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Abstract.

We present a system for rapidly and easily building instructable and self-adaptive
software agents that retrieve and extract information. Our Wisconsin Adaptive Web
Assistant (Wawa) constructs intelligent agents by accepting user preferences in
the form of instructions. These user-provided instructions are compiled into neural
networks that are responsible for the adaptive capabilities of an intelligent agent.
The agent’s neural networks are modified via user-provided and system-constructed
training examples. Users can create training examples by rating Web pages (or doc-
uments), but more importantly Wawa’s agents uses techniques from reinforcement
learning to internally create their own examples. Users can also provide additional
instruction throughout the life of an agent. Our experimental evaluations on a
“home-page finder” agent and a “seminar-announcement extractor” agent illustrate
the value of using instructable and adaptive agents for retrieving and extracting
information.

Keywords: instructable and adaptive software agents, Web mining, machine learn-
ing, neural networks, information retrieval, information extraction

1. Introduction

The popularity of the World Wide Web has created a surge of interest
in tools that are able to retrieve and extract information from on-
line documents. In a perfect world, you would be able to get on the
Internet and instantaneously retrieve precisely the information you
want (whether it is a whole document or fragments of it). What is
the next best option? Consider having an assistant, which rapidly and
easily builds instructable and self-adaptive software agents for both the
information retrieval (IR) and the information extraction (IE) tasks.
These intelligent software agents would process your interests (with
respect to the information you would like to receive) and automatically

† This work was performed while the first author was at the Computer Sciences
Department of the University of Wisconsin-Madison.



refine its model of your preferences over time. Their mission would be
to spend 24 hours a day looking for documents of interest to you and
answering specific questions that you might have. Our goal is to build
such an assistant.

We call our assistant Wawa (short for Wisconsin Adaptive Web
Assistant). Wawa interacts with the user and an on-line (textual)
environment (e.g., the Web) to build an intelligent agent for retriev-
ing and/or extracting information. Figure 1 illustrates an overview
of Wawa. Wawa has two sub-systems: (i) an information retrieval
sub-system, called Wawa-IR; and, (ii) an information extraction sub-
system, called Wawa-IE . Wawa-IR is a general search engine agent,
which can be trained to produce specialized and/or personalized IR
agents. Wawa-IE is a general extractor system, which creates special-
ized agents that extract pieces of information from documents in the
domain of interest.

WAWA
WAWA-IR

Information
Retrieval (IR)
Sub-system

WAWA-IE
Information
Extraction (IE)
Sub-system

Environment

User

IE AgentIR Agent

Figure 1. An Overview of Wawa

Wawa builds its agents based on ideas from the theory-refinement
community within machine learning (Pazzani and Kibler, 1992; Ourston
and Mooney, 1994; Towell and Shavlik, 1994). Users specify their prior
knowledge about the desired task. This knowledge is then “compiled”
into “knowledge based” neural networks (Towell and Shavlik, 1994),
thereby allowing subsequent refinement whenever training examples
are available. The advantages of using a theory-refinement approach to
build intelligent agents are as follows:

− Wawa’s agents are able to perform reasonably well initially be-
cause they are able to utilize users’ prior knowledge.

− Users’ prior knowledge does not have to be correct since it is refined
through learning.
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− The use of prior knowledge, plus the continual dialog between the
user and an agent, decreases the need for a large number of training
examples because human-machine communication is not limited to
a binary representation of positive and negative examples.

− Wawa provides an appealing middle ground between non-adaptive
agent programming languages and systems that solely learn user
preferences from training examples.

Wawa’s agents are intelligent because they can adapt their behavior
according to the users’ instructions and the feedback they get from their
environments. In other words, they are learning agents that use neural
networks to store and modify their knowledge. Figure 2 illustrates the
interaction between the user, an intelligent (Wawa) agent, and the
agent’s environment. The user1 observes the agent’s behavior (e.g.,
the quality of the pages retrieved) and provides helpful instructions
to the agent. Following Maclin and Shavlik (1996), we refer to users’
instructions as advice, since this name emphasizes that the agent does
not blindly follow the user-provided instructions, but instead refines
the advice based on its experiences. The user inputs his/her advice
into a user-friendly advice interface. The given advice is then processed
and mapped into the agent’s knowledge base (i.e., its two neural net-
works), where it gets refined based on the agent’s experiences. Hence,
the agent is able to represent the user model in its neural networks,
which have representations for which effective learning algorithms are
known (Mitchell, 1997).

This article is organized as follows. We present Wawa’s fundamen-
tal operations in Section 2. Wawa’s information-retrieval (IR) sys-
tem is discussed in Section 3. Section 4 describes a case study on
Wawa’s information-retrieval system, namely the rapid creation of an
effective “home-page finder” agent. In Section 5, we discuss Wawa’s
information-extraction (IE) system. Section 6 presents a case study
on Wawa’s information-extraction system, namely, the “seminar an-
nouncements extractor” agent. Related work and future directions are
discussed in Sections 7 and 8, respectively. Section 9 summarizes the
material in this paper.

1 We envision that there are two types of potential users of our system: (1) appli-
cation developers, who build an intelligent agent on top of Wawa and (2) application
users, who use the resulting agent. (When we use the phrase user in this article, we
mean the former.) Both types of users can provide advice to the underlying neural
networks, but we envision that usually the application users will indirectly do this
through some specialized interface that the application developers create. A scenario
like this is discussed in Section 4.
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Figure 2. The Interaction between a User, an Intelligent Agent, and the Agent’s
Environment

2. Wawa’s Core

This section presents Wawa’s fundamental operations, which are used
in both the IR and the IE subsystems of Wawa (see Sections 3 and 5
for further details). These operations include handling of Wawa’s ad-
vice language, representing Web pages2 internally for an agent’s use,
and scoring arbitrary long pages with neural networks. Figure 3 il-
lustrates how an agent uses these operations to score a page. The
page processor gets a page from the environment (e.g., the Web) and
produces an internal representation of the page. This new represen-
tation of the page is then given to the agent’s knowledge-base (i.e.,
the agent’s neural network), which produces a score for the page by
doing forward-propagation (Rumelhart et al., 1986). Finally, the agent’s
neural network incorporates the user’s advice and the environment’s
feedback, both of which effect the score of a page.

The knowledge base of a Wawa agent is centered around two basic
functions: ScoreLink and ScorePage (see Fig. 4). If given highly ac-
curate such functions, standard heuristic search would lead to effective
retrieval of text documents: the best-scoring links would be traversed
and the highest-scoring pages would be collected.

Users are able to tailor an agent’s behavior by providing advice
about the above functions. This advice is “compiled” into two “knowl-
edge based” neural networks (Towell and Shavlik, 1994) implementing
the functions ScoreLink and ScorePage (see Figure 5). These func-
tions, respectively, guide the agent’s wandering within the Web and
judge the value of the pages encountered. Subsequent reinforcements
from the Web (e.g., encountering dead links) and any ratings of re-

2 In this article, we use the terms “page” and “document” interchangeably.
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Figure 4. Central Functions of Wawa’s Agents Score Web Pages and Hyperlinks

trieved pages that the user wishes to provide are, respectively, used to
refine the link- and page-scoring functions.

�
* About this department
* People
* Academic Information
�
* Contact Information

http://www.cs.wisc.edu
UW CS Home Page

ScorePage r in [-10.0, 10.0] 

ScoreLink r in [-25.0, 25.0] * About this department
http://www.cs.wisc.edu/about.html

Figure 5. Wawa’s Central Functions Score Web Pages and Hyperlinks Respectively

A Wawa agent’s ScorePage network is a supervised learner (Mitchell,
1997). That is, it learns through user-provided training examples and
advice. A Wawa agent’s ScoreLink network is a reinforcement learner
(Sutton and Barto, 1998). This network automatically creates its own
training examples, though it can also use any user-provided training
examples and advice. Hence, our design of the ScoreLink network has
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the important advantage of producing self-tuning agents since training
examples are created by the agent itself (see Section 3.1.2 for details).

2.1. Wawa’s Advice Language

The user-provided instructions is mapped into the ScorePage and
ScoreLink networks using a Web-based language, called advice. An
expression in our advice language is an instruction of the following basic
form:

when precondition then action

The preconditions represent aspects of the contents and structure of
Web pages. Table I lists the actions of our advice language in Backus-
Naur Form (BNF) (Aho et al., 1986) notation. The strength levels
in actions represent the degree to which the user wants to increase or
decrease the score of a page or a link.

Table I. Permissible Actions in an Advice Statement

actions → strength show page

| strength avoid showing page

| strength follow link

| strength avoid following link

| strength show page & follow link

| strength avoid showing page & following link

strength → weakly | moderately | strongly | definitely

Wawa extracts features from either HTML or plain-text Web pages.
These input features constitute the primitives in our advice language.
These primitive constructs can be combined to create more complicated
constructs. This section presents Wawa’s feature-extraction method
and its advice language.

2.1.1. Extracting Features from Web Pages.
A standard representation of text used in IR is the bag-of-words repre-
sentation (Salton, 1991). In the bag-of-words representation, word order
is lost and all that is used is a vector that records the words present
on the page, usually scaled according to the number of occurrences
and other properties. The top-right part of Figure 6 illustrates this
representation.

Generally, IR systems (Belew, 2000) reduce the dimensionality (i.e.,
number of possible features) in the problem by discarding common
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(“stop”) words and “stem” all words to their root form (e.g., “walked”
becomes “walk”). Wawa typically performs these two preprocessing
steps.

Localized Bags-of-W
ords

Standard
Approach

space
rent

pa
ge sample

com

www

Bag
-of

-W
ord

s

Aspects of Our
Representation

page
sample

words in title

words in
window

space
rent

words in
URL

com
page
wwwSliding

Window

URL:  www.page.com
Title: Sample Page

space rent

Original Web Page
URL:  www.page.com
Title: A Sample Page

This space
for rent.

Stop Words
Removal &
 Stemming

Figure 6. Internally Representing Web Pages

We believe the information provided by word order is important.
For example, without word-order information, we cannot express in-
structions such as when the phrase “Green Bay” is on the page then
show page. Given that we are using neural networks to score pages and
links, one approach to capturing word-order information would be to
use recurrent networks, but instead we borrow an idea from NETtalk

(Sejnowski and Rosenberg, 1987), though our basic unit is a word rather
than an (alphabetic) letter as in NETtalk. Namely, Wawa “reads” a
page by sliding a fixed-size3 window across a page one word at a time.
Figure 7 provides an example of a 3-word sliding window going across
a page.

Most of the features we use to represent a page are defined with
respect to the current center of the sliding window. The sliding window
itself allows us to capture word order on a page; however, we also have
two bags of words of size 10 around the sliding window which allow us
to capture instructions such as when “Green Bay” is near Packers then
show page.

In addition to preserving some word-order information, we also take
advantage of the structure of HTML documents (when a fetched page
is so formatted). First, we augment the bag-of-words model, by using
several localized bags, some of which are illustrated on the bottom-

3 Typically, the sliding window contains 15 words.
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Sample Page
Green Bay Packers played
Chicago Bears yesterday.

...

Different Positions of a 3-word Sliding Window

......
Step 7

Step 6

Step 5

Step 4

Step 3

Step 2

    GreenStep 1   

 yesterday     Bears Chicago

     Bears  Chicago  played

  Chicago    played Packers

   played     Bay    Packers

   Green       Bay   Packers

    Green       Bay 

Figure 7. Using a 3-Word Sliding Window to Capture Word-Order Information on
a Page

right part of Figure 6. Besides a bag for all the words on the page,
we have word bags for: the title, the page’s url, the sliding window,
the left and right sides of the sliding window, the current hyperlink4

(should the window be inside hypertext), and the current section’s title.
Wawa’s parser of Web pages records the “parent” section title of each
word; parent’s of words are indicated by the standard 〈H1〉 through
〈H6〉 section-header constructs of HTML, as well as other indicators
such as table captions and table-column headings. Moreover, bags for
the words in the grandparent and great-grandparent sections are kept,
should the current window be nested that deeply. This knowledge of the
“context” of words does not limit advice to only describing relations
between nearby words.

Wawa uses Brill’s tagger (Brill, 1994) to annotate each word on a
page with a part-of-speech (POS) tag (i.e., noun, proper noun, verb,
etc). This information is represented in the agent’s neural networks as
input features for the words in the sliding window. By adding POS
tags, we are able to distinguish between different grammatical uses of
a word. For example, this allows a user to give advice of the form when
“fly” and “bug” are on the page and they are both nouns then show the
page. This rule will not match pages that contain the words “fly” and
“bug” as verbs. We also take advantage of the inherent hierarchy in the
POS tags (e.g., a proper noun is also a noun, or a present participle
verb is also a verb). For example, if the user indicates interest in the
word “fly” as a noun, we look for the presence of “fly” as a noun and
as a proper noun. However, if the user indicates interest in the word

4 A Web page has its own url, while there are also urls within the page’s
contents. We refer to the former as url and the later cases as hyperlinks, in an
attempt to reduce confusion.
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“Bill” as a proper noun, then we only look for the presence of “Bill”
as a proper noun and not as a noun.

