
Appears in the Proceedings of the 18th International Conference on Machine Learning (ICML 2001).

A Theory-Refinement Approach to Information Extraction

Tina Eliassi-Rad eliassi@cs.wisc.edu

Jude Shavlik shavlik@cs.wisc.edu

Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706 USA

Abstract

We investigate applying theory refinement to
the task of extracting information from text.
In theory refinement, partial domain knowl-
edge (which may be incorrect) is given to
a supervised learner. The provided knowl-
edge guides the learner in its task, but the
learner can refine or even discard this knowl-
edge during training. Our supervised learner
is a “knowledge-based” neural network that
initially contains “compiled” prior knowl-
edge about a particular information extrac-
tion (IE) task. The prior knowledge needs to
specify the extraction slots for the specific IE
task. Our approach uses generate-and-test to
address the IE task. In the generation step,
we produce candidate extractions by intelli-
gently searching the space of possible extrac-
tions. In the test step, we use the trained
network to judge each candidate and output
those that exceed a system-selected thresh-
old. Experiments on the CMU seminar-
announcements and the Yeast subcellular-
localization domains demonstrate our ap-
proach’s value.

1. Introduction

The rapid growth of on-line information has created
a surge of interest in tools that are able to extract
information from on-line documents. Information ex-
traction (IE) is the process of pulling desired pieces of
information out of a document.

Unfortunately, building an IE system requires either
a large number of annotated examples1 or an expert
to provide sufficient (and correct) knowledge about the
domain of interest. Both of these requirements make it
time-consuming and difficult to build an IE system. In

1By annotated examples, we mean the result of the te-
dious process of reading the training documents and tag-
ging each extraction by hand.

this paper, we demonstrate how the theory-refinement
approach (e.g., Towell & Shavlik, 1994) can be used
to build an IE system. By using theory refinement, we
are able to strike a balance between needing a large
number of labeled examples and having a complete
(and correct) set of domain knowledge.

Our system takes advantage of the intuition that infor-
mation retrieval (IR) and IE are nearly inverse prob-
lems of each other. An IR system is given a set of
keywords and is asked to rate the relevance of docu-
ments. An IE system is given a set of documents and
is asked to fill in the slots in a given template. We
explore how what is essentially an IR system can be
used to address the IE task.

Our system is called Wawa-IE.2 The basic Wawa sys-
tem has been described previously (Shavlik & Eliassi-
Rad, 1998; Shavlik et al., 1999) and we will only briefly
review it here.

The user provides a set of instructions in the form of
if-then statements to Wawa-IE. These instructions
describe how the system should score possible bindings
to the slots being filled during the the IE process. (We
will call the names of the slots to be filled variables,
and use “binding a variable” as a synonym for “filling
a slot.”) These initial instructions are then “compiled”
(Towell & Shavlik, 1994) into a neural network (called
ScorePage), which rates the goodness of a document
in the context of the given variable bindings.

We refer to the user-provided instructions as advice
to emphasize that our system does not blindly follow
the user’s instructions, but instead refines them based
on the training examples. The use of user-provided
advice typically leads to higher accuracy from fewer
user-provided training examples.

Wawa-IE uses a generate-and-test approach to extract
information. In the generate step, the user first spec-
ifies the slots to be filled (along with their part-of-
speech tags or parse structures), and Wawa-IE gen-

2
Wawa-IE is the extraction subsystem of a larger sys-

tem called Wawa (Wisconsin Adaptive Web Assistant).

erates a large list of candidates from the document.
In the test step, Wawa-IE scores each possible can-
didate. The candidates that produce scores that are
greater than a system-defined threshold are returned
as the extracted information. A critical component of
Wawa-IE is an intelligent selector (explained later)
that eliminates the need to create an exhaustive list of
all possible candidate bindings.

The key aspect of Wawa-IE is its advice language.
An advice sentence is a conditional statement whose
antecedent describes a property of the page (e.g.,
whether whether the word “fly” appears as a verb on
the page) and whose consequent specifies an estimate
of the page’s relevancy to the domain of interest.

