Toward Automatic Management of
Embarrassingly Parallel Applications

I. Dutral, D. Page?, V. Santos Costa', J. Shavlik? and M. Waddell?

! Dep of Systems Engineering and Computer Science
Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
{ines,vitor}@cos.ufrj.br
2 Dep of Biostatistics and Medical Informatics,
University of Wisconsin-Madison, USA
{page,shavlik,mwvaddell}@biostat.wisc.edu

Abstract. Large-scale applications that require executing very large
numbers of tasks are only feasible through parallelism. In this work we
present a system that automatically handles large numbers of experi-
ments and data in the context of machine learning. Our system controls
all experiments, including re-submission of failed jobs and relies on avail-
able resource managers to spawn jobs through pools of machines. Our
results show that we can manage a very large number of experiments,
using a reasonable amount of idle CPU cycles, with very little user in-
tervention.

1 Introduction

Large-scale applications may require executing very large numbers of tasks, say,
thousands or even hundreds of thousands of experiments. These applications are
only feasible through parallelism and are nowadays often executed in clusters
of workstations or in the Grid. Unfortunately, running these applications in an
unreliable environment can be a complex problem. The several phases of com-
putation in the application must be sequenced correctly: dependencies, usually
arising through data written to and read from files, must be respected. Re-
sults will be grouped together, a summarised report over the whole computation
should be made available. Errors, both from the application itself and from the
environment, must be handled correctly. One must check whether experiments
terminated successfully, and verify integrity of the output.

Most available software for monitoring applications in parallel and distributed
environments, and more recently, in grid environments, concentrate on modelling
and analysing hardware and software performance [8], prediction of lost cycles [9]
or visualisation of parallel execution [12], to mention some. Most of them focus
on parallelised applications. Few efforts have been spent on managing huge num-
ber of independent experiments and the increasing growth of interdisciplinary
databases such as the ones used in biological or biomedical applications. Only re-
cently, we have seen work in the context of the Grid such as the GriPhyN project
for Physics [1], and the development of the general purpose system Chimera [6].

2 Inés Dutra et al.

In this work we present a system originally designed to support the very
large numbers of experiments and data in machine learning applications. We
are interested in machine learning toward data mining of relational data from
domains such as biochemistry [10,4], and security [13]. Machine learning tasks
are often computationally intensive. For instance, many learning systems, such
as the ones that generate decision trees and logical clauses, must explore a so-
called “search space” in order to find models that characterise well a set of
correct (and possibly incorrect) examples. The size of the search space usually
grows exponentially with the size of the problem. A single run of the learning
algorithm can thus easily take hours over real data. Moreover, in order to study
the effectiveness of the system one often needs to repeat experiments on different
data. Splitting the original examples into different subsets or folds and learning
on each fold is also common. Thus, a single learning task may involve several
independent coarse-grained tasks, providing an excellent source of parallelism. In
fact, parallelism is often the only way one can actually perform such experiments
in reasonable time.

Our system has successfully run several large-scale experiments. Our goal
is to extract maximum advantage of the huge parallelism available in machine
learning applications. The system supports non-interactive error-handling, in-
cluding re-submission of failed jobs, while allowing users to control the general
performance of the application. Whenever possible, we rely on available technol-
ogy: for example, we use the Condor resource manager [2] to spawn jobs through
pools of machines. We have been able to run very large applications. One ex-
ample included over 50 thousand experiments: in this case we consumed about
53,000 hours of CPU, but the system took only 3 months to terminate, achiev-
ing peak parallelism of 400 simultaneous machines at a time, and requiring very
little user intervention.

The paper is organised as follows. First, we present in more detail the machine
learning environment and its requirements. We then discuss the motivation for
an automatic tool. In section 2 we present the architecture of our system and
the methodology applied to the two machine learning phases: experimentation
and evaluation. We then discuss some performance figures and possibilities of
enhancements. Last, we offer our conclusions and suggest future work.