Table II lists some of Wawa’s extracted input features.5 The features
anywhereOnPage(〈word〉) and anywhereInTitle(〈word〉) take a word as
input and return true if the word was on the page or inside the title
of the page, respectively. These two features act as word bags for the
page and the title.

In addition to the feature representing bag-of-words and word order,
we also represent several fixed positions. Besides the obvious case of the
positions in the sliding window, we represent the first and last N words
(for some fixed N) in the title, the url, the section titles, etc. Due to its
important role in the Web, we also specially represent the last N fields
(i.e., delimited by dots) in the server portion of urls and hyperlinks,
e.g. www wisc edu in http://www.wisc.edu/news/Welcome/.

Table II. Sample Extracted Input Features

anywhereOnPage(〈word〉)

anywhereInTitle(〈word〉)

· · ·

isNthWordInTitle(〈N〉, 〈word〉)

· · ·

isNthWordFromENDofTitle(〈N〉, 〈word〉)

· · ·

NthFromENDofURLhostname(〈N〉, 〈word〉)

· · ·

leftNwordInWindow(〈N〉, 〈word〉)

centerWordInWindow(〈word〉)

· · ·

numberOfWordsInTitle()

numberOfAdviceWordsInTitle()

· · ·

insideEmphasizedText()

timePageWasLastModified()

· · ·

POSatRightSpotInWindow(〈N〉, 〈POS tag〉)

POSatCenterOfWindow(〈POS tag〉)

POSatLeftSpotInWindow(〈N〉, 〈POS tag〉)

Besides the input features related to words and their positions on the
page, a Wawa agent’s input vector also includes various other features,

5 See Eliassi-Rad (2001) for a full description of Wawa’s input features.
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such as the length of the page, the date the page was created/modified
(should the page’s server provide that information), whether the win-
dow is inside emphasized HTML text, the sizes of the various word
bags, how many words mentioned in advice are present in the various
bags, etc.

Part-of-speech tags for the words in the sliding window are repre-
sented by the last three features in Table II. For example, the advice
when ( consecutive(“yellow fly”) and POSatCenterOfWindow(noun) )
then show page expresses our interest in pages that include the phrase
“yellow fly” with the word “fly” as a noun. The features POSatRightSpot-
InWindow and POSatLeftSpotInWindow specify the desired POS tag
for the N th position to the right or left of the center of the sliding
window, respectively.

We use many boolean-valued features6 to represent a Web page,
ranging from anywhereOnPage(aardvark) to anywhereOnPage(zebra)
to rightNwordInWindow(3, AAAI) to NthFromENDofURLhostname(1,
edu).

Our design leads to a large number of input features which allows
us to have an expressive advice language. However, assuming a typical
vocabulary of tens of thousands of words, the number of features is
on the order of a million! One might ask how a learning system can
hope to do well in such a large space of input features. Dealing with
this many input features would indeed be infeasible if a Wawa agent
solely learned from labeled examples (Valiant, 1984). Fortunately, our
use of advice means that users indirectly select a subset of this huge
set of implicit input features. Namely, they indirectly select only those
features that involve the words appearing in their advice. The full set
of input features is still there, but the weights out of input features
used in advice have high values, while all other weights (i.e., absent
words) have values near zero. Thus, there is the potential for words
not mentioned in advice to impact a network’s output, after lots of
training.

We also deal with the enormous input space by only explicitly rep-
resenting what is on a page. That is, all zero-valued features, such
as anywhereOnPage(aardvark) = false, are only implicitly represented.
Fortunately, the nature of weighted sums in both the forward and
backward propagation phases of neural networks (Rumelhart et al.,
1986) means that zero-valued nodes have no impact and, hence, can be
ignored.

6 The current version of Wawa does not use any tfidf methods (Salton and
Buckley, 1988), due to the manner in which we compile advice into networks (see
Section 2.2).
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2.1.2. Complex Advice Constructs and Predicates
All features extracted from a page or a link constitute the basic con-
structs and predicates of the advice language.7 These basic constructs
and predicates can be combined via boolean operators (i.e., AND, OR,

NOT) to create complex predicates. Phrases (Croft et al., 1991), which
specify desired properties of consecutive words, play a central role in
creating more complex predicates out of the primitive features we ex-
tract from Web pages. Table III contains some of the more complicated
predicates that Wawa defines in terms of the basic input features.
The advice rules in this table correspond to instructions a user might
provide if he/she is interested in finding Joe Smith’s home-page.8

Table III. Sample Advice

(1) WHEN consecutiveInTitle(

anyOf(Joseph Joe J.)

Smith’s home page)

STRONGLY SUGGEST SHOWING PAGE

(2) WHEN hyperlinkEndsWith(

anyOf(Joseph Joe Smith jsmith) /

anyOf(Joseph Joe Smith jsmith

index home homepage my me)

anyOf(htm html / ))

STRONGLY SUGGEST FOLLOWING LINK

(3) WHEN (titleStartsWith(Joseph Joe J.)

and titleEndsWith(Smith))

SUGGEST SHOWING PAGE

(4) WHEN NOT(anywhereOnPage(Smith))

STRONGLY SUGGEST AVOID SHOWING PAGE

Rule 1 indicates that when the system is sliding the window across
the page’s title, it should look for any of the plausible variants of Joe
Smith’s first name, followed by his last name, followed by apostrophe
s, and then the phrase “home page.”

Rule 2 demonstrates another useful piece of advice for home-page
finding. This one gets compiled into the NthFromENDofHyperlink()
input features, which are true when the specified word is the Nth one

7 A predicate is a function that returns either true or false. We define a construct
as a function that returns numerical values.

8 The anyOf () construct used in the table is satisfied when any of the listed
words is present.
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from the end of the current hyperlink. (Note that Wawa treats the ’/’
in urls as a separate word.)

Rule 3 depicts our interest in pages that have titles starting with
any of the plausible variants of Joe Smith’s first name and end with his
last name.

Rule 4 shows that advice can also specify when not to follow a
link or show a page; negations and avoid instructions become negative
weights in the neural networks.

2.1.3. Advice Variables
Wawa’s advice language contains variables. These variables can range
over various kinds of things, like names, places, etc. Advice variables are
of particular relevance to Wawa’s IE system (see Section 5 for details).

To understand how variables are used in Wawa, assume that we
wish to use the system to create a home-page finder. We might wish
to give such a system some (very good) advice like: When the title of
the page contains the phrase “?FirstName ?LastName ’s Home Page”,
show me the page. The leading question marks (? ) indicate variables
that are bound upon receiving a request to find a specific person’s home
page. The use of variables allows the same advice to be applied to the
task of finding the home pages of any number of different people.

2.2. Compilation of Advice into Neural Networks

Advice is compiled into the ScorePage and ScoreLink networks
using a variant of the Kbann algorithm (Towell and Shavlik, 1994). The
mapping process (see Table IV) is analogous to compiling a traditional
program into machine code, but our system instead compiles advice
rules into an intermediate language expressed using neural networks.
This provides the important advantage that our “machine code” can
automatically be refined based on feedback provided by either the
user or the Web. Namely, we can apply the backpropagation algorithm
(Rumelhart et al., 1986) to learn from the training set.

We will illustrate the mapping of an advice rule with variables
through an example. Suppose we are given the following advice rule:
When the phrase “Professor ?FirstName ?LastName” is on the page,
show me the page. During advice compilation, Wawa maps the phrase
by centering it over the sliding window (Figure 8). In this example, our
phrase is a sequence of three words, so it maps to three positions in
the input units corresponding to the sliding window (with the variable
?FirstName associated with the center of the sliding window).

The variables in the input units are bound outside of the network
and the units are turned on only if there is a match between the
bindings and the words in the sliding window. So, if the bindings are:
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Table IV. General Algorithm for Mapping Advice into Neural Networks

(1) Construct an AND-OR dependency graph based on the advice rules.

(1.1) Each node in the AND-OR dependency graph becomes a unit in

the neural network.

(1.2) Insert additional units for OR nodes.

(3) Set the biases of each AND unit and the weights coming into the AND

unit such that the unit will get activated only when all of its inputs are true.

(4) Set the biases of each OR unit and the weights coming into the OR unit

such that the unit will get activated only when at least one of its inputs is true.

(5) Add links with low weights between otherwise unconnected nodes in adjacent

layers of the network to allow learning over the long run.

...

Left1inWindow
=

�Professor�

Is it true that the word
CenterInWindow is

bound to ?FirstName?

Is it true that the word
Right1inWindow is

bound to ?LastName?

...

2.5

5

5

5 Score
Page

Bias
 =

12.5

Figure 8. Mapping Advice into ScorePage Network

?FirstName ← “Joe”
?LastName ← “Smith”

The input unit “Is it true that the word CenterInWindow is bound to
?FirstName?” will be true (i.e., set to 1) only if the current word in the
center of the window is “Joe”. Similarly the input unit “Is it true that
the Right1inWindow is bound to ?LastName?” will be set to 1 only if
the current word immediately to the right of the center of the window
is “Smith”.
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Wawa then connects the referenced input units to a newly created
hidden unit, using weights of value 5.9 Next, the bias (i.e., the thresh-
old) of the new hidden unit is set such that all the required predicates
must be true in order for the weighted sum of its inputs to exceed the
bias and produce an activation of the sigmoidal hidden unit near 1.
Some additional zero-weighted links are also added to this new hidden
unit, to further allow subsequent learning, as is standard in Kbann.

Finally, Wawa links the hidden unit into the output unit with a
weight determined by the strength given in the rule’s action. Wawa

interprets the phrase “suggest showing page” as “moderately increase
the page’s score.”

The mapping of advice rules without variables follows the same
process except that there is no variable-binding step.

2.3. Scoring Arbitrary Long Pages with Fixed-Sized

Neural Networks

Wawa’s use of neural networks means that we need a mechanism for
processing arbitrarily long Web pages with fixed-sized input vectors.
Our sliding window assists us in this problem. Recall that the sliding
window moves across a page one word at a time. There are, however,
some HTML tags like 〈P〉, 〈/P〉, 〈BR〉, and 〈HR〉 that act as “window
breakers.” Window breakers do not allow the sliding window to cross
over them. When a window breaker is encountered, the unused positions
in the sliding window are left unfilled.

The score of a page is computed in two stages. In stage one, we
set the input units that represent global features of the page, such as
the number of words on the page. Then, we slide our window (hence,
the name sliding window) across the page. For each window position,
we first set the values for the input units representing positions in the
window (e.g., word at center of window) and then calculate the values
for all hidden units (HUs) that are directly connected to input units. We
call these HUs “level-one” HUs. In other words, we perform forward-
propagation from the input units to all level-one HUs. This process
gives us a list of values for all level-one HUs at each position of the
sliding window. For each level-one HU, we pick the best (i.e. highest)
value to represent its activation.

In stage two, the best values of level-one HUs and the values of input
units for global features are used to compute the values for all other
HUs and the output unit. That is, we perform forward-propagation

9 The initial value of the weights and the bias (i.e., “thresh-
old”) on an AND unit must satisfy the following equation: bias =
initial weight(#unnegated antecedents − 0.5).
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from the level-one HUs and the “global” input units to the output
unit (which obviously will evaluate the values of all other HUs in the
process). The value produced by the ScorePage network in the second
stage is returned as the page’s score.

Note that we scan the sliding window only once across the page,
which occurs in stage one. By forward-propagating only to level-one
HUs in the first stage, we are effectively trying to get the values of
our complex features. In stage two, we use these values and the global
input units’ values to find the score of the page. For example, the
two-stage process allows us to capture advice such as when the phrase
“Milwaukee Brewers” and the phrase “Chicago Cubs” are on the page
then show page. If we only had a one-stage process, we would not be
able to correctly capture this advice rule because both phrases cannot
be in the sliding window simultaneously. Figure 9 illustrates this point.

The value of a hyperlink is computed similarly, except that the
ScoreLink network is used and the sliding window is slid over the
hypertext associated with that hyperlink and the 15 words surrounding
the hypertext on both sides.

3. Using Wawa to Retrieve Information

Information retrieval (IR) systems take as input a set of documents
(a.k.a. the corpus) and a query (usually consisting of a bunch of key-
words or keyphrases). The ultimate goal of an IR system is to return
only the documents that are relevant to the given query.

This section describes our design for creating specialized/personalized
intelligent agents for retrieving information from the Web.

3.1. IR System Description

Table V provides a high-level description of Wawa’s IR system, a.k.a.
Wawa-IR. Wawa-IR is a general search engine agent that through
training can be specialized/personalized. First, its two neural networks
need to be created using Section 2’s techniques (or read from disk
should this be a resumption of a previous session).

The basic operation of Wawa-IR is heuristic search, with our Score-

Link network acting as the heuristic function. Rather than solely find-
ing one goal node, we collect the 100 pages that ScorePage rates
highest. The user can choose to seed the queue of pages to fetch in
two ways: either by specifying a set of starting urls or by providing
a simple query that Wawa-IR converts into “query” urls that are
sent to a user-chosen subset of selectable search engine sites (currently
AltaVista, Excite, InfoSeek, Lycos, and Yahoo).
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 =
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Score
Page

2.5

5

5

Level-One Hidden Unit

Highest activation is produced by the 8th
and 9th words on the page which correspond
to Chicago and Cubs, respectively.