As already mentioned, of particular relevance to our
approach is the fact that Wawa-IE’s advice language
contains variables. To understand how Wawa-IE uses
variables, assume that we want to extract speaker
names from a collection of seminar announcements.
We might wish to give such a system some (good) ad-
vice like: If the page contains the phrase “Speaker .

?FirstName/NNP ?LastName/NNP”, then score this
page highly. The leading question marks indicate slots
to be filled, and ‘.’ matches any single word. Also, the
advice language allows the user to specify the required
part of speech for a slot (e.g., NNP denotes a proper
noun). The precondition of our example rule matches
phrases like “Speaker is Joe Smith”.

Figure 1 illustrates an example of extracting speaker
names from a seminar announcement using Wawa-IE.
The announcement is fed to the candidate generator
and selector, which produces a list of speaker candi-
dates. Each entry in the candidates list is then bound
to the variables in advice.3 The output of the (trained)
network is a real number that represents our confi-
dence in the speaker candidate being a correct slot
filler for the given document.

2. The WAWA-IE System

We require the user to provide the following informa-
tion to Wawa-IE:

1. The set of on-line documents from which the infor-
mation is to be extracted.

2. The extraction slots like speaker names, etc.

3. The possible part-of-speech (POS) tags (e.g., noun,
proper noun, verb, etc) or the parse structures (e.g.,
noun phrase, verb phrase, etc) for each extraction slot.

3The variable ?Speaker is a record that holds multiple
variables such as ?FirstName and ?LastName.

Candidate
Generator
& Selector

Seminar Announcement:
Don�t miss Jane Doe &
John Smith�s talk! Doe
& Smith will talk about
the Turing tarpit. See
you at 4pm in 2310 CS
Building.

score of �Jane Doe� = 9.0

SpeakerExtractor

 ?Speaker
Speaker Candidates:

Jane Doe
John Smith

Smith
Turing

...

Generation Step

Test Step

Figure 1. Extraction of speaker names with Wawa-IE

4. A set of advice rules containing variables which
refer to the extraction slots.

5. A set of annotated examples, i.e., training docu-
ments in which extraction slots have been marked.

Actually, the user does not have to explicitly provide
the extraction slots and their POS tags separately from
advice since they can be extracted from the advice
rules. For example, in one of our case studies, we want
to extract names of proteins and their subcellular lo-
cations from the yeast database of Ray and Craven
(2001). One of our advice rules for this task is: When
the phrase “?ProteinName/Nphrase ./Vphrase ?Lo-
cationName/Nphrase” appears in the document, then
score it very high.

The variables ?ProteinName and ?LocationName rep-
resent the protein names and their subcellular struc-
tures. The “/Nphrase” trailing the variables indi-
cates the required parse structure of the variables
(“Nphrase” refers to a noun phrase). The “./Vphrase”
matches any verb phrase. The precondition of this rule
matches phrases such as “UBC6 localizes to the endo-
plasmic reticulum.”

During training, Wawa-IE first compiles the user’s
advice into the ScorePage network. Wawa-IE next
uses what we call an individual-slot candidate genera-
tor and a combination-slots candidate selector to cre-
ate training examples for the ScorePage network.
The same candidate generation and selection process
is used after training to generate the possible extrac-
tions that the trained network scores.

2.1 Individual-Slot Candidate Generator

The first step Wawa-IE takes (both during training
and after) is to generate all possible individual fillers

for each slot on a given document. Fillers can be indi-
vidual words or phrases.

Individual words are collected by using Brill’s (1994)
tagger to annotate each word in a document with its
POS. For each slot, we collect every word in the docu-
ment that has a POS tag that matches a tag assigned
to this variable somewhere in the IE task’s advice.

For cases where a variable is associated with a phrase,
we apply a sentence analyzer called Sundance (Riloff,
1998) to each document. Sundance builds a shallow
parse tree that segments sentences into noun, verb, or
prepositional phrases. We collect those phrases that
match the parse structure for the extraction slot and
also generate all possible subphrases of consecutive
words (since Sundance only does shallow parsing).

