5.7)

Notice that the function over which I integrate (Equation 5.7) is exactly the function from which
I want to sample (Equation 5.5). This suggests a sampling approach to the problem of choosing
location of Cα k+1 and reweighing each particle. This sampling approach is illustrated pictorially
in Figure 5.4.

I sample M potential Cα locations using only the adjacency potential between k and k + 1,
which models the allowable conformations between two adjacent Cα’s. I will refer to each of these
M “subsamples” (each particle is a sample, and I take M samples per particle) using the notation
b∗mk+1, m = 1, . . . ,M . That is, I sample:

b∗mk+1 ∼ ψadj(b
(i)
k , bk+1) (5.8)

Keep in mind that b(i)k is “bound”: I sampled its location (for this specific particle) previously.
I assign each sample a weight, the (approximate) marginal probability p̂k+1(b

∗m
k+1) at each of

these sampled locations. Since each subsample b∗mk+1 is continuously valued, and ACMI-BP’s be-
liefs p̂k+1 are defined on a grid covering the unit cell, I use nearest-neighbor interpolation. That is,

82

Σ (b)p̂ *m
k+1

wk wk+1

pick weighted sample
from distribution

3

update particle weights as
sum of sample weights

4

sample M bk+1’s
from ψ(bk ,bk+1)

1
(i)

*m

weight samples
by belief pk+1

2

. .
 .b (i)

k−1

b (i)
k

(b)p̂ *M
k+1k+1

(b)p̂ *1
k+1k+1

(b)p̂ *2
k+1k+1

b (i)
k−1

b (i)
k b (i)

k+1

b (i)
k−1

b (i)
k

Figure 5.4 An overview of the backbone forward-sampling step. Given positions bk−1 and bk, I
sample M positions for bk+1 using the empirically-derived distribution of Cα–Cα–Cα pseudoan-
gles. Each potential bk+1 is weighted by the belief p̂(b∗mk+1|y). I choose a single location from this
distribution; the particle weight is multiplied by the sum of these weights.

I take the value of ACMI-BP’s belief at each subsample to be the belief at the closest grid point
over which beliefs are defined.

I then choose a sample from this weighted distribution. This provides a good approximation to
sampling from Equation 5.5; the approximation error approaches 0 as M → ∞ (my experiments
typically use M = 105). Finally, I reweight the particle as the average of weights of all M samples
considered:

wi
k+1 ∝ wi

k ×
1

M
×

M∑
m=1

p̂k+1(b
∗m
k+1) · ψadj(b

(i)
k , b

∗m
k+1) (5.9)

This sum approximates the integral in Equation 5.7. Since we only care about each particle’s
weight up to proportionality (weights are normalized to sum to unity over all particles), typically
the 1/M term is dropped, and particles are reweighted using the sum of sample weights.

83

This process, in which I consider M potential Cα locations, is repeated for every particle in the
particle filter for each Cα in the protein.

5.3.2 Using sidechain templates to sample sidechains

Once my particle filter has placed Cα’s (k−1), k, and (k+1) at 3D locations b(i)k−1:k+1, it is ready
to place all the sidechain atoms in amino-acid k. I denote the position of these sidechain atoms sk.
Given the primary amino acid sequence near k (specifically, the 5-mer centered at k), I draw a set
of previously observed sidechain conformations from a nonredundant subset of the Protein Data
Bank (PDB)2 [115]. To reduce computational complexity, I only let sk take one of these previously
observed sidechain conformations (a flexible sidechain model, like the one described in Chapter 6,
would require excessive computational time, as each sidechain must be placed for each of the N
particles). Therefore, sk consists of (a) an index into a database of known sidechain 3D structures
and (b) a rotation.

To further simplify, I construct all of my sidechain templates to model the position of every
atom from the previous (k − 1) amino acid’s Cα to the next (k + 1) amino acid’s Cα. That is, the
sidechain template contains three consecutive alpha carbons. Then, given three consecutive Cα’s
b
(i)
k−1:k+1 already placed in some particle, the orientation of sidechain sk is uniquely determined by

aligning the three Cα’s in the sidechain template to the particle’s backbone positions b(i)k−1:k+1 (for
a cartoon representation of this alignment, see step 2 in Figure 5.5).

Figure 5.5 shows the process of choosing a sidechain conformation for a single particle i.
Sidechain sampling and particle reweighing is quite similar to the Cα placement in the previ-
ous section. A key difference is that sidechain placement cannot take advantage of ACMI-BP’s
marginal distribution, as ACMI-BP’s probability distributions have marginalized away sidechain
conformations. Instead, the probability of a sidechain is calculated on-the-fly using the cross-
correlation between a sidechain template’s density and the electron density in a region around
bk in the electron-density map. That is, for each sidechain subsample (i.e., conformation) s∗lk ,
l ∈ {1, . . . , L}, I compute the correlation coefficient between the conformation and the map

CC l = cross-correlation(s∗lk ,EDM[b
(i)
k])

EDM[bk] denotes a region of density in the neighborhood of bk. The “neighborhood” taken is a
region of density corresponding to each sidechain template s∗lk : I construct a mask containing all
grid points within 2.5Å of any atom in s∗lk , if it were centered at bk.

To assign a probability p(EDM[b
(i)
k]|sk) to each sidechain conformation, I compute the prob-

ability that a cross-correlation value was not generated by chance. That is, I assume that the
distribution of the cross correlation of two random functions is normally distributed with mean µ
and variance σ2. I learn these parameters by computing correlation coefficients between randomly
sampled locations in the given map. Given some cross correlation xc, I compute the expected
probability that I would see score xc or higher by random chance,

pnull(xc) = P (X ≥ xc;µ, σ
2) = 1− Φ(xc − µ/σ) (5.10)

2As in previous chapters, proteins from my testset are removed from this database prior to testing.

84

pick weighted sample
from distribution

4

update particle weights as
sum of sidechain probs

5
Σ (y|s)p̂ *ℓ

k+1
wk wk+1

sample L sk ’s from

sidechain database

1 *ℓ

b (i)
k−1

b (i)
k b (i)

k+1

s (i)
k

weight samples using

p(sk) = p(EDM[bk] | sk)

3
*ℓ(i)ˆ *ℓ

align each template

to particle backbone
2

b (i)
k−1

b (i)
k

b (i)
k+1

(s)p̂ *3
k+1

(s)p̂ *2
k+1

(s)p̂ *1
k+1

b (i)
k−1

b (i)
k

b (i)
k+1

Figure 5.5 An overview of the sidechain sampling step. Given positions bk−1:k+1, I consider L
sidechain conformations s∗lk . Each potential conformation is weighted by the probability of the
map given the sidechain conformation, as given in Equation 5.11. I choose a sidechain from this
distribution; the particle weight is multiplied by the sum of these weights.

85

Here, Φ(x) is the normal cumulative distribution function. The probability of a particular sidechain
conformation is then

p(EDM[b
(i)
k]|s∗lk) ∝ (1/pnull)− 1 (5.11)

Since I draw sidechain conformations from the distribution of all solved structures, I assume a
uniform prior distribution on sidechain conformations, so p(s∗lk |EDM[b

(i)
k]) ∝ p(EDM[b

(i)
k]|s∗lk).

As illustrated in Figure 5.5, sidechain sampling uses a method similar to the backbone sampling
of the previous section. I consider extending a particle by each of these L sidechain subsamples
{s∗1k , . . . , s

∗L
k } from my sidechain database. After computing the cross correlations between each

sidechain and the density map around bk, each sidechain conformation is weighted by the probabil-
ity in Equation 5.11. I choose a single conformation at random from this weighted distribution, and
update a particle’s weight by the sum of weights of all the sidechain conformations I considered.

My model takes into account the complete previous trajectory xj:k−1 when placing sidechain
sk. If any atom in sidechain sk overlaps a previously placed atom, the particle weight is set to zero.
This prevents two atoms from occupying the same 3D space; it also prevents two symmetric copies
of a protein from overlapping.

Using particle filtering, one amino acid k is placed for particle i, the position of k is never
updated. Early “bad decisions,” which are not retracted, are overcome by having an ensemble. If
a poor decision is made, when it later becomes evident, the corresponding particle is assigned low
weight, and is eventually eliminated through resampling. Note that this can still lead to trouble if
the correct early choice is very unlikely (that is, involves a very low-probability step).

5.3.3 Sampling order
Every particle in the population samples Cα’s in the same order (this is necessary for resam-

pling to work properly). The order in which Cα’s are assigned also makes use of ACMI-BP’s
distributions. For every particle, I begin sampling in the amino-acid k whose marginal distribution
has the lowest entropy Hk:

Hk = −
∑
xk

p̂k(xk) log p̂k(xk) (5.12)

The amino acid with lowest entropy corresponds to the amino acid which ACMI-BP is most sure
it knows the location. I use a “soft” minimum; that is, I choose an amino-acid k with probability
proportional to exp(−Hk). This ensures the order in which amino acids are placed is different
in multiple executions of the algorithm. The direction I sample at each iteration (i.e. toward the
N- or C-terminus) is also decided by the entropy of the marginal distributions (again, using a soft
minimum).

Although a single iteration of particle filtering generates many models, these particles typically
express little diversity (see the discussion of sample impoverishment in Section 5.2), especially
in the amino acids placed during the first half of the algorithm. This is due to the significant
number of resampling steps required during particle filtering: A protein 1000 amino acids in length
takes 2000 sampling steps and resampling is typically necessary every 2-4 steps. Furthermore,
strict constraints on interatomic distances and angles make resampling from a kernelized density

86

Algorithm 5.2 ACMI-PF generates multiple models through multiple independent runs.
input: density map y, amino-acid marginals p̂k(bk), number of models to generate R
output: set of independently sampled protein models x1:R

foreach particle-filtering run r = 1, . . . , R do
// An independent particle-filtering run generates

// particles P with weights W

(P,W)← PF(y , p̂k(bk))
// Choose the particle with greatest weight

imax ← arg maxi (wi)
xr ← pimax

end

estimate (a common method [87] for combating particle homogeneity) non-trivial. That is, if I
consider resampling each atom’s location from a Gaussian centered on the original particle, I will
likely get a model in which these distance and angular constraints have been violated.

Therefore, to generate multiple protein models, I consider independent executions of particle
filtering, taking the single highest-weight particle from each execution [81]. A high-level overview
is shown in Algorithm 5.2. Using independent runs also mean that each execution samples amino
acids in a different order, which may offer some advantage, introducing additional diversity in
the models. Finally, a postprocessing step refines each of the structures for 10 iterations using
REFMAC5 [86].

5.4 Experiments

I use ten experimentally phased electron-density maps to test ACMI-PF (The results section
will refer to the sequential application of ACMI-SH, ACMI-BP, and ACMI-PF as simply “ACMI-
PF”). The data is provided by the Center for Eukaryotic Structural Genomics (CESG) at UW–
Madison, as MTZ files with experimental intensities and with the initial phasing (typically obtained
using SAD or MAD) available to the crystallographer at the start of model-building.

Details of the dataset are shown in Section A.2, in Appendix A. I remove maps in my testset
from this non-redundant PDB subset before testing. These structures have been previously solved
and deposited to the PDB, enabling a direct comparison with the final refined model. All ten
required a great deal (several days to several months, depending on the map) of human effort to
build and refine the final atomic model.

5.4.1 Methodology
Models in ACMI-PF are built in three phases: first, ACMI-SH computes prior distributions

(Chapter 4), then ACMI-BP (Chapter 3) computes posterior distributions for each Cα, and fi-
nally ACMI-PF constructs all-atom models using particle filtering. Where available, ACMI-SH

87

used information about location of selenium atom peaks as a soft constraint on the positions of
corresponding methionine residues in the computation of priors (see Section 3.2.3 for a complete
description of this process). I run particle filtering ten times; in each run, I return the single highest-
weight model, producing a total of ten ACMI-PF protein models. I refine each predicted model
for 10 iterations using REFMAC5 [86], with no modification or added solvent. The first phase is
the most computationally expensive, but is efficiently divided across multiple processors. I used a
cluster of Linux machines for most calculations. Computation time varied depending on the size
of the protein and of the asymmetric unit; the entire process took several days to a week of CPU
time on ten processors for large proteins.

I compare ACMI-PF to four different approaches on the same ten density maps. To test the
utility of the particle-filtering method for building all-atom models, I use the structure that results
from independently placing the best matching sidechain on each Cα predicted by ACMI-BP, an
algorithm which I term ACMI-NAÏVE. The other three approaches are the commonly used density-
map interpretation algorithms ARP/WARP [84], TEXTAL [55], and RESOLVE [110]. Refinement
for all algorithms uses the same protocol as ACMI-PF, refining the predicted models for 10 itera-
tions in REFMAC5 (ARP/WARP, which integrates refinement and model-building, was not further
refined).

To assess the prediction quality of each algorithm, I consider three different performance met-
rics: (a) backbone completeness, (b) sidechain identification, and (c) R factor. The first metric
compares the predicted model to the final crystallographer-determined model, and counts – over
each predicted chain – the fraction of Cα’s placed within 2Å of some Cα chain in the PDB-
deposited model. The distance of 2Å is chosen as a cutoff distance that is approximately half of
the distance between adjacent alpha carbons. The second measure counts the fraction of Cα’s
both correctly placed within 2Å and whose sidechain type matches the PDB-deposited structure
(as described in Chapter 2, all three alternate approaches – which separate placing the backbone
and aligning it to the input sequence – often have difficulty identifying sidechains in poor-quality
maps, returning long stretches of unidentified residues).

My final measure, the R factor, is a statistical residual measure of the deviation between the
reflection intensities predicted by the model and those experimentally measured. A lower R factor
indicates a better model. The R factor is computed using only peptide atoms, not water molecules
or ARP/WARP’s pseudoatoms. The comparison uses the so-called free R factor (Rfree) [10],
which is based on reflections that were not used in refinement protocol to avoid overfitting.

5.4.2 ACMI-NAÏVE versus ACMI-PF

In this section, I compare protein models produced by ACMI-PF to those produced by ACMI-
NAÏVE. The key advantage of particle filtering is the ability to produce multiple protein structures
using ensembles of particles. Since the density map is an average over many molecules of the
protein in the crystal, it is natural to use multiple conformations to model this data. There is
evidence that a single conformation is insufficient to model the electron density of proteins [11,
22, 35, 74]. As a comparison, I take the ACMI-NAÏVE approach that uses the maximum-marginal
trace to produce a single model.

88

Number of structures in model

R
ef

in
ed

 R
fr

ee

0.20

0.30

0.35

0.45

0.50

1 2 4 6 8 103 5 7 9

0.25

0.40

Acmi-PF
Acmi-Naive

Figure 5.6 A comparison of the Rfree of ACMI-NAÏVE and ACMI-PF, as the number of pro-
tein models produced varies. Multiple models are produced by independent ACMI-PF runs
(ACMI-NAÏVE only produces a single model). Since Rfree in deposited structures is typically
0.20-0.25, we use 0.20 as the lowest value on the y-axis.

I used ACMI-PF to generate multiple physically feasible models, by performing ten different
ACMI-PF runs of 100 particles each. Each run sampled amino acids in a different order; the amino
acids whose belief had lowest entropy (i.e., the position had greatest confidence) were stochasti-
cally preferred. Figure 5.6 summarizes these results. In this plot, the y-axis shows the average
(over the ten density maps) Rfree of the final refined model, while the x-axis indicates the number
of ACMI-PF runs. This plot shows that a single ACMI-PF model has anRfree approximately equal
to the Rfree of ACMI-NAÏVE. Model completeness is also very close between the two (data not
shown). Moreover, as additional structures are added to the model from multiple ACMI-PF runs,
the average Rfree decreases. The plot shows ACMI-NAÏVE’s model as a straight line, since there
is no mechanism to generate multiple conformations.