Level-One Hidden Unit

Highest activation is produced by the 4th
and 5th words on the page which correspond
to Milwaukee and Brewers, respectively.

Level-Two Hidden Unit

Advice
when the phrase �Milwaukee Brewers� and
the phrase �Chicago Cubs� are on a page
then show that page

Sample Web Page

Brewers vs. Cubs

Milwaukee Brewers will
play Chicago Cubs on
Friday September 17 at
Wrigley Field.
�

Figure 9. Scoring a Page with a Sliding Window. In stage one, the sliding window
is scanned through the page to determine the highest values of the level-one hidden
units. In stage two, the highest activations of the level-one hidden units are used
to score the level-two hidden unit and the output unit, which produces the overall
score of the page.

Although not mentioned in Table V, the user may also specify values
for the following parameters:

− an upper bound on the distance the agent can wander from the
initial urls (default value is 10)
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Table V. Wawa’s Information Retrieval Algorithm

Unless they have been saved to disk in a previous session,

create the ScoreLink and ScorePage neural networks

by reading the user’s initial advice (if any).

Either (a) start by adding user-provided urls to the search

queue; or (b) initialize the search queue with urls that will

query the user’s chosen set of Web search engine sites.

Execute the following concurrent processes.

Independent Process #1

While the search queue is not empty nor the maximum number

of urls visited,

Let URLtoV isit = pop(search queue).

Fetch URLtoV isit.

Evaluate URLtoV isit using ScorePage network.

If score is high enough, insert URLtoV isit

into the sorted list of best pages found.

Use the score of URLtoV isit to improve

the predictions of the ScoreLink network

(see Section 3.1.2 for details).

Evaluate the hyperlinks in URLtoV isit

using ScoreLink network (however, only

score those links that have not yet been

followed this session).

Insert these new urls into the (sorted) search

queue if they fit within its max-length bound.

Independent Process #2

Whenever the user provides additional advice,

insert it into the appropriate neural network.

Independent Process #3

Whenever the person rates a fetched page, use this rating to

create a training example for the ScorePage neural network.
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− minimum score a hyperlink must receive in order to be put in the
search queue (default value is 0.6 on a scale of [0,1])

− maximum number of hyperlinks to add from one page (default
value is 50)

− maximum kilobytes to read from each page (default value is 100
kilobytes)

− maximum retrieval time per page (default value is 90 seconds).

3.1.1. Training Wawa’s Two Neural Networks for IR
There are three ways to train Wawa-IR’s two neural networks: (i)
system-generated training examples, (ii) advice from the user, and (iii)
user-generated training examples.

Before fetching a page P , Wawa-IR predicts the value of retrieving
P . This “predicted” value of P is based on the text surrounding the hy-
perlink to P and some global information on the “referring” page (e.g.,
the title, the url, etc). After fetching and analyzing the actual text of
P , Wawa-IR re-estimates the value of P . Any differences between the
“before” and “after” estimates of P ’s score constitute an error that can
be used by backpropagation (Rumelhart et al., 1986) to improve the
ScoreLink neural network.10 The details of this process are further
described in Section 3.1.2.

In addition to the above system-internal method of automatically
creating training examples, the user can improve the ScorePage and
ScoreLink neural networks in two ways. One, the user can provide
additional advice. Observing the agent’s behavior is likely to invoke
thoughts of good additional instructions (as has repeatedly happened
to us in our case studies). A Wawa-IR agent can accept new advice and
augment its neural networks at any time. It simply adds to a network
additional hidden units that represent the compiled advice, a technique
whose effectiveness was demonstrated on several tasks (Maclin and
Shavlik, 1996). Providing additional hints can rapidly and drastically
improve the performance of a Wawa-IR agent, provided the advice
is relevant. Maclin and Shavlik (1996) showed that their algorithm is
robust when given advice incrementally. When “bad” advice was given,
the agent was able to quickly learn to ignore it.

Although more tedious, the user can also rate pages as a mechanism
for providing training examples for use by backpropagation. This can

10 This type of training is not performed on the pages that constitute the initial
search queue.
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be useful when the user is unable to articulate why the agent is miss-
coring pages and links. This standard learning-from-labeled-examples
methodology has been previously investigated by other researchers,
e.g., Pazzani et al. (1996), and we discuss this aspect of Wawa-IR

in Section 4. However, we conjecture that most of the improvement to
Wawa-IR’s neural networks, especially to ScorePage, will result from
users providing advice. In our personal experience, it is easy to think
of simple advice that would require a large number of labeled examples
in order to learn purely inductively. In other words, one advice rule
typically covers a large number of labeled examples. For example, a
rule such as when (“404 file not found”) then avoid showing page will
cover all pages that contain the phrase “404 file not found”.

3.1.2. Deriving Training Examples for ScoreLink

We use temporal difference methods (Sutton, 1988) to automatically
train ScoreLink. Wawa-IR employs a form of Q-learning (Watkins,
1989), which is a type of reinforcement learning (Sutton and Barto,
1998). Recall that the difference between Wawa-IR’s prediction of the
link’s value before fetching a url and its new estimate serves as an
error that backpropagation tries to reduce. Whenever Wawa-IR has
collected all the necessary information to re-estimate a link’s value, it
invokes backpropagation. In addition, it periodically reuses these train-
ing examples several times to refine the network. Notice that Wawa-IR

automatically constructs these training examples without direct user
intervention, as is typical in reinforcement learning.

As is also typical in reinforcement learning, the value of an action
(following a link in this case) is not solely determined by the immediate
result of the action (the value of the page retrieved minus any retrieval-
time penalty). Rather, we wish to also reward links that lead to pages
with additional good links on them. Figure 10 and Equation 1 illustrate
this point.

Page E
Best scoring
link from C

Page A Page B
Link score

from A to B

Second best
scoring link
from B

Best s
coring

link fro
m B

Page D

Page C

Figure 10. Reestimating the Value of a Link
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Equation 1: New Estimate of the Link A→ B under Best-First Search

if ScoreLink(B → C) > 0 then

new estimate of ScoreLink(A→ B)

= fetchPenalty(B) + ScorePage(B)

+ γ(fetchPenalty(C) + ScorePage(C))

+ γ2MAX(0, ScoreLink(B → D),

ScoreLink(C → E))

else

new estimate of ScoreLink(A→ B)

= fetchPenalty(B) + ScorePage(B)

We define the task of the ScoreLink function to be estimating
the discounted11 sum of the scores of the pages fetched; assuming that
the system started its best-first search at the page referred to by the
hyperlink (plus the cost of fetching pages). In other words, if in Fig-
ure 10, Page B were the root of a best-first search, Wawa-IR would
next visit C and then either D or E, depending on which referring
hyperlink scored higher. Hence, the first few terms of the sum would
be the value of root page B, plus the value of C discounted by one
time step. We then recursively estimate the remainder of this sum by
using the higher score of the two urls that would be at the front of
the search queue (discounting their predicted value for being two time
steps in the future).

Of course, since we are using best-first search, rather than visiting
C after moving from A to B, Wawa-IR may have a more promising
url in its search queue. In order to keep our calculation of the re-
estimated ScoreLink function localized, we largely ignore this aspect
of the system’s behavior. We only partially capture this phenomenon
by adjusting the calculation described above by assuming that links
with negative predicted value are not followed.12

The above scenario (of localizing the re-estimation of ScoreLink

function) does not apply when an url cannot be fetched (i.e., a “dead
link”). Upon such an occurrence, ScoreLink receives a large penalty.

The definition of our “Q function” (see Equation 1) represent a
best-first, beam-search strategy which is different than the traditional
definition (see Equation 2), which essentially assumes hill climbing.

11 γ=0.95 is the default discounted value.
12

Wawa-IR’s networks are able to produce negative values because their output
units simply output their weighted sum of inputs, i.e., they are linear units. Note
that the hidden units in Wawa-IR’s networks use sigmoidal activation functions.
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Equation 2: New Estimate of the Link A→ B under
Hill-Climbing Search

if ScoreLink(B → C) > 0 then

new estimate of ScoreLink(A→ B)

= fetchPenalty(B) + ScorePage(B)

+ γ(fetchPenalty(C) + ScorePage(C))

+ γ2MAX(0, ScoreLink(C → E))

else

new estimate of ScoreLink(A→ B)

= fetchPenalty(B) + ScorePage(B)

We will use Figure 10 to illustrate the difference between our ap-
proach and the traditional way of defining the Q function. In the
traditional (hill climbing) approach, since B → D was the second best-
scoring link from B, its value is not reconsidered in the calculation of the
score of A→ B. This search strategy does not seem optimal for finding
the most relevant pages on the Web. Instead, we should always traverse
the link with the highest-score from our set of encountered links. For
example, if we have encountered the links B → D and C → E, we
should follow the link that has the highest score and not discard B → D

because it was seen at a previous step and it did not have the highest
value at that step.

3.2. Discussion of Wawa for Information Retrieval

The main advantage of Wawa’s IR system is its use of theory re-
finement. That is, we utilize the user’s prior knowledge, which need
not be perfectly correct. Wawa-IR is a learning system, so it is able
to correct user’s instructions. In this manner, we are able to rapidly
transform Wawa-IR, which is a general search engine, into a special-
ized/personalized IR agent. Section 4 describes the rapid creation of an
effective “home-page finder” agent from the generic Wawa-IR system.

We also allow the user to continually provide advice to the agent.
This characteristic of Wawa-IR enables the user to observe an agent
and guide its behavior (whenever the user feels that Wawa-IR agent’s
user model is incorrect). Finally, by learning the ScoreLink function, a
Wawa-IR agent is able to more effectively search the Web (by learning
about relevant links) and automatically create its own training exam-
ples via reinforcement learning (which in turn improves the accuracy
of the agent with respect to the relevancy of the pages returned).
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One cost of using our approach is that we fetch and analyze many
Web pages. We have not focused on speed in our case study, ignoring
such questions as how well we can do fetching only the first N characters
of Web pages, only using the capsule summaries search engines return,
etc. Making Wawa-IR faster is part of our future work.

Due to our use of artificial neural networks, it is difficult to under-
stand what was learned (Craven and Shavlik, 1996). It would be nice if
a Wawa-IR agent could explain its reasoning to the user. In an attempt
to alleviate this problem, we have built a “visualizer” for each neural
network in Wawa-IR. The visualizer draws the neural network and
graphically displays information on all nodes and links in the network.

4. An Experimental Study of Wawa’s IR System

This section describes a case study done to evaluate Wawa’s IR system.
We built a home-page finder agent by using Wawa’s advice language.
Appendix A presents the complete advice used for the home-page finder
agent. The results of our empirical study illustrate that we can build
an effective agent for a web-based task quickly.

4.1. An Instructable and Adaptive Home-Page Finder

We chose the task of building a home-page finder because of an ex-
isting system named Ahoy! (Shakes et al., 1997), which provides a
valuable benchmark. Ahoy! uses a technique called Dynamic Reference
Sifting, which filters the output of several Web indices and generates
new guesses for urls when no promising candidates are found.

We wrote a simple interface layered on top of Wawa-IR (see Fig-
ure 11) that asks for whatever relevant information is known about
the person whose home page is being sought: first name, possible nick-
names, middle name or initial, last name, miscellaneous phrases, and
a partial url (e.g., edu or ibm.com). We then wrote a small program
that reads these fields and creates advice that is sent to Wawa-IR. We
also wrote 76 general advice rules related to home-page finding, many of
which are slight variants of others (e.g., with and without middle names
or initials). Specializing Wawa-IR for this task and creating the initial
general advice took only one day, plus we spent parts of another 2-3
days tinkering with the advice using 100 examples of a “training set”
that we describe below. This step allowed us to manually refine our
advice – a process, which we expect will be typical of future users of
Wawa-IR.

To learn a general concept about home-page finding, we use our
advice language’s variable binding mechanism. Our home-page finder
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Altavista, Excite, Infoseek, Lycos, Yahoo

Figure 11. Interface of Wawa-IR’s Home-Page Finder

accepts instructions that certain words should be bound to variables
associated with first names, last names, etc. We wrote general-purpose
advice about home-page finding that uses these variables. Hence, rule
1 in Table III is actually written using advice variables (as illustrated
in Figure 8) and not the names of specific people.

Currently, Wawa-IR can only refer to advice variables when they
appear in the sliding window. This is a technical limitation which we
will address in the future. Advice that refers to other aspects of a Web
page needs to be specially created and subsequently retracted for each
request to find a specific person’s home page.13 The number of these
specific-person rules that our home-page finder creates depends on how
much information is provided about the target person. For the experi-
ments below, we only provided information about people’s names. This
leads to the generation of one to two dozen rules, depending on whether
or not middle names or initials are provided.