At this point we typically have lengthy lists of candi-
date fillers for each slot, and we need to focus on gen-
erating good combinations that fill all the slots. Obvi-
ously, this process can be combinatorially demanding.
In the next section, we present and evaluate a heuristic
method for choosing good combinations.

2.2 Combination-Slots Candidate Selector

Wawa-IE contains several methods for creating com-
plete assignments to the slots from the lists of individ-
ual slot bindings:

Exhaustive Candidate Selector: Exhaustively
produce the cross-product of all entries in the lists of
individual-slot candidates for a given document. For
some tasks, there may be sufficient computational re-
sources to do this (also, it provides a “control” when
we later evaluate the other options).

High-Scoring Simple Random Selection (SRS):
Randomly select combination-slots candidates from
the lists of individual-slot candidates. When training,
only use the N combinations that produce the highest
scores on the untrained ScorePage network.4 This
is mainly a control against which we compare the fol-
lowing “intelligent” selector of combined bindings.

Modified WSAT: Use a modified version of the
WalkSAT algorithm (Selman et al., 1996). Figure 2
describes this algorithm.

For a given document, the algorithm starts with an
empty list of combination-slots candidates. For each
extraction slot, it then iteratively and randomly se-
lects an item from that slot’s list of individual-slot

4By untrained, we mean a network containing only com-
piled (initial) advice and without any further training via
backpropagation and labeled examples.

Inputs: MAX-TRIES, MAX-ALTERATIONS, p, MAX-CANDS,
doc, L (where L is the lists of individual-slot candidate
extractions for doc)

Output: TL (where TL is the list of combination-slots candidate
 extractions of size MAX-CANDS)

Algorithm:

1. TL := { }

2. for i:=1 to MAX-TRIES
 S := randomly selected combination-slots candidate from L.

if (score of S w.r.t. doc is in [9.0, 10.0]), then add S to TL.
otherwise,

 for j:=1 to MAX-ALTERATIONS
s := Randomly select a slot in S to change
With probability p, randomly select a candidate for s.

Add S to TL.
With probability 1-p, select a candidate for s that

maximizes the score of S w.r.t. doc. Add S to TL.

3. Sort TL in decreasing order of score of its entries.

4. Return the top MAX-CANDS entries as TL.

Figure 2. Our Modified WalkSAT Algorithm

candidates. This produces a combination-slots can-
didate extraction that contains a candidate filler for
each slot in the template. If the score produced by
the (possibly untrained) ScorePage network is high
enough (i.e., over 9 on a -10 to 10 scale) for this set
of variable bindings, then add this combination to the
list of combination-slots candidates. Otherwise, re-
peatedly and randomly select a slot in the template.
With probability p, randomly select a candidate for the
selected slot and add the resulting combination-slots
candidate to the list of combination-slots candidates.
With probability 1-p, iterate over all possible candi-
dates for this slot and choose the candidate that pro-
duces the highest network score for the document. The
resulting combination-slots candidate is then added to
the list of combination-slots candidates.

2.3 Training an IE agent

Figure 3 shows the process of building a trained IE
agent. Since (usually) only positive training exam-
ples are provided in IE domains, we first need to gen-
erate some negative training examples. To this end,
we use the candidate generator and selector described
above. The list of negative training examples collected
by the selector contains informative negative examples
(i.e., near misses) because the heuristic search used
in the selector scores the training documents on the
untrained ScorePage network. That is, the (user-
provided) prior knowledge scored these “near miss”
extractions highly (as if they were true extractions).

After the negative examples are collected, we train the

ScorePage neural network using these negative ex-
amples and all the provided positive examples. By
training the network to recognize (i.e., produce a high
output score for) a correct extraction in the context
of the document as a whole (Shavlik et al., 1999), we
are able to take advantage of the global layout of the
information available in the documents of interest.