Finally, individual models in ACMI-PF also offer additional advantages over ACMI-NAÏVE.
Comparing the single ACMI-PF model (of ten generated) with lowest Rwork

3 to ACMI-NAÏVE’s
model shows that particle filter produces fewer chains on average (28 versus 10) and lower all-
atom RMS error (1.60Å versus 1.72Å). In all ten maps in the test set, this trend held: ACMI-
PF’s best model contained fewer predicted chains and lower all-atom RMS error than ACMI-
NAÏVE. Additionally, the structures returned by particle filtering are physically feasible, with no
overlapping sidechains, and no invalid bond lengths.

89

%backbone placed
%sidechains
identified

Pe
rc

en
t

o
f t

ru
e

m
o

d
el

0%

20%

40%

60%

80%

100%

ACMI-PF ARP/
wARP 7

Resolve Textal

Figure 5.7 A comparison of ACMI-PF and ACMI-NAÏVE to three other automatic interpretation
methods in terms of average backbone completeness and sidechain identification.

5.4.3 Comparison to other algorithms
I further compare the models produced by particle filtering on the ten maps to those pro-

duced by three other popular methods for automatic density-map interpretation. I use two well-
established lower-resolution algorithms, TEXTAL and RESOLVE, and also include the atom-based
ARP/WARP, even though most of the test maps are outside of its recommended resolution limit.

Figure 5.7 compares all four methods in terms of backbone completeness and sidechain iden-
tification, averaged over all ten structures. To provide a fair comparison, I compute completeness
of a single ACMI-PF structure (of the ten produced). The ACMI-PF model chosen was that with
the lowest refined Rwork.

Under both of these metrics, ACMI-PF locates a much greater fraction of the protein than the
other approaches. ACMI-PF performs particularly well at sidechain identification, correctly iden-
tifying close to 80% of sidechains over these ten poor-quality maps. The least accurate model
that ACMI-PF generated (for protein 2AB1) had 62% backbone completeness and 55% sidechain
identification. In contrast, the three comparison methods all had at least five structures with less
than 40% backbone completeness and at least eight structures with less than 20% sidechain iden-
tification.

Additionally, the scatterplots in Figure 5.8 compare the Rfree of ACMI-PF’s complete (10-
structure) model to each of the three alternative approaches, for each density map. Any point below
the diagonal corresponds to a map for which ACMI-PF’s solution has a lower (i.e., better) Rfree.
These plots show that for all but one map ACMI-PF’s solution has the lowestR factor. The singular
exception for which ARP/WARP has a lower R factor is protein 2NXF, a high (1.9Å) resolution
but poorly phased density map in which ARP/WARP automatically traces 96%, while ACMI-PF’s
best model (that is, with lowest refined Rwork) correctly predicts only 74%. The collection of

3Rwork is the R factor on the “training set”; that is, the 90-95% of reflections used in refinement.

90

(a) (b)

(c)

ARP/wARP 7 Rfree

A
C

M
I-

PF
 R

fr
ee

Textal Rfree

A
C

M
I-

PF
 R

fr
ee

Resolve Rfree

A
C

M
I-

PF
 R

fr
ee

0.25

0.35

0.45

0.55

0.65

0.25 0.35 0.45 0.55 0.65

0.25

0.35

0.45

0.55

0.65

0.25 0.35 0.45 0.55 0.65

0.25

0.35

0.45

0.55

0.65

0.25 0.35 0.45 0.55 0.65

Figure 5.8 A comparison of the freeR factor of ACMI-PF’s interpretation for each of the ten maps
versus (a) ARP/WARP, (b) TEXTAL, and (c) RESOLVE. The scatterplots show each interpreted
map as a point, where the x-axis measures the Rfree of ACMI-PF and the y-axis the alternative ap-
proach. The shaded half of each scatterplot (below the diagonal) shows the region where ACMI-PF
produced the better model.

91

results illustrates both the limitations and the advantages of ACMI-PF: it is consistently superior
at interpretation of poorly phased, lower resolution maps, while an iterative phase-improvement
algorithm like ARP/WARP may be better suited for a poorly phased but higher-resolution data.

5.5 Iterative phase improvement with ACMI-PF

This section details some initial experiments describing the use of ACMI-PF in an iterative
manner, where the quality of the maps (and hopefully the resulting models) are improved in each
iteration. This iterative approach is similar to that of ARP/WARP, which iterates between improv-
ing map-quality and constructing a protein model to more accurately interpret poor-quality density
maps.

5.5.1 The phase problem
The phase problem, briefly introduced in Chapter 2, comes about because electron-density

maps are constructed as a function of two variables: (a) reflection intensities I , and (b) reflection
phases Φ. Only the reflection intensities are measurable by X-ray crystallography; the phases are
unmeasurable (or “lost”) by the crystallographic process. A crystallographer must instead estimate
these phases, using experimental or computational methods. Experimental methods for phase
determination – for example, SAD [46], MAD [44], or MIR [8] – make use of scattering properties
of heavy atoms to produce an initial estimate of phases, while computational methods use the
phases from a protein with (presumed) similar 3D structure as a surrogate for the true phases.

The problem that arises is that these initial experimental phases are typically inaccurate, and
produce a noisy density map. Figure 2.6 shows the effects of phase error on density-map quality.
To deal with poorly phased maps, crystallographers typically use an iterative approach, like that
shown in Figure 5.9. Beginning with measured intensities Iobs and experimentally determined
phases Ψexp, a crystallographer computes the electron-density map (as the Fourier transform of
these complex-valued reflections). Using ACMI-PF or some other method, the crystallographer
builds a partial atomic model of the protein contained in the density map. From a partial model,
one computes the expected intensities and phases, Icalc and Ψcalc, given the atomic model.

Although the initial atomic model may be very incomplete, often these calculated phases are
more accurate than the experimentally determined phases. This suggests an iterative approach in
which the phases calculated from the atomic model are used to improve the density map. Us-
ing the improved density map a crystallographer (or ACMI-PF) may produce a more complete
atomic model, and generate more accurate calculated phases. This iteration may continue until
no additional improvement is possible. In practice, the calculated phases and experimental phases
improve the model by either: (a) using the calculated phases only or (b) combining the two through
a statistical weighing function, like that of SIGMA-A [45].

A more complete discussion of the phase problem can be found in any crystallography textbook
(e.g., [97]).

92

Iobs

Ψexp

Icalc

Ψcalc

Initial density map Partial atomic model

Combine experimental and
calculated phases

Observed intensities
and experimental phases

Intensities and phases
calculated from partial
atomic model

Figure 5.9 An overview of iterative phase improvement in crystallographic density maps. A crys-
tallographer begins with measured intensities Iobs and experimentally determined phases Ψexp,
from which a density map is calculated. A partial model is constructed from this map, and one
computes the expected intensities and phases given the model (Icalc and Ψcalc). The iterative com-
ponent uses the idea that the calculated phases (or some combination of calculated and experimen-
tal phases) may produce a better estimate of the true phases, from which a better model may be
constructed.

5.5.2 Using ACMI-PF for phase improvement
The first question I want to answer is: do the calculated phases from ACMI-PF lead to reduced

phase errors? Unfortunately, I do not know the true phases of the density maps in our testset;
however, I can use the calculated phases of the final deposited structure as a reasonable approxi-
mation. In this section I compare – for each of the ten testset maps – the mean phase error of the
experimental phases to the calculated phases from ACMI-PF.

Figure 5.10 compares the experimental phase error to the phase error of ACMI-PF’s calculated
phases. The scatterplot shows each interpreted map as a point, with the x-axis the mean phase
error of experimental phases and the y-axis the mean phase error of ACMI-PF’s calculated phases.
For all ten maps, the phase error is lower using ACMI-PF. This reduced phase error is especially
evident in poorly phased maps: in one map, phase error is reduced from 66◦ to 42◦; in another it
is reduced from 66◦ to 56◦. This seems to indicate that ACMI-PF is suitable for iterative phase
improvement.

93

0

15

30

45

60

0 15 30 45 60

Experimental phase error
(degrees)

A
C

M
I-

PF
-c

o
m

p
u

te
d

 p
h

as
e

er
ro

r (
d

eg
re

es
)

Figure 5.10 A scatterplot comparing the error of ACMI-PF’s calculated phases with the error of
the experimentally estimated phases. The x-axis indicates the mean phase error of experimental
phases, while the y-axis indicates the mean phase error of ACMI-PF’s calculated phases. The
shaded region shows maps for which ACMI-PF’s calculated phases have a reduced phase error.

Additionally, Table 5.1 shows that using the calculated phases from ACMI-PF’s 10-structure
model also yields reduced phase error compared to: (a) the calculated phases from the best ACMI-
PF protein structure and (b) the SIGMA-A-weighted phases, which probabilistically combine cal-
culated phases from the best ACMI-PF protein structure with experimental phases [45]. For all ten
maps, the phase error is minimized using calculated phases from all ten ACMI-PF structures.

This indicates that the calculated phases from multiple PF-generated structures would be valu-
able for iterative phase improvement of the density map. I believe a key reason for this result is that
particle filtering occasionally makes mistakes when tracing the main chain in poor-quality regions.
However, it is unlikely for multiple particles to repeat the same mistake. Therefore, using multi-
ple models, the mistakes average out in the ensemble, producing a lower R factor, and improved
modeling of phases.

5.5.3 Multiple iterations of ACMI-PF

Finally, I compute improved density maps using ACMI-PF’s calculated phases and run another
iteration of the complete ACMI pipeline (ACMI-SH, ACMI-BP, and ACMI-PF). To reduce compu-
tation time, I only run a second ACMI iteration on the smallest five density-maps from our testset.
I compare the initial ACMI-PF results (iteration 1) with the results on the improved density maps
(iteration 2).

The results on these five density maps are summarized in Figure 5.11. I compare ACMI-
PF’s iteration-1 and iteration-2 models using free R factor (Figure 5.11a) and completeness of the

94

Table 5.1 The use of multiple protein structures reduces phase errors more than a single structure.
For all ten testset maps, the phase error is lower using the calculated phases from ACMI-PF’s
10-structure model (fifth column) than the: experimental phases (second column), calculated
phases from the single best ACMI-PF structure (third column), or the combined calculated and
experimental phases (fourth column).

PDB id
Experimental
phase error

Single-structure
phase error

Single-structure
SIGMA-A-combined
phase error

10-structure
phase error

2NXF 58◦ 58◦ 52◦ 46◦
2Q7A 49◦ 51◦ 46◦ 43◦
XXXXa 54◦ 56◦ 50◦ 45◦
1XRI 39◦ 46◦ 37◦ 36◦
1ZTP 42◦ 39◦ 34◦ 32◦
1Y0Z 58◦ 52◦ 48◦ 44◦
2A3Q 66◦ 49◦ 47◦ 42◦
2IFU 50◦ 54◦ 53◦ 48◦
2BDU 55◦ 59◦ 58◦ 48◦
2AB1 66◦ 64◦ 59◦ 56◦
average 54◦ 53◦ 49◦ 44◦

a PDB file not yet released.

single best PF structure (Figure 5.11b). The scatterplots show each interpreted map as a point,
with the shaded regions indicating maps for which the second iteration produced a better model.
Unfortunately, the results in this section are not as good as those of the previous section. In only
two of the five maps is a lower R factor observed, and in only three of the five maps is the best
structure more complete

I also test whether a third iteration of ACMI might be beneficial, by measuring the mean phase
error using the second iteration’s calculated phases. Figure 5.12 shows the average phase error over
the five maps used for this section’s experiments. This plot shows that there may be some benefit to
a third iteration of ACMI, as the phase error is reduced further after two iterations of ACMI (though
not nearly as much as it is reduced from experimental phases to iteration 1’s calculated phases).

Although ACMI consistently reduces the phase error of my ten testset maps, I am unable to
realize a corresponding improvement in model quality. Further work is needed to improve ACMI’s
utility when used to iteratively improve poor initial experimental phasing.

5.6 Conclusions and future work

This chapter introduced ACMI-PF, an algorithm that uses particle filtering to automatically
produce a set of all-atom protein models for a given electron-density map. Particle filtering con-
siders growing an ensemble of all-atom protein models, at each iteration sampling the layout of an

95

0.25

0.35

0.45

0.55

0.25 0.35 0.45 0.55
0

20

40

60

80

100

0 20 40 60 80 100

ACMI-PF Iteration 2 Rfree

A
C

M
I-

PF
 It

er
at

io
n

 1
 R

fr
ee

ACMI-PF Iteration 2
backbone completeness

A
C

M
I-

PF
 It

er
at

io
n

 1

b
ac

kb
o

n
e

co
m

p
le

te
n

es
s

(a) (b)

Figure 5.11 Scatterplots comparing results after one and two iterations of ACMI. I compare the two
iterations’ models in terms of (a) free R factor and (b) backbone completeness of PF’s single best
structure. Shaded regions indicate maps for which the second iteration produces a better model.

experimental
phases

ACMI-PF
iteration 1

phases

A
ve

ra
g

e
p

h
as

e
er

ro
r

(d
eg

re
es

)

ACMI-PF
iteration 2

phases

0

10

20

30

40

50

60

70

Figure 5.12 Mean phase error as a function of iteration. I compare the average phase error of
experimental phases, one-iteration calculated phases, and two-iteration calculated phases. Error
bars show the range of phase errors over the five maps.

96

additional amino acid. The method builds on the method described in the previous two chapters,
where I use probabilistic inference to compute a probability distribution of each amino acid’s Cα
location. In addition to producing an all-atom protein model, ACMI-PF addresses shortcomings
of my previous work, producing a set of physically feasible protein structures that best explain the
density map.

My results indicate that ACMI-PF generates much more accurate and more complete models
than other state-of-the-art automated interpretation methods for poor-resolution density map data.
ACMI-PF produces accurate interpretations, on average finding and identifying 80% of the protein
structure in poorly phased 2.5 to 3.5 Å resolution maps. Its probabilistic, model-based approach
was equally good at sidechain identification, while existing algorithms usually failed to identify
even 10% of the amino acids.

Using ACMI-PF, an ensemble of conformations may be easily generated using multiple runs
of particle filtering. I show that sets of multiple structures generated from multiple particle filtering
runs better fit the density map than a single structure. This is consistent with recent observations
of the inadequacy of the single-model paradigm for modeling flexible protein molecules [11, 22,
35] and with the encouraging results of the ensemble refinement approach [74]. The ensemble
description may also provide valuable information about protein conformational dynamics.

ACMI-PF’s model-based approach is very flexible, and allows integration of multiple sources
of “fuzzy” information, such as locations of selenium peaks which were incorporated into the cal-
culation of the priors. In the future, it may be productive to integrate other sources of information
in my model. For example, particle placement could make use of structures of distant homologues.
Multiple copies of the protein in the asymmetric unit can be placed simultaneously, allowing ac-
curate placement when the density in one copy is ambiguous. A more complicated reweighing
function based on physical or statistical energy could better overcome ambiguities of unclear re-
gions in the density map. The inclusion of these and other sources of information is possible,
so long as they can be expressed in the probabilistic framework proposed here. This work could
further extend the resolution (and the maximal phase error) in which automated interpretation of
density maps is possible.

97

Chapter 6

Pictorial Structures for Atom-level Models

I present herein an alternate approach to sidechain placement in electron-density maps. Unlike
the method in Chapter 5, this method is suitable for identifying individual atoms in novel sidechain
conformations. The method could be used as an alternative to last chapter’s ACMI-PF, placing
individual atom’s on ACMI-BP’s maximum-marginal backbone model. However, as this approach
is atom-based, it is best-suited for medium-resolution (2-3 Å resolution) maps.

I describe DEFT (DEFormable Template), an algorithm that uses pictorial structures to build
a flexible all-atom protein model from a protein’s amino-acid sequence. Matching this pictorial
structure into the density map using Felzenszwalb and Huttenlocher’s fast matching algorithm
[31] is an alternate way of automating sidechain interpretation in electron-density maps. This
chapter also describes several general extensions to Felzenszwalb and Huttenlocher’s pictorial-
structure matching algorithm. These extensions are necessary to accurately interpret density-map
data. Much of the material in this chapter was previously published [26].