13 Users can retract advice from Wawa-IR’s neural networks. To retract an advice
rule, Wawa-IR removes the network nodes and links associated with that rule.
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4.2. Motivation and Methodology

We randomly selected 215 people from Aha’s list of machine learning
(ML) and case-based reasoning (CBR) researchers (www.aic.nrl.navy.mil/
∼aha/people.html) to run experiments that evaluate Wawa-IR. To re-
duce the computational load of our experiments, we limited this to
people in the United States. Out of the 215 people selected, we ran-
domly picked 115 of them to train Wawa-IR and used the remaining
100 as our test set.14 The “training” phase has two steps. In step
(1), we manually run the system on 100 people randomly picked from
the training set (we will refer to this set as the advice-training set),
refining our advice by hand before “freezing” the advice-giving phase.
In step (2), we split the remaining 15 people into a set of 10 people for
backpropagation training (we will refer to this set as the training set)
and a set consisting of 5 people for tuning (we will refer to this set as
the tuning set).

We do not perform backpropagation-based training during the first
step of the advice-training phase, since we want to see how accurate we
can make our advice without any machine learning. The ScorePage

function is trained via backpropagation using the training set. The
tuning set is used to avoid overfitting the training examples.15 For refin-
ing the ScoreLink function, we let Wawa-IR automatically generate
training examples for each person via temporal-difference learning (see
Section 3.1.2). Finally, we evaluate our “trained” home-page finder on
the test set. During the testing phase, no learning takes place.

We consider one person as one training example, even though for
each person we rate several pages. Hence, the actual number of different
examples processed by backpropagation is quite larger than the size
of our training set (i.e., by a factor of 10). Table VI describes our
technique.

To do neural-network learning, we need to associate a desired score
to each page we encounter. We will then be able to compare this score
to the output of the ScorePage network for this page and finally
perform error backpropagation (Rumelhart et al., 1986). We use a
simple heuristic for getting the desired score of a page. We define a
target page to be the actual home page of a person. Also, recall that
the score of a page is a real number in the interval [-10.0, 10.0]. Our
heuristic is as follows:

− If the page encountered is the target page, its desired score is 9.5.
14 We follow standard machine learning methodology in dividing the data set into

two subsets, where one subset is used for training and the other for testing purposes.
15 When a network is overfit, it performs very well on training data but poorly on

new data.
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Table VI. The Supervised-Learning Technique Used in Training ScorePage

Network. See text for explanation of desired output values used during training.

While the error on the tuning set is not increasing do the following:

For each person in the training set do the following 10 times:

If the person’s home page was found,

then train the ScorePage network on the pages that

scored higher than the home page, the actual home page, and

the immediate five pages that scored below the actual home page.

Otherwise, train the network on the 5 highest scoring pages.

Calculate the error on the tuning set.

− If the page encountered has the same host as the target page, its
desired score is 7.0.

− Otherwise, the desired score of the page encountered is -1.0.

For example, suppose the target person is “Alan Turing” and the
target page is http://www.turing.org.uk/turing/ (i.e., his home-
page). Upon encountering a page at http://www.turing.org.uk/, we
will set its desired score to 7.0 since that page has the same host as
Alan Turing’s home page.

To judge Wawa-IR’s performance in the task of finding home-
pages, we provide it with the advice discussed above and presented
in Appendix A. It is important to note that for this experiment we
intentionally do not provide advice that is specific to ML, CBR, AI
research, etc. By doing this, we are able to build a generalized home-
page finder and not one that specializes in finding ML, CBR, and AI
researchers. Wawa-IR has several options which effect its performance,
both in the amount of execution time and the accuracy of its results. We
choose small numbers for our parameters, using 100 for the maximum
number of pages fetched, and 3 as the maximum distance to travel away
from the pages returned by the search engines.

We start Wawa-IR by providing it the person’s name as given on
Aha’s Web page, though we partially standardize our examples by
using all common variants of first names. (e.g., “Joseph” and “Joe”).
Wawa-IR then converts the name into an initial query (see the next
paragraph,) which is sent to the five search engines mentioned earlier
(i.e., AltaVista, Excite, InfoSeek, Lycos, and Yahoo).

We compare the performance of Wawa-IR with the performances of
Ahoy! and HotBot, a search engine not used by Wawa-IR and the
one that performed best in the home-page experiments of Shakes et al.
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(1997).16 We provide the names in our test set to Ahoy! via its Web
interface. Ahoy! uses MetaCrawler as its search engine, which queries
nine search engines as opposed to Wawa-IR, which queries only five
search engines. We run HotBot under two different conditions. The
first setting performs a specialized HotBot search for people; we use
the name given on Aha’s page for these queries. In the second variant,
we provide HotBot with a general-purpose disjunctive query, which
contains the person’s last name as a required word, and all the likely
variants of the person’s first name. The latter is the same query that
Wawa-IR initially sends to its five search engines. For our experiments,
we only look at the first 100 pages that HotBot returns and assume
that few people would look further into the results returned by a search
engine.

Since people often have different links to their home pages, rather
than comparing urls to those provided on Aha’s page, we instead do an
exact comparison on the contents of fetched pages to the contents of the
page linked to Aha’s site. Also, when running Wawa-IR, we never fetch
any urls whose server matched that of Aha’s page, thereby preventing
visiting Aha’s site.

4.3. Results and Discussion

Table VII lists the best performance of Wawa-IR’s home-page finder
and the results from Ahoy! and HotBot. SL and RL are used to
refer to supervised and reinforcement learning, respectively. Besides
reporting the percentage of the 100 test set home-pages found, we
report the average ordinal position (i.e., rank) given that a page is
found, since Wawa-IR, Ahoy!, and HotBot all return sorted lists.

These results provide strong evidence that the version of Wawa-IR,
specialized into a home-page finder by adding simple advice, produces a
better home-page finder than does the proprietary people-finder created
by HotBot or by Ahoy!. The difference (in percentage of home-pages
found) between Wawa-IR and HotBot in this experiment is statis-
tically significant at the 99% confidence level. The difference between
Wawa-IR and Ahoy! is statistically significant at the 90% confidence
level. Recall that we specialize Wawa-IR’s generic IR system for this
task in only a few days.

We next investigate the home-page finder’s performance without
supervised and/or reinforcement learning. The motivation is to see if
we gain performance through learning. We also remove 28 of our initial

16 Google was not used in this study because it did not yet exist when we ran our
experiments in 1998. See Eliassi-Rad (2001) for details on experiments with Google
and other aspects of Wawa-IR.
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Table VII. Empirical Results: Wawa-IR vs Ahoy! and HotBot (SL = Supervised
Learning and RL = Reinforcement Learning)

System % Found Mean Rank

Given Page Found

Wawa-IR with SL, RL, and 76 advice rules 92% 1.3

Ahoy! 79% 1.4

HotBot person search 66% 12.0

HotBot general search 44% 15.4

76 rules to see how much our performance degrades with less advice.
The 28 rules removed refer to words one might find in a home page that
are not the person’s name (such as “resume”, “cv”, “phone”, “address”,
“email”, etc). Table VIII reports the performance of Wawa-IR when
its home-page finder is trained with less than 76 advice rules and/or is
not trained with supervised or reinforcement learning.

Table VIII. Empirical Results on Different Versions of Wawa-IR’s
Home-Page Finder (SL = Supervised Learning and RL = Reinforcement
Learning)

SL RL # of Advice Rules % Found Mean Rank

Given Page Found

� �
76 92% 1.3

�
76 91% 1.2

76 90% 1.6

� �
48 89% 1.2

�
48 85% 1.4

48 83% 1.3

The differences between the Wawa-IR runs containing 76 advice
rules with learning and without learning are not statistically significant.
When we reduce the number of advice rules, Wawa-IR’s performance
deteriorates. The results show that Wawa-IR is able to learn and in-
crease its accuracy by 6 percentage points; however, the difference is not
statistically significant at the 90% confidence level. It is not surprising
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that Wawa-IR is not able to reach its best performance, since we do not
increase the size of our training data to compensate for the reduction
in advice rules. Nonetheless, even with 48 rules, the difference between
Wawa-IR and HotBot (in this experiment) is statistically significant
at the 95% confidence level.

In the cases where the target page for a specific person is found, the
mean rank of the target page are similar in all runs. Recall that the
mean rank of the target page refers to its ordinal position in the list of
pages returned to the user. The mean rank is typically lower with the
runs that included some training since without training the target page
might not get as high of a score as it would with a trained network.

Assuming that Wawa-IR finds a home page, Table IX lists the
average number of pages fetched before the actual home page.

Table IX. Average Number of Pages Fetched by Wawa-IR Before the Target Home
Page (SL = Supervised Learning and RL = Reinforcement Learning)

SL RL # of Advice Rules Avg Pages Fetched Before Home Page

� �
76 22

�
76 23

76 31

� �
48 15

�
48 17

48 24

Learning reduces the number of pages fetched before the target page
is found. This is quite intuitive. With more learning, Wawa-IR is able
to classify pages better and find the target page quicker. However, in
Table IX, the average number of pages fetched (before the target page
is found) is lower with 48 advice rules than with 76 advice rules. For
example, with SL, RL, and 76 rules, the average is 22. With SL, RL,
and 48 rules, the average is 15. At first glance, this might not seem
intuitive. The reason for this discrepancy can be found in the 28 advice
rules that we take out. Recall that we remove advice rules which refer
to words one might find in a home page that are not the person’s name
(such as “resume”, “cv”, “phone”, “address”, “email”, etc). With these
rules, the ScorePage and ScoreLink networks rate more pages and
links as “promising” even though they are not home pages. Hence, more
pages are fetched and processed before the target page is found.
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5. Using Wawa to Extract Information

Information extraction (IE) is the process of pulling desired pieces
of information out of a document, such as the price of a product or
the author of an article. Unfortunately, building an IE system requires
either a large number of annotated examples17 or an expert to provide
sufficient (and correct) knowledge about the domain of interest. Both
of these requirements make it time-consuming and difficult to build an
IE system.

Similar to the IR case, we use Wawa’s theory-refinement mechanism
to build an IE system, namely Wawa-IE. By using theory refinement,
we are able to strike a balance between needing a large number of
labeled examples and having a complete (and correct) set of domain
knowledge. Wawa-IE also takes advantage of the intuition that IR and
IE are nearly inverse problems of each other. An IR system is given a
set of keywords and is asked to rate the relevance of documents. An IE
system is given a set of documents and is asked to fill in the slots in a
given template. We explore how what is essentially an IR system can
be used to address the IE task.

Building an IR agent for the IE task is straightforward in Wawa.
The user provides a set of advice rules to Wawa-IE, which describe
how the system should score possible bindings to the slots being filled
during the IE process. We will call the names of the slots to be filled
variables, and use “binding a variable” as a synonym for “filling a slot.”
These initial advice are then “compiled” into the ScorePage network,
which rates the goodness of a document in the context of the given
variable bindings. Recall that ScorePage is a supervised learner. It
learns by being trained on user-provided instructions and user-labeled
pages. The ScoreLink network is not used in Wawa-IE since we are
only interested in extracting pieces of text from pages and not how
they are linked together.

Like its Wawa-IR agents, Wawa-IE agents do not blindly follow
user’s advice, but instead the agents refine the advice based on the
training examples. The use of user-provided advice typically leads to
higher accuracy from fewer user-provided training examples (Eliassi-
Rad and Shavlik, 2001b; Eliassi-Rad, 2001).

Wawa-IE uses a generate-and-test approach to extract information.
In the generation step, the user first specifies the slots to be filled
(along with their part-of-speech tags or parse structures), and Wawa-

IE generates a large list of candidates from the document. In the test
step, Wawa-IE scores each possible candidate. The candidates that

17 By annotated examples, we mean the result of the tedious process of reading
the training documents and tagging each extraction by hand.
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produce scores that are greater than a system-defined threshold are
returned as the extracted information.

As already mentioned in Section 2.1.3, of particular relevance to
our approach is the fact that Wawa-IE’s advice language contains
variables. To understand how Wawa-IE uses variables, assume that
we want to extract speaker names from a collection of seminar an-
nouncements. We might wish to give such a system some (good) advice
like: If the page contains the phrase “Speaker . ?FirstName/NNP ?Last-
Name/NNP”, then score this page highly. The leading question marks
indicate slots to be filled, and ‘.’ matches any single word. Also, recall
that the advice language allows the user to specify the required part of
speech for a slot (e.g., NNP denotes a proper noun). The precondition
of our example rule matches phrases like “Speaker is Joe Smith” or
“Speaker : is Jane Doe”.

Figure 12 illustrates an example of extracting speaker names from
a seminar announcement using Wawa-IE. The announcement is fed to
the candidate generator and selector, which produces a list of speaker
candidates. Each entry in the candidates list is then bound to the vari-
ables in advice.18 The output of the (trained) network is a real number
(in the interval of -10.0 to 10.0) that represents our confidence in the
speaker candidate being a correct slot filler for the given document.