2 A Tool for Managing Large Numbers of Experiments

In order to be able to run the many possible combinations of experiments one
needs to perform to have statistically meaningful results in machine learning
applications, in a feasible time, and handle the results with least possible user
intervention to avoid manual errors, we developed a tool for job management of
learning applications, currently supporting Linux and Solaris environments. This
tool makes use of available resource manager systems to manage idle resources
available. We address the following issues: Data Management: each experiment
will have its own output and temporary files, but several experiments share input
files. The system needs to create a directory structure such that the output and

Toward Automatic Management of Embarrassingly Parallel Applications 3

temporary files for individual experiments can be kept on separate, but easily
accessed, directories for each experiment. Control: given a problem description
our tool creates a set of build files to launch the actual jobs. Each script inputs
the data required for a specific experiment, and sets the files that will be output.
Task Supervision: Our tool must allow one to inspect successful and unsuccessful
job termination. As discussed in more detail next, the probability that some jobs
will fail is extremely high, so most cases of unsuccessful termination should be
handled within the system. User Interface: a large number of results must be
collected and displayed. Throughout, the user should be able to understand what
is the current status of the computation, and plot the results.

In the experiments presented in this paper, we used as a resource manager,
the Condor system, developed at the Computer Sciences Department of the
University of Wisconsin-Madison. Condor is a specialised workload manage-
ment system for compute-intensive jobs. Like other full-featured batch systems,
Condor provides a job queueing mechanism, scheduling policy, priority scheme,
resource monitoring, and resource management. Among other things, Condor
allows transparent migration of jobs from overloaded machines to idle machines
and checkpointing, which permits that jobs can restart in another machine with-
out the need to start from the beginning. These are typical tasks of a resource
manager.

Putting it all Together Our architecture is composed of two main modules: (1)
the Experimentation Module and (2) the Evaluation Module. The Experimen-
tation Module is responsible for setting up the environment to start running
experiments for one or several applications, for launching jobs for tuning and
cross-validation, and checking if results are terminated and complete. Once
all experiments have terminated, the Evaluation Module will consult the tun-
ing results, if any, compute accuracy functions, and plot the results. If some
job leaves the queue, but the output result is incorrect or corrupted, the check
termination program will re-submit the job either to tuning or to cross-va-
lidation.

We provide a user-friendly web interface in to the system with options for
choosing different learners and learning techniques. At the moment, our system
deals only with Inductive Logic Programming [11] learners, but this interface is
easily extensible to other learners.

Not Everything is Neat Several problems may arise while processing thousands
or hundreds of thousands of experiments. We classify these problems as either
hardware-dependent or software-dependent.

As we use off-the-shelf technology to launch our jobs, we expect such technol-
ogy will deal correctly with hardware-dependent problems. In fact, the Condor
system we use in our experiments deals with dynamic hardware changes such as
inclusion of a new machine in the network or a machine or network failure. In
the case of a new machine being included in the network, Condor updates the
central manager table to mirror this change. In the case of a machine fault, Con-

4 Inés Dutra et al.

dor employs a checkpointing mechanism to migrate the job to another “healthy”
machine.

With respect to software-dependent problems, we can enumerate several
sources of possible failure: jobs get lost because a daemon stops working for some
reason, a job breaks because of lack of physical memory, bugs in the machine
learning system, bugs in the resource manager, or even bugs at the operating
system level, corrupted data due to network contention, or lack of disk space.

None of the systems that we use is totally stable: during our experiments, it
has happened that the operating system was upgraded while we were performing
our experiments, and the task management software was incompatible with the
new upgrade. Unforeseen situations, common in large software development, can
lead the execution to crash. Problems can arise from any one of these compo-
nents: the machine learning system, in some cases the software that runs the
machine learning system, and the resource manager. As we rely in off-the-shelf
components to build our system, some of these problems will be outside our
control.

We have found memory management to be a critical issue for our application.
The machine learning system that we use relies on dynamic memory allocation:
thus, we do not know beforehand how much memory we use, and we can expect
memory requirements to grow linearly with execution time. In general, we set
the experiments to only run in machines with a minimal amount of memory,
say M. If we set M too low, many experiments will fail. If we set M too high,
we will severely restrict parallelism. Moreover, as machines with lots of memory
are likely to be more recent and powerful machines, we can expect them to be
busier.

In practice we can be sure that runs will fail. Our approach to deal with these
problems is to have a daemon that inspects the job queues, and the application
output files. So, if the daemon detects that some output file is not yet generated,
and the job responsible for that output is no longer in the queue, it will re-submit
the job. If some output file is not yet generated and the job is taking too long
to produce an output, the daemon will remove the job from the queue and re-
submit the job. An output file can be generated, but be corrupted. In that case,
we also need to check for output syntax to be sure the next phase will collect
correct data.

Note that these steps do not need any human intervention,® and do not
require any change to the available software being used.