6.1 Pictorial structures

Pictorial structures [33] model classes of objects using a single flexible template. The template
represents the object class as a collection of parts linked in a graph structure. Each edge defines a
relationship between the two parts it connects. For example, a pictorial structure for a face may in-
clude the parts “left eye” and “right eye.” Edges connecting these parts could enforce the constraint
that – in any image containing a face – the left eye is near to the right eye. A dynamic program-
ming (DP) matching algorithm of Felzenszwalb and Huttenlocher (hereafter referred to as the F-H
matching algorithm) allows pictorial structures to be quickly matched into a two-dimensional im-
age. The matching algorithm finds the globally optimal position and orientation of each part in the
pictorial structure, making some simplifying assumptions concerning independence of parts and
connections.

Formally, one represents a pictorial structure as a graph G = (V , E), with V = {v1, v2, . . . , vn}
the set of parts, and edge eij ∈ E connecting neighboring parts vi and vj if an explicit dependency
exists between the configurations of the corresponding parts. Each part vi is assigned a configu-
ration li describing the part’s position and orientation in the image. The model assumes Markov
independence: the probability distribution over a part’s configurations is conditionally indepen-
dent of every other part’s configuration, given the configuration of all the part’s neighbors in the

98

graph. The model assigns each edge a deformation cost dij(li, lj), and each part a “mismatch”
cost mi(li, I). These functions are the negative log likelihoods of a part (or pair of parts) taking a
specified configuration, given the pictorial structure model.

The matching algorithm finds the maximum-likelihood configuration of parts in the image.
That is, it finds the configuration L of parts in model T in image I maximizing:

P (L|I,Θ) ∝ P (I|L,Θ)× P (L|Θ)

∝ exp(
∑
vi∈V

mi(li, I))× exp(
∑

(eij)∈E

dij(li, lj)) (6.1)

By monotonicity of exponentiation, the configuration maximizing this probability minimizes∑
vi∈V

mi(li, I) +
∑

vi,vj∈E

dij(li, lj) (6.2)

The F-H matching algorithm places several additional limitations on the pictorial structure. The
object’s graph must be tree structured (cyclic constraints are not allowed), and the deformation-
cost function must take the form ||Tij(li)− Tji(lj)||, where Tij and Tji are arbitrary functions and
|| · || is some norm (e.g. Euclidian distance).

6.2 Building a flexible atomic model

Given a three-dimensional map containing a large molecule and the topology (i.e., for proteins,
the amino-acid sequence) of that molecule, DEFT’s task is to determine the Cartesian coordinates
in the 3D density map of each atom in the molecule. My idea is to build a pictorial structure
corresponding to a protein, and search for it in the image.

However, because of the size of proteins, such an approach is intractable. Instead we, like
others [55, 111], consider a two-phased approach, where first the protein backbone is placed, then
sidechains are placed onto the backbone (potentially modifying the backbone placement). DEFT

finds the coordinates of sidechain atoms simultaneously by first building a pictorial structure cor-
responding to a protein’s amino acid, then uses F-H matching to optimally place the model into the
density map. This section describes construction of a molecule’s graph, and DEFT’s deformation-
cost function and matching-cost function.

DEFT’s deformation cost is related to the probability of observing a particular configuration
of a molecule. Ideally, this function is proportional to the inverse of the molecule’s potential
energy, since configurations with lower potential energy are more likely observed in nature. Un-
fortunately, such a potential function would be very complicated and cannot be approximated in a
tree-structured pictorial structure, as it includes energies from both bonded and non-bonded atoms.

My solution is to only consider the relationships between covalently bonded atoms. DEFT

constructs a pictorial structure graph where vertices correspond to non-hydrogen atoms, and edges
correspond to covalent bonds between atoms. The cost function each edge defines maintain invari-
ants such as interatomic distance and bond angles while allowing free rotation around the bond.

99

Cα

N C

O

Cβ

Cγ

Cδ1 Cδ2

Figure 6.1 DEFT’s construction of the pictorial-structure graph given an amino acid. Atoms in the
molecule correspond to nodes in the graph, while edges model covalent bonds between atoms.

. .
.

〈ßj,γj〉

αj

〈xj,yj,zj〉

vj

〈ßi,γi〉

αi

〈xi,yi,zi〉

vi

〈x’,y’,z’〉

Figure 6.2 The screw-joint, which connects atoms in DEFT’s model. In the directed version of
the pictorial-structure graph, vi is the parent of vj . By definition, vj is oriented such that its local
z-axis is coincident with its ideal bond orientation xij = (xij, yij, zij) in vi. These bond parameters
xij are learned by DEFT.

Given the protein’s amino acid sequence, model construction – illustrated in Figure 6.1 – is trivial.
Each part’s configuration is defined by six parameters: three translational, three rotational (Euler
angles α, β, and γ). For the cost function, I define a new connection type in the pictorial-structure
framework, the screw-joint, illustrated in Figure 6.2.

100

The screw-joint’s cost function is mathematically specified in terms of a directed graph anal-
ogous to the pictorial-structure’s undirected graph. Since the graph is constrained by the fast
matching algorithm to take a tree structure, I arbitrarily pick a node to serve as the root and direct
every edge in the graph to point toward the root. This lets me define the screw joint in terms of
a parent atom and a child atom. I have chosen to allow each object in the graph (that is, each
atom) to freely rotate about its local z axis, so I want each child’s z axis coincident with the axis
connecting the child and the parent.

Under this constraint, the ideal geometry between child and parent is specified by three param-
eters stored at each edge, xij = (xij, yij, zij). These three parameters define the optimal translation
between parent and child, in the coordinate system of the parent (which in turn is defined such that
its z-axis corresponds to the axis connecting it to its parent).

In constructing the deformation-cost function dij , I define the function Tij , which maps a parent
vi’s configuration li into the configuration lj of that parent’s ideal child vj . Given parameters xij

on the edge between vi and vj , the function is defined

Tij(〈xi, yi, zi, αi, βi, γi〉) = 〈xj, yj, zj, αj, βj, γj〉 (6.3)

where

αj = αi

βj = arctan(

√
(x′2 + y′2)

−z′
)

γj =
π

2
+ arctan(

y′

x′
)xj

yj

zj

 =

xi

yi

zi

 +

x′y′
z′

Here, (x′, y′, z′)T is the rotation of the bond parameters (xij, yij, zij)

T to world coordinates.
That is, x′y′

z′

 = Rαiβiγi
×

xij

yij

zij

 (6.4)

Rαiβiγi
is the rotation matrix corresponding to Euler angles (αi, βi, γi). The expressions for βj and

γj define the optimal orientation of each child: +z coincident with the axis that connects child and
parent.

The F-H matching algorithm requires that my cost function takes a particular form, specifically,
it must be some norm. The screw-joint model sets the deformation cost between parent vi and child
vj to the distance between child configuration lj and Tij(li), the ideal child configuration given
parent configuration li (Tji – the analogue to Equation 6.3’s Tij – is simply the identity function).

101

I use the 1-norm distance, weighted in each dimension,

dij(li, lj) = ||Tij(li)− lj||1
= wrotate

ij × |αi − αj|

+ worient
ij × |(βi − βj) + arctan(

√
(x′2 + y′2)

−z′
)|

+ worient
ij × |(γi − γj) + arctan(

y′

x′
)|

+ wtranslate
ij ×

(
|(xi − xj)− x′|+ |(yi − yj)− y′|+ |(zi − zj)− z′|

)
(6.5)

In the above equation, wrotate
ij is the cost of rotating about a bond, worient

ij is the cost of rotating
around any other axis, and wtranslate

ij is the cost of translating in Cartesian space. DEFT’s screw-
joint model sets wrotate

ij to 0, and worient
ij and wtranslate

ij to 100. In this model, any part is free to
rotate about a bond; DEFT gives high cost to any movement other than bond rotations.

DEFT’s match-cost function implementation is based upon Cowtan’s FFFEAR algorithm [17].
His algorithm cleverly uses fast Fourier transforms to quickly and efficiently calculate the mean
squared distance between a weighted template of density and a region in a density map. Given
a learned template and a corresponding weight function, FFFEAR uses maximum likelihood to
determine the probability that the weighted template generated a region of density in the density
map. The weight function is easily computed as the inverse variance of a point in the template over
training data.

For each non-hydrogen atom in the protein, I create a target template corresponding to a neigh-
borhood around that particular atom, using a training set of crystallographer-solved structures. I
build a separate template for each atom type (e.g., the Cβ – the 2nd sidechain carbon – of leucine
and the backbone oxygen of serine) producing 171 different templates in total. Each atom’s mi

function is simply the FFFEAR-computed mismatch score of that part’s template over all positions
and orientations.

Once I construct the model, the parameters for the model – including the optimal orientation
xij corresponding to each edge as well as the template for each part – are learned by training the
model on a set of crystallographer-solved structures. Learning the orientation parameters is fairly
simple: for each atom I define canonic coordinates (where +z corresponds to the axis of rotation).
For each child, I record the distance r and orientation (θ, φ) in the canonic coordinate frame. I
average over all atoms of a given type in the training set to determine average parameters r̄, θ̄, and
φ̄. Converting these averages from spherical to Cartesian coordinates gives the ideal orientation
parameters xij.

A similarly defined canonic coordinate frame is employed when learning the model templates;
in this case, DEFT’s learning algorithm computes target and weight templates based on the aver-
age and inverse variance over the training set, respectively. Figure 6.3 shows an overview of the
learning process. My implementation uses Cowtan’s Clipper library [18].

102

Alanine Cα

Canonical
Orientation

Averaged Bond
Geometry

Fffear Target
Template Map

Cα

N

C

Cβ

Cα

N

C

Cβ

C-1

CβC

N+1 O

. .
.

..
.

. .
.

..
.

r = 1.53
θ = 0.0°
φ = -19.3°

r = 1.51
θ = 118.4°
φ = -19.7°

N

O

O

N

O

N

O

... ...

SER ALA VAL

μ σ²

Cα

N

Input Protein
Sequence

Figure 6.3 DEFT’s parameter-learning process. For each atom of a given type – here alanine’s Cα
– DEFT rotates the atom into a canonic orientation. It then averages over every atom of that type
to produce a density template and the average bond geometry.

For each part in my model, DEFT searches through a six-dimensional conformation space
(x, y, z, α, β, γ), breaking each dimension into a number of discrete bins. The translational pa-
rameters x, y, and z are sampled on a regular grid covering the unit cell. Rotational space is
(approximately) uniformly sampled using an algorithm described by Mitchell [80].

6.3 Model enhancements

Upon initial testing, pictorial-structure matching performed rather poorly at the density map
interpretation task. Consequently, I added two routines – a collision-detection routine, and an
improved template-matching routine – to DEFT’s pictorial-structure matching. Both enhancements
can be applied to pictorial-structure matching in general, and are not specific to electron-density
map interpretation.

103

Figure 6.4 An example of DEFT’s collision correction. (a) A model with a “collision” (the pre-
dicted molecule is in the lighter color), where the amino acid’s sidechain is placed coincident with
the backbone. (b) DEFT perturbs the structure, and finds the correct sidechain conformation.

6.3.1 Collision detection
Closer investigation reveals much of the algorithm’s poor performance is due to distant chains

colliding. Since DEFT only models covalent bonds, the matching algorithm sometimes returns
a structure with non-bonded atoms impossibly close together. These collisions clearly were a
problem in DEFT’s initial implementation. Figure 6.4 shows one such collision corrected by the
algorithm.

Given a candidate solution, it is straightforward to test for spatial collisions: I simply test if
any two atoms in the structure are impossibly (physically) close together. If a collision occurs in a
candidate, DEFT perturbs the structure. Though the globally optimal match is no longer returned,
this approach works well in practice. If two atoms are both aligned to the same space in the most
probable conformation, it seems quite likely that one of the atoms belongs there. Thus, DEFT

handles collisions by assuming that at least one of the two colliding branches is correct. When
a collision takes place, DEFT finds the closest branch point above the colliding nodes. That is,
DEFT finds the root y of the smallest subtree containing all colliding nodes. DEFT iterates through
each child xi of this root, matching the subtree rooted at xi, while keeping the remainder of the
tree fixed. The change in score for each perturbed branch is recorded, and the one resulting in the
smallest score increase is the one DEFT keeps.

Algorithm 6.1 describes the collision-avoidance algorithm. In the case that the colliding node
is due to a chain wrapping around on itself (and not two branches running into one another), the
root y is defined as the colliding node nearest to the top of the tree. Everything below y is matched
anew while the remainder of the structure is fixed.

6.3.2 Improved template matching
In my original implementation, DEFT learned a template by averaging over each of the 171

atom types. For example, for each of the 12 (non-hydrogen) atoms in the amino-acid tyrosine I

104

Algorithm 6.1 DEFT’s collision-handing routine.
input: An illegal pictorial-structure configuration L = {l1, l2, . . . , ln}
output: A legal perturbation L′

// Repeat this process until all collisions are resolved

while configuration L contains one or more collisions do
// Find root of smallest subtree containing all colliding nodes

// In each iteration, this root is guaranteed to increase in depth,

// thus the algorithm will terminate

X ← all nodes in L illegally close to some other node
y ← root of smallest subtree containing all nodes in X

// Now perturb each subtree of y, holding remainder of tree fixed

foreach child xi of y do
Li ← optimal position of subtree rooted at xi fixing remainder of tree
scorei ← score(Li)score(subtree of L rooted at xi)

end
// Choose the perturbation with the minimum cost

imin ← arg mini scorei

L′ ← replace subtree rooted at xi in L with Limin

L← L′

end
// Return the perturbed structure

return L

build a single template – producing 12 tyrosine templates in total. Not only is this inefficient –
giving DEFT numerous sets of redundant templates to match against the unsolved density map –
but for some atoms in flexible sidechains, averaging blurs features more than a bond away, losing
information about an atom’s neighborhood.

DEFT improves the template-matching algorithm by modeling templates using a mixture of
Gaussians, a generative model where each template is modeled using a mixture of basis templates.
That is, given a set of N basis templates µi(~x), i = 1, . . . , N , each with variance σ2

i (~x), we model
the density around each atom, ρ(~x) using a linear combination of basis templates:

ρ(~x) =
N∑

i=1

hi · ρ(~x) (6.6)

Each µi and σ2
i is iterative learning using expectation maximization (EM) [21]. In each iteration of

the algorithm I first compute the a priori likelihood of each template being generated by a particular
cluster mean (the E step). Then I use these probabilities to update the mui’s and sigmai’s. After
convergence, I use the each cluster mean (and variance) as an FFFEAR search target. DEFT uses
this algorithm to build N = 24 basis templates for matching.

105

6.4 Experimental studies

I test DEFT on a set of four solved experimentally-phased density maps provided by the Cen-
ter for Eukaryotic Structural Genomics at the University of Wisconsin–Madison. Details of the
dataset are shown in Section A.1, in Appendix A. To test my algorithm with poor-quality data,
I downsampled each of the maps to 2.5, 3 and 4Å by removing higher-resolution reflections and
recomputing the density.

My experiments are conducted under the simplifying assumption that the backbone Cα’s of the
protein were known to within some error factor. This assumption is fair; alternate approaches exist
for backbone tracing in density maps [40]. DEFT simply walks along the backbone, placing atoms
one residue at a time.

I split the dataset into a training set of about 1000 residues and a test set of about 100 residues
(from a protein not in the training set). Using the training set, I built a set of templates for matching
using FFFEAR. The templates extended to a 6Å radius around each amino-acid’s Cα on a grid with
0.5Å sampling. Two sets of templates were built and subsequently matched: a large set of 171
produced by averaging all training set templates for each atom type, and a smaller set of 24 learned
through by the EM algorithm. I ran DEFT’s pictorial-structure matching algorithm using both sets
of templates, with and without collision-detection code.

Although placing individual atoms into the sidechain is fairly quick, taking less than six hours
for a 200-residue protein, precomputing match scores using FFFEAR is very CPU-demanding. For
each of the 171 templates, FFFEAR takes 3-5 CPU-hours to compute the match score at each loca-
tion in the image, for a total of one CPU-month to match templates into each protein. Fortunately
the task is trivially parallelized; I regularly do computations on over 100 computers simultaneously
using the University of Wisconsin’s Condor distributed computing environment [112].