Candidate
Generator
& Selector

Seminar Announcement:
Don�t miss Jane Doe &
John Smith�s talk!  Doe
& Smith will talk about
the Turing tarpit.  See
you at 4pm in 2310 CS
Building.

score of �Jane Doe� = 9.0

SpeakerExtractor

 ?Speaker
Speaker Candidates:

Jane Doe
John Smith

Doe
Smith

...

Generation Step

Test Step

Figure 12. Extraction of speaker names with Wawa-IE

18 The variable ?Speaker is a record that holds multiple variables such as
?FirstName and ?LastName.
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5.1. IE System Description

Wawa-IE uses a candidate generator and selector algorithm along with
the ScorePage network to build IE agents. We require the user to
provide the following information to Wawa-IE:

1. The set of on-line documents from which the information is to be
extracted.

2. The extraction slots like speaker names, etc.

3. The possible part-of-speech (POS) tags (e.g., noun, proper noun,
verb, etc) or parse structures (e.g., noun phrase, verb phrase, etc)
for each extraction slot.

4. A set of advice rules which refer to the extraction slots as variables.

5. A set of annotated examples, i.e., training documents in which
extraction slots have been marked.

Actually, the user does not have to explicitly provide the extraction
slots and their POS tags separately from advice since they can be
extracted from the advice rules. For example, in our case study, we
want to extract speaker names from a set of seminar announcements.
So, we give Wawa-IE the following:

1. The collection of CMU’s seminar-announcements.

2. The slots to extract are the speaker names.

3. A speaker name is a phrase containing at least one word and at
most four words. Each word in the phrase must be tagged as either
a noun or a proper noun.

4. A set of advice rules which refer to the speaker name as a variable.
For example, one of our advice rules is as follows:

when the phrase “?FirstName/NNP ?LastName/NNP ’s talk”
appears in the document then strongly suggest showing page.

The variables ?FirstName and ?LastName represent the speaker
name. The “/NNP” trailing the variables indicates the required
POS tag of the variables (“NNP” refers to a proper noun). The
precondition of this rule matches phrases such as “John Smith’s
talk”. The action indicates that a document is very likely to be a
seminar announcement if it satisfies the precondition. The complete
set of rules used in the seminar-announcement domain are listed in
Appendix B.
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5. The set of word(s) marked as speaker names in the training set
of the seminar-announcement domain. For example, the phrases
“Jane Doe” and “John Smith” would be marked as speaker names
in the seminar announcement depicted in Figure 12.

During training, Wawa-IE first compiles the user’s advice into the
ScorePage network. Wawa-IE next uses what we call an individual-
slot candidate generator and a combination-slots candidate selector to
create training examples for the ScorePage network. The same candi-
date generation and selection process is used after training to generate
the possible extractions that the trained network19 scores.

During testing, given a document from which we wish to extract
information, we generate a large number of candidate bindings, and
then in turn we provide each set of bindings to the trained network.
The neural network produces a numeric output for each set of bindings.
Finally, our extraction process returns the bindings that are greater
than a system-defined threshold.

For example, in Figure 12, we showed the following seminar an-
nouncement:

Don’t miss Jane Doe and John Smith’s talk! Doe and Smith will
talk about Turing tarpit. See you at 4pm in 2310 CS Building.

The extracted list of candidates for this announcement is “Jane”, “Doe”,
“Jane Doe”, “John”, “Smith”, “John Smith”, “talk”, “tarpit”, “CS”,
“Building”, and “CS Building”. These words are tagged as nouns or
proper nouns. The word “Turing” is not included in this list since it
gets incorrectly tagged as a verb (in present participle form).

Suppose we had “compiled” the following rule (described earlier in
this section) to the ScorePage network:

when the phrase “?FirstName/NNP ?LastName/NNP ’s talk”
appears in the document then strongly suggest showing page

Also assume that we had trained the network (the training process is
described in Section 5.1.2). We then go through each candidate slot
filler and bind them to the appropriate variable. If a candidate filler
only has one word, we bound it to the variable ?LastName. For example,
“Jane” gets bound to ?LastName. If a candidate filler has two words, we
bound them to the variables ?FirstName and ?LastName, respectively.
For example, in the phrase “Jane Doe”, the word “Jane” gets bound

19 We use the terms “trained network” and “trained agent” interchangeably
throughout Sections 5 and 6, since the network represents the agent’s knowledge-base
(i.e., its brain).
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to ?FirstName and the word “Doe” gets bound to ?LastName. Finally,
for each candidate binding, we calculate the score of the ScorePage

network (which resides in the agent’s knowledge-base) on our seminar
announcement. In this case, the network will produce a high score for
the candidate “John Smith” since it satisfies the precondition of our
rule (assuming, of course, that the training of the network did not
significantly alter our rule).

In Section 6, we used four variables to learn about speaker names
and four variables to learn about location names. The four variables
for speaker names refer to first names, nicknames, middle names (or
initials), and last names, respectively. The four variables for location
refer to a cardinal number and three other variables representing the
non-numerical portion of a location. See Section 6 for some sample rules
used in extracting speaker names and location names. The complete
sets of rules for both extraction slots are in Appendix B. In the next few
sections, we describe the candidate generator and selector, the training
phase, and the testing phase in more detail.

5.1.1. Candidate Generation and Selection
The first step Wawa-IE takes (both during training and after) is to
generate all possible individual fillers for each slot on a given document.
These candidate fillers can be individual words or phrases. Recall that
in Wawa-IE an extraction slot is represented by user-provided vari-
ables in the initial advice. Moreover, the user can tag all or any one of
the variables representing parts of an extraction slot. Wawa-IE uses
the slot’s tag information along with either a part-of-speech (POS)
tagger (Brill, 1994) or a sentence analyzer (Riloff, 1998) to collect the
slot’s candidate fillers.

For cases where the user-specified POS tags20 for a slot (i.e., noun,
proper noun, verb, etc), we first annotate each word in a document
with its POS using Brill’s tagger (1994). Then, for each slot, we collect
every word in the document that has the same POS tag as the tag
assigned to this variable somewhere in the IE task’s advice.

If the user indicated a parse structure for a slot (i.e., noun phrase,
verb phrase, etc), then we use Sundance (Riloff, 1998), which builds a
shallow parse tree by segmenting sentences into noun, verb, or prepo-
sitional phrases. We then collect those phrases that match the parse
structure for the extraction slot and also generate all possible sub-
phrases of consecutive words (since Sundance only does shallow pars-
ing).

20 The POS tags provided by the user for an extraction slot can be any POS tag
defined in Brill’s tagger.
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For example, the user specifies that the extraction slot should con-
tain either a word tagged as a proper noun or two consecutive words
both tagged as proper nouns. After using the Brill’s tagger on the user-
provided document, we then collect all the words that were tagged as
proper nouns, in addition to every sequence of two words that were
both tagged as proper nouns. So, if the phrase “Jane Doe” appeared
on the document and the tagger marked both words as proper nouns,
we would collect “Jane”, “Doe”, and “Jane Doe”.

At this point we typically have lengthy lists of candidate fillers for
each slot, and we need to focus on selecting good combinations that fill
all the slots. Obviously, this process can be combinatorially demanding.
In Eliassi-Rad and Shavlik (2001), we present and evaluate several
heuristic methods for choosing good combinations.

We do not need to generate combinations of fillers when the IE
task contains a template with only one slot (as is the case for the
experiments presented in Section 6). However, it is desirable to trim
the list of candidate fillers during the training process because training
is done iteratively. Therefore, we heuristically select from a slot’s list
of training candidate fillers21 by scoring each candidate filler using
the untrained ScorePage network22 and returning the highest scoring
candidates plus some randomly sampled candidates. This process of
picking informative candidate fillers from the training data has some
beneficial side effects which is described in more detail in the next
section.

5.1.2. Training an IE Agent
Figure 13 shows the process of building a trained IE agent. Since
(usually) only positive training examples are provided in IE domains,
we first need to generate some negative training examples. To this
end, we use the candidate generator and selector described above.
The list of negative training examples collected by the selector con-
tains informative negative examples (i.e., near misses) because the
heuristic search used in the selector scores the training documents on
the untrained ScorePage network. That is, the (user-provided) prior
knowledge scored these “near miss” extractions highly (as if they were
true extractions).

After the N highest-scoring negative examples are collected, we train
the ScorePage neural network using these negative examples, as well
as a small number of randomly selected negative examples, and all the
provided positive examples. By training the network to recognize (i.e.,

21 The candidate fillers associated with the training set.
22 By untrained, we mean a network containing only compiled (initial) advice and

without any further training via backpropagation and labeled examples.
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produce a high output score for) a correct extraction in the context of
the document as a whole (see Section 2.3), we are able to take advantage
of the global layout of the information available in the documents of
interest.

Training
Set

Initial
Advice

Individual-Slot
Candidate Generator
& Combination-Slots
Candidate Selector

Slots & Their
POS Tags or

Parse Structures

Lists of Candidate
Combination-Slots

Extractions

ScorePage

IE Agent

Trained network is
 placed into agent�s

knowledge-base.

Figure 13. Building a Trained IE agent

Since the ScorePage network outputs a real number, Wawa-IE

needs to define a threshold on this output such that the bindings for
the scores above the threshold are returned to the user as extractions
and the rest are discarded. Note that the value of the threshold can
be used to manipulate the performance of the IE agent. For example,
if the threshold is set to a high number (e.g., 8.5), then the agent
might miss a lot of the correct fillers for a slot (i.e., have low recall),
but the number of extracted fillers that are correct should be higher
(i.e., high precision). Recall (van Rijsbergen, 1979) is the ratio of the
number of correct fillers extracted to the total number of fillers in
correct extraction slots. Precision (van Rijsbergen, 1979) is the ratio
of the number of correct fillers extracted to the total number of fillers
extracted. Finally, the F1-measure combines precision and recall using
the following formula: F1 = 2×Precision×Recall

Precision+Recall
. The F1-measure (van

Rijsbergen, 1979) is used regularly to compare the performances of
IR and IE systems because it weights precision and recall equally and
produces one single number.
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To avoid overfitting23 the ScorePage network and to find the best
threshold on its output after training is done, we actually divide the
training set into two disjoint sets. One of the sets is used to train the
ScorePage network. The other set, the tuning set, is first used to
“stop” the training of the ScorePage network. Specifically, we cycle
through the training examples 100 times. After each iteration over the
training examples, we use the lists of candidate fillers associated with
the tuning set to evaluate the F1-measure produced by the network for
various settings of the threshold. We pick the network that produced
the highest F1-measure on our tuning set as our final trained network.

We utilize the tuning set (a second time) to find the optimal thresh-
old on the output of the trained ScorePage network. Specifically, we
perform the following:

− For each threshold value, t, from -8.0 to 9.0 with increments of
0.25, do

• Run the tuning set through the trained ScorePage network
to find the F1-measure (for the threshold t).

− Set the optimal threshold to the threshold associated with the
maximum F1-measure.

5.1.3. Testing a Trained IE Agent
Figure 14 depicts the steps a trained IE agent takes to produce extrac-
tions.
For each entry in the list of extraction candidates, we first bind the
variables to their candidate values. Then, we perform a forward propa-
gation on the trained ScorePage network and output the score of the
network for the test document based on the candidate bindings. If the
output value of the network is greater than the threshold defined during
the tuning step, we record the bindings as an extraction. Otherwise,
these bindings are discarded.

5.2. Discussion of Wawa for Information Extraction

A novel aspect of Wawa-IE is its exploitation of the relationship be-
tween IR and IE. That is, we build IR agents that treat possible
extractions as keywords, which are in turn judged within the context
of the entire document.

23 When a network is overfit, it performs very well on training data but poorly on
new data.
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Figure 14. Testing a Trained IE Agent

The use of theory refinement allows us to take advantage of user’s
prior knowledge, which need not be perfectly correct since Wawa-IE is
a learning system. This, in turn, reduces the need for labeled examples,
which are very expensive to get in the IE task. Also, compiling users’
prior knowledge into the ScorePage network provides a good method
for finding informative negative training examples (i.e., near misses).

One cost of using our approach is that we require the user to provide
us with the POS tags or parse structures of the extraction slots. We
currently assume that the Brill’s tagger and Sundance are perfect (i.e.,
they tag words and parse sentences with 100% accuracy). Brill’s tagger
annotates the words on a document with 97.2% accuracy (Brill, 1994),
so 2.8% error rate propagates into our results. We were not able to find
accuracy estimates for Sundance, though recall that we also consider
all subphrases of the phrases Sundance produces.

Our approach is computationally demanding, due to its use of a
generate-and-test approach. But, CPU cycles are abundant; and, our
experiments (Eliassi-Rad and Shavlik, 2001b; Eliassi-Rad, 2001; Eliassi-
Rad and Shavlik, 2001a) have shown that Wawa-IE still performs well
when only using a subset of all possible combinations of slot fillers.
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6. An Experimental Study of Wawa’s IE System

In this section, we test Wawa-IE on the CMU seminar-announcements
domain (Freitag, 1997). This domain consists of 485 pages. The task24

is to extract the start time, end time, speaker, and location from an
announcement. We report on results for extracting speaker and loca-
tion. We omit start and end times from our experiments since almost all
systems perform very well on these slots. In addition, we follow existing
methodology and independently extract speaker and location names,
because each document is assumed to contain only one announcement.
That is, for each announcement, we do not try to pair up speakers and
locations, instead we return a list of speakers and a separate list of
locations.

