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Abstract. Modern video games present many challenging applications for artificial intelligence.  Agents 
must not only appear intelligent but must also be fun to play against.  In the video game genre of the first 
person shooter an agent must mimic all the behaviors of a human soldier in a combat situation.  The 
standard opponent in a �first person shooter� uses a finite-state machine and a series of hand coded rules. 
Drawbacks of this system include a high level of predictability of opponents and a large amount of work 
manually programming each rule. Modern advances in machine learning have enabled agents to accurately 
learn rules from a set of examples. By sampling data from an expert player we use these machine learning 
algorithms in a first person shooter. With this system in place, the programmer has less work when hand 
coding the combat rules and the learned behaviors are often more unpredictable and life-like than any hard-
wired finite state machine. This thesis explores several popular machine learning algorithms and shows how 
these algorithms can be applied to the game. The empirical study includes decision trees, Naïve Bayes 
classifiers, neural networks, and neural networks trained using boosting and bagging methods. We show 
that a subset of AI behaviors can be learned by player modeling using machine learning techniques. Under 
this system we have successfully been able to learn the combat behaviors of an expert player and apply 
them to an agent in a modified version of the video game Soldier of Fortune 2. The following tasks were 
learned: speed of acceleration, direction of movement, direction of facing, and jumping. We evaluate both 
empirically and aesthetically which learner performed the best and make recommendations for the future. 
We also have created a system which uses these learned behaviors in a finite-state system within the game 
at real time. 
 
 
I. Introduction 

Since their creation, the type of video games known as First Person Shooters (FPS) have been 

largely devoid of any sort of artificial intelligence.  Games like Wolfenstein©, Doom© and Quake© 

present the player with enemies who mostly act as fodder.  They walk towards the player, guns 

blazing, until they are dead.  While this has its own merits, it has also become fairly boring.  

Recently developers began noticing this deficit and games such has Half-Life©, Counterstrike©, 

and UnReal© tournament have popped up.  These games are successfully able to use expert-

based systems and simple finite-state machines to give the illusion of an intelligent enemy (Linden 

2001).  As a result, these well established algorithms have helped game Artificial Intelligence (AI) 

advance in leaps and bounds in recent years.  However, there is still much to be done.  For the 

experienced player, the AI is never �good enough�.  It needs to keep challenging the player, to 

adapt to the player and if possible learn from the player.  Currently there is no such behavior in the 

realm of the First Person Shooter.  Instead, a good player will learn the behavior of the enemy AI 
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and begin exploiting it.  One of two things will happen at this point, either the player will abandon 

the game in boredom, or they will continue for entertainment value (after all, sometimes it�s fun to 

let off steam).  Clearly games must account for both types of players. 

 

The answer to this conundrum may be found within the recent advances in academic artificial 

intelligence, especially machine learning.  Machine learning is concerned with the question of how 

to build a computer program that can improve its performance on a task through experience.  A 

task can be thought of as a function to be learned.  It is the function�s responsibility to accept input 

and produce output based on the input parameters.   For example, in making a decision to move 

forward or backwards in a FPS the input to the function is a list of variables describing the current 

environment of the game.  The input vector will include data describing how many opponents are 

near the player, the players health level, and any other relevant information.  The output is a 

classification of whether or not the player should move forward. The decisions made by a human 

player in a first person shooter will often be unexplainable except by example. That is, we can 

easily determine input/output pairs, but we cannot easily determine a concise relationship between 

the input and desired output.   We can easily collect data of a good player.  We can sample his 

actions and based on his performance in the game we can state with confidence that these are 

examples of correct decisions or examples of incorrect decisions.  This process is what we 

investigated in this thesis. 

 

Machine Learning takes advantage of these examples.  With these input/output pairs, a machine 

learning algorithm can adjust its internal structure to capture the relationships between the sample 

inputs and outputs.  In this way the machine learner can produce a function which approximates 

the implicit relationships in the examples.  Hidden amongst the examples will be many 
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relationships and correlations.  A human observer may be able to extract a few of these 

relationships but machine learning methods can be used to more extensively search out these 

relations.   

 

To use a machine learning algorithm it is first necessary to determine the features that are 

important to the task. It is also necessary to determine what we will attempt to learn from our 

examples.  Once these features are determined, we can represent an input/output pair as a 

collection of feature settings and an indication of the desired classification of this input.  For 

example, the input/output pair in our move forward/backward function would be a vector of 

environment data about the game and a decision to move forward or backward as output.  In our 

hypothetical task we would then collect samples of data that fit the �move forward� classification 

and samples of data which fit the �move backward� classification.  The combination of these two 

types of example classifications makes up the data set.  The learning algorithm makes use of both 

types of examples when changing its internal structure.  This form of learning is known as 

supervised learning, since we are acting as a teacher to the learning algorithm (Mitchell 1997).  We 

specify which examples should be thought of as positive and which are negative.   A supervised 

learning algorithm will split our data set further into a training set and a test set.  The training set 

serves to allow the machine learner to update its internal settings based on only these examples.  

The test set is used to estimate how well the internal learned function will perform on previously 

unseen data (Mitchell 1997). 