The results of all tests are summarized in Figure 6.5. Using individual-atom templates and
the collision detection code, the all-atom RMS deviation varied from 1.38Å at 2Å resolution to
1.84Å at 4Å resolution. Using the EM-based clusters as templates produced slight or no improve-
ment. However, much less work is required; only 24 templates need to be matched to the image
instead of 171 individual-atom templates. Finally, it was promising that collision detection leads
to significant error reduction.

It is interesting to note that individually using the improved templates and using the collision
avoidance both improved the search results; however, using both together the results were a bit
worse than with collision detection alone. More research is needed to get a synergy between the
two enhancements. More work is also needed balancing between the number of templates and
template size. The match-cost function is a critically important part of DEFT and improvements
there will have the most profound impact on the overall error.

6.5 Conclusions and future work

My DEFT algorithm applies the F-H pictorial-structure matching algorithm to the task of in-
terpreting electron-density maps. In the process, I extended the F-H algorithm in three key ways.
In order to model atoms rotating in 3D, I designed another joint type: the screw joint. I also

106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2Å 2.5Å 3Å 4Å

Density map resolution

Te
st

se
t

RM
S

d
ev

ia
ti

o
n base

improved templates only
collision + improved templ.
collision detection only

Figure 6.5 DEFT’s leave-one-protein-out testset errors at four resolutions, under four strategies.

developed extensions to deal with spatial collisions of parts in the pictorial-structure model, and
implemented a slightly better template-construction routine. These enhancements can be applied
to pictorial-structure matching in general, and are not specific to the task presented here (protein
sidechain placement).

DEFT bridges the gap between two model-fitting approaches for interpreting electron-density
maps. A number of techniques [53, 75, 94] have been shown to do a good job of placing individ-
ual atoms into a density map, but all have a ceiling resolution of about 2.5 to 3Å. On the other
hand, FFFEAR has had success finding secondary-structure elements in very poor resolution maps,
but is unable to place individual atoms or even residues not contained within protein secondary
structures. My work attempts to extend the resolution threshold at which individual atoms can be
identified in electron-density maps. Doing so allows for more rapid and less expensive collection
of protein structures. DEFT’s flexible template matching combines weakly-matching image tem-
plates to extract atomic coordinates from maps where individual atoms have been blurred away.
No other approach has investigated sidechain refinement in structures of this poor resolution.

A different optimization algorithm that handles cycles in the pictorial-structure graph would
better handle collisions (allowing edges between non-bonded atoms). In recent work [107], loopy
belief propagation [66] has been used with some success (though with no optimality guarantee). I
plan to explore the use of belief propagation in pictorial-structure matching, adding edges in the
graph to avoid collisions.

Another direction for future work is incorporating DEFT’s sidechain identification and place-
ment into ACMI. Instead of using a set of rigid 5-mer templates to locate individual amino acids,
one could conceivably use DEFT as a vertex potential (that is, the “amino-acid detector.”) An ad-
vantage of DEFT – and corresponding weakness of ACMI – is that DEFT’s flexible sidechain model
is able to handle proteins with novel or rare sidechain conformations.

107

Chapter 7

Improving the Efficiency of Belief Propagation

Chapter 3 presented a protein Markov-field model and a probabilistic inference algorithm –
ACMI-BP – specialized for this model. That algorithm is able to infer the marginal distribution
of each amino acid’s location in a density map. This chapter generalizes ACMI-BP’s model and
inference algorithm.

I develop a part-based object-recognition framework, suitable for mining complex 3D objects
in detailed 3D images. As with the pictorial-structure matching of the previous chapter, my frame-
work models objects as a collection of connected parts. The algorithm’s key component is an
efficient inference algorithm, based on belief propagation [93], that finds the optimal layout of
parts, given some input image. Belief propagation (BP) is well suited to this task. However, for
large objects with many parts, even BP may be intractable.

Consequently, I introduce AGGBP, a message aggregation scheme for BP, designed for infer-
ring the layout of complex objects. In AGGBP, groups of BP messages are approximated as a
single AGGBP message. This gives AGGBP a message update analogous to that of mean-field
methods [61, 95]. For objects consisting of N parts, the approximation reduces CPU time and
memory requirements from O(N2) to O(N). AGGBP is applicable to any model expressible in my
part-based framework (with some accuracy tradeoffs).

Finally, I apply AGGBP to both real-world and synthetic tasks. First, I use my framework to
recognize protein fragments in three-dimensional images. Scaling BP to this task for even average-
sized proteins is infeasible without my enhancements. I then use a synthetic “object generator” to
test my algorithm’s ability to locate a wide variety of part-based objects. Earlier versions of this
chapter were previously published [24, 25].

7.1 Introduction

Several publications – including the pictorial-structure matching of the previous chapter – have
explored the use of part-based models for recognizing generic objects in images [31,56,106]. These
models represent physical objects as a graph: a collection of rigid parts (vertices in the graph) con-
nected by flexible joints (edges in the graph). Potential functions associated with vertices describe
preferred locations for each part in the image, while edge potential functions describe preferred
conformations between pairs of parts. An inference algorithm determines the most probable loca-
tion of each part in the model given the image and the conformational constraints on the object.

108

However, previous work has only considered simple objects with relatively few parts, (and often
using two-dimensional image data). I present a part-based object-recognition algorithm specialized
to objects with hundreds of parts in detailed, three-dimensional images.

To effectively identify complex 3D objects, I introduce an efficient message-passing infer-
ence algorithm based on belief propagation [93]. Message-passing algorithms like belief propaga-
tion are an efficient yet powerful technique for inference in graphical models. Belief propagation
(BP) is a message-passing method for exactly computing marginal distributions in tree-structured
graphs. In graphs with arbitrary topologies, no such optimality is guaranteed. Empirically, how-
ever, “loopy BP” often provides accurate approximations, when exact inference methods are in-
tractable [34, 77, 116].

For very large, highly-connected graphs, with large input images, even loopy BP may not
offer enough efficiency. In near-fully connected graphs, with hundreds or thousands of vertices,
approximations to BP’s messages may be necessary to compute approximate marginal distributions
in a reasonable amount of time. I describe AGGBP (for aggregate BP), which approximates groups
of BP messages with a single message. This single composite message turns out to be quite similar
to the message update for mean-field methods. I illustrate that, for densely connected graphs with a
certain type of edge potential, AGGBP reduces running time in a graph with N nodes from O(N2)
to O(N).

Additionally, I provide a method for dealing with continuously-valued variables that is efficient
and does not require accurate initialization. Sudderth et al. [105] have developed an extension to
BP, nonparametric belief propagation (NBP). NBP represents variables that have continuous non-
Gaussian distributions as a mixture of Gaussians. They have also developed efficient algorithms
for computing messages and taking the product of messages using these distributions. This chapter
introduces an efficient variant, which alternately represents probability distributions over a contin-
uous three-dimensional space as a set of Fourier-series coefficients. Coupled with AGGBP, this
representation allows for efficient message passing and computation of message products.

Finally, I test these approximation techniques using both real-world and synthetic data. The first
testbed is a variant of the density map interpretation described throughout this thesis, and involves
searching for short protein fragments in a masked portion of an electron-density map. The second
testbed uses a synthetic-object generator to test AGGBP’s performance locating a wide variety of
objects with various part topologies.

7.2 Modeling 3D objects

Following others [31, 33], I describe a class of objects using an undirected graphical model.
Recall from Section 2.1.4 that undirected graphical models represent the joint probability distribu-
tion over a set of variables as a function defined on an undirected graph. A pairwise undirected
graphical model (or pairwise Markov field) represents this joint distribution as a product of poten-
tial functions defined on each edge and vertex in the graph. That is, given variables xs, evidence
y, vertex potentials ψs(xs|y) and edge potentials ψst(xs, xt), the probability of some setting of the

109

xs’s is given:
p(x|y) ∝

∏
(s,t)∈E

ψst(xs, xt)×
∏
s∈V

ψs(xs|y) (7.1)

To represent a 3D object in such a model, I construct a graph where vertices correspond to parts
in the object, while edges correspond to constraints between pairs of parts. Each xs describes the
3D position of part s (in addition, xs may contain information about the orientation of part s or
other internal parameters).

Then, to describe an object using a graphical model, I need three pieces of information: a
part graph, each node’s observation potential, and each edge’s structural potential. Given a graph
describing an object, these potential functions may be learned from a set of previously solved
problem instances.

In my 3D object recognition framework, objects have a fully connected part graph. Most
edges are associated with identical, weak (diffuse) potentials, ensuring that no pair of parts may
occupy the same 3D space. However, a sparse subset of the graph (the “skeleton”) connects highly
correlated variables. As an illustration, consider using a graphical model for recognizing people in
images, as in Figure 7.1. In this model, a sparsely connected skeleton connects highly correlated
nodes. For example, the head and body are connected in this skeletal structure, because the position
of the head and the position of the body are highly correlated.

However, many other pairs of nodes – such as the left leg and the left arm – are not connected
in the skeletal structure, yet their labels are not completely (conditionally) independent. There is a
weak dependency (beyond the dependency passed through the position of the body): the two parts
may not occupy the same location in 3D space. As this constraint is not implicitly modeled by the
chain that connects them in the skeletal structure, an edge between them enforcing this constraint
is necessary. My model refers to these edges as occupancy edges. For example, when modeling a
hand [106], occupancy edges are required to ensure two fingers do not occupy the same space. The
potential associated with these edges is typically very diffuse; it is non-zero everywhere except in
a small neighborhood around the origin (in each part’s local coordinates).

Each part’s observation potential is usually based on the application of a simple classifier (i.e.,
a “part detector”). At each location in 3D space, it returns the probability that a particular part
is at that location. Individual part potential functions may use template matching (as in Chapters
3 and 4), color matching [31], edge detection [105], or any other method. One strength of the
part-based framework is that individual observation potentials need not be particularly accurate,
as belief propagation is able to infer the true location using the combined power of many weak
detectors [31].

As illustrated in the person-detector example, structural potentials are broken into two types:
skeletal potentials (or adjacency potentials for a linear skeleton) model the relationship between
parts connected through an object’s skeleton, while occupancy potentials model the relationship
between all other pairs of nodes. Skeletal potentials may take an arbitrary form, learned from a
set of allowable object conformations. They may be a function of position as well as orientation
of the 3D object, making use of additional latent variables. Occupancy potentials take the form of
a step function (using a “hard collision” model) or a sigmoidal function (using a “soft collision”
model), only taking a nonzero value if two parts are sufficiently far apart. In my model, occupancy

110

Figure 7.1 A graphical model for recognizing a person in an image. Thicker dark edges illustrate
the highly-correlated “skeleton” of the model, while thinner light edges are weakly-correlated
occupancy edges, which ensure two parts do not occupy the same 3D space.

potentials only depend on the position of the connected parts, treating individual parts as spheres
(this constraint is necessary for efficient inference).

7.3 Scaling belief propagation

Given an image and some object’s graphical model, inference finds the most-probable location
of each of the object’s parts in the image. Because the object graph is fully connected, with many
loops, exact inference methods either will not work (e.g., tree-based methods) or are intractable
(e.g., exhaustive methods). Instead, one is forced to rely on approximate inference methods, like
those described in Section 2.1.4.1. My object-recognition framework uses a variant of loopy belief
propagation.

Belief propagation – described in Section 2.1.4.2 – was originally intended for small, sparsely
connected graphs. In large, highly-connected graphs, the number of messages quickly becomes
overwhelming. To make BP tractable in these types of graphs, I designed and developed a BP
variant, AGGBP, which approximates some subset of outgoing messages at a single node with a
single message, significantly reducing the number of messages computed an stored in each iteration
of the algorithm.

7.3.1 BP message aggregation
In the undirected graphical models used for 3D object recognition, pairs of nodes along skeleton

edges are highly correlated. Consequently, messages along these edges have a high information

111

content. It is important to exactly compute messages along these edges. Coarse approximations –
like those used in mean-field methods [61] – introduce too much error.

However, in these graphs, the majority of edges are occupancy edges, which enforce the con-
straint that two parts cannot occupy the same 3D space. The potential functions associated with
these edges are weak – that is, when convoluted with a node’s belief, they tend to spread the prob-
ability mass a lot – and messages along these edges carry little (but still some!) information. It is
along these edges that I make some approximations.

Formally, BP’s message update, given by Equation 2.9, can be alternately written as (again, the
explicit dependence of the message on y is dropped for clarity):

mn
t→s(xs)← α1

∫
xt

ψst(xs, xt)×
b̂nt (xt|y)

mn−1
s→t(xt)

dxt (7.2)

The denominator in the above, mn−1
s→t(xt) is a term that serves to avoid double-counting or “feed-

back,” making the method exact in tree-structured graphs. In loopy graphs, such feedback –
through the graph’s loops – in unavoidable. For messages along occupancy edges this denomi-
nator – the previously received occupancy message – carries little information. Since I am con-
voluting this already-weak denominator by the occupancy potential again, its contribution to the
final message is negligible. Thus, AGGBP drops it with little loss of accuracy.

This gives an update equation more like the naı̈ve mean-field update:

mn
t→s(xs)← α2

∫
xt

ψst(xs, xt)× b̂nt (xt|y) dxt (7.3)

The key advantage of doing this – assuming that the structural potential ψst is identical along all
occupancy edges – is all occupancy messages outgoing from a single node are identical. For the
remainder of this section, I will refer to these approximate messages as mt→∗(x∗).

Assuming identical ψst’s, AGGBP reduces the number of occupancy messages computed from
O(N2) to O(N) in a model with N parts. However, updating the belief for some part still requires
multiplying all the incoming occupancy messages times all the incoming skeletal messages; for an
N -part model, this is still potentially O(N2). To reduce this complexity, I utilize the fact that each
node receives this broadcast message from all but a few nodes in the graph: its neighbors (in the
skeleton graph) and itself. I instead send all these aggregate messages to a central accumulator:

ACC(x∗)←
N∏

t=1

mt→∗(x∗) (7.4)

I use the accumulator to efficiently update a node’s belief, by sending – in a single message – the
product of all occupancy messages.

Figure 7.2 illustrates AGGBP when the graph is a chain (generalizing this to arbitrary topolo-
gies is straightforward). For a chain, one computes the product of incoming messages, using this

112

accumulator, as:

b̂1 ← ψ1 × ACC ×
m2→1

m1→∗ ×m2→∗

b̂2 ← ψ2 × ACC ×
m1→2 ×m3→2

m1→∗ ×m2→∗ ×m3→∗
...

b̂k ← ψk × ACC ×
mk−1→k ×mk+1→k

mk−1→∗ ×mk→∗ ×mk+1→∗
...

The numerators of these message updates contain skeletal messages, while the denominators con-
tain the approximated occupancy messages. AGGBP reduces the runtime and memory require-
ments from O(N2) to O(N) in a model with N parts. The storage benefit is especially appealing
when the 3D space for each part is large, and storing O(N2) messages is space-prohibitive. Sec-
tion 7.4.1 provides a closer look at one such application where this is the case.

Algorithm 7.1 gives a pseudocode overview of AGGBP (the function arguments xs and xt have
been dropped for clarity), with comments highlighting the differences between AGGBP and stan-
dard loopy BP (Algorithm 2.1). As I progress from node to node, instead of computing every
outgoing message from each node, I compute a single composite message. The key difference be-
tween Algorithms 2.1 and 7.1 is in the inner loop, “if s is a skeleton neighbor of t.” For part-based
object recognition, where the skeleton graph is sparsely connected, this loop is seldom entered,
requiring few message calculations.

Finally, when different occupancy edges have a different potential functions (i.e., when parts in
the model are of a different size), then my object-recognition framework may still take advantage of
AGGBP, with additional approximation error. In this case, AGGBP simply computes the broadcast
message from a part t using the average potential function outgoing from t:

mn
t→∗(x∗)← α

∫
x∗

∑N
u=1 ψtu(xt, x∗)

N
× b̂nt (xt)dxt (7.5)

One can think of this as each part sending the average of all outgoing occupancy messages to every
part. Section 7.4.2 explores how well AGGBP handles varying occupancy potentials.