Training
Set

Initial
Advice

Individual-Slot
Candidate Generator
& Combination-Slots
Candidate Selector

Slots & Their
POS Tags or

Parse Structures

Lists of Candidate
Combination-Slots

Extractions

ScorePage

IE Agent

Trained network is
 placed into agent�s

knowledge-base.

Figure 3. Building a Trained IE agent

Since the ScorePage network outputs a real number,
Wawa-IE needs to define a threshold on this output
such that the bindings for the scores above the thresh-
old are returned to the user as extractions and the rest
are discarded. Note that the value of the threshold can
be used to manipulate the performance of the IE agent.
For example, if the threshold is set to a high number
(e.g., 8.5), then the agent might miss a lot of the cor-
rect fillers for a slot (i.e., have low recall), but the
number of correct fillers it extracts should be higher
(i.e., high precision). Recall (van Rijsbergen, 1979) is
the ratio of the number of correct fillers extracted to
the total number of fillers in correct extraction slots.
Precision (van Rijsbergen, 1979) is the ratio of the
number of correct fillers extracted to the total number
of fillers extracted. The commonly used F1-measure
combines precision and recall using the following for-
mula: F1 = 2×Precision×Recall

Precision+Recall
.

To avoid overfitting the ScorePage network and
to find the best threshold on its output after train-
ing is done, we actually divide the training set into
two disjoint sets. One of the sets is used to train
the ScorePage network. The other set, the vali-
dation set, is first used to “stop” the training of the
ScorePage network. Specifically, we cycle through
the training examples 100 times. After each itera-
tion over the training examples, we use the lists of

combination-slots candidates associated with the vali-
dation set to evaluate the F1-measure produced by the
network for various settings of the threshold. We pick
the network that produced the highest F1-measure on
our validation set as our final trained network and use
the associated validation-set threshold when process-
ing subsequent (e.g., “test set”) examples.

2.4 Testing a Trained IE agent

Figure 4 depicts the steps a trained IE agent takes to
produce extractions.

Slots & Their
POS Tags or

Parse Structures

Test Set
(Unseen Docs)

Trained IE Agent

Individual-Slot
Candidate Generator
& Combination-Slots
Candidate Selector

Extractions

Lists of Candidate
Combination-Slots

Extractions

Figure 4. Testing a Trained IE Agent

For each entry in the list of combination-slots extrac-
tion candidates, we first bind the variables to their
candidate values. Then, we perform a forward propa-
gation on the trained ScorePage network and output
the score of the network for the test document based
on the candidate bindings. If the output value of the
network is greater than the threshold defined during
the validation step, we record the bindings as an ex-
traction. Otherwise, these bindings are discarded.

2.5 Discussion

A novel aspect of Wawa-IE is its exploitation of the
relationship between IR and IE. That is, we build
IR agents that treat possible extractions as keywords,
which are in turn judged within the context of the en-
tire document.

The use of theory refinement allows us to take ad-
vantage of user’s prior knowledge, which need not be
perfectly correct since Wawa-IE is a learning system.
This, in turn, reduces the need for labeled examples,
which are very expensive to get in the IE task. Also,
compiling users’ prior knowledge into the ScorePage

network provides a good method for finding informa-
tive negative training examples (i.e., near misses).

One cost of using our approach is that we require the
user to provide us with the POS tags or parse struc-
tures of the extraction slots. We currently assume that
the Brill’s tagger and Sundance are perfect (i.e., they
tag words and parse sentences with 100% accuracy).
Brill’s tagger annotates the words on a document with
97.2% accuracy (Brill, 1994), so 2.9% error rate prop-
agates into our results. We were not able to find ac-
curacy estimates for Sundance, though do remember
that we also consider all subphrases of the phrases Sun-
dance produces.

Our approach is computationally demanding, due to
its use of a generate-and-test approach. But, CPU cy-
cles are abundant; and, as our second experiment be-
low shows, Wawa-IE still performs well when only us-
ing a subset of all possible combinations of slot fillers.