 

There are many different machine learning algorithms to choose from.  Some algorithms excel in 

certain domains while others do not perform as well.  Instead of hastily picking a learning 

methodology it is preferable to frame the problem as much as possible.   After the appropriate data 
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set is determined it will be necessary to gather plenty of samples, and try a few standard learning 

algorithms.  However, �standard algorithms� to academics are often novel ideas to game 

developers.  For example, things like ID3 trees, neural networks, and genetic algorithms have only 

recently been considered.  Machine learning is almost non-existent in the realm of the FPS video 

game.  This thesis will show that progress can be achieved by applying some recent machine 

learning algorithms to the task of learning player behavior in a First Person Shooter.  This will 

enable game developers to insert some unpredictability to the agents in a video game.  It will be 

shown that this application will also allow developers to model expert players with little rule 

specifications.  This means the doors will be opened for many different behaviors for our agents.  

For example, it will be very easy to model the behavior of a sniper or heavy-weapons specialist 

without needing predetermined rules.  

 

With current trends in game development the timing couldn�t be better to introduce new learning 

algorithms. Computer gaming is now an six billion dollar a year industry (Savitz 2001).  It is a 

competitive marketplace especially in terms of gameplay, which is something largely determined by 

the quality of a games� AI routines.  A game with a large variety of unique agent behaviors has a 

competitive advantage to a game with a few hand coded expert systems.  In addition to being a 

preferred investment to developers it�s also a viable option on current hardware.  Due to hardware 

advancements, processor cycles are easier to come by and memory is cheap.   Neural networks in 

modern games would be unheard of in the late nineties.  But now it�s not only possible on the PC, 

it�s already implemented in games such as �Black and White��.   
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II. The Problem and the Data Set 

It is straight forward to take a well-defined game, throw in some control structure for some agents, 

and begin teaching them.   But an FPS1 is not well defined.  There has only been a spattering of 

attempts at doing so (Laird 2000). There are no defined tactics for a player of an FPS.  The game 

is about battle, it is survival of the fittest; shoot or be shot.   The more agents the player kills, the 

higher his score.  But if the player is too gun happy, he might end up getting caught off guard and 

shot in the back.  The penalties for death are severe; the player must wait thirty seconds before 

continuing the competition.  Thirty seconds in this type of game is a significantly long time. In the 

meantime, the player�s opponent might have picked up a better gun, or a �health� pickup, or 

finished off a mutual opponent whom he�s been hunting since the beginning of the game (leaving 

the player with no points for the kill).  Even expert players can�t fully quantify their tactics.  They can 

tell you general tips. i.e., make sure to not stay in one place too long, do not rush at an opponent 

straight on, strafe to the left if one can.  But there are so many exceptions to any one rule that it 

makes it difficult to hard code a rule system.   

 

To get a grip on all of this, the first step is to figure out what input the program has access to and 

what output might be useful.  It might seem at first that an ideal FPS learning system would 

account for every action to take at any given situation.  However, there will always be a need to 

allow some amount of programmer control in an FPS.  The storyline and theme may demand 

specific actions at certain times.  For example, it may be an interesting first encounter to set up a 

thug that always jumps out from behind a crate to scare the player.  If we instead used player 

modeling to control the thug, the desired outcome may never happen.  For this reason we want 

                                                        
1 Although our research applies to any FPS, this research has used the FPS known as �Soldier of Fortune 
2�� (made by Raven Software) for its experiments. 
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control over what behaviors are learned from expert players and which are hand coded.  Combat is 

a good place to use learned behavior because unpredicted (but sensible) actions are always 

preferred.  Furthermore, there are only a handful of basic actions that are important during combat 

and these actions can be quantified.  In this thesis we look at four of the basic actions: 

accelerate/decelerate, move forward/backward, face forward/backward, jump/don�t jump.  The 

general behavior of a bot2 or player can be broken down into a sequence of moves (or move 

combinations).  There will be many finer points to address once the sequence of moves is 

determined.  For example, it�s expensive to evaluate where a bot can move every time frame3.  

Without proper calculations a bot may accidentally bump into a wall or walk off a cliff.  Such 

pragmatics will be addressed latter in this thesis.   

 

What is needed to make a choice for any of these decisions?  How does a player or agent know if 

it is time to move forward.  This is at the heart of the problem.  Typically these decisions are hand 

coded within some rule-based system.  However, to achieve more lifelike and challenging 

characters, developers would like to model these decisions after an actual player and learn how 

these decisions are made.  At this stage, the problem becomes a more traditional machine learning 

problem.  A good set of features must be found to represent the environment of the game.  This is 

the hard part of learning in a FPS, because even an expert gamer can not quantitize what it is that 

makes him good.  Many of his decisions will be reflexive, and will not have  an immediately tangible 

explanation behind them.  With so much available data at any given time step, the selection of 

applicable features is very important. 