7.3.2 Message representation
Section 2.1.4.2 describes an approach to belief propagation with continuous-valued labels

based on particle filtering. However, there may be cases where these models are insufficient. In
general, when using particle-based BP, reasonably accurate initialization of the Gaussian centers
representing the probability distribution is necessary for accurate inference [106]. In this sec-
tion, I describe an alternative belief representation that uses a Fourier-series probability density
estimate [101] to represent probabilities and messages. While particle-based methods tend to con-
centrate on high-probability space, my approach accurately represents the probability distribution

113

(a)

(b)

(c)

(d)

Accumulator

Accumulator

Figure 7.2 AGGBP’s message aggregation approximates (a) all the outgoing messages at node 3,
with (b) a single message sent to all non-adjacent nodes. Storing (c) the product of these aggregate
messages in a central accumulator allows us to (d) quickly update a node’s (here, node 3’s) belief
as the accumulator product times incoming skeletal messages, divided by the occupancy messages
the node should not have received.

114

Algorithm 7.1 Aggregate belief propagation (AGGBP).
input: Observational potentials ψs(xs|y) and structural potentials ψst(xs, xy)

output: An approximation to the marginal b̂s(xs|y) ≈
∑
x1

. . .
∑
xs−1

∑
xs+1

. . .
∑
xN

P (x|y)

initialize accumulator ACC, messages m to 1
while b̂’s have not converged do

foreach part s = 1 . . . N do
// Factor s’s occupancy message out of the accumulator product

ACC ← ACC/mn−1
s→∗

// Set s’s belief to vertex potential times accumulator product

b̂s(xs|y)← ψs × ACC
foreach part t = 1 . . . N do

// The key difference from Algorithm 2.1!

// I only compute exact messages along the skeleton graph

// (the accumulator handles non-skeleton edges)

if s is skeleton neighbor of t then
if b̂t has been updated then

mn
t→s(xs)←

∫
xt
ψst × b̂n

t

mn−1
s→t

dxt

end
// Multiply s’s belief by the incoming message from t
// and divide by t’s occupancy message

// Node s should not get t’s occupancy message

// (but did, from the accumulator)

b̂s(xs|y)← b̂s(xs|y)× (mn
t→s/m

n
t→∗)

end
end
// Compute composite occupancy message

mn
s→∗(xs)←

∫
xt
ψ∗s × b̂ns (xs|y)

// Update accumulator product with s’s contribution

ACC ← ACC ×mn
s→∗

end
end

115

over the entire space of each random variable. Efficient message passing and message computation
make this representation ideal for large, highly connected graphs.

Formally, I represent marginal distributions b̂ns as a set of three-dimensional Fourier coefficients
fk, where, given high-frequency limit K

b̂ns (xs|y) ≈
K∑

k=0

fk × e−2πi(xs�k) (7.6)

Messages are represented using the same probability density estimate.

7.3.2.1 Message computation
Recall from Equation (2.8) that computingmt→s requires integrating the product of edge poten-

tial ψst(xs, xt), observation potential ψs(xs, y), and incoming message product
∏
ms→t(xt) over

all xt. While this computation is difficult in general for Fourier-based density estimates, if an edge
potential can be represented as a function of the difference between the labels of the two connected
nodes, that is, ψst(xs, xt) = f(||xs − xt||), then mt→s is just a convolution:

mn
t→s(xs) =

(
ψst ∗

∏
mn−1

s→t

)
(xs) (7.7)

This is easily computed as the product of Fourier coefficients:

F
[
mn

t→s(xs)
]

= F
[
ψst(xs, xt)

]
×F

[(∏
mn−1

s→t(xt)
)]
. (7.8)

In my object-recognition framework, all occupancy potentials are represented in this manner. That
is, the potential here only depends upon the difference between labels.

This computational shortcut was originally proposed by Felzenswalb for belief propagation in
low-level vision [32]. Computing these message products is efficient, with running time O(K3),
where K is the high-frequency limit of the density estimate.

7.3.2.2 Message products
As shown in Equation (2.9), computing the current belief b̂ns at a given node requires taking

the product of all incoming messages mt→s(xs), and multiplying it by the observation potential
ψs(xs, y). Given the Fourier coefficients of all messages, I compute this multiplication in real
space:

b̂ns (xs|y) = ψs(xs, y)×
∏
F−1

[
F

[
mn

t→s(xs)
]]

(7.9)

As with the message convolution, this operation is fairly efficient. Each transform and inverse
transform runs in time O(K3 logK). In general, the bandwidth limitK corresponds to the grid size
of the imageX (K = X allows me to represent the signal exactly at each grid point). Thus, assum-
ing a (three-dimensional)X×X×X image, computing an occupancy message takesO(X3 logX)
running time.

116

0

5

10

15

20

25

30

15 25 35 45 55 65 75 85 95

Protein fragment length

N
o

rm
al

iz
ed

 C
PU

-t
im

e

0

10

20

30

40

N
o

rm
al

iz
ed

 m
em

o
ryLoopyBP CPU time

LoopyBP memory

AggBP CPU time

AggBP memory

50

Figure 7.3 A comparison of memory and CPU time usage between AGGBP and LOOPYBP.

7.4 Experiments

In this section, I compare the standard loopy belief propagation algorithm with AGGBP, us-
ing both real-world and synthetic datasets. The real-world task is based upon locating protein
fragments in 3D images; these objects consist of a chain of “parts” (amino acids). The synthetic
dataset allows me to look at my algorithm’s performance recognizing objects containing more
complex part topologies.

7.4.1 Protein-fragment identification
This section details some experiments locating protein fragments in electron-density maps.

My data set for testing (as in Chapters 3 and 4) comes from a set of ten model-phased electron-
density maps from the Center for Eukaryotic Structural Genomics. I downsampled these maps to
3Å resolution by smoothly diminishing the intensities of higher-resolution reflections. Details of
the dataset and the truncation method are given in Section A.2.

I compare standard loopy BP inference (LOOPYBP) to AGGBP on this Markov field model.
LOOPYBP is unable to scale to the entire protein (as large as 500 amino acids in the testset), so
to compare these two methods I consider protein fragments of between 15 and 65 amino acids.
CPU time per iteration and memory usage of the two techniques are illustrated in Figure 7.3.
Because the actual running-time and memory usage is dependant upon the size of the density map,
I normalize these values, so that LOOPYBP’s time and memory usage at 15 amino-acids is 1.0 (in
an average-sized protein, these values are 200 MB and 120 sec, respectively). I increase fragment
length until the algorithm used up my machine’s 6 GB RAM and began paging; Figure 7.3 does

117

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

BP iteration

Lo
o

p
yB

P
vs

. A
g

g
B

P
K

L-
d

iv
er

g
en

ce

0

2

4

6

8

10

0 5 10 15 20
BP iteration

C
α

RM
S

d
ev

ia
ti

o
n true vs. AggBP

BP vs. AggBP
true vs. LoopyBP

-1200

-1100

-1000

-900

-800

-700

-600

0 5 10 15 20

BP iteration

AggBP

LoopyBP Lo
g

 li
ke

lih
o

o
d

(a) (b)

(c)

Figure 7.4 A comparison of AGGBP to loopy BP at each iteration of message passing, using (a)
RMS deviation, (b) average KL-divergence of the predicted marginals, and (c) log likelihood of
the maximum-marginal interpretation.

0

2

4

6

8

10 20 30 40 50 60 70

Protein fragment length

C
α

RM
S

d
ev

ia
ti

o
n

 true vs. AggBP

BP vs. AggBP
true vs. LoopyBP

Figure 7.5 RMS error of AGGBP and LOOPYBP as a function of protein fragment size (at iteration
20).

118

not include time swapping to disk; however, for fragments larger than I tested, this may result in a
significant performance penalty.

At each of six fragment lengths, I search for 15 different fragments of that length from 5
different proteins (in 5 different electron-density maps), for a total of 90 different target fragments.
Fragments were chosen that roughly corresponded with the beginning, middle, and end of each
protein chain. I ran LOOPYBP and AGGBP until convergence or 20 iterations (where one iteration
is a single forward or backward pass through the protein). In each map, before searching for a
fragment, I reduced the electron-density map to a neighborhood around the fragment; that is, I
eliminated the electron density corresponding to portions of the protein not in the 15 to 65 amino-
acid fragment. Eliminating these portions of the map provides a more-realistic model of searching
for a complete protein.

Results from this experiment as a function of BP iteration appear in Figures 7.4. Panel a
shows the RMS error of both AGGBP’s and LOOPYBP’s maximum-marginal backbone trace, in
addition to the RMS deviation between the two backbone traces. Panel b shows the Kullback-
Leibler (KL) divergence between the AGGBP’s and LOOPYBP’s estimated marginal distributions.
Finally, Panel c shows the log likelihood of both AGGBP’s and LOOPYBP’s max-mum-marginal
backbone trace. In each of these plots, the x-axis shows the number of BP iterations completed;
the y-axis shows the respective performance metric. As these plots show, the solutions found by
these two methods differ somewhat, however, in terms of error versus the true trace, both produce
equally accurate traces. Interestingly, Figure 7.4c shows that AGGBP is finding a solution with
higher log likelihood (higher is better); perhaps due to message aggregation’s role as a regularizer.

Alternately, Figure 7.5 shows the RMS error as a function of protein-fragment length. This
figure shows both methods seem to perform slightly worse when searching for longer fragments;
still, the predicted structures are fairly accurate – considering the quality of the maps – with an
average RMS error of under 4Å.

Finally, a scatterplot of log likelihoods, where each of the 90 fragments is represented as a
point, is illustrated in Figure 7.6. In this figure, points below the diagonal correspond to fragments
on which AGGBP produces the higher-likelihood (i.e., better) interpretation. For almost every
fragment, AGGBP produces a solution with a greater log likelihood than does standard BP. This
difference is statistically significant; a two-tailed, paired t test gives a p value of 0.014.

7.4.2 Synthetic-object recognition
While the protein-fragment identification testbed shows the CPU and memory savings achiev-

able by my algorithm, it involves a rather limited part topology: the skeletal structure is just a linear
chain, and each part is a constant distance apart. In this section, I construct a synthetic-object gen-
erator, that builds “part graphs” with varying branching factors, object sizes, and object “softness.”
I also explore approximation performance under various part-finder accuracies.

119

AggBP log-likelihood

Lo
o

p
yB

P
lo

g
-l

ik
el

ih
o

o
d

-2000

-1500

-1000

-500

0

-2000 -1500 -1000 -500 0

15-mers
25-mers
35-mers
45-mers
55-mers
65-mers

Figure 7.6 A scatterplot showing – for each of the 90 target fragments – the log likelihood of
AGGBP’s backbone model versus LOOPYBP’s. Points below the diagonal correspond to fragments
where AGGBP returns a solution with higher (where higher is better) likelihood.

7.4.2.1 Object generator
My object generator lets me vary the graph topology and individual part parameters shown

in Figure 7.7. The generator constructs objects with a predefined number of parts, arranged in a
skeleton with a predefined number of “skeletal loops”. Given some branching factor, the skeleton
is randomly assembled from the parts. As before, all pairs of parts not connected in the object
skeleton are constrained to not occupy the same 3D space

Each part in the model is given a radius ri ∈ r and a softness si ∈ s, from which the structural
potential functions are derived. Pairs of parts directly connected in the skeleton maintain a distance
equal to the sum of their radii. Part orientation is not modeled (although it is not prohibited in the
framework); only the distance between parts connected in the skeleton matters. All parts not
connected in the skeleton should be at least as far apart as the sum of their radii (although the
softness parameter allows this to be violated).

The softness parameter, which may be interesting in modeling objects with “compressible”
parts, allows part pairs to get slightly closer than the sum of their radii with some low probability.
Specifically, the softness parameter replaces the occupancy potential’s step function with a sig-
moid. For non-zero softness, then, the probability distribution of the distance d between two parts
i and j, with radii ri and rj , and softness si and sj , is given by:

pij(d) =

(
1 + exp

(
−(d− (ri + rj))

si · ri + sj · rj

))−1

(7.10)

120

vary radii

increase
branching factor

allow spatial
overlap

add skeletal
loops

Figure 7.7 Four graph-topology parameters that one may vary using my graph generator.

µ

positive score
distribution

negative score
distribution

score

P

Figure 7.8 Observation potentials are generated by drawing scores from two distributions. The
parameter µ is directly related to each part-classifier’s accuracy.

The generator assumes that each part’s radius and softness is known (or exactly learned from some
training set) before inference.

My testbed generator also generates observation potentials ψobs, that is, the probability distri-
bution of each part’s location in 3D space. These would normally be generated by some type of
pattern matcher in a 2D or 3D image. My generator assumes I have a classifier that – given a
location in 3D space – returns a score. Shown in Figure 7.8, scores are drawn from one of two
distributions: at the true location of a part, the score for that part is drawn from one distribution, at
any other location the score is drawn from another distribution.

121

For simplification, I assume both distributions are fixed-width Gaussians with different means.
Varying the difference in means results in classifiers with varying accuracy. Given this difference
in means, then, I generate each part’s observation potential by drawing “match-scores” at random
from these two distribution. I assume the two distributions are known (or exactly learned from
some training set); thus, I can convert match-score mi into probabilities using Bayes’ rule:

P (pos-class|mi) =
P (mi|pos-class) · P (pos-class)

P (mi)

=
P (mi|pos-class) · P (pos-class)

P (mi|pos-class) · P (pos-class) + P (mi|neg-class) · P (neg-class)
(7.11)

The prior probability on the positive (and negative) class P (pos-class) is known, since I know
there is one instance of each part in the image. The conditional probabilities P (mi|pos-class) and
P (mi|neg-class) use the fact I know the distribution of positive-class and negative-class scores.

A specific width µ corresponds to a specific classifier accuracy. Greater values of µ mean
the score distributions of the positive and negative classes are further apart, and thus more easily
separated. One can think of building a classifier where, given some match-score mi, one computes
the probability as in Equation 7.11. Then, by varying the probability threshold which I use to
separate positive and negative examples, one can generate a precision-recall curve. The area under
this curve is one measure of classifier performance: higher values of µ correspond to greater area
under this curve. In the remainder of this section, I report not this value for µ, but rather the
area under the precision-recall curve (AUPRC) which it – along with the number of positive and
negative examples – induces. For example, on a 40x40x40 grid, µ = 3.85 corresponds to an
AUPRC of 0.3.

Finally, there is no requirement that the skeleton of an object maintain a tree structure. The
testbed generator allows construction of objects with a predefined number of loops in the skeleton
graph.

7.4.2.2 Results
I use my generator to vary five different parameters (four topological) in the model (default

values are shown in parentheses):

• branching-factor: the average branching factor in the skeleton graph (default = 2)

• softness: each part’s softness (default = 0.0)

• σ(radius): the standard deviation of radii in the graph (default = 0)

• µ: the difference in means between the positive score distribution and negative score distri-
bution. I report this value as the area under the associated ”part detector’s” precision-recall
curve. (default area = 0.3)

• loop-count: The number of loops in the skeleton graph. (default = 0)

122

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

Branching factor

RM
S

er
ro

r true vs. LoopyBP
true vs. AggBP

LoopyBP vs. AggBP

0.0

0.5

1.0

1.5

2.0

2.5

0 0.2 0.4 0.6 0.8

Softness

RM
S

er
ro

r

0

1

2

3

4

5

0 1 2 3 4

Standard deviation
of radii

RM
S

er
ro

r

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

Classifier AUPRC

RM
S

er
ro

r

(a) (b)

(c) (d)

0

1

2

3

4

5

0 1 2 3 4 5

Number of skeletal loops

RM
S

er
ro

r

(e)

Figure 7.9 A comparison of AGGBP and LOOPYBP using the synthetic-object generator. While
holding other parameters fixed, I vary (a) skeleton branching factor, (b) part softness, (c) radius
standard deviation, (d) classifier AUPRC, and (e) skeletal-graph loop count. I report the RMS
error of my algorithm (AGGBP) and LOOPYBP against each other as well as against ground truth.