3. Experimental Evaluation

We evaluate our approach using two IE tasks. The
first involves extracting speaker and location names
from a collection of seminar announcements. This
task has been widely used in the literature and allows
us to directly compare the performance of Wawa-IE

to several existing systems. For this domain, we fol-
low existing methodology and independently extract
speaker and location names, because each document is
assumed to contain only one announcement. That is,
for each announcement, we do not try to pair up speak-
ers and locations, instead we return a list of speakers
and a separate list of locations. Hence, we do not use
any “combination slots selector” on this task.

The second IE task involves extracting protein names
and their locations within the cell from a collection of
abstracts from biomedical articles on yeast. We chose
this domain because it illustrates a harder IE task than
the first domain. In our second domain, the fillers for
extraction slots depend on each other because a single
abstract can contain multiple proteins and locations.
Hence, for each document, a single list of <protein,
location> pairs is extracted.

3.1 Seminar Announcements Domain

In our first experiment, we compare Wawa-IE to
five other information extraction systems using the
CMU seminar announcements domain (Freitag, 1998).
These systems are SRV (Freitag, 1998), Naive Bayes
(Freitag, 1998), WHISK (Soderland, 1999), RAPIER
(Califf, 1998), and RAPIER-WT (Califf, 1998). Ex-
cept for Naive Bayes, they are all relational learning
algorithms that do not exploit prior knowledge.

Freitag (1998) first randomly divided the 485 docu-
ments in the seminar announcements domain into ten
splits, and then randomly divided each of the ten
splits into approximately 240 training examples and
240 testing examples. Except for WHISK, the results
of the other systems are all based on the same 10 data
splits; the results for WHISK are from a single trial
with 285 documents in the training set and 200 docu-
ments in the testing set.

We give Wawa-IE 9 and 10 advice rules in Backus
Naur Form (BNF) (Aho et al., 1986) notation about
speakers and locations, respectively.5 None of the ad-
vice rules are written with the specifics of the CMU
seminar announcements in mind. The rules describe
our prior knowledge about what might be a speaker
or a location in a general seminar announcement. It
took us about half a day to write these rules and we
did not manually refine these rules over time.

For this domain, we create the same number of neg-
ative training examples (for speaker and location in-
dependently) as the number of positive examples. We
choose 95% of the negatives, from the complete list of
possibilities, by collecting those that score the highest
on the untrained ScorePage network; the remaining
5% are chosen randomly from the complete list.

Tables 1 and 2 show the results of our system and the
other five systems for the speaker and location slots,
respectively. The results reported are averages across
the ten splits. The precision, recall, and F1-measure
for a split is determined by the optimal threshold found
for that split using the validation set.

Remember that precision (P) is the ratio of the num-
ber of correct fillers extracted to the total number of
fillers extracted, and recall (R) is the ratio of the num-
ber of correct fillers extracted to the total number of
fillers in correct extraction slots. An ideal system has
a precision and recall of 100%. Finally, the commonly
used F1-measure combines precision and recall using
the following formula: F1 = 2×Precision×Recall

Precision+Recall
.

Since the speaker’s name and the location of the semi-
nar may appear in multiple forms in an announcement,
an extraction is considered correct as long as any one of
the possible correct forms is extracted. For example, if
the speaker is “John Doe Smith”, the words “Smith”,
“Joe Smith”, “John Doe Smith”, “J. Smith”, and “J.
D. Smith” might appear in a document. Any one of
these extractions is considered correct. This method
of marking correct extractions is also used in the other
IE systems against which we compare our approach.

5The complete list of these advice rules will appear in
Eliassi-Rad (2001).