Seminar announcements are tagged using Brill’s part-of-speech tag-
ger (Brill, 1994) and common (“stop”) words are discarded. We did not
stem the words in this study since converting words to their base forms
removes information that would be useful in the extraction process.

6.1. Experimental Methodology

We compare our system to seven other information extraction systems
using the CMU seminar announcements domain (Freitag, 1998). These
systems are HMM (Freitag and McCallum, 1999), BWI (Freitag and
Kushmerick, 2000), SRV (Freitag, 1998), Naive Bayes (Freitag, 1998),
WHISK (Soderland, 1999), RAPIER (Califf, 1998), and RAPIER-WT
(Califf, 1998). None of these systems exploits prior knowledge. Except
for Naive Bayes, HMM, and BWI, the rest of the systems use relational
learning algorithms. RAPIER-WT is a variant of RAPIER where in-
formation about semantic classes is not utilized. HMM (Freitag and
McCallum, 1999) employs a hidden Markov model to learn about ex-
traction slots. BWI (Freitag and Kushmerick, 2000) combines wrapper
induction techniques with AdaBoost to solve the IE task.

Freitag (1998) first randomly divided the 485 documents in the sem-
inar announcements domain into ten splits, and then randomly divided
each of the ten splits into approximately 240 training examples and 240
testing examples. Except for WHISK, the results of the other systems
are all based on the same 10 data splits. The results for WHISK are
from a single trial with 285 documents in the training set and 200
documents in the testing set.

We give Wawa-IE 9 and 10 advice rules in Backus-Naur Form
(BNF) (Aho et al., 1986) notation about speakers and locations, re-

24 We chose this task because it has been widely used in the literature and allows
us to directly compare the performance of Wawa-IE to several existing systems.
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spectively (see Appendix B). We wrote none of these advice rules with
the specifics of the CMU seminar announcements in mind. The rules
describe our prior knowledge about what might be a speaker or a loca-
tion in a general seminar announcement. It took us about half a day to
write these rules and we did not manually refine these rules over time.

For this domain, we create the same number of negative training
examples (for speaker and location independently) as the number of
positive examples. We choose 95% of the negatives, from the complete
list of possibilities, by collecting those that score the highest on the
untrained ScorePage network; the remaining 5% are chosen randomly
from the complete list.

Table X describes four rules used in the domain theories of speaker
and location slots. Rule SR1 matches phrases of length three that start
with the word “professor” and have two proper nouns for the remaining
words. In rule SR2, we are looking for phrases of length four where the
first word is “speaker,” followed by another word which we do not
care about, and trailed by two proper nouns. SR2 matches phrases like
“Speaker : Joe Smith” or “speaker is Jane Doe”. Rules LR1 and LR2
match phrases such as “Room 2310 CS”. LR2 differs from LR1 in that
it requires the two words following “room” to be a cardinal number
and a proper noun, respectively (i.e., LR2 is a subset of LR1). Since we
are more confident that phrases matching LR2 describe locations, LR2
sends a higher weight to the output unit of the ScorePage network
than LR1.

Table X. Sample rules used in the domain theories of speaker and
location slots

SR1 When “Professor ?FirstName/NNP ?LastName/NNP”

then strongly suggest showing page

SR2 When “Speaker . ?FirstName/NNP ?LastName/NNP”

then strongly suggest showing page

LR1 When “Room ?LocNumber ?LocName”

then suggest showing page

LR2 When “Room ?LocNumber/CD ?LocName/NNP”

then strongly suggest showing page
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6.2. Results

Tables XI and XII show the results of our Wawa-IE agent and the
other seven systems for the speaker and location slots, respectively.
The results reported are the averaged precision, recall, and F1 values
across the ten splits. The precision, recall, and F1-measure for a split is
determined by the optimal threshold found for that split using the
tuning set (see Section 5.1.2 for further details). For all ten splits,
the optimal thresholds on Wawa-IE’s untrained agent are 5.0 for the
speaker slot and 9.0 for the location slot. The optimal threshold on
Wawa-IE’s trained agent vary from one split to the next in both the
speaker slot and the location slot. For the speaker slot, the optimal
thresholds on Wawa-IE’s trained agent vary from 0.25 to 2.25. For the
location slot, the optimal thresholds on Wawa-IE’s trained agent range
from -6.25 to 0.75.

Since the speaker’s name and the location of the seminar may ap-
pear in multiple forms in an announcement, an extraction is considered
correct as long as any one of the possible correct forms is extracted.
For example, if the speaker is “John Doe Smith”, the words “Smith”,
“Joe Smith”, “John Doe Smith”, “J. Smith”, and “J. D. Smith” might
appear in a document. Any one of these extractions is considered cor-
rect. This method of marking correct extractions is also used in the
other IE systems against which we compare our approach.

We use precision, recall, and the F1-measure to compare the differ-
ent systems (see Section 5.1.2 for definitions of these terms). An ideal
system has a precision and recall of 100%.

6.3. Discussion

The F1-measure is more versatile than either precision or recall for
explaining relative performance of different systems, since it takes into
account the inherent tradeoff that exists between precision and recall.
For both speaker and location slots, the F1-measure of our system
is considerably higher than Naive Bayes and all the relational learn-
ers. Our trained IE agent performs competitively with the BWI and
HMM learner. Our F1-measures are high because we generate many
extraction candidates in our generate-and-test model. Hence, we are
able to extract a lot of the correct fillers from the data set, which
in turn leads to higher recall than the other systems. After training,
we are able to reject enough candidates so that we obtain reasonable
precision. Figure 15 illustrates this fact for the speaker slot. A point
in this graph represents the averaged precision and recall values at a
specific network output across the ten splits. There are 38 points on
each curve in Figure 15 representing the network outputs from 0.0 to
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Table XI. Results on the speaker slot for seminar announce-
ments task

System Precision Recall F1

HMM 77.9 75.2 76.6

Wawa-IE’s Trained Agent 61.5 86.6 71.8

BWI 79.1 59.2 67.7

SRV 54.4 58.4 56.3

RAPIER-WT 79.0 40.0 53.1

RAPIER 80.9 39.4 53.0

Wawa-IE’s Untrained Agent 29.5 96.8 45.2

Naive Bayes 36.1 25.6 30.0

WHISK 71.0 15.0 24.8

Table XII. Results on the location slot for seminar announce-
ments task

System Precision Recall F1

Wawa-IE’s Trained Agent 73.9 84.4 78.8

HMM 83.0 74.6 78.6

BWI 85.4 69.6 76.7

RAPIER-WT 91.0 61.5 73.4

SRV 74.5 70.1 72.3

RAPIER 91.0 60.5 72.7

WHISK 93.0 59.0 72.2

RAPIER-W 90.0 54.8 68.1

Naive Bayes 59.6 58.8 59.2

Wawa-IE’s Untrained Agent 29.2 98.2 45.0

9.0 with increments of 0.25. The trained agent generates much better
precision scores than the untrained agent.
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Figure 15. Precision/recall curves for Wawa-IE’s untrained and trained agents
extracting speaker slots

The increase in performance from Wawa-IE’s untrained agent to
Wawa-IE’s trained agent shows that our agent is not “hard-wired” to
perform well on this domain and that training helped our performance.

Finally, we should note that several of the other systems have higher
precision, so depending on the user’s tradeoff between recall and pre-
cision, different systems would be preferred on this testbed.25.

7. Related Work

Like Wawa-IR, Syskill and Webert (Pazzani et al., 1996), and Web-
Watcher (Joachims et al., 1997) are Web agents that use machine
learning techniques. They, respectively, use a Bayesian classifier and an
RL-TFIDF hybrid to learn. Drummond et al. (Drummond et al., 1995)
have created a similar system which assists users browsing software
libraries; it learns unobtrusively by observing users’ actions. Letizia
(Lieberman, 1995) is a system similar to Drummond et al.’s that uses
look-ahead search from the current location in the user’s Web browser.
Unlike Wawa-IR, these systems are unable to accept (and refine) ad-
vice, which usually is simple to provide and can lead to better learning
than manually either rating or visiting many Web pages.

25 See Eliassi-Rad (2001 and Eliassi-Rad and Shavlik (2001a) for details on other
experiments using Wawa-IE
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We were able to find only one other system in the literature that
applies theory refinement to the IE problem. Feldman et al.’s IE system
(Feldman et al., 2000) takes a set of approximate IE rules and uses
training examples to incrementally revise the inaccuracies in the initial
rules. Their revision algorithm uses heuristics to find the place and
type of revision that should be performed. Unlike Wawa-IE’s advice
rules, their IE rules provide advice on how to refine existing rules. Also,
their system manipulates IE rules directly, whereas Wawa-IE compiles
rules into neural networks and uses standard neural training to refine
the rules. Finally, their approach is to suggest possible revisions to the
human user, whereas Wawa-IE’s approach is to make the revisions
automatically.

Most IE systems break down into two groups. The first group uses
some kind of relational learning to learn extraction patterns (Califf,
1998; Freitag, 1998; Soderland, 1999). The second group learns param-
eters of hidden Markov models (HMMs) and uses the HMMs to extract
information (Bikel et al., 1999; Freitag and McCallum, 1999; Leek,
1997; Ray and Craven, 2001; Seymore et al., 1999). Recently, Freitag
and Kushmerick (2000) combined wrapper induction techniques (Kush-
merick, 2000) with the AdaBoost algorithm (Schapire and Singer, 1998)
to create an extraction system named BWI (short for Boosted Wrapper
Induction). Their system out-performed many of the relational learners
and was competitive with systems using HMMs and Wawa-IE.

Leek (1997) uses HMMs for extracting information from biomedical
text. His system uses a lot of initial knowledge to build the HMM
model before using the training data to learn the parameters of HMM.
However, his system is not able to refine the knowledge.

Several authors use statistical methods to reduce the need for a lot
of training examples. Freitag and McCallum (1999) use HMMs to ex-
tract information from text. They employ a statistical technique called
“shrinkage” to get around the problem of not having sufficient labeled
examples. Seymore, et al. (1999) also use HMMs to extract information
from on-line text. They get around the problem of not having sufficient
training data by using data that is labeled for another purpose in their
system. Similarly, Craven and Kumlien (1999) use “weakly” labeled
training data to reduce the need for labeled training examples.

One advantage of our system is that we are able to utilize prior
knowledge, which reduces the need for a large number of labeled train-
ing examples. However, we do not depend on the initial knowledge being
100% correct. We believe that it is relatively easy for users to articulate
some useful domain-specific advice (especially when a user-friendly
interface is provided that converts their advice into the specifics of
Wawa’s advice language). The second advantage of our system is that
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the entire content of the document is used to estimate the correctness
of a candidate extraction. This allows us to learn about the extraction
slots and the documents in which they appear. The third advantage
of Wawa-IE is that we are able to utilize the untrained ScorePage

network to produce some informative negative training examples (i.e.,
near misses).

8. Current Work and Future Directions

In order to better understand what people would like to say to an
instructable Web agent such as Wawa, we have started work with
several research groups in the Medical School of our university to build
personalized and easily customized intelligent agents which are capa-
ble of returning relevant information from the Web. Based on these
interactions, we hope to improve our advice language.

Moreover, we have started running additional experiments to better
study how well Wawa-IR is able to learn general concepts like finding
research-group pages. This new domain is a much harder problem than
finding home pages because the syntactical clues used in finding home
pages might not (and usually do not) exist anymore. For example, a
person’s name is always on his/her home page. However, when search-
ing for pages about a research group like pages about research on
“operating systems”, the actual phrase “operating systems” might not
appear on an actual page about research on operating systems.

We are also currently looking at ways to embed Wawa into a major,
existing Web browser, thereby minimizing new interface features that
users must learn in order to interact with our system. Related to this,
we are developing methods whereby Wawa can automatically infer
plausible training examples by observing users’ normal use of their
browsers (Goecks and Shavlik, 2000).

In the IE experiments reported, we trained a network for finding
the speaker slots and another one to find the location slots. We needed
to train two separate networks because testing the set of the cross-
products of all speaker and location candidates was computationally
too expensive. However, this posed no serious problem in this domain
since each document contained only one announcement. That is, we
did not have to match multiple speakers with multiple locations in
one document. The problem of having more than once instance of
the template in a document is known as the multi-slot problem. We
have extended our catalog of candidate-selector algorithms to include
heuristic methods such as a modified versions of WalkSAT (Selman
et al., 1996), GSAT, random local search, and a hill climber with mul-
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tiple random starts (Eliassi-Rad and Shavlik, 2001b; Eliassi-Rad, 2001).
With this functionality, we have been able to reduce the computational
problem of having too many candidate bindings and solve the multi-
slot extraction problem for Wawa-IE. Eliassi-Rad and Shavlik (2001)
provides empirical results on a multi-slot problem of extracting proteins
and their locations on the cell from a set of biological abstracts. Our
Wawa-IE agent was able to out-perform the state-of-the-art method
of Ray and Craven (2001).