123

In every graph, the average part radius is fixed, and each model is constructed of 100 parts.
I use my object-recognition framework to search for the optimal layout of parts, given some

generated object and observation potentials. As in the Section 7.4.1, I use both standard loopy
BP (LOOPYBP) and AGGBP, and compare the results. I assume that part parameters – radius
and softness – are known (or learned) by the algorithm. For both AGGBP and LOOPYBP, I run
until convergence, for a maximum of 20 iterations. In a few instances (typically with a poor
“part detector”), BP did not converge; in these cases, I took the highest-likelihood solution at any
iteration. At each parameter setting, I compute the average error using 20 randomly generated part
graphs.

Results from this experiment appear in Figure 7.9. For each of the four varied parameters
I plot the RMS error (a) between LOOPYBP and ground truth, (b) between AGGBP and truth,
and (c) between AGGBP’s solution and LOOPYBP’s. The relative running time and memory
usage of AGGBP compared to LOOPYBP follows the trend shown in Figure 7.3, with LOOPYBP
taking approximately 5 times longer and using approximately 7 times the memory of AGGBP
when locating a 100-part model.

For three of the varied parameters – graph branching factor, classifier AUPRC, and skeletal
loops (Figure 7.9, Panels a, d and e) – the solutions returned by the two methods are of comparable
accuracy. Even though the solutions themselves may be quite different, they are both equally close
to ground truth. The odd behavior of the algorithm, as the number of skeletal loops increases
(Panel e) – with error increasing for 1 and 2 loops, then decreasing for 3 and 4 – may be explained
by the fact that the algorithm does not control the length of skeletal loops. With fewer loops in the
skeletal graph, the average loop length is likely to be longer, which may cause problems for BP.

Figure 7.9c shows that my algorithm performs reasonably well as the radii of the model’s parts
are varied more. The performance of the two algorithms is similar until the standard deviation of
part radii is increased to three times the radius. Larger variations could be handled by clustering
objects into multiple groups based on radius, approximating messages to each group.

The most interesting result, however, is that in Figure 7.9b, where the object softness is varied.
Increasing object softness allows two objects to move closer than would normally be allowed with
some low probability. Here, for any non-zero softness, AGGBP finds a more accurate solution than
LOOPYBP. The reason for this in unclear; it may be due to feedback introduced by this softness,
that is dampened by AGGBP’s approximation. When running with a non-zero softness, LOOPYBP
often fails to converge, giving some support to the idea that my approximation is dampening some
feedback loops.

Log likelihood plots, not shown for these synthetic experiments, are very similar to the error
plots. These experiments show that AGGBP’s approximation method is valid for a wide variety of
model parameters and part topologies. In a large majority of the synthetic experiments, AGGBP
produced an interpretation that was as good or better than LOOPYBP, in less time.

124

7.5 Conclusions and future work

I describe a part-based, 3D object recognition framework, well suited to analyzing detailed 3D
image data. I introduce AGGBP, a message approximation and aggregation scheme that makes
belief propagation tractable in large and highly connected graphs. Using a message-approximation
similar to that of mean-field methods, I reduce the number of message computations at a single
node from many to just a few. In the fully connected graphs used by my object-recognition frame-
work, AGGBP reduces the running time and memory requirements for an object withN parts from
O(N2) to O(N).

Additionally, I describe an efficient probability representation based on Fourier series. Experi-
ments on a 3D vision task arising from X-ray crystallography shows that using these improvements
produce solutions as good or better then loopy BP. Synthetic tests show that AGGBP is accurate
under a variety of object types with various part topologies, in most cases producing a solution as
good or better than loopy BP.

It is unclear why AGGBP should sometimes produce more-accurate results than standard loopy
BP. My approximate-message computation ignores a term that serves to avoid feedback, which
makes LOOPYBP exact in tree-structured graphs. However, in graphs with loops, such feedback is
unavoidable (through the loops of the graph). For some types of edge potentials, ignoring this term
produces a more-accurate approximation, perhaps by dampening some of these feedback loops
inherent in loopy belief propagation. Further investigation into this is needed.

In the future, I would like to investigate taking a more dynamic approach to message aggrega-
tion. For example, in the protein backbone-tracing task, AGGBP’s approximation error is highest
along edges connecting amino acids that are nearby in space (see Section B.2). If I could accurately
predict which amino acids are close (in space) as BP iterates, I could precisely compute messages
between these pairs of nodes, and approximately compute messages along other edges.

The results using AGGBP illustrate my techniques are useful in the automatic interpretation
of complex 3D image data. The shortcuts I introduce drastically increase the size of problems on
which BP is tractable. In one real and one synthetic dataset, I produce accurate results with sig-
nificant CPU and storage savings over standard loopy BP. The algorithm presented in this chapter
appears to be a powerful tool for locating complex objects in large images.

125

Chapter 8

Conclusion

My thesis describes several probabilistic techniques for automating the time-consuming inter-
pretation of electron-density maps. With a growing need for high-throughput determination of
protein structures, automation of this step is critically important. The methods outlined in this the-
sis have improved upon the state-of-the-art, allowing more accurate interpretation of poor-quality
maps than other widely used approaches. An implementation of the algorithms described in my
thesis is currently in regular use at the University of Wisconsin Center for Eukaryotic Structural
Genomics.

Locating large, highly flexible proteins in large three-dimensional images requires the devel-
opment of computational methods to handle statistical inference in a reasonable amount of time,
while making a minimum number of simplifying assumptions. This work describes a novel mes-
sage approximation scheme that allows inference to proceed in a reasonable amount of time, even
with proteins containing more than 1000 amino acids. I derive a faster method for searching for
template structures in the density map, using spherical-harmonic decomposition. Together, these
advancements make the application of a complex statistical model tractable for this problem.

The probabilistic framework I use throughout this thesis is flexible and expressive, combining
many local structural patterns into a global protein structure. As an illustration of its expres-
siveness, in Chapter 3, I describe how my algorithm can use the estimated location of selenium
atoms (found from phasing experiments [46]) to adjust the prior probabilities on methionine, a
selenium-containing amino acid. This thesis only scratches the surface of what is expressible in
such a probabilistic framework, which cleanly allows the integration of many different sources
of knowledge available to biologists. This includes sources such as distant structural analogues
(or predicted structural analogues) [64], predicted secondary structure [98] and predicted contact
maps [76]. Unlike any other approach, the probabilistic framework described in this thesis allows
all these sources of information to be neatly integrated in a single model.

Finally, the model presented in this thesis is generalizable to other types of objects, from other
image data sources, including fMRI scans [102] of the brain, high-quality 3D images of tissues
produced by confocal microscopy [92], and detailed images of large macromolecular complexes
produced by electron cryomicroscopy [12]. The general image framework presented in Chapter 7
makes application of my algorithm to any of these datasets relatively straightforward.

126

In each chapter of my thesis, I presented possible future research directions. Here, I present
a summary of each chapter, including my contributions, as well as a summary of these future
research directions.

8.1 Probabilistic protein-backbone tracing

Chapter 3 presented ACMI-BP, a tool for automatically tracing protein backbones especially
designed for poor-quality electron-density maps. I designed a model-based approach to electron-
density map interpretation. Modeling the protein using a pairwise Markov field, I predict the most
likely layout of a particular amino-acid sequence given an electron-density map. The resultant
backbone models are more accurate in terms of RMS error and model completeness then other
automatic interpretation methods.

Future Work: One area where I believe significant performance gains are realizable is in
improved methods for managing non-crystallographic symmetry [7]. Many maps have this type of
symmetry, that is, where the protein forms a multimeric complex in the asymmetric unit. Every
copy must be found by the automated method or the crystallographer, although often all copies
are in identical or nearly identical conformations. Currently, ACMI-BP searches for all chains
simultaneously, but does not use the knowledge that chains are likely to take similar conformations.
This knowledge, however, is used by crystallographers in solving such maps, and is valuable in
solving very poor density maps. In the future, I would like to add to ACMI the ability to infer the
conformation of just a single protein chain and one or more transformations relating these multiple
copies.

8.2 Improved template matching in density maps

Chapter 4 describes ACMI-SH, a significant improvement over previous work in 3D template
matching in electron-density maps. Previous work by myself (Chapter 3’s ACMI-FF) and oth-
ers [17, 110] uses Fourier convolution to rapidly search a map. ACMI-SH considers the use of
spherical-harmonic decomposition of a template to rapidly search all rotations of some fragment
at a single (x, y, z) location. This method reduces computational time by allowing me to eliminate
a majority of points from the map, only considering the 20% of points with the greatest density.
This offers both improved efficiency and accuracy compared to previous work, finding substan-
tially better models in approximately 60% of the running time.

Future Work: Template-matching requires a significant amount of CPU time, and represents
the bottleneck in ACMI’s interpretation pipeline (although parallelization alleviates this somewhat).
An effort should be made in the future to address the high computational cost of ACMI-SH’s tem-
plate matching. One possible speedup may be achieved through further improvements in the first-
pass filter. Even eliminating 80% of locations from the map, as I currently do, rotational alignment
between fragments and map takes substantial computation time. Improved filtering would reduce
the number of rotational alignments needed, significantly decreasing running time. One idea is to

127

use the rotation-invariant representation suggested by Kondor [67] to train a supervised classifica-
tion algorithm, such as a support vector machine or artificial neural network to predict likely Cα
locations in the density map. One could even build separate classifiers for each amino-acid type.
This would allow for much more rapid fragment searching.

Another future direction made possible by this work involves integrating this template search-
ing and probabilistic inference. Spherical-harmonic decomposition makes it possible to efficiently
search for a fragment at a single location. This suggests an approach where, the initial probabilities
are set using a coarse fragment search. Then, as inference proceeds, locations that appear to be
good candidates for Cα’s emerge, at which time a finer search of these locations could take place.

8.3 Constructing protein models using particle filtering

Chapter 5 builds upon the distributions computed in Chapter 3, using particle filtering to auto-
matically produce a set of all-atom protein models given an electron-density map. Particle filtering
considers growing an ensemble of all-atom protein models, at each iteration sampling the layout of
an additional amino acid. A novel contribution of this work is that I use the inferred approximate
marginal distributions (from Chapter 3) to grow the protein chains (or “particles”). In addition to
improving the inferred backbone traces of Chapter 3, this approach allows one to generate multiple
physically feasible structures that explain the density map, using multiple runs of particle filtering.
I show that multiple structures – generated from multiple particle-filtering runs – do a better job
than a single structure at explaining the density map.

Future Work: The idea of using multiple conformations to explain the observed map is an
interesting one. Making use of these multiple conformations – even with just ten predicted struc-
tures, as I considered in Chapter 5 – is difficult, however. One promising research direction is to
automatically present summarized information about the set of structures. For example, something
akin to “In residues 34-39, 60% of structures take loop conformationA, while 40% take conforma-
tion B.” In addition to better modeling of the observed data, this type of information may provide
valuable information about atomic motion of the protein.

Another place where I believe significant gains are possible is in the use of more complicated
reweighing functions. Chapter 3’s BP inference limits the form that potential functions in the
Markov-field model can take, as my empirical evidence suggests overly complicated potential
functions tend to cause convergence problems. However, particle filtering does not suffer from this
problem. Here, a reweighing function based on the physical energy (such as CHARMM’s [9] force
field) of the growing protein chain could better disambiguate unclear regions in the density map.

Finally, I presented some preliminary results the use of ACMI in an iterative fashion, where
ACMI-PF models are used to improveme map quality; the improved maps are fed into the ACMI

pipeline. Although I show that ACMI-PF is able to improve map quality, I fail to see these gains
realized as improved 3D structural models. Further investigation into this is needed.

128

8.4 Atom-level matching using pictorial structures

Chapter 6 shows the application of Felzenszwalb and Huttenlocher’s fast pictorial-structure
matching algorithm [31] to locate individual sidechain atoms in an electron-density map. This
chapter intoduces DEFT, which extends their algorithm in three key ways. In order to model atoms
rotating in 3D, I designed a screw joint. I also developed extensions to deal with spatial collisions of
parts in the pictorial structure model, and implemented an improved template-construction routine.
The method works well at identifying individual atoms in medium-resolution maps; one strength
– and corresponding weakness of ACMI – is that DEFT’s flexible sidechain model is able to handle
proteins with novel or rare sidechain conformations.

Future Work: One of the difficulties with this algorithm is in dealing with spatial collisions of
parts. A different optimization algorithm, like loopy belief-propagation (as in Chapter 3), may be
a more natural way of dealing with collisions. Additionally, incorporating this chapter’s sidechain-
matching approach into ACMI may have some accuracy benefit, and would be interesting to explore
in the future.

8.5 A general object-recognition framework

Chapter 7 generalizes the approach I introduced in Chapter 3. I presented a part-based, 3D
object-recognition framework. Inference in this model uses a novel message approximation and
aggregation scheme that makes belief propagation tractable in large and highly connected graphs.
In the fully connected graphs used by my object-recognition framework, the approximation reduces
the running time and memory requirements for an object with N parts from O(N2) to O(N).

Future Work: Although the message aggregation introduced in this chapter is intended purely
for efficiency, in some cases aggregation leads to better solutions than standard loopy belief prop-
agation. One interesting area of future research is in exploring why this is the case, and it what
types of graphs this property holds.

Another future research direction involves taking a more dynamic approach to message ag-
gregation. For example, in protein-backbone tracing, I see the greatest approximation error along
edges connecting amino acids that are nearby in space (see Section B.2). If I can accurately predict
which parts (that is, amino acids) are close (in space) as BP iterates, I could precisely compute
messages between these pairs of nodes, and approximately compute messages along other edges.

8.6 Final wrapup

My thesis has shown that a probabilistic approach to density-map interpretation leads to the
automatic construction of more-complete and more-accurate protein models than other automated
approaches. A probabilistic approach has additional strengths: it has the ability to incorporate weak
constraints that other methods are unable to employ. For example, Chapter 3 described a method
to assist ACMI’s backbone tracing by providing putative selenium locations. These selenium lo-
cations may be incorrect or missing, which makes it difficult for other methods to take advantage

129

of this information, but for ACMI using this “fuzzy information” is straightforward. In addition,
in my probabilistic framework, it is straightforward to produce ensembles of protein models that
better explain the observed density. There is some evidence [11, 74] that multiple conformations
may better model natural structural variation within the protein crystal. Finally, my approach is
modular; it is simple to plug in an improved matching algorithm, or an improved particle-filtering
reweighing function.

The work presented here further extends the resolution of density maps that can be automati-
cally interpreted, and allows accurate protein-structure determination on lower quality data. This
helps speed the process of structure acquisition, allows lower-cost acquisition of protein structures,
and enables interpretation of proteins for which good crystals may not be grown.

130

Appendix A: Datasets

This appendix summarizes the datasets of electron density maps used for experiments through-
out this thesis. PDB accession codes [3] are included, as well as properties of each density map
and each protein contained within the maps.

A.1 Dataset 1

Dataset 1 consists of four of the first five X-ray crystallography structures solved by the Center
for Eukaryotic Structural Genomics (CESG) at the University of Wisconsin. This dataset was
used for training and testing in Chapter 6’s experiments. An overview of the dataset is shown in
Table A.1.

Experiments using this data employed intermediate phase information; that is, phases were
taken from a point where the crystallographer had built some, but not all, of the molecular model.

These four density maps were each downsampled to 2.5, 3, and 4Å resolution by dropping all
higher-resolution reflections (that is, reflection intensity was zeroed), and recomputing the density
map.

A.2 Dataset 2

My second dataset, used as the training and testing set for Chapters 3, 4, and 7, consists of
ten X-ray crystallography structures solved by CESG. This dataset is a snapshot of CESG-solved
crystal structures “captured” at a later timepoint than Dataset 1. To allow experiments to finish in
a reasonable amount of time, I randomly selected ten maps from the 24 maps solved by CESG at
this point in time. An overview of the dataset is shown in Table A.2.

For these ten maps, model phasing was used, that is, the phases from the final refined model
were used to construct the electron-density map.