3 Performance Results

We ran three sets of experiments in a period of 6 months. The experiments
concerned three relational learning tasks using Inductive Logic Programming
techniques. The tasks included two biocomputing problems, one concerning the

3 Of course, if the failure rate becomes excessive, the user is informed and is allowed
to terminate the experiments.

Toward Automatic Management of Embarrassingly Parallel Applications 5

prediction of carcinogenicity tests on rodents, and the second concerning a char-
acterisation of genes involved in protein metabolism by means of their correlation
with other genes. The third task used data on a set of smuggling events. The
goal was to detect whether two events were somehow related.

We ran our jobs in the Condor pools available at the Biostatistics and Med-
ical Informatics and the Computer Sciences Departments of the University of
Wisconsin-Madison. We used PC machines running Linux and SUN machines
running Solaris. Throughout, Condor collects statistics about the progress of the
jobs, but as this consumes a large amount of disk storage, not all Condor pools
keep all data about jobs. Therefore in Table 1 we show statistics only for one of
our pools that stores the data information about jobs progress in disk. The first
column shows the month when the experiments were running. The second col-
umn shows the total number of CPU hours spent by our jobs. The third column
shows the average number of jobs running, followed by the average of jobs idle,
and the peak of jobs running and idle. We can observe that the system has two
activity peaks in June/July and in September. During September in average the
tool was able to keep almost one hundred processors busy, just in this pool. The
maximum number of jobs running in this pool was around 400.

The execution priority of jobs in Condor depends on the configuration and
on the pool. If a job migrates to a remote pool of machines, the priority of this
job may be lowered to guarantee that local users in the remote pool are not
interfered by the “foreign” jobs. The statistics shown in Table 1 are related to a
remote pool.

Table 1. Statistics of Jobs

Period||Tot Alloc Time|lJobsRunning||JobsIdle||JobsRunning||JobsIdle

(Hours) Average|| Average Peak Peak
May 639.6 12.8 337.6 61.0| 1057.0
Jun 39375.5 67.3|| 5322.8 400.0{| 15312.0
Jul 18406.2 70.1{| 2243.9 207.0(| 13366.0
Aug 110.1 14.9 0.1 17.0 4.0
Sep 18283.8 93.5|| 6713.9 397.0|| 11754.0
Oct 1185.8 47.0|| 4027.3 122.0|| 5933.0

In order to better understand the table, Figure 1 shows the state of the
above mentioned pool during the most active month, September. The X-axis
corresponds to days of the week, and the Y-axis corresponds to total machines
available in the pool. The red area (bottom colour in the figure) shows user-
controlled machines, the blue area in the middle, idle machines, and the green
area above shows machines running Condor tasks. Pool size varies between 700
and 900 machines, most of them Linux and Solaris machines. User activity is
higher during week days, where users are working on their own machine. Condor
most often keeps around 400 to 500 machines busy at any one time. This provides

6 Inés Dutra et al.

an insight into the maximum amount of parallelism we can take advantage of.
Comparing with the results in Table 1 we can observe that there are points in
time where we could actually take advantage of almost the full pool, even if the
pool was shared with the whole campus.

Total

816.0 Condor
E12.0
Total
Idle
408.0
2080 Total
Chwrner
0.0

Sun1 Tue3 ThuS Sat? Mon 3Wed 11 Fri 13 Sun 15Tue 17 Thu 19 Sat 21 Mon 23wed 25 Fri 27 Sun 29

Fig. 1. The Condor Pool

Figure 2 shows that even during week days the system can provide an average
of about 200 processors for long periods of time. This is about half of what we
could expect from the cluster. Although we have little control over the cluster
and we may be preempted by local tasks, even at the worst moments the pool
can achieve above 50 machines simultaneously running our jobs.

Last, error handling was a very important issue in practice. From the 45,000
experiments we launched (three lots of 15,000 experiments for each application),
around 20% failed for several reasons, and had to be re-submitted. This was
done without user intervention.

4 Conclusions and Future Work

We described an automatic tool to manage large amounts of experiments in the
machine learning context. The main advantage of such a tool is to provide a high-
level user interface that can hide details of embarrassingly parallelisation, and
that can allow for more automatic management of user experiments. Qur system
is capable of launching jobs automatically, check their integrity and termination,
re-submit corrupted jobs, evaluate the results, plot relevant data, and inform
the user about location of data and graphs. A second advantage of our tool is
that we integrate off-the-shelf components in order to take advantage of already
popular technologies. We used our tool to run several learning experiments with
multirelational data. As an example, one of our experiments consumed about
53,000 hours of CPU, using a peak of 400 machines simultaneously.