 

                                                        
2 The AI agents in FPS video games are known as a �bots.� 
3 A frame is the smallest time step in our simulation.   
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The Feature Set 

The first step in modeling player behavior for an FPS video game is choosing the appropriate set of 

features for our  learning algorithms.  As mentioned, this thesis investigated four of the basic 

combat actions for an FPS: accelerate/decelerate, move direction, face direction and when to 

jump.  These four actions will be the output portion of the data sample.  We must now decide what 

information will be useful in making these four decisions.  There is a large amount of available 

information but much of it is superfluous to learning player strategies.  For example, knowing which 

3D model file the player currently is using for his pistol is not useful to the learning algorithm.  

Perhaps the most important information in any combat scenario is to know where the agent�s 

enemies are.  The more knowledge our agent has, the better his chances at surviving.  Since 

information about location is so important, it is divided into several smaller features.  Spatial data 

about enemy location will be determined by breaking the world up into four sectors around the 

player, as illustrated in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1: Game sectors with player centered in the middle. 
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Sector information is relative to the player.  For example, Sector 1 represents the area in front of 

the player.  Actual world position is not as important to the player as is information about his 

immediate surroundings.  Data about enemies and goals will be expressed in terms of sector 

coordinates.  For example, the location of the closest enemy to the player will be indicated by a 

sector number.  If the goal is due east of the player it will be considered in sector 2.  A sector ends 

at 700 feet and is the maximum view distance of the player on the sample levels. 

 

Information about enemy location is extremely important to the player.  Table 1 lists all the input 

and output features used for our learning algorithms.  Of the twelve input features more than half of 

them report enemy statistics.  The number of enemies in each sector will be recorded as will the 

health of the closest enemy, his distance from the player, and his sector location. 

 

In addition to enemy information, the player must continually be aware of his health level.  For 

example, if a player has low health his actions might be significantly different than if he has full 

health.  Also, the Soldier of Fortune 2� game is not simply about surviving the longest without 

dying.  Points are awarded to whomever can �capture the flag� and return it to their base.  To an 

expert player this is significant motivation to change strategy during game play.  The feature set 

includes information about the distance the player is from the closest goal and what sector contains 

that goal.  Finally, we record the current move direction and direction the player is facing.  This 

allows us to determine such tactics as retreat and advance.   
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Table 1: Input Feature Set and Possible Outputs 
 

Input (current information about the world around the player) 
Closest Enemy Health This is the current health of the closest enemy. We 

discretize the possible values of this feature to zero 
through ten. 

Number Enemies in Sector 1 This is number of enemies in sector one4.  
Number Enemies in Sector 2  This is number of enemies in sector two. 
Number Enemies in Sector 3 This is number of enemies in sector three 
Number Enemies in Sector 4 This is number of enemies in sector four. 
Player Health This is the player health.  In the game the  

possible values are 0 to 100, we discretize this into 10 
equal-sized bins.    

Closest Goal Distance                  Every game has a goal.  By securing the goal the player 
gains points.  The goal used in this research is a 
briefcase. Approximately  10,000 units is the start 
distance from the goal and this is the  greatest distance 
possible; we linearly discretize this on a 0-10 scale.   

Closest Goal Sector                     The goal is in the following sector (note goal can be 
moved by other agent; this is non-static). Goal sector is 
relative to player. 

Closest Enemy Sector     This is the sector containing the closest enemy.  
Distance to Closest Enemy This is the number of game units the agent is from his 

closest enemy.  Values range from 0 through 10, scaled 
from a game representation of units (rounded to the 
nearest 1000 game units and capped at 10,000). 

Current Move Direction               When this data was collected the player was moving in 
this direction (0 for moving south, 1 for moving north) 

Current Face Direction When this data was collected the player was facing this 
direction (0 for facing south, 1 for facing north). 

   
Output (collected at next time step after input is sampled) 
Accelerate If player is moving faster than in the last recorded frame, 

this variable is set to 1, otherwise the value is set to 0. 
Move Direction Direction of player movement in world angles; 0 means 

he is moving forward in the front 180 degree arc from 
world origin (north), 1 means he is moving backwards 
(south). 

Facing Direction  This is the orientation of the player; 1 means he is facing 
somewhere in the front 180 degree arc of the world origin 
(north); 0 means he facing somewhere in the back 180 
degree arc (south) .    

Jumping If the player jumped this frame, the value of this variable 
is 1, otherwise it is 0. 

                                                        
4 If there are more than ten enemies the value is set to ten.  The same upper bound holds for the 
other three sectors. 



 

 

10

 
      

Extracting the Data Set 

Once the feature set is determined it is possible to run the game and collect some samples.  For 

the purposes of this thesis, the outcome associated with any set of features will be one of the basic 

actions as described in the output section of Table 1. The feature set will be measured every other 

game frame (100 milliseconds).  Every sample has a corresponding outcome that occurs 50 

milliseconds later (the amount of time it takes to process a combination of player key-press 

events).  This outcome will be some combination of the four basic actions: 

-   Move front / back  

-   Face front / back 

-   Jump / do not jump 

-   Accelerate / do not accelerate 

 

III. Learning From the Data 

Data was collected by sampling the decisions of an expert player.  The level used was a standard 

�capture the flag� game with thirteen enemy agents.  We created a special version of Soldier of 

Fortune 2� to collect the available game data and translate it into our feature vectors.  For 

example, when a game frame is sampled we can access locations of the nearest enemies within a 

certain radius, then using vector math we compute their location relative to the player.  This 

technique is used for all the sector information features.  The Move Direction and Face Direction 

features are computed by simply recording the current world Face Direction and Move Direction of 

the player.  The output section of the feature vector is computed on the time step following the 

sample.  We record whether or not the player accelerates, changes movement, changes facing, or 
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jumps.  This part of the feature vector represents the decision made by the player.  Now that we 

have the input features as well as the decision, we have a complete feature vector.  This feature 

vector is saved and the collection of samples becomes our training and testing sets used for 

applying the learning algorithms.  We collected over ten thousand individual examples by 

observing one expert player for 50 minutes.  