Each of these ten maps were downsampled toR0 = 2.5, 3, 3.5, and 4Å resolution. To provide a
more-realistic model of poor-resolution maps, as well as to avoid truncation effects, the maps were
downsampled by smoothly diminishing the reflection intensities: I scaled the measured structure
factors by exp(−K/R2), where R is the resolution of the structure factor and K is a scaling

Table A.1 The four proteins in Dataset 1.

PDB id
Residues in
asymm. unit

Molecules in
asymm. unit

Molecules in
unit cell

Resolution
(Å)

Unit cell size
(Å)

1Q44 326 1 8 1.9 91×121×74
1Q45 782 2 8 2.0 78×85×122
1Q4M 442 2 16 2.1 63×63×288
1Q4R 112 1 6 1.9 55×55×58

131

Table A.2 The ten proteins in Dataset 2.

PDB id

Residues in
asymm.
unit

Molecules
in asymm.
unit

Molecules
in unit cell

Resolution
(Å)

Unit cell
size (Å)

1Q4Ra 112 1 6 1.9 55×55×58
1VJH 244 2 4 2.1 46×34×79
1VK5 157 1 6 1.7 83×83×61
1VMO 260 2 8 1.9 60×79×44
1XFI 367 1 1 1.7 40×43×53
1XM8 508 2 4 1.8 68×59×69
1XMT 103 1 2 2.0 27×61×29
1XQ1 266 1 8 2.1 56×77×112
1XY7 332 2 12 1.8 56×56×147
1YDH 432 2 8 2.3 122×80×51

a Also appears in Testset 1.

Reflection resolution (Å)

Sc
al

in
g

 fa
ct

o
r

0

0.2

0.4

0.6

0.8

1.0

110100

2.5Å
3.0Å
3.5Å
4.0Å

Figure A.1 Data was downsampled by smoothly diminishing reflection intensities. A reflection
with resolution indicated on the x-axis had its intensity scaled by the corresponding value on the
y-axis.

constant chosen based on the desired resolution (higher values of K smooth the map more). I
chose K = R2

0, so the signal strength was weakened by 1/e at the point of truncation. Figure A.1
shows how I scale structure factors as a function of resolution.

132

20°

30°

40°

50°

60°

70°

1.5 2.0 2.5 3.0 3.5 4.0

Resolution (Å)

M
ea

n
 p

h
as

e
er

ro
r

Figure A.2 A scatterplot showing (raw) experimental data quality. For each of the twenty maps
considered for inclusion, the x-axis indicates (phased) map resolution, while the y-axis shows the
mean phase error. The ×’s indicate the ten “poor-quality” maps chosen for inclusion.

A.3 Dataset 3

My final dataset – used as a testset in Chapter 5 – was also provided by the Center for Eukary-
otic Structural Genomics (CESG) at UW–Madison. This dataset used experimental intensities and
with the initial phasing (typically obtained using SAD [46] or MAD [44]) available to the crystal-
lographer at the start of model-building. The maps were initially phased using AUTOSHARP [110],
with non-crystallographic symmetry averaging used to improve the map quality where possible.
The ten maps were selected as the “most difficult” from a larger dataset of twenty maps provided
by CESG. The difficulty assessment of these maps was based on expert judgment of the electron-
density quality (by collaborator E. Bitto), as well as quantitative estimate of phase error. These
structures have been previously solved and deposited to the PDB, enabling a direct comparison
with the final refined model. All ten required a great deal of human effort to build and refine the
final atomic model.

The data are summarized in Table A.3, with quality described by the resolution and phase error.
The resolution refers to that available from the initial phasing, which may not have reached the
resolution limit of the data set. The initial low-resolution phasing was computationally extended
in three structures to higher-resolution shells, using the algorithm implemented in RESOLVE. The
mean phase error was computed by comparing the phases calculated from the final all-atom model
with those in the initially phased data set. The CCP4 [13] suite of programs was used to perform
these calculations.

Finally, for this dataset, since phasing quality plays an important role, this table also reports
the mean phase error of the experimental phases versus the phases in the final, refined model.
Figure A.2 illustrates our dataset’s coverage of resolution-phase error space. All twenty maps

133

Table A.3 The ten proteins in Dataset 3.

PDB
id

Residues
in ASU

Molecules
in ASU

Molecules
in unit
cell

Resolution
(Å)

Mean
phase
error b

Unit cell
size (Å)

2NXFb 322 1 8 1.9 58◦ 64×87×157
2Q7Ab 316 2 12 2.6 49◦ 82×82×107
XXXXd 566 2 16 2.65 54◦ 119×119×84
1XRI 430 2 24 3.3 39◦ 124×124×124
1ZTP 753 3 12 2.5 42◦ 63×117×124
1Y0Z 660 2 8 2.4 (3.7c) 58◦ 145×61×115
2A3Q 340 2 24 2.3 (3.5c) 66◦ 74×74×236
2IFU 1220 4 16 3.5 50◦ 84×91×265
2BDU 594 2 6 2.35 55◦ 134×134×39
2AB1 244 2 8 2.6 (4.0c) 66◦ 46×58×89

a Averaged over all resolution shells.
b Different dataset was used to solve the PDB structure.
c Phasing was extended from worse resolution.
d PDB file not yet released.

considered for inclusion are shown in this scatterplot; the ten chosen for inclusion are illustrated
with ×’s. The chosen maps had worse-than-average resolution or phase error (or both), and were
verified by crystallographers who worked on these maps as difficult maps to interpret.

134

Appendix B: Supplementary experiments

I present in this appendix some supplementary experimental data, outside of the scope of their
respective chapters. The first experiment provides some support for my decision to model probabil-
ity distributions in rotational space using a single Gaussian. In the second experiment, I expand on
the experiments of Chapter 7, showing AGGBP’s approximation errors are greatest when between
Cα’s that are close (in Cartesian space) in the final deposited protein structure.

B.1 Modeling probabilities in rotational-space

In Section 3.3.1.1, I describe how ACMI models probability distributions in rotational space.
Specifically, that section describes how I – in an effort to reduce storage computational complexity
– model probabilities in rotational space by storing at each location (x, y, z), a single orientation
(θb, φb, θf , φf), and assume probabilities are distributed as a Gaussian around this stored value. I
hypothesized that storing probability distributions in this manner would lead to a minor loss in
accuracy.

Before making this approximation, I ran a set of experiments to gauge the validity of this
hypothesis. I randomly sample regions of density around 500 Cα atoms in 10 different electron-
density maps (Chapter 3’s dataset; see Section A.2). Around each Cα location (xi, yi, zi), I com-
pute the full observation potential ψi as a function of the rotational parameters. I consider modeling
these distributions in rotational space using a mixture of Gaussians. The mixture components are
fit greedily: the first Gaussian is fit to the distribution, the second is fit to the residual of the single-
Gaussian model, the third to the two-Gaussian residual, and so on. To avoid overfitting, no two
mixture components may be closer than 15◦. The standard deviation of each mixture component
was fixed at 1Å.

The results are shown in Figures B.1 and B.2. Recall that observation potentials ψi are con-
structed as the weighted sum of match probabilities from each of a set of templates. Figure B.1
compares the observation potential to the mixture-of-Gaussian approximation for a single template.
In the plot, the x axis shows the number of mixture components; that is, the number of stored ori-
entations at each position (xi, yi, zi). The y-axis shows the correlation coefficient between a single
template’s contribution to ψi versus the N -Gaussian approximation. Figure B.2 plots the same val-
ues; here ψi is computed as it is in ACMI, as a weighted sum of individual template probabilities.

As these plots show, most of the correlation is gained with the first mixture component; ad-
ditional components provide minimal error reduction. This is especially evident in the multi-
component ψi. A single template’s contribution to ψi is modeled very well using a single Gaussian,
with average correlation coefficient over 0.4. However, for the complete ψi, which is comprised of
the weighted contribution of around 50 templates, I see correlation coefficients closer to 0.2.

I suspect the reason for the reduced correlation is that there is significant high frequency noise
in the complete ψi. This seems verified by the fact that additional Gaussian components after the
first, at least 15◦ away, improve correlation coefficients very little. This noise is not particularly
important to model. Additional support for the use of a single Gaussian come from the observation

135

Number of stored orientations
(Gaussian mixture components)

C
o

rr
el

at
io

n
 c

o
ef

fic
ie

n
t

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

Figure B.1 A comparison of a single template’s contribution to the observation potential ψi to
the mixture-of-Gaussian approximation. the x axis shows the number of mixture components; the
y-axis shows the correlation coefficient between a single template’s contribution to ψi versus the
N -Gaussian approximation.

that, when modeling the complete ψi, the peak of the single stored Gaussian is on average only
18◦ from the true peak. For these reasons, I feel a single Gaussian is sufficient to accurately model
probability distributions in rotational space.

B.2 Message-approximation errors as a function of Cα–Cα distance

In Section 7.5, I note that AGGBP’s occupancy message errors are greatest in messages be-
tween amino acids that are close in Cartesian space, in the “ground truth” model. This section
provides experimental support for this statement. Using only the 65-amino-acid long fragments
from Section 7.4.1’s dataset, I compute Kullback-Leibler (KL) divergence [70] between AGGBP
and LOOPYBP’s messages as a function of the Cα–Cα distance between amino-acids sending and
receiving the message. To avoid the additive effect of message errors, I only consider messages
passed during the first iteration of AGGBP/LOOPYBP.

Figure B.3 shows the results of this experiment. This figure shows that the average message’s
KL divergence is approximately 50% greater between amino acids that are close (¡10Å between
Cα’s) than it is between those that are distant (¿14Å). Thus, a dynamic message aggregation
scheme, as mentioned in 7.5 may be beneficial at reducing approximation errors.

136

Number of stored orientations
(Gaussian mixture components)

C
o

rr
el

at
io

n
 c

o
ef

fic
ie

n
t

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

Figure B.2 A comparison of ACMI’s observation potential ψi to the mixture-of-Gaussian approx-
imation. Axes are the same as in Figure B.1

0

0.1

0.2

0.3

0.4

0-6 6-8 8-10 10-12 12-14 14-16 16-18 18+

Cαi-Cαj distance (Å)

M
es

sa
g

e
i→

j K
L-

d
iv

A
g

g
B

P
vs

. L
o

o
p

yB
P

0

0.1

0.2

0.3

0.4

0-6Å 6-8Å 8-10Å 10-12Å 12-14Å 14-16Å 16-18Å 18-20Å

Ca-Ca distance

K
L-

di
ve

rg
en

ce
, A

gg
B

P
 v

s.
 L

oo
py

B
P

m

es
sa

ge

Figure B.3 The KL-divergence of AGGBP’s messages versus LOOPYBP’s messages as a function
of Cα–Cα distance. The x-axis bins the Cα–Cα distance between amino acids, while the y-axis
shows the average KL-divergence between AGGBP and LOOPYBP messages between amino acids
in the corresponding distance bin.

137

GLOSSARY

alpha carbon (or Cα)
A central atom in each amino acid that forms the interface between backbone and sidechain.
A backbone trace identifies the location of only Cα atoms.

amino-acid residue (or residue)
The portion of an amino acid that remains after condensation into a polypeptide chain. Pro-
teins are formed when amino acids condense to form a chain of amino-acid residues, con-
nected by peptide bonds.

backbone
The repeating four (non-hydrogen) atom motif in a polypeptide chain.

conditional probability
The probability of some event A, given that some other event B has occurred. The condi-
tional probability is denoted P (A|B), which is read “the probability of A, given B.”

electron-density map (or density map, map)
A three-dimensional “picture” of the electron clouds surrounding each protein atom. The
density map is generated in protein crystallography, as the Fourier transform of the complex-
valued reflections.

likelihood
In statistics, a likelihood function is function of the second argument of a conditional prob-
ability, with the first argument fixed. In this thesis, likelihood is often used synonymously
with probability.

marginal probability
Given random variables A, B, and C, the marginal probability of some variable A is the
probability of A ignoring the settings of B and C. It is calculated by summing the joint
probability distribution over all variables except A. That is, given the joint distribution
P (A,B,C), one computes the marginal distribution of A as PA(A) =

∑
B

∑
C P (A,B,C),

with sums over all possible outcomes of events B and C.

Markov network (or Markov random field, MRF)
A model of the full-joint probability of a set of random variables, where the probability of
some setting of the variables is defined on an undirected graph, as the product of potential
functions associated with each clique (i.e., fully connected subgraph) of the graph.

138

pairwise Markov network (or pairwise Markov random field)
A Markov network with no potential functions of > 2 variables; the only potential functions
are those associated with edges and vertices in the undirected graph.

phase (see also reflection, resolution)
When (complex-valued) reflection data is collected in X-ray crystallography, only intensities
are measurable. Phases must be approximated using some other method. This problem
is known as the phase problem and is solved through several different experimental and
computational techniques.

R factor
A crystallographic model-evaluation metric. The R factor is statistical residual measure of
the deviation between the reflection intensities predicted by the model and those experimen-
tally measured. Crystallographic R factors typically range from 0.0 (indicating a perfect fit
of the model to the density map) to 0.6 (the score of a random model). R factors are typically
0.2 or less in solved structures.

Rfree (see also R factor, Rwork)
The R factor on a testset of held-aside reflections, to avoid model overfitting.

Rwork (see also R factor, Rfree)
The R factor on the “training set,” that is, on all reflections not used in calculation of Rfree.

reflection
In crystallography, the name given to each of the spots formed when a protein crystal diffracts
an X-ray beam. An electron-density map is computed as the Fourier transform of these
complex-valued reflections. However, only reflection intensities are measurable; phases
must be approximated using some other method.

resolution (see also reflection, phase)
Each measured reflection in a crystal’s diffraction pattern has a corresponding resolution,
which measures the interplanar spacing of that reflection’s contribution to the density map.
The resolution of a density map is the minimal such spacing over all reflections.

sidechain
The variable region in each of the twenty naturally occurring amino acids.

trace (or backbone trace, Cα trace)
A model of a protein where the location of only one atom in each amino-acid residue, the
alpha carbon, is identified.

139

LIST OF REFERENCES

[1] J. Abrahams and R. De Graaff. New developments in phase refinement. Current Opinion
in Structural Biology, 8(5):601–605, 1998.

[2] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions of Signal Process-
ing, 50:174–188, 2001.

[3] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, and
P. Bourne. The protein data bank. Nucleic Acids Research, 28:235–242, 2000.

[4] J. Besag and J. York. Analysis of Statistical Information, pages 491–507. Bayesian restora-
tion of images. Institute of Statistical Mathematics, 1989. Ed.: T. Matsunawa.

[5] C. Bishop. Variational principle components. In Proceedings of the Ninth International
Conference on Artificial Neural Networks, pages 509–514, Edinburgh, Scotland, 1999.

[6] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[7] D. Blow. Noncrystallographic Symmetry, volume F of International Tables for Crystallog-
raphy, pages 263–268. Springer, 2006.

[8] D. Blow and M. Rossmann. The single isomorphous replacement method. Acta Crystallo-
graphica, 14:1195–1202, 1961.

[9] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus.
CHARMM: A program for macromolecular energy, minimization, and dynamics calcula-
tions. Journal of Computational Chemistry, 4:187–217, 1983.

[10] A. Brunger. Free R value: A novel statistical quantity for assessing the accuracy of crystal
structures. Nature, 355:472–475, 1992.

[11] F. Burling and A. Brunger. Thermal motion and conformational disorder in protein crystal-
structures – comparison of multi-conformer and time-averaging models. Israel Journal of
Chemistry, 34:165–175, 1994.

140

[12] W. Chiu. What does electron cryomicroscopy provide that X-ray crystallography and spec-
troscopy cannot? Annual Review of Biophysics and Biomolecular Structure, 22:233–255,
1993.

[13] Collaborative Computational Project, Number 4. The CCP4 suite: Programs for protein
crystallography. Acta Crystallographica, D50:760–763, 1994.

[14] J. Coughlan and S. Ferreira. Finding deformable shapes using loopy belief propagation.
In Proceedings of the Seventh European Conference on Computer Vision, pages 453–468,
Copenhagen, Denmark, 2002.