In our IE domains, we have started measuring performance as a
function of the number of positive training examples and a function of
the number of advice rules. In addition, we are starting experiments
on another IE domain, namely the WebKB domain (Freitag, 1998).
Finally, we are looking into incorporating the candidate generation
and selection steps directly into our connectionist framework, whereby
we would use the current ScorePage network to find new candidate
extractions during the training process.

9. Conclusions

We argue that a promising way to create useful intelligent agents is
to involve both the user’s ability to do direct programming (i.e., pro-
vide approximately correct instructions of some sort) along with the
agent’s ability to accept and automatically create training examples.
Due to the largely unstructured nature and the size of the Web, such
a hybrid approach is more appealing than ones solely based on either
non-adaptive agent programming languages or users that rate or mark
the desired extractions from a large number of Web pages.

We first present and evaluate Wawa’s information retrieval sys-
tem, which provides an appealing approach for creating personalized
information-finding agents for the Web. A central aspect of our de-
sign is that a machine learner is at the core. Users create specialized
agents by articulating their interests in our advice language. Wawa-

IR compiles these instructions into neural networks, thereby allowing
for subsequent refinement. The system both creates its own training
examples (via reinforcement learning) and allows for supervised train-
ing should the user wish to rate the information a Wawa-IR agent
finds. This process of continuous learning makes Wawa-IR agents (self)
adaptive. Our “home-page finder” case study demonstrates the efficacy
of using system-generated training examples to improve the evaluation
of potential hyperlinks to traverse.

We also describe and evaluate a system for using theory refinement
to perform information extraction. Wawa’s information extraction sys-
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tem uses a neural network, which accepts advice containing variables,
to rate candidate variable bindings in the content of the document as
a whole. Our extraction process first generates a large set of candidate
variable bindings for each slot, then selects a subset of the possible slot
bindings via heuristic search, and finally uses the trained network to
judge which are “best.” Those bindings that score higher than a system-
computed threshold are returned as the extracted information. By using
theory refinement, we are able to take advantage of prior knowledge in
the domain of interest and produce some informative training examples,
both of which lead to an increase in the performance of the IE agent.

In the CMU seminar-announcements domain, the F1-measures of
Wawa-IE’s agent are not only significantly higher than many other
approaches, but also competitive with a new state-of-the-art system
(which uses a boosted wrapper induction technique). In recent work
(Eliassi-Rad and Shavlik, 2001b; Eliassi-Rad, 2001), we empirically
show the benefits of using an intelligent algorithm for selecting possible
candidates for multiple slots and provide additional evidence that our
approach improves on the state of the art.

Wawa utilizes the user’s knowledge to build agents that retrieve and
extract information. Three important characteristics of Wawa’s agents
are (i) their ability to receive instructions and refine their knowledge-
bases through learning (hence, the instructions provided by the user
need not be perfectly correct), (ii) their ability to receive the user’s
advice continually, and (iii) their ability to create informative train-
ing examples. Our empirical studies in both the information retrieval
and information extraction tasks illustrate the advantages of building
instructable and adaptive agents.
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Appendix

A. Advice Rules for the Home-Page Finder

This section of the appendix presents the rules given to the home-page
finder (see Section 4 for details on this case study). These rules contain
the following 13 variables:

1. ?FirstName ← First name of a person (e.g., Robert)
2. ?FirstInitial ← First initial of a person (e.g., R)
3. ?NickNameA ← First nickname of a person (e.g., Rob)
4. ?NickNameB ← Second nickname of a person (e.g., Bob)
5. ?MiddleName ← Middle name of a person (e.g., Eric)
6. ?MiddleInitial ← Middle initial of a person (e.g., E)
7. ?LastName ← Last name of a person (e.g., Smith)
8. ?MiscWord1 ← First miscellaneous word
9. ?MiscWord2 ← Second miscellaneous word
10. ?MiscWord3 ← Third miscellaneous word
11. ?UrlHostWord1 ← Third word from the end of a host url

(e.g., cs in http://www.cs.wisc.edu)
12. ?UrlHostWord2 ← Second word from the end of a host url

(e.g., wisc in http://www.cs.wisc.edu)
13. ?UrlHostWord3 ← Last word in a host

(e.g., edu in http://www.cs.wisc.edu)

In our experiments, we only used variables numbered 1 through 7
since we wanted to fairly compare Wawa’s home-page finder to exist-
ing alternative approaches. That is, we did not provide any values for
variables numbered 8 through 13. We introduced these variables and
even wrote some rules about them only to illustrate that there is other
information besides a person’s name that might be helpful in finding
his/her home-page.

The actions used in the home-page finder rules are as follows:

A1. suggest doing both
This action adds a moderately weighted link from the rule’s new hidden
unit in both the ScorePage and the ScoreLink networks into the
output units of these networks.

A2. suggest showing page
This action adds a moderately weighted link from the rule’s new hidden
unit in the ScorePage network into the network’s output unit.

A3. suggest following link
This action adds a moderately weighted link from the rule’s new hidden
unit in the ScoreLink network into the network’s output unit.
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A4. avoid both
This action adds a link with a moderately negative weight from the rule’s
new hidden unit in both the ScorePage and the ScoreLink networks
into the output units of these networks.

A5. avoid showing page
This action adds a link with a moderately negative weight from the rule’s
new hidden unit in the ScorePage network into the network’s output
unit.

A6. avoid following link
This action adds a link with a moderately negative weight from the rule’s
new hidden unit in the ScoreLink network into the network’s output
unit.

Actions can be prefixed by the following four modifiers:

− Definitely : Assuming the preconditions of a ‘definite’ rule are fully met,
the link out of the sigmoidal hidden unit representing the rule will have
a weight of

• 11.25, for actions A1 through A3, and

• -11.25, for actions A4 through A6.

− Strongly : Assuming the preconditions of a ‘strong’ rule are fully met, the
link out of the sigmoidal hidden unit representing the rule will have a
weight of

• 7.5, for actions A1 through A3, and

• -7.5, for actions A4 through A6.

− Moderately : Assuming the preconditions of a ‘moderate’ rule are fully
met, the link out of the sigmoidal hidden unit representing the rule will
have a weight of

• 2.5, for actions A1 through A3, and

• -2.5, for actions A4 through A6.

When an action does not have modifier, then “moderately” is used as
the default modifier.

− Weakly : Assuming the preconditions of a ‘weak’ rule are fully met, the
link out of the sigmoidal hidden unit representing the rule will have a
weight of

• 0.75, for actions A1 through A3, and

• -0.75, for actions A4 through A6.

Before we present the home-page finder rules, we will define some
non-terminal tokens in Backus-Naur form (BNF) (Aho et al., 1986)
used in our rules. These non-terminal tokens are:
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first names → ?FirstName | ?FirstInitial | ?NicknameA | ?NicknameB
middle names → ?MiddleName | ?MiddleInitial
full name → first names middle names ?LastName
regular name → first names ?LastName
home page words → home | homepage | home-page
person → full name | regular name

The following rules look for pages with the person’s name and ei-
ther the phrase “home page of” or the words “home”, “homepage”,
or “home-page” in the title. The function consecutiveInTitle takes a
sequences of words and returns true if they form a phrase inside the
title of a page. The symbol “.” is Wawa’s “wild card” symbol. It is a
placeholder that matches any single word or punctuation.

home page rules A →
WHEN consecutiveInTitle( “home page of” person )
THEN definitely suggest showing page |

WHEN consecutiveInTitle( person “’s” home page words )
THEN definitely suggest showing page |

WHEN consecutiveInTitle( person home page words )
THEN strongly suggest showing page |

WHEN consecutiveInTitle(
first names . ?LastName “’s” home page words )

THEN suggest showing page |

WHEN consecutiveInTitle(
“home page of” first names . ?LastName )

THEN suggest showing page |

WHEN consecutiveInTitle( “home page of” . ?LastName )
THEN suggest showing page |

WHEN consecutiveInTitle( “home page of” . . ?LastName )
THEN weakly suggest showing page |

WHEN consecutiveInTitle( person . home page words )
THEN suggest showing page

The next set of rules look for links to the person’s home-page. The
function consecutive takes a sequences of words and returns true if the
words appear as a phrase on the page.

49



home page rules B →
WHEN consecutive( person “’s” home page words )
THEN definitely suggest following link |

WHEN consecutive( “home page of” person )
THEN definitely suggest following link |

WHEN consecutive(first names . ?LastName “’s” home page words)
THEN strongly suggest following link |

WHEN consecutive( “home page of” first names . ?LastName )
THEN strongly suggest following link |

WHEN consecutive( “home page of” . ?LastName )
THEN suggest following link |

WHEN consecutive( person )
THEN strongly suggest following link |

WHEN consecutive( ?LastName )
THEN suggest following link

The following rules look for pages and links leading to pages with
the person’s name in the title but not in a question format. We don’t
want both the person’s name and a question mark in a page’s title
because it could represent a query on that person and not the person’s
home-page.

home page rules C →
WHEN ( NOT( anywhereInTitle( “?” ) )

AND consecutiveInTitle(regular name

noneOf(home page words)))
THEN strongly suggest doing both |

WHEN ( NOT( anywhereInTitle( “?” ) )
AND consecutiveInTitle(first names . ?LastName

noneOf(home page words)))
THEN strongly suggest doing both |

WHEN ( NOT( anywhereInTitle( “?” ) )
AND consecutiveInTitle( first names )
AND anywhereInTitle( ?LastName ) )

THEN suggest doing both |

WHEN ( NOT( anywhereInTitle( “?” ) )
AND consecutiveInTitle( ?LastName “,” first names ) )
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THEN suggest doing both |

WHEN consecutive( first names “’s” home page words )
THEN suggest doing both |

WHEN consecutive( ?LastName home page words )
THEN suggest doing both |

WHEN consecutive( “my” home page words )
THEN suggest doing both

This rule looks for home-pages that might lead to other home-pages.

home page rules D →
WHEN ( NOT(anywhereInTitle(“?”))

AND ( anywhereInTitle(“home page”)
OR anywhereInTitle(“homepage”)
OR anywhereInTitle(“home-page”) ) )

THEN suggest following link

This rule seeks pages that have the person’s last name near an image.
We conjecture that the image might be that person’s picture.

home page rules E →
WHEN ( insideImageCaption() AND consecutive( ?LastName ) )
THEN suggest doing both

The next set of rules look for pages and links that include some
of the query words given by the user (i.e., bindings for some of the
variables). These rules use functions like numberOfQueryWordsOnPage
which obviously returns the number of query words on the page.

home page rules F →
WHEN ( ( insideEmailAddress() OR insideAddress() )

AND ( numberOfQueryWordsInWindow() ≥ 1 ) )
THEN weakly suggest doing both |

WHEN ( numberOfQueryWordsOnPage() < 1 )
THEN avoid following link AND definitely avoid showing page |

WHEN anywhereInURL( “?” )
THEN strongly avoid following link & definitely avoid showing page |

WHEN anywhereInCurrentHyperlink( “?” )
THEN strongly avoid following link |
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WHEN ( anywhereInURL( ∼ ) AND NOT(anywhereInURL( “?” ))
AND ( numberOfQueryWordsInURL() ≥ 1 ) )

THEN weakly suggest both

The next set of rules look for pages and links that include some of
the query words given by the user. They use a function called Scale-
LinearlyBy which takes a set of conditions and returns a linear sum
depending on the number of conditions that were satisfied.

home page rules G →
ScaleLinearlyBy( numberOfQueryWordsInWindow() )
THEN suggest both |

ScaleLinearlyBy( numberOfQueryWordsInTitle() )
THEN suggest showing page AND weakly suggest following link |

The following rules look for pages and links that include a combi-
nation of the words “home page”, “home-page”, “homepage”, “home”,
“page”, “directory”, and “people” either on the page itself or in its
URL.

home page rules H →
WHEN consecutive( home page words “directory” )
THEN strongly suggest following link |

WHEN consecutiveInaSection( home page words “directory” )
THEN suggest following link |

WHEN consecutiveInHyperText( home page words )
THEN suggest following link |

WHEN consecutiveInaSection( home page words )
THEN weakly suggest doing both |

WHEN ( consecutive( “home page” )
OR consecutive( anyOf( “homepage” “home-page” ) ) )

THEN weakly suggest doing both |

WHEN ( anywhereInURL( “home” ) OR anywhereInURL( “page” )
OR anywhereInURL( “people” )
OR anywhereInURL( “homepage” )
OR anywhereInURL( “home-page” ) )

THEN suggest doing both

The subsequent two rules attempt to find when a page was last modi-
fied. The function pageLastModifiedAt() determines the number of days
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from today since the page was modified. If the page does not specify
when it was last modified, the value for the function pageLastModi-
fiedAt() is zero. If the page reports the last time it was modified, we con-
vert the time into the interval [0, 1], where 0 means never and 1 means
the page was changed today. Then, the value of pageLastModifiedAt()
is 1 minus the scaled value.