Table 1. Speaker slot results for seminar announcements

System P R F1

Wawa-IE’s Trained Agent 61.5 86.6 71.8
SRV 60.4 58.3 59.3

RAPIER-WT 79.0 40.0 53.1
RAPIER 80.9 39.4 53.0

Wawa-IE’s Untrained Agent 29.5 96.8 45.2
Naive Bayes 36.1 25.6 30.0

WHISK 71.0 15.0 24.8

Table 2. Location slot results for seminar announcements

System P R F1

Wawa-IE’s Trained Agent 73.9 84.4 78.8
RAPIER-WT 91.0 61.5 73.4

SRV 75.9 70.1 72.9
RAPIER 91.0 60.5 72.7
WHISK 93.0 59.0 72.2

RAPIER-W 90.0 54.8 68.1
Naive Bayes 59.6 58.8 59.2

Wawa-IE’s Untrained Agent 29.2 98.2 45.0

For both speaker and location slots, the F1-measure
of our system is the highest. Our F1-measures are
high because we generate many extraction candidates;
hence, we are able to extract a lot of the correct fillers
from the data set, which leads to higher recall than
the other systems. After training, we are able to re-
ject enough candidates that we obtain reasonable pre-
cision. However, several of the other systems have
higher precision, so depending on the user’s tradeoff
between recall and precision, different systems would
be preferred on this testbed.

The increase in performance from Wawa-IE’s un-
trained agent4 to Wawa-IE’s trained agent shows that
our system is not “hard-wired” to perform well on this
domain and that training helped our performance.

For this first experiment, we train one network for find-
ing the speaker slots and another one to find the loca-
tion slots. In the next section, we discuss an experi-
ment where we train only one network to extract fillers
for two slots simultaneously.

3.2 Yeast Protein-Localization Domain

For our second experiment, the task is to extract
protein names and their subcellular localization from
the yeast protein-localization database produced by
Ray and Craven (2001). They call their extraction
template the subcellular-localization relation and cre-
ated their yeast database by first collecting target in-

stances of the subcellular-localization relation from
the Yeast Protein Database (YPD) Web site. Then,
they collected abstracts from articles in the MEDLINE
database (National Library of Medicine, 2001) that
have references to the entries selected from YPD. We
followed Ray and Craven’s methodology for our ex-
periments on this domain and used their “tuple-level”
method for measuring accuracy (where a tuple is an
instance of the subcellular-localization relation).

In this yeast data set, each training and test instance is
an individual sentence. A positive sentence is labeled
with target tuples. There are 545 positive sentences
containing 645 tuples, of which 335 are unique. A
negative sentence is not labeled with any tuples. There
are 6,700 negative sentences in this data set. Note that
a sentence that does not contain both a protein and
its subcellular location is considered to be negative.

Wawa-IE is given 12 advice rules in BNF (Aho et al.,
1986) notation about a protein and its subcellular lo-
cation.5 None of the advice rules are written with the
specifics of the yeast data set in mind; the rules de-
scribe our prior knowledge about what might be an in-
stance of the subcellular-localization relation. It took
us about half a day to write these rules and we did not
manually refine these rules over time.

Ray and Craven (2001) split the yeast data set into
five disjoint sets and ran 5-fold cross-validation. We
use the same folds with Wawa-IE and compare our
results to theirs. But first we investigate whether or
not we can intelligently select good training examples
(and, hence, reduce training time) by comparing test
set F1-measure to the case where we use all possible
negative examples.

Figure 5 illustrates the difference in F1-measure be-
tween Section 2.2’s modified WalkSAT selector, “high-
scoring SRS,” and exhaustive candidate selector. The
horizontal axis depicts the percentage of negative
training examples used during the learning process,
and the vertical axis depicts the F1-measure of the
trained IE-agent. Wawa-IE is able to achieve very
good performance by using less than 20% of the neg-
ative training candidates. The “high-scoring SRS” se-
lector does much worse than our modified WalkSAT.

In F1-measures, Wawa-IE’s trained agents outper-
form the untrained agents4 by approximately 50%
(results not shown). This further demonstrates that
Wawa-IE is able to refine initial advice.