[15] K. Cowtan. Picture book of fourier. http://www.ysbl.york.ac.uk/~cowtan/fourier/
fourier.html.

[16] K. Cowtan. Modified phased translation functions and their application to molecular-
fragment location. Acta Crystallographica, D54:750–756, 1998.

[17] K. Cowtan. Fast Fourier feature recognition. Acta Crystallographica, D57:1435–1444,
2001.

[18] K. Cowtan. The Clipper C++ libraries for X-ray crystallography. IUCr Computing Com-
mission Newsletter, 2:4–9, 2003.

[19] D. Cromer and J. Mann. X-ray scattering factors computed from numerical hartree-fock
wave functions. Acta Crystallographica, A24:321–324, 1968.

[20] R. Crowther. The Molecular Replacement Method. Gordon and Breach, 1972.

[21] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, 39:1–38, 1977.

[22] M. DePristo, P. de Bakker, and T. Blundell. Heterogeneity and inaccuracy in protein struc-
tures solved by X-ray crystallography. Structure, 12:911–917, 2004.

[23] F. DiMaio, D. Kondrashov, E. Bitto, A. Soni, C. Bingman, G. Phillips Jr., and J. Shav-
lik. Creating protein models from electron-density maps using particle-filtering methods.
Bioinformatics, 2007. In press.

[24] F. DiMaio and J. Shavlik. Belief propagation in large, highly connected graphs for 3D part-
based object recognition. In Proceedings of the Sixth IEEE International Conference on
Data Mining, pages 845–850, Hong Kong, 2006.

[25] F. DiMaio and J. Shavlik. Improving the efficiency of belief propagation in large, highly-
connected graphs, 2006. UW ML Research Group Working Paper 06-1.

141

[26] F. DiMaio, J. Shavlik, and G. Phillips. Pictorial structures for molecular modeling: In-
terpreting density maps. In Advances in Neural Information Processing Systems, pages
369–376, 2004.

[27] F. DiMaio, J.W. Shavlik, and G.N. Phillips Jr. A probabilistic approach to protein backbone
tracing in electron-density maps. Bioinformatics, 22:e81–e89, 2006.

[28] F. DiMaio, A. Soni, G.N. Phillips Jr., and J.W. Shavlik. Improved methods for template-
matching in electron-density maps using spherical harmonics. In Proceedings of the IEEE
Conference on Bioinformatics and Biomedicine, Fremont, California, 2007.

[29] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for
Bayesian filtering. Statistics and Computing, 10:197–208, 2000.

[30] L. Evans. Partial Differential Equations. The Laplace equation. American Mathematical
Society, 1998.

[31] P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial structures. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 66–73,
Hilton Head, South Carolina, 2000.

[32] P. Felzenszwalb and D. Huttenlocher. Efficient belief propagation for early vision. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 261–
268, Washington, DC, 2004.

[33] M. Fischler and R. Elschlager. The representation and matching of pictorial structures.
IEEE Transactions on Computers, 22:67–92, 1973.

[34] B. Frey. Graphical Models for Machine Learning and Digital Communication. MIT Press,
1998.

[35] N. Furnham, T. Blundell, M. DePristo, and T. Terwilliger. Is one solution good enough?
Nature Structural and Molecular Biology, 13:184–185, 2006.

[36] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

[37] W. Gilks and C. Berzuini. Following a moving target – Monte Carlo inference for dynamic
Bayesian models. Journal of the Royal Statistical Society, 63:127–146, 2001.

[38] K. Gopal, T. Romo, E. Mckee, K. Childs, L. Kanbi, R. Pai, J. Smith, J. Sacchettini, and
T. Ioerger. TEXTAL: Automated crystallographic protein structure determination. In Pro-
ceedings of the Seventeenth Innovative Applications of Artificial Intelligence Conference,
pages 1483–1490, Pittsburgh, Pennsylvania, 2005.

142

[39] K. Gopal, T. Romo, J. Sacchettini, and T. Ioerger. Weighting features to recognize 3D
patterns of electron density in X-ray protein crystallography. In Proceedings on the IEEE
Conference on Computational Systems Bioinformatics, pages 255–265, Stanford, Califor-
nia, 2004.

[40] J. Greer. Three-dimensional pattern recognition: An approach to automated interpretation
of electron density maps of proteins. Journal of Molecular Biology, 82:279–301, 1974.

[41] H. Groemer. Geometric Applications of Fourier Series and Spherical Harmonics. Cam-
bridge University Press, 1996.

[42] W. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57:97–109, 1970.

[43] D. Healy, D. Rockmore, P. Kostelec, and S. Moore. FFTs for the 2-sphere – improvements
and variations. Journal of Fourier Analysis and Applications, 9:341–85, 2003.

[44] W. Hendrickson. Maturation of MAD phasing for the determination of macromolecular
structures. Journal of Synchrotron Radiation, 6:845–851, 1999.

[45] W. Hendrickson and E. Lattman. Representation of phase probability distributions for sim-
plified combination of independent phase information. Acta Crystallographica, B26:136–
143, 1970.

[46] W. Hendrickson and M. Teeter. Structure of the hydrophobic protein crambin determined
directly from the anomalous scattering of sulphur. Nature, 290:107–113, 1981.

[47] T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural Computa-
tion, 16:2379–2413, 2004.

[48] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide. International
Journal of Approximate Reasoning, 15(3):225–263, 1996.

[49] H. Huang, L. Shen, R. Zhang, F. Makedon, B. Hettleman, and J. Pearlman. Surface align-
ment of 3D spherical-harmonic models: Application to cardiac MRI analysis. In Proceed-
ings of the Eighth International Conference on Medical Image Computing and Computer
Assisted Intervention, pages 67–74, Palm Springs, California, 2005.

[50] S. Huang and J. Hwang. Computation of conformational entropy from protein sequences.
Proteins, 59(4):802–809, 2004.

[51] D. Husmeier, R. Dybowski, and S. Roberts, editors. Probabilistic Modelling in Bioinfor-
matics and Medical Informatics. Springer, 2004.

[52] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky. Efficient multiscale sampling from
products of Gaussian mixtures. In Advances in Neural Information Processing Systems,
pages 1–8, 2004.

143

[53] T. Ioerger, T. Holton, J. Christopher, and J. Sacchettini. TEXTAL: A pattern recognition
system for interpreting electron density maps. In Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology, pages 130–137, Heidelberg, Ger-
many, 1999.

[54] T. Ioerger and J. Sacchettini. Automatic modeling of protein backbones in electron den-
sity maps via prediction of C-alpha coordinates. Acta Crystallographica, D58:2043–2054,
2002.

[55] T. Ioerger and J. Sacchettini. The TEXTAL system: Artificial intelligence techniques for
automated protein model building. Methods in Enzymology, 374:244–270, 2003.

[56] M. Isard. PAMPAS: Real-valued graphical models for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 613–620, Madi-
son, Wisconsin, 2003.

[57] S. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241–254, 1967.

[58] D. Jones, W. Taylor, and J. Thornton. The rapid generation of mutation data matrices from
protein sequences. Computer Applications in the Biosciences, 8:275–282, 1992.

[59] T. Jones, J. Zou, S. Cowan, and M. Kjeldgaard. Improved methods for building protein
models in electron density maps and the location of errors in these models. Acta Crystallo-
graphica, A47:110–119, 1991.

[60] M. Jordan, editor. Learning in Graphical Models. MIT Press, 1998.

[61] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods
for graphical models. Machine Learning, 37:183–233, 1999.

[62] A. MacKerell Jr., J. Wiorkiewicz-Kuczera, and M. Karplus. An all-atom empirical energy
function for the simulation of nucleic acids. Journal of the American Chemical Society,
117:11946–11975, 1995.

[63] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallo-
graphica, A32:922–923, 1976.

[64] D. Kim, D. Chivian, and D. Baker. Protein structure prediction and analysis using the
Robetta server. Nucleic Acids Research, 32 (Supplement 2):W526–W531, 2004.

[65] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

[66] D. Koller, U. Lerner, and D. Angelov. A general algorithm for approximate inference and its
application to hybrid Bayes nets. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, pages 324–333, Stockholm, Sweden, 1999.

144

[67] R. Kondor. A complete set of rotationally and translationally invariant features for images.
Preprint, arXiv:cs/0701127v2, 2007.

[68] A. Kong, J. Liu, and W. Wong. Sequential imputations and Bayesian missing data problems.
Journal of the American Statistical Association, 89:278–288, 1994.

[69] P. Kostelec and D. Rockmore. FFTs on the rotation group, 2003. Working Paper Series,
Santa Fe Institute 03-11-060.

[70] S. Kullback and R. Leibler. On information and sufficiency. Annals of Mathematical Statis-
tics, 22:79–86, 1951.

[71] V. Lamzin and K. Wilson. Automated refinement of protein models. Acta Crystallograph-
ica, D49:129–147, 1993.

[72] M. Lee and I. Cohen. Proposal maps driven MCMC for estimating human body pose in
static images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 334–341, Washington, DC, 2004.

[73] L. Leherte, J. Glasgow, K. Baxter, E. Steeg, and S. Fortier. Analysis of three-dimensional
protein images. Journal of Artificial Intelligence Research, 7:125–159, 1997.

[74] E. Levin, D. Kondrashov, G. Wesenberg, and G. Phillips Jr. Ensemble refinement of protein
crystal structures: Validation and application. Structure, 2007. In press.

[75] D. Levitt. A new software routine that automates the fitting of protein X-ray crystallographic
electron density maps. Acta Crystallographica, D57:1013–1019, 2001.

[76] R. MacCallum. Striped sheets and protein contact prediction. Bioinformatics, 20 (Supple-
ment 1):I224–I231, 2004.

[77] D. MacKay and R. Neal. Good codes based on very sparse matrices. In Proceedings of the
Fifth Conference on Cryptography and Coding, pages 100–111, Cirencester, UK, 1995.

[78] R. McEliece, D. MacKay, and J. Cheng. Turbo decoding as an instance of Pearl’s “belief
propagation” algorithm. IEEE Journal on Selected Areas in Communications, 16(2):140–
152, 1998.

[79] D. McRee. XtalView/Xfit–a versatile program for manipulating atomic coordinates and
electron density. Journal of Structural Biology, 125(2-3):156–165, 1999.

[80] J. Mitchell. Uniform distributions of 3D rotations. Unpublished document, 2002.

[81] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[82] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

145

[83] R. Morris, A. Perrakis, and V. Lamzin. ARP/wARP’s model-building algorithms: The main
chain. Acta Crystallographica, D58:968–975, 2002.

[84] R. Morris, A. Perrakis, and V. Lamzin. ARP/wARP and automatic interpretation of protein
electron density maps. Methods in Enzymology, 374:229–244, 2003.

[85] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, pages 467–475, Stockholm, Sweden, 1999.

[86] G.N. Murshudov, A.A. Vagin, and E.J. Dodson. Refinement of macromolecular structures
by the maximum-likelihood method. Acta Crystallographica, D53:240–255, 1997.

[87] C. Musso, N. Oudjane, and F. LeGlan. Sequential Monte Carlo Methods in Practice, pages
247–271. Improving regularised particle filters. Springer-Verlag, 2001. Eds.: A. Doucet, J.
de Freitas, and N. Gordon.

[88] R. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical
Report CRG-TR-93-1, University of Toronto, 1993.

[89] R. Neal and G. Hinton. Learning in Graphical Models, pages 355–368. A view of the
EM algorithm that justifies incremental, sparse, and other variants. Kluwer, 1998. Ed.: M.
Jordan.

[90] T. Oldfield. A number of real-space torsion-angle refinement techniques for proteins, nu-
cleic acids, ligands and solvent. Acta Crystallographica, D57:82–94, 2001.

[91] L. Palmer, K. Scurrah, M. Tobin, S. Patel, J. Celedon, P. Burton, and S. Weiss. Genome-
wide linkage analysis of longitudinal phenotypes using sigma2a random effects (SSARs)
fitted by Gibbs sampling. BMC Genetics, 4(Supplement 1):S12, 2003.

[92] J. Pawley, editor. Handbook of Biological Confocal Microscopy. Springer, 3rd edition,
2006.

[93] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, 1988.

[94] A. Perrakis, T. Sixma, K. Wilson, and V. Lamzin. wARP: Improvement and extension of
crystallographic phases by weighted averaging of multiple refined dummy atomic models.
Acta Crystallographica, D53:448–455, 1997.

[95] C. Peterson and J. Anderson. A mean field theory learning algorithm for neural networks.
Complex Systems, 1:995–1019, 1987.

[96] M. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filter. Journal of the
American Statistical Association, 94:590–599, 1999.

[97] G. Rhodes. Crystallography Made Crystal Clear. Academic Press, 2000.

146

[98] B. Rost and C. Sander. Prediction of protein secondary structure at better than 70% accu-
racy. Journal of Molecular Biology, 232:584–599, 1993.

[99] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd
edition, 2002.

[100] T. Sawasaki, T. Ogasawara, R. Morishita, and Y. Endo. A cell-free protein synthesis sys-
tem for high-throughput proteomics. Proceedings of the Nataional Academy of Sciences,
99:14652–14657, 2002.

[101] B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.

[102] S. Smith. Overview of fMRI analysis. British Journal of Radiology, 77:S167–S175, 2004.

[103] T. Smith and M. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147:195–197, 1981.

[104] G. Snell, C. Cork, R. Nordmeyer, E. Cornell, G. Meigs, D. Yegian, J. Jaklevic, J. Jin,
R. Stevens, and T. Earnest. Automated sample mounting and alignment system for bio-
logical crystallography at a synchrotron source. Structure, 12:537–545, 2004.

[105] E. Sudderth, A. Ihler, W. Freeman, and A. Willsky. Nonparametric belief propagation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
605–612, Madison, Wisconsin, 2003.

[106] E. Sudderth, M. Mandel, W. Freeman, and A. Willsky. Visual hand tracking using nonpara-
metric belief propagation. Technical Report 2603, MIT LIDS, 2004.

[107] E. Sudderth, M. Mandel, W. Freeman, and A Willsky. Distributed occlusion reasoning
for tracking with nonparametric belief propagation. In Advances in Neural Information
Processing Systems, pages 1369–1376, 2005.

[108] C. Sutton and A. McCallum. Improved dynamic schedules for belief propagation. In Pro-
ceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, Vancouver, BC,
Canada, 2007.

[109] S. Tatikonda and M. Jordan. Loopy belief propagation and gibbs measures. In Proceed-
ings on the Eighteenth Conference in Uncertainty in Artificial Intelligence, pages 493–500,
Edmonton, Alberta, Canada, 2002.

[110] T. Terwilliger. Automated mainchain model-building by template-matching and iterative
fragment extension. Acta Crystallographica, D59:38–44, 2002.

[111] T. Terwilliger. Automated sidechain model-building and sequence assignment by template-
matching. Acta Crystallographica, D59:45–49, 2002.

147

[112] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The Condor
experience. Concurrency and Computation, 17:323–356, 2005.

[113] S. Trapani and J. Navaza. Calculation of spherical harmonics and Wigner d functions by
FFT. Acta Crystallographica, A62:262–269, 2006.

[114] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[115] G. Wang and R. Dunbrack. PISCES: A protein sequence culling server. Bioinformatics,
19:1589–1591, 2003.

[116] Y. Weiss. Interpreting images by propagating Bayesian beliefs. In Advances in Neural
Information Processing Systems, pages 908–915, 1996.

[117] Y. Weiss. Correctness of local probability propagation in graphical models with loops.
Neural Computation, 12:1–41, 2000.

[118] Y. Weiss and W. Freeman. Correctness of belief propagation in Gaussian graphical models
of arbitrary topology. Neural Computation, 13:2173–2200, 2001.

[119] E. Wigner. Group Theory and its Application to the Quantum Mechanics of Atomic Spectra.
Academic Press, 1959. Translated: J. Griffin.

[120] J. Winn and C. Bishop. Variational message passing. Journal of Machine Learning Re-
search, 6:661–694, 2005.

[121] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and gener-
alized belief propagation algorithms. IEEE Transactions on Information Theory, 51:2282–
2312, 2005.