 

A. Algorithm Descriptions  

The first set of experiments will test a few standard classifiers: decision trees (ID3), Naïve Bayes, 

and artificial neural networks (ANN) to judge how well they can learn from our training examples. 

 

ID3 

There are many decision tree algorithms to choose from.  This thesis uses the ID3 decision tree 

learning algorithm (Quinlan 1986).  Since the decision at any point in time is not mutually exclusive 

of the other decisions, this problem can be easily extended to four separate decision trees.  One 

decision tree will represent each possible binary decision: Accelerate, Jump, Move Direction, and 

Face Direction. 

 

The training examples will be the feature vector at any time slice (the input), and the given action 

(the output).  For each of the four decision trees the root node will be created and labeled with the 

feature that best classifies the examples.  The standard information-gain formula was used.  For 

the remaining examples, we recursively apply the ID3 algorithm and again find the best feature. 

 

After several test runs, it was evident that ID3 generates some very lengthy decision trees.  To 

overcome this it was decided to implement the common �rule post-pruning� algorithm.  This 
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algorithm uses a part of the training set as a tune set to estimate expected future accuracy. This 

accuracy information is then used to prune parts of the tree.  In this thesis we pull out 10% of the 

training set to be used as a tune set for ID3 pruning.  Rule-post-pruning can be summarized as 

follows: 

1. Grow the decision tree as normal from train data. 
2. Create one rule for each path from the root node to a leaf node.  

For example, assume we created this rule set:  
if (Enemy Sector = 1) ^ (Goal Sector = 2) ^ (Closest Goal = 2) then Jump = yes 
If (Enemy Health = 1) ^ (Enemy Sector = 2) then Jump = no 

3. Calculate and save the tune set accuracy on the full set of rules. 
4. For each precondition in each rule: 

a. Consider removing the precondition from the rule.  For example, in the rule set 
above we would first consider removing (Enemy Sector = 1) from the first rule.  
On the next iteration we would consider removing (Goal Sector = 2).  After 
considering the final precondition of the first rule, we move on to the first 
precondition of the second rule. 

b. Remove the precondition temporarily and score this new rule set using the 
tune data.  Remember this score and the corresponding precondition 
removed. 

5. Calculate the best tune set accuracy over all the rule sets created in step 4.   
a. If the best accuracy is not greater than the previous best accuracy,  

stop pruning and use the saved rule set from the previous step. 
b. Otherwise if the best accuracy is greater than the previous best accuracy, 

remove the corresponding precondition which, when absent, led to the higher 
accuracy. Save this rule set and return to step 4, considering this new rule set 
for further pruning. 

6.  Evaluate the final pruned rules by having them classify the test set. 
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NAÏVE BAYES 

The Naive Bayes Classifier is another type of learner (Mitchell 1997).  It uses Baye�s theorem and 

assumes independence of feature values to estimate posterior probabilities.  In this case it is 

anticipated that the features in and FPS are independent enough of each other to allow accurate 

classification.   Classifications are made using the highest posterior probability.  For example, if we 

have conditional independence then the probability of observing a conjunction of attributes Prob(x | 

c), where vector x contains the attributes and c is the result, is  equal to the product of the 

probabilities for observing the individual attributes xI. In other words Prob(x | c)= ∏{1,..,n} Prob(xi | c) 

where n is the number of attributes in x. Thankfully our features are mostly independent of each 

other because most of the features concern location data.  For example, the number of enemies in 

front of the player is not dependent on the number of enemies behind him.  But there are certain 

instances in game play when this is not the case.  For example, high player-health levels may 

dictate that more enemies are placed near the goal, meaning the enemy sector features may be 

partially dependent on the health feature.  However, this is a rarity because this is only triggered 

when teams need to be evened out5.  In addition, for many practical tasks Naïve Bayes still leads 

to accurate prediction even when the independence assumption is violated (Domingos 1996). 

 

ANN 

An artificial neural network (ANN) learns by using a training set to regress through the examples 

and learn in a non-linear manner.  The basic back-propagation algorithm (with ten hidden units) 

was used in this project (Mitchell 1997). 

 

                                                        
5 This phenomena only  occurs approximately one in every twenty games. 
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The standard validation-set concept was used to avoid overfitting of the training set.  Similar to the 

method of moving 10% of the training examples into a tuning set for ID3 pruning, 10% of the ANN 

training data will be moved into a tuning set to validate our learned function.   After every five 

epochs of training we save the network weights at that time step and calculate the error on the 

validation set with these weights.  If at any time the error rate is lower than the previous error rate 

from five epochs previous, training is stopped and the network weights of the previous validation 

step are used. 