Figure 6 shows the precision and recall curves for (a)
Wawa-IE’s trained agent with the modified Walk-
SAT selector (using 17% of the negative examples),
(b) Wawa-IE’s trained agent without a selector (i.e.,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 0 4 0 6 0 8 0 1 0 0

% of negative training candidates used

F
1-

m
ea

su
re

Trained IE agent with exhaustive selector

Trained IE agent with WSAT

Trained IE agent with high-scoring SRS

Figure 5. F1-measure vs. percentage of negative training
candidates used for different selector algorithms

using all the negative training examples), and (c) the
system of Ray and Craven.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

0

0.2

0.4

Trained IE agent
with WSAT

Ray & Craven

Trained IE agent
without a selector

Figure 6. Precision/recall curves

The trained IE agent without any selector algorithm
produces the best results. But, it is computationally
very expensive since it needs to take the cross-product
of all entries in the lists of individual-slot candidates.
The trained IE agent with modified WalkSAT selector
performs quite well, outperforming Ray and Craven’s
system. In results not shown, the “high-scoring SRS”
selector performs similarly to Ray and Craven’s.

Our results both illustrate the value of using the-
ory refinement for IE and justify using an intelligent
candidate-selection algorithm to reduce the compu-
tational burden of our “IE via IR” approach, which
uses a generate-and-test strategy. Wawa-IE with the

“modified WalkSAT” selector is able to improve on the
state of the art using only 17% of the possible negative
training candidates during training.

Finally, recall that we also use our variant of Walk-
SAT during testing. Thus, Figure 6 also shows that
we obtain good precision and recall without needing
to exhaustively score every possible candidate.

4. Related Work

We were unable to find any system in the literature
that applies theory refinement to IE. Most IE systems
break down into two groups. The first group uses some
kind of relational learning to learn extraction patterns
(Califf, 1998; Freitag, 1998; Soderland, 1999). The sec-
ond group learns parameters of hidden Markov models
(HMMs) and uses the HMMs to extract information
(Bikel et al., 1999; Freitag & McCallum, 1999; Leek,
1997; Ray & Craven, 2001; Seymore et al., 1999).

Leek (1997) uses HMMs for extracting information
from biomedical text. His system uses a lot of initial
knowledge to build the HMM model before using the
training data to learn the parameters of HMM. How-
ever, his system is not able to refine the knowledge.

Several authors use statistical methods to reduce the
need for a lot of training examples. Freitag and
McCallum (1999) use HMMs to extract information
from text. They employ a statistical technique called
“shrinkage” to get around the problem of not having
sufficient labeled examples. Seymore et al. (1999) also
use HMMs to extract information from on-line text.
They get around the problem of not having sufficient
training data by using data that is labeled for another
purpose in their system. Similarly, Craven and Kum-
lien (1999) use “weakly” labeled training data to re-
duce the need for labeled training examples.

One advantage of our system is that we are able to
utilize prior knowledge, which reduces the need for a
large number of labeled training examples. However,
we do not depend on the initial knowledge being 100%
correct. We believe that it is relatively easy for users
to articulate some useful domain-specific advice (espe-
cially when a user-friendly interface is provided that
converts their advice into the specifics of Wawa-IE’s
advice language). The second advantage of our sys-
tem is that the entire content of the document is used
to estimate the correctness of a candidate extraction.
This allows us to learn about the extraction slots and
the documents in which they appear. The third ad-
vantage of Wawa-IE is that we are able to utilize the
untrained ScorePage network to produce some infor-
mative negative training examples (i.e., near misses).

5. Current and Future Work

Our catalog of candidate-selector algorithms includes a
modified version of the GSAT algorithm (Selman et al.,
1996), a modified version of random local search, and
a hill climber with multiple random restarts. We are
currently running tests on these selector algorithms;
due to space limitations we did not discuss them.

In addition, we are also measuring performance as a
function of the number of positive training examples
and a function of the number of advice rules.

Finally, we are starting experiments on other IE do-
mains such as the WebKB domain (Freitag, 1998). We
also are looking into incorporating the candidate gen-
eration and selection steps directly into our connec-
tionist framework, whereby we would use the current
ScorePage network to help find new candidate ex-
tractions during the training process.