home page rules I →
ScaleLinearlyBy( pageLastModifiedAt() )
THEN weakly suggest showing page AND very weakly suggest following
link

The next three rules use the function consecutiveInURL. This func-
tion takes a sequences of words and returns true if the words form a
phrase in the URL of the page. These rules look for pages that have
a URL containing the person’s name and possibly the words “htm” or
“html”.

home page rules J →
WHEN consecutiveInURL( “∼” anyOf( first names ?LastName ) )
THEN weakly suggest doing both |

WHEN consecutiveInURL( person anyOf( “htm” “html” ) )
THEN definitely suggest showing page |

The following five rules look for pages and links that have the phrase
“?FirstName ?LastName” anywhere on them or in their title, their
URL, one of their hypertexts, or one of their hyperlinks.

home page rules K →
WHEN consecutive( ?FirstName ?LastName )
THEN strongly do both |

WHEN consecutiveInURL( ?FirstName ?LastName )
THEN strongly do both |

WHEN consecutiveInTitle( ?FirstName ?LastName )
THEN strongly do both |

WHEN consecutiveInHypertext( ?FirstName ?LastName )
THEN strongly do both |

WHEN consecutiveInHyperlink( ?FirstName ?LastName )
THEN strongly do both
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The next three rules avoid pages that have the phrase “404 not
found” in their title.

home page rules L →
WHEN titleStartsWith( anyOf( “404” “file” ) “not found” )
THEN strongly avoid both |

WHEN titleEndsWith( anyOf( “404” “file” ) “not found” )
THEN strongly avoid both |

WHEN anywhereInTitle( “404 not found” )
THEN avoid both

The following rules contain advice about commonly used words on
a person’s homepage like “cv”, “resume”, etc. The function NofM used
in this set of rules takes an integer, N and a list of conditions of size M.
It returns true if at least N of the M conditions are true. The function
anywhereOnPage(“555 − 1234”) is true if a telephone number is on
the page. Otherwise, it returns false. These rules were removed from
the original set of 76 advice rules to create a new set of initial advice
containing only 48 rules (see Section 4.3 for more details).26

�

home page rules M →
WHEN ( insideMetaWords()

AND ( consecutive( “home page” )
OR consecutive( anyOf( “homepage” “home-page” ) )
OR consecutive( “personal”

anyOf( “info” “information” ) ) ) )
THEN suggest showing page |

WHEN consecutive( “curriculum” anyOf( “vitae” “vita” ) )
THEN weakly suggest doing both |

WHEN consecutiveInHypertext( “curriculum” anyOf(“vitae” “vita”) )
THEN suggest doing both |

WHEN consecutiveInHypertext( “my” anyOf(“vitae” “vita”) )
THEN suggest following link |

WHEN consecutiveInHypertext( “my” anyOf(“cv” “resume”) )
THEN suggest following link |

WHEN consecutive( “my” anyOf( “resume” “cv” “vita” “vitae” ) )
THEN suggest both |

26 We marked the non-terminal representing these rules with the † symbol to
distinguish them from the other rules.
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WHEN consecutive( “my” anyOf( “homepage” “home” ) )
THEN suggest both |

WHEN consecutiveInaSection( personal anyOf( “info” “information” ) )
THEN weakly suggest doing both |

WHEN NofM( 2, anywhereInSections( “personal” )
anywhereInSections( “information” )
anywhereInSections( “info” )
anywhereInSections( “projects” )
anywhereInSections( “interests” ) )

THEN weakly suggest doing both |

ScaleLinearlyBy(
consecutive(anyOf(?LastName ?MiscWord1 ?MiscWord2 ?MiscWord3 ) )

( anywhereInWindow(“email”) OR anywhereInWindow(“e-mail”)

OR anywhereInWindow(“mailto”) )

( anywhereInWindow(“phone”) OR anywhereInWindow(“555-1234”)

OR anywhereInWindow(“fax”) OR anywhereInWindow(“telephone”) )

( anywhereInWindow(“department”) OR anywhereInWindow(“work”)

OR anywhereInWindow(“office”) OR anywhereInWindow(“dept”) )

( anywhereInWindow(“address”) OR anywhereInWindow(“mailing”) ) ) )
THEN strongly suggest doing both |

ScaleLinearlyBy(
consecutive(anyOf(?LastName ?MiscWord1 ?MiscWord2 ?MiscWord3 ) )

( anywhereOnPage(“email”) OR anywhereOnPage(“e-mail”)

OR anywhereOnPage(“mailto”) )

( anywhereOnPage(“phone”) OR anywhereOnPage(“fax”)

OR anywhereOnPage(“555-1234”) OR anywhereOnPage(“telephone”) )

( anywhereOnPage(“department”) OR anywhereOnPage(“work”)

OR anywhereOnPage(“office”) OR anywhereOnPage(“dept”) )

( anywhereOnPage(“address”) OR anywhereOnPage(“mailing”) ) ) )
THEN suggest doing both

WHEN consecutive(anyOf(“research” “recent”)
anyOf(“summary” “publications”) )

THEN weakly suggest doing both |

WHEN consecutive( “recent publications” )
THEN weakly suggest doing both |
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WHEN ( insideEmailAddress()
AND consecutive( ?UrlHostWord1 ?UrlHostWord2

?UrlHostWord3 ) )
THEN suggest both |

WHEN ( insideEmailAddress()
AND consecutive( ?UrlHostWord2 ?UrlHostWord3 ) )

THEN suggest both |

WHEN consecutiveInURL(?UrlHostWord1 ?UrlHostWord2
?UrlHostWord3 )

THEN suggest showing page

WHEN consecutiveInUrl( ?UrlHostWord2 ?UrlHostWord3 )
THEN suggest showing page |

WHEN consecutiveInHyperlink(?UrlHostWord1 ?UrlHostWord2
?UrlHostWord3 )

THEN suggest following link |

WHEN consecutiveInHyperlink( ?UrlHostWord2 ?UrlHostWord3 )
THEN suggest following link |

ScaleLinearlyBy(
anywhereOnPage(“bio”) anywhereOnPage(“interests”)
anywhereOnPage(“hobbies”) anywhereOnPage(“resume”)
anywhereOnPage(“cv”) anywhereOnPage(“vita”)
anywhereOnPage(“vitae”) anywhereOnPage(“degrees”)
anywhereOnPage(“employment”) anywhereOnPage( “office”)
anywhereOnPage(“courses”) anywhereOnPage(“classes”)
anywhereOnPage(“education”) anywhereOnPage(“dept”) )

THEN strongly suggest showing page |

ScaleLinearlyBy(
anywhereInWindow(“bio”) anywhereInWindow(“interests”)
anywhereInWindow(“hobbies”) anywhereInWindow(“resume”)
anywhereInWindow(“cv”) anywhereInWindow(“vita”)
anywhereInWindow(“vitae”) anywhereInWindow(“degrees”)
anywhereInWindow(“employment”) anywhereInWindow(“office”)
anywhereInWindow(“courses”) anywhereInWindow(“classes”)
anywhereInWindow(“education”) anywhereInWindow(“dept”) )

THEN strongly suggest following link |

WHEN ( anywhereInWindow(“links”)
AND consecutive(anyOf(“interests” “interesting” “cool”)) )

THEN suggest showing page |
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WHEN ( anywhereInWindow(“links”)
AND consecutive(anyOf(“recommended” “stuff”)) )

THEN suggest showing page |

WHEN consecutiveInaSection(anyOf(“topics” “areas”) “of interest”)
THEN suggest doing both |

WHEN consecutiveInTitle( “main page” )
THEN weakly suggest doing both |

WHEN ( consecutive( “contact information” )
AND anywhereOnPage( ?LastName ) )

THEN strongly do both |

WHEN consecutive( “check your spelling” )
THEN strongly avoid both |

WHEN consecutive( “search tips” )
THEN strongly avoid both

The set of advice rules given to the home-page finder is a union
of the rules in the non-terminal tokens home page rules A through
home page rules M.

B. Advice Rules for the Seminar-Announcement Extractor

In this section of the appendix, we present the advice rules for the
speaker and location slots of the seminar-announcement extractor agent.
Recall that the function named consecutive takes a sequence of words
and returns true if they appear as a phrase on the page. Otherwise, it
returns false.

To extract the speaker name, we used the following four variables:

1. ?FirstName ← First name or initial of a person
2. ?NickName ← Nickname of a person
3. ?MiddleName ← Middle name or initial of a person
4. ?LastName ← Last name of a person

The advice rules used for the speaker slot in Backus-Naur form (Aho
et al., 1986) are listed below. The non-terminal tokens talk VB and
talk VBG used in the rules refer to verbs in base form and present
participle form, respectively. Recall that we choose not to do stemming
of words in this study.
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spk rules →
WHEN consecutive(title spk name)
THEN strongly suggest showing page |

WHEN consecutive(spk name , degree)
THEN strongly suggest showing page |

WHEN consecutive(spk intro . spk name)
THEN strongly suggest showing page |

WHEN consecutive(spk name “’s” talk noun)
THEN strongly suggest showing page |

WHEN consecutive(spk name “will” talk VB)
THEN strongly suggest showing page |

WHEN consecutive(spk name “will be” talk VBG)
THEN strongly suggest showing page |

WHEN consecutive(“presented by” spk name)
THEN strongly suggest showing page |

WHEN consecutive(“talk by” spk name)
THEN strongly suggest showing page |

WHEN spk name THEN weakly suggest showing page

spk name →
?LastName/NNP |
?FirstName/NNP ?LastName/NNP |
?NickName/NNP ?LastName/NNP |
?FirstName/NNP ?MiddleName/NNP ?LastName/NNP |
?NickName/NNP ?MiddleName/NNP ?LastName/NNP

title → “mr” | “ms” | “mrs” | “dr” | “prof” | “professor” | “mr.” |
“ms.” | “mrs.” | “dr.” | “prof.”

degree → “ba” | “bs” | “ms” | “ma” | “jd” | “md” | “phd” | “b.a.” |
“b.s.” | “m.s.” | “m.a.” | “j.d.” | “m.d.” | “ph.d.”

spk intro → “visitor” | “who” | “seminar” | “lecturer” | “colloquium” |
“speaker” | “talk”

talk noun → “talk” | “presentation” | “lecture” | “speech”

talk VB → “talk” | “lecture” | “speak” | “present”

talk VBG → “talking” | “lecturing” | “speaking” | “presenting”
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To extract the location name, we used the following four variables:

1. ?LocNumber ← A cardinal number representing a room number,
a building number, etc

2. ?LocNameA ← First word in the name of a building, a street, etc
3. ?LocNameB ← Second word in the name of a building, a street, etc
4. ?LocNameC ← Third word in the name of a building, a street, etc

The advice rules used for the location slot in Backus-Naur form (Aho
et al., 1986) are:

loc rules →
WHEN consecutive(loc name tagged)
THEN strongly suggest showing page |

WHEN consecutive(loc name)
THEN weakly suggest showing page |

WHEN consecutive(loc name tagged loc tokens)
THEN strongly suggest showing page |

WHEN consecutive(“in” loc name loc tokens)
THEN strongly suggest showing page |

WHEN consecutive(loc tokens loc name tagged)
THEN strongly suggest showing page |

WHEN consecutive(loc tokens loc name)
THEN suggest showing page |

WHEN consecutive(loc tokens . loc name tagged)
THEN strongly suggest showing page |

WHEN consecutive(loc tokens . loc name)
THEN suggest showing page |

WHEN consecutive(loc intro . loc name tagged)
THEN strongly suggest showing page |

WHEN consecutive(loc intro . loc name)
THEN suggest showing page
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loc name tagged →
?LocNumber/CD |
?LocNameA/NNP |
?LocNumber/CD ?LocNameA/NNP |
?LocNameA/NNP ?LocNumber/CD |
?LocNameA/NNP ?LocNameB/NNP ?LocNumber/CD |
?LocNumber/CD ?LocNameA/NNP ?LocNameB/NNP ?LocNameC/NNP|
?LocNameA/NNP ?LocNameB/NNP ?LocNameC/NNP ?LocNumber/CD

loc name →
?LocNumber |
?LocNameA |
?LocNumber ?LocNameA |
?LocNameA ?LocNumber |
?LocNumber ?LocNameA ?LocNameB |
?LocNameA ?LocNameB ?LocNumber |
?LocNumber ?LocNameA ?LocNameB ?LocNameC |
?LocNameA ?LocNameB ?LocNameC ?LocNumber

loc tokens → “hall” | “auditorium” | “building” | “bldg” | “center” |
“campus” | “school” | “university” | “conference” | “conf” |
“room” | “rm” | “floor” | “inst” | “institute” | “wing” |

“union” | “college” | “office” | “lounge” | “lab” | “laboratory” |
“library”| “classroom” | “tower” | “street” | “avenue” |
“alley” | “road” | “drive”| “circle” | “trail” | “st” | “ave” |
“rd” | “dr” | “cr” | “tr”

loc intro → “place” | “where” | “location”
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