 

B.  Experimental Methodology 

Collecting the Data 

Because of the complexity of the FPS there are some implementational hurdles to collecting this 

data.  Since the data was sampled at a rate of every 100 milliseconds, there will be many input 

sets that look exactly the same.  If nothing has changed in 500 milliseconds, only one of these 

samples is recorded.  However, if at least one of the features changed this sample will always be 

recorded.  This is important, otherwise crucial feature/action pairs might be missed.  

 

Events with no corresponding action are discarded. A portion of these events may have proven 

useful: if no action is specified it could mean to stand still.  However, rare events such as climbing 

ladders, opening doors, and going prone were not encoded.   For this reason, it can not be 

assumed that the remaining non-classified situations dictate any particular action, so they were 

thrown out before learning began.6 

 

                                                        
6 Un-classified examples accounted for approximately 7% of the total collected examples.  
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The game is run in multi-player mode with thirteen agents placed in a large multi-leveled 

environment.  This environment includes places for every type of basic movement.  This system for 

collecting data has been verified to work on any environment type with no necessary 

customization.  However, the examples applied to the learning algorithms were always from the 

same environment.  Data was collected over the course of several game sessions and combined 

into one massive data set of approximately 6000 examples. Each game was run by the same 

�expert� player, whose performance was fairly consistent.  

 

Estimating the Error Rate of the Learned Models 

After collecting the data each learning algorithm is applied in independently. After the algorithm has 

used the tuning set and training set, accuracy is estimated on the test set.  The same test set of a 

thousand examples is used for all experiments. To get an idea of how much data will be needed in 

practice, each set of experiments was run on several different training set sizes.   

 

C.  Results 

Figure 2 shows performance on the test set as a function of the size of the training set.  The three 

basic algorithms exhibited satisfactory performance with error rates being low across all tasks.  In 

general, the ANN always had lower error rates across all four tasks on the larger data sets sizes.  

On the smaller data sets, ID3 and Naïve Bayes sometimes achieved lower error rates than the 

artificial neural network (ANN).  The lowest error rates for all four tasks were achieved by the ANN 

using a data set size of 5,000 examples.  Figure 2 also shows a baseline error rate.  The baseline 

illustrates the error rate achieved if the majority category is always guessed. 
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For Face Direction the ANN began to achieve lower error rates than the other two algorithms at 

only 500 data set examples.  The error rate on Face Direction task dropped all the way to 16%.  

The baseline hovered at about 40%. 

 

For Move Direction the ANN began to achieve lower error rates than the other two algorithms at 

1,500 data set examples.  The error rate on Move Direction dropped all the way to 7%.  The 

baseline hovered at about 40%t. 

 

For Jump the artificial neural network began to achieve lower error rates than the other two 

algorithms at only 500 data set examples.  The error rate on Jump dropped all the way to 14%.  

The baseline error rate hovered at about 3%.  The error rate baseline for this decision is actually 

substantially lower than the error rate using ANN.  This interesting result is due to few occurrences 

of positive Jump examples.  In relation to the other recorded decisions, jumping is a rarity.  Using 

�confusion matrices� we will investigate this issue in full in another section.  Because of the nature 

of jumping in an FPS, it turns out a higher error rate on this task is acceptable.  A complete 

discussion is presented later in this thesis. 

 

For Accelerate the artificial neural network began to achieve lower error rates than the other two 

algorithms at 1,500 data set examples.  The ID3 error rate behavior was similar to the ANN error 

rate on this task.  But the ANN was still more accurate; the error rate on this task dropped to 16%. 
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Figure 2: Error Rates of the Basic Learning Algorithms on the Four Tasks 
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Results Summary 

It is helpful to simultaneously compare results of the various algorithms across all tasks.  Figure 3 

shows the error rate behavior of Naïve Bayes, decision tree and ANN on all four tasks. 

 

Figure 3: Test Set Error Rate Summary for ID3, ANN and Naïve Bayes 
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continually changing domain, it is possible that any online learning would restrict the size of 

available training examples. 

 

While, in general, the error rates were very low, one must be evaluate if they are acceptable for this 

domain.  Each task must be considered individually, since the frequency of the acceptable 

scenarios under which these behaviors are performed varies greatly.  Also it should be noted that 

the ANN requires many more CPU cycles than the Naïve Bayes or ID3 approach.  In practice the 

ANN trained with 5000 examples took as long as 90 seconds.  The speed of Naïve Bayes was 

essentially negligible. For this thesis we learned the player model offline and applied the results to 

the agents in the next game.  However, if learning must be online and and speed is the primary 

concern, Naïve Bayes might be the best choice.   

 

For Face Direction, the best performing algorithm (the ANN) achieved a 16% error rate.  This 

means 16% percent of the time the agent will be facing a different direction than the expert player 

would have faced during that situation.  At first this may seem low, but facing is crucial for fire 

fights; it is the difference between having a line of sight on the enemy and having his gun in your 

back.  The classifier used allows an agent to have the incorrect facing one out of every six times; 

unfortunately this frequency is too noticeable.  