6. Conclusion

We describe and evaluate a system for using theory
refinement to perform information extraction. Wawa-

IE uses a neural network, which accepts advice con-
taining variables, to rate candidate variable bindings
in the content of the document as a whole. Our ex-
traction process first generates a large set of candidate
variable bindings for each slot, then selects a subset of
the possible combinations of individual slot bindings
via heuristic search, and finally uses the trained net-
work to judge which are “best.” Those bindings that
score higher than a system-computed threshold are re-
turned as the extracted information. By using the-
ory refinement, we are able to take advantage of prior
knowledge in the domain of interest and produce some
informative training examples, both of which lead to
an increase in the performance of the IE agent.

In our experiments in the CMU seminar-
announcements domain, Wawa-IE achieved F1-
measures significantly higher than those of previous
approaches. In the Yeast protein-localization data
set, we empirically show the benefits of using an
intelligent algorithm for selecting possible candidates
for multiple slots and provided additional evidence
that our approach improves on the state of the art.

Acknowledgements

This research was supported in part by NLM Grant 1 R01
LM07050-01, NSF Grant IRI-9502990, & UW Vilas Trust.
Thanks to P. Andreae & M. Craven for helpful comments.

References

Aho, A., Sethi, R., & Ullman, J. (1986). Compilers, Prin-
ciples, Techniques and Tools. Addison Wesley.

Bikel, D., Schwartz, R., & Weischedel, R. (1999). An algo-
rithm that learns what’s in a name. Mach. Learn, 34.

Brill, E. (1994). Some advances in rule-based part of speech
tagging. Proc. AAAI94 (pp. 722–727). Seattle, WA.

Califf, M. E. (1998). Relational Learning Techniques for
Natural Language Information Extraction. Doctoral dis-
sertation, U. of Texas, Austin.

Craven, M., & Kumlien, J. (1999). Constructing biologi-
cal knowledge-bases by extracting information from text
sources. Proc. of ISMB99 (pp. 77–86). Heidelberg.

Eliassi-Rad, T. (2001). Building Intelligent Agents that
Learn to Retrieve and Extract Information. Doctoral
dissertation, CS Dept, U. of Wisconsin, Madison.

Freitag, D. (1998). Machine Learning for Information Ex-
traction in Informal Domains. Doctoral diss. CMU.

Freitag, D., & McCallum, A. (1999). Information extrac-
tion with HMMs and shrinkage. Proc. AAAI99 Work-
shop on Machine Learning for Information Extraction.

Leek, T. (1997). Information Extraction Using Hidden
Markov Models. Master’s Thesis, UCSD.

National Library of Medicine (2001). The MEDLINE
Database. http://www.ncbi.nlm.nih.gov/PubMed/.

Ray, S., & Craven, M. (2001). Representing sentence struc-
ture in hidden markov models for information extrac-
tion. Proc. of IJCAI01. Seattle, WA.

Riloff, E. (1998). The Sundance Sentence Analyzer.
http://www.cs.utah.edu/projects/nlp/.

Selman, B., Kautz, H., & Cohen, B. (1996). Local search
strategies for satisfiability testing. DIMACS Series in
Discrete Mathematics and Theoretical CS, 26, 521–531.

Seymore, K., McCallum, A., & Rosenfeld, R. (1999).
Learning hidden Markov model structure for informa-
tion extraction. Proc. AAAI99 Workshop on Machine
Learning for Information Extraction (pp. 37–42).

Shavlik, J., Calcari, S., Eliassi-Rad, T., & Solock, J. (1999).
An instructable, adaptive interface for discovering and
monitoring information on the world-wide web. Proc.
Intell. User. Interf. (pp. 157–160). Redondo Beach, CA.

Shavlik, J., & Eliassi-Rad, T. (1998). Intelligent agents
for web-based tasks: An advice-taking approach. Proc.
AAAI98 Workshop on Learning for Text Categorization.

Soderland, S. (1999). Learning information extraction rules
for semi-structured and free text. Mach. Learn., 34.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based
artificial neural networks. Artif. Intell., 70, 119–165.

van Rijsbergen, C. J. (1979). Information Retrieval. Lon-
don: Buttersworths. 2nd edition.