Toward Automatic Management of Embarrassingly Parallel Applications 7

From wed Sep 18 14:13:14 CDT 2002 to Thu Sep 13 22:26:24 COT 2002

48712622

389.701 7
dutra@hiostatiwiscedu
Jobsidle

29227576

184.8505

dutra@biostatiwiscedu

9742525 lobsRunning

Thu 19

Fig. 2. Condor Activity

Most software available for parallel and distributed environments, and more
recently, for grid environments, is designed to monitor applications by modelling
and performance analysis, rather than managing a huge number of experiments.
Condor has a limited form of handling experiments by allowing the user to ex-
press dependencies through the DAGMan tool [7]. But this tool requires that the
user has some knowledge of ClassAds [14], a specification language for jobs and
resources, in order to express dependencies explicitly. Chimera [6], one of the
components of the Globus project [5], also has forms of automatically launch-
ing jobs depending on output produced by other jobs. Contrary to DAGMan,
Chimera automatically generates a dependency execution graph, based on VDL
(Virtual Data Language) [3] specifications.

Our proposal is to require minimum interference from the user, especially
because many of the users in computational biology, where machine learning
systems are heavily applied, have none or shallow knowledge of how to use a
programming language.

As future work we intend to extend the tool to support other learning al-
gorithms, such as the ones supported by the WEKA toolkit [15], and parallel
boosting. We have been working on integrating our system with Chimera, in
order to take advantage of one of the nicest features of Chimera that is to auto-
matically infer dependencies between jobs in order to launch them without any
user intervention.

Acknowledgments

This work was supported by DARPA EELD grant number F30602-01-2-0571, NSF
Grant 9987841, NLM grant NLM 1 R01 LM07050-01, and CNPq. We would like to
thank the Biomedical Group support staff and the Condor Team at the Computer
Sciences Department for their invaluable help with Condor, Ashwin Srinivasan for his
help with the Aleph system and the Carcinogenesis benchmark, and Yong Zhao from
University of Chicago who has been helping us to integrate Chimera to our system.

Inés Dutra et al.

References

10.

11.

12.

13.

14.

15.

. The GriPhyN Project. White paper available at http://www.griphyn.org/ docu-

ments/white_paper/index.php, 2000.

. J. Basney and M. Livny. Managing network resources in Condor. In Proceed-

ings of the Ninth IEEE Symposium on High Performance Distributed Computing
(HPD(C9), Pittsburgh, Pennsylvania, pages 298-299, Aug 2000.

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer Applications, 23:187-200,
2001.

I. Dutra, D. Page, V. Santos Costa, and J. Shavlik. An empirical evaluation of
bagging in inductive logic programming. In Proceedings of the Twelfth Interna-
tional Conference on Inductive Logic Programming, Sydney, Australia, July 2002.
Springer-Verlag.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for distributed system
integration. Computer, 35(6), 2002.

I. Foster, J. Vickler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for
representing, querying, and automating data derivation. In Proceedings of the 14th
conference on Scentific and Statistical Database Management (2002), 2002.
James Frey. Condor DAGMan: Handling Inter-Job Dependencies.
http://www.cs.wisc.edu/condor/dagman/, 2002.

D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. NetLogger: A Toolkit
for Distributed System Performance Analysis. In Proceedings of the 8th Interna-
tional Workshop on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS ’00), 2000.

W. Meira Jr., T. LeBlanc, and A. Poulos. Waiting time analysis and performance
visualization in carnival. In SPDT96: SIGMETRICS Symposium on Parallel and
Distributed Tools, Philadelphia, PA, ACM, pages 1-10, May 1996.

R. King, S. Muggleton, and M. Sternberg. Predicting protein secondary structure
using inductive logic programming. Protein Engineering, 5:647-657, 1992.

N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Artificial Intelligence. Ellis Horwood (Simon & Schuster), 1994.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The paradyn parallel performance measure-
ment tool. IEEE Computer, 28(11):37-46, November 1995.

R. Mooney, P. Melville, L. P. Rupert Tang, J. Shavlik, I. Dutra, D. Page, and
V. Santos Costa. Relational data mining with inductive logic programming for
link discovery. In Proceedings of the National Science Foundation Workshop on
Next Generation Data Mining, Baltimore, Maryland, USA, 2002.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource man-
agement for high throughput computing. In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, Chicago,
IL, July 1998.

Tan H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