 

Move Direction was classified very well by these learning algorithms, and received only a 6% error 

rate.  Move Direction is probably the single most important task facing the agent.  Goals are 

achieved by moving in the right direction, enemies are avoided by moving in the right direction and 

weaker enemies are overcome by moving in the right direction.  Under the guidance of the learning 
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algorithm the agent will decide correctly almost nineteen out of twenty times.  This is clearly 

acceptable performance.   

 

The learning algorithms achieved a 14% percent error rate on the Jump decision.  However,  

the majority category always beats the learned prediction.  One might wonder why not just guess 

the majority category since this would more closely model player behavior. However there is no 

drawback to jumping more often than is necessary.  It is also a common tactic among some 

players. Furthermore, it�s possible that other methods can help stabilize the performance on this 

task.  

 

Accelerate is another important task.  Knowing when to speed up can be the difference between 

securing the goal and allowing enemies to call in reinforcements.  The best learner above has a 

13% error rate on this function.  Again, this is too high.  It would be unacceptable if one in every 

eight times the agent fails to speed up to the goal or fails to speed up to avoid enemy fire.  With 

each game having a short time limit and a great many of these situations, one in eight amounts to 

a behavior that will be noticed. This number needs to be at least cut in half; more advanced 

learning schemes must be considered. 

 

IV. Ensembles: Boosting and Bagging 

 

The basic learners performed well at classifying our data. With 5000 training examples the artificial 

neural network (ANN) in particular never got error rates worse than 16% on any of these tasks.  

However, as noted above this is still not acceptable.  Since the agent will be using these decisions 

in real time again and again, the error rates need to drop.  One thing that was noticed about the 
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learned decision trees7 and the behavior of the ANN is that a great many of the learned trees and 

functions work perfectly to account for many variables.  However, it is the rare cases that hurt.  

What is preferred is a way to hedge the bet and rely on the functions that learn the task well, while 

somehow penalizing those that do not.  Ensemble methods are one way to do this.  An ensemble 

is a set of independently trained classifiers.  The basic idea is to run the data on several different 

sets of data and have each learned function �vote� on the result.  This vote then becomes the 

decision.  Research has shown that usually ensemble methods produce more accurate results 

than singleton classifiers (Opitz & Maclin 1999). Bagging (Breiman 1996) and Boosting (Freund & 

Schapire 1996) are two popular methods for producing ensembles.  These methods are fairly new 

and have not been tested on a domain similar to a first person shooter video game. Each of these 

ensemble methods was investigated in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
7 See Appendix A for some examples. 
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A. Ensemble Algorithms 

Bagging 

A basic bagging scheme was implemented in this paper.  The idea of bagging is to vary the training 

set several times and train one classifier for each data set.  The pseudo code is described in table 

three. 

Table 3 : Bagging Pseudo Code 

 
Let n = 5000, the number of instances in the training data 
Let j be the test set instances (1000 instances). 
For t = 5 to 30, counting by 5 
 For t′ = 1 to t 

Sample n items from the original n training examples with replacement, call this set m. 
Apply the learning algorithm to set m. 
Judge the decision on each member i in the test set j, store result in R(i, t′). 

 For each test item i in j: 
Classify i according to the most commonly predicted class recorded in R(i, 1)� R(i, t) 

  

With the exception of Naïve Bayes, bagging was rather beneficial. As shown in Figure 4, there is 

as much as a 3 percent increase in both the decision tree (ID3) and ANN.  After the number of 

ensembles rose to 15 for the ANN, the increase in accuracy began to stabilize.  The accuracy of 

the ID3 began to stabilize at ensembles of size 20.  By way of comparison, the decision tree 

benefited slightly more from bagging than ANN.  However, in all cases the ANN still outperformed 

the decision tree. 

 

Boosting 

Instead of a voting scheme (as in bagging), an algorithm known as boosting can be used to help 

weight misclassified and classified examples from within a training set.  The weighted values can 

then be used to resample the training set and relearn the missed examples.   The tuning set can be 

set aside as a means to gauge when to stop.  We use a derivation of the original AdaBoost 



 

 

23

algorithm (Freund 1995).  This version of AdaBoost was shown to be mathematically equivalent to 

Freund�s original approach (Bauer, Kohavi 1999).  Pseudo code follows in Table 4.   

Table 4: Boosting Pseudo Code 

Input:  Training set S of size m, where each example i is a a <x′i,y′i> pair 
Artificial Neural Network ANN 
Integer T (number of trials) 

 
Set all instance weights to 1/m. 
For i = 1 to T do 

Ci = ANN(S) (The classification of test set S using the ANN)  
 Compute weighted error on training set :  

ei = 1/m  ∑ weight(x) (Weighted error on training set) 
xj � S : Ci (xj ) ≠ yi  (Where xj  is a training set instance that was 

misclassified) 
 

 For each example xj in S′ : 
If misclassified, 

weight(xj) = weight (xj) /2ei  
Else 

weight(xj ) = weight(xj) / 2(1-ei) 
 

In some boosting implementations there is a step of normalizing the weights.  No normalizing step 

was used here because the proportion of misclassified instances is ei and these instances get 

reduced by 1/2 ei.  The total weight of the misclassified instances after updating is ½ the original 

training set total.  Furthermore, the total weights of the correctly classified examples will be half the 

original training set total. 

  

Operation of the Boosting Algorithm. 

To demonstrate the helpfulness of this use of the tuning set to increase accuracy, let�s step through 

the boosting algorithm and assume our learner is ANN.  Starting with a training set size of 5,000, 

the training set is split off into a train and tune set.  The tune set will contain 500 examples and be 

used for early stopping.  Using ANN on the Accelerate data set shows that the base inaccuracy on 

the tune set is 21%.  According to the update rule these 1,050 examples will be updated to a 
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weight of 2.38 each (update factor of 1/(2*.21)).  The correctly classified examples will have a 

weight of 0.63 (1/(2(1-.21).  These weights were used for resampling for the next trial. 

 

On the next trial the ANN made some mistakes that previously were classified correctly.  

Subsequently, these five mistakes end up getting weighted much higher (504).  However after the 

second round of learning, tune set error is already reduced to 19%.   

 

The results of the boosting algorithm were very good.  For the Accelerate task an accuracy of 

95.5% is now possible on the test set.  This is a full 10 percentage point increase from bagging!  

However, initial experiments indicate that the other tasks in this project gain less from the 

algorithm.  Jump increases less than 1 percentage point, while Move and Face Direction increase 

in accuracy 4 percentage points each.  
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Figure 4: Error Rates of Bagging as a Function of Ensemble Size 
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Figure 5: Error Rates of Boosting as a Function of Ensemble Size 
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B.   Results of Ensemble Algorithms 

The ensemble algorithms exhibited very good performance with even lower error rates. In general 

ANN paired with boosting always out performed ANN paired with bagging.  The error rates were 

cut by as much half with boosting compared to training one ANN. 

 

Finding the Right Ensemble Size 

Some research on ensembles indicate that after the size of ensembles exceeds ten classifiers 

there is no further benefiting to increasing ensemble size (Hansen 1990).  However, more recent 

work on the subject has shown that on some data sets increasing ensemble size to as high as 25 

classifiers can still increase performance (Opitz 1999).  Due to this project�s unique domain and 

these differing findings, we will investigate several different ensemble sizes for our data set. 

 

Figures 4 and 5 below show the results.  After the number of ensembles rose to 15 for the neural 

network, the increase in accuracy began to stabilize.  The accuracy of the decision tree began to 

stabilize at ensembles with 20 members.  By way of comparison, ID3 benefited slightly more from 

bagging than the other classifiers.  However, in all cases the ANN still outperformed ID3. 

 

Test Set Error Rate as Function of Number of Training Examples 

Tasks trained using only one ANN suffered from get diminishing returns after a couple thousand 

training examples, but for most of the tasks error rates continued to decrease for data set sizes 

nearing 5000.  For Face Direction, the ANN kept achieving lower and lower error rates using 

boosting and bagging until data set size was increased to 5000.  The boosting algorithm always 

outperformed the bagging algorithm.  For Move Direction the ANN began to achieve lower error 

rates than the other two algorithms at 1500 data set examples.  Accuracies of both ensemble 
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methods began to level off around 2000 examples. The Jump and Move Direction decisions also 

continually decreased in error rates until the data set size increased to five thousand.  Figure 6 

shows respectable error rates for both boosting and bagging using the ANN as classifier. For the 

purposes of comparing the performance of learners with boosting with the performance of learners 

without boosting we will only show results of ANN, since ANN is the learning algorithm with overall 

best performance.  Figure 7 shows an overall comparison of the performance of classifiers which 

use ensemble methods and those which did not. 
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Figure 6 : Error Rates of ANN, ANN w/ Bagging, and ANN w/boosting 
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Confusion Matrices 

A confusion matrix contains information about actual and predicted classifications done by a 

classifier.  The data in a confusion matrix can be used to evaluate performance of classifiers.  

Confusion matrices for the four tasks were collected in addition to the error rates over various data 

set sizes.  This data was collected over the test set and results are shown in Table 5. 

 

Table 5: Test Set Confusion Matrices for the Four Tasks Using ANN with Boosting 
         

Accelerate?  Move Direction 
  Actual    Actual 
  Yes No    Yes No 
Predicted Yes 1213 170  Predicted Forward 1810 186 
 No 55 3562   Backward 54 2850 
 
 
          

Face Direction  Jump? 
  Actual    Actual 
  Yes No    Yes No 
Predicted Forward 1523 475  Predicted Yes 95 495 
 Backward 150 2582   No 5 4405 

Figure 7: Error Rate Summary with Ensemble Methods Included 
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C.  Discussion 

Although all error rates dropped, certain tasks faired better than others when using ensemble 

methods. Move Direction is one of the tasks which showed little improvement using ensembles.  

While it did drop from a 7% error rate to 5.2%, this is a paltry improvement compared to the 

improvements in the other tasks.  However, as seen earlier, Move Direction was already the best 

classified task and improvement was not necessary.  

 

Face Direction fared well under the ensemble methods. With a single ANN the error rates were 

hovering at 16% but with boosting a major drop in misclassified results is shown.  Boosting 

achieves a very respectable 5.3% error rate.  As with Move Direction, this is an important task for 

the domain.  The basic ANN algorithm would have made a mistake one out of every six times, 

which wasn�t acceptable.  One mistake in seventeen is much more acceptable, and while it will still 

be noticeable this error rate may be explained away as natural mistakes as opposed to obvious AI 

blunders. 

 

As stated earlier, the Jump decision fares better overall when the majority category is guessed.  

This is still true with ensembles.  In this case boosting got the error rate down to 5% while the 

majority category hovers around 2.5% percent.  But is is important to consider what type of false 

negative statistics would be generated if it was always voted to not Jump.  Table 6 shows that 

there are indeed more false negatives in the baseline case. 
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Table 6: Confusion Matrix for Jump Baseline 
  Actual 
  Yes No

Predicted Yes 0 0

 No 126 4874 

 
In this domain, it is desirable to lower the false negative rate at the cost of raising the true negative 

rate.  In a FPS, it does not matter if the agent occasionally jumps for no reason.  But at the same 

time the agent should jump when appropriate.  Does our most accurate learning algorithm 

(boosting with an ANN) perform with more true positives than false negatives?  

 

Table 5 shows the ANN with boosting predicts jumping when appropriate with 95% accuracy.  

Minimal accuracy is gained on true positives and the false negatives increase dramatically. With 

this algorithm in place, a jump occurred on 13% of the cycles when the agent shouldn�t have 

jumped according to the training data.   For this application it will be suitable to lower this number 

but allow most of the false negatives to slip through.   Perhaps as a post-processing step a single 

flip of a coin could be used to decide whether or not to follow the �jumping advice.�   On real data, 

this would bring the true positive rate down, but it would also bring the false positive rate down to 

6.5%. 

 

Even with bagging the Accelerate task was still recording a 10% error rate, which is not acceptable.  

However, once boosting was added the Accelerate task increased in performance, to the point 

where it�s now the most accurately predicted function at only a 4.8% error rate!  This might mean 

that in the bagging ensemble method a great many of the examples randomly sampled were still 
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voting the wrong way.  While, with boosting the tuning set could be used to more closely weight the 

results.  This is an important contribution, since it means the Accelerate task will err only one in 

twenty times.  For such an important function, the lowest possible error rates are desired. 

 

V. Related Work 

In the domain of the FPS there is relatively little work on what learning algorithms work best. Some 

general frameworks for machine learning in video games have been laid out but not yet fully 

investigated.  One framework was laid out by Zhimin Ding (1999).  He proposes a design that is 

capable of real-time learning.  The core algorithm to his system is the Markov decision process.  

Similar to our work, his first steps focus on transferring game data to applicable feature sets.  He 

describes how such data can be collected using the example of a computer boxing game.  Zhimin 

created a system to analyze the physical movements of a boxer (player) this system fills in the 

state transition probability matrix that is fundamental to the Markov decision process learning 

model.   

 

Much of the work done by Zhimin in creating his learning system has exact equivalents to this 

thesis.  In addition to describing a specific application of machine learning to a boxing game, he 

presents a general framework for embedding learning systems within games.  Our approach 

departs from his framework when he assumes that the agent has all available knowledge about 

world physics.  He uses this assumption to motivate the need for a smart feature-selection routine.  

Certain types of video games may have access to all world information but agents in an FPS 

typically do not have all this information available.  For example, information about the architecture 

of the room is not complete.  We have shown that with a good choice of features, learning can be 
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effective without complete world information.  For example, we showed that enemy locations can 

be split up into abstract �sectors� instead of exact room locations.   

 

Another AI framework known as SOAR was developed by John Laird and his colleagues (Laird et 

al, 1986).  This system creates an architecture for AI in the quake II (FPS) world.  It uses reactive 

planners to simulate human behavior in a FPS (Laird 2000).  Underlying the planner is a system 

that holds all the information about the conditions within the simulation.  This approach depends on 

building an internal representation of the domain.  The programmers specify a set of operations 

within the FPS (e.g. attack, wander, collect-powerup, explore). The agent predicts what the enemy 

will do based on environmental conditions.  Based on these predictions the agent then uses a set 

of learned rules to determine a strategy.  No learning is involved in this system, the behaviors are 

determined a priori by the creators of the agent. In this case, it�s the programmers who are the 

experts. Player modeling is not part of the process.  In practice the system discussed in this paper 

would make similar choices.  However, in our system the choices would be made based on 

functions created by one of the learners.   

 

There has been a great deal of work done on types of ensemble classifiers.  A recent summary  

can be seen in Chan, Stolfo Wolpert (1996). A variant of AdaBoost (Freund Schapire 1995) was 

used in this paper.  Specifically we use the AdaBoost algorithm as adapted by Bauer and Kohavi 

(1999); the approach they take is simple and equivalent making it easy to insert into our FPS 

domain. Breiman describes a related method known as Arc-x4 (Breiman 1996) .  Arc-x4 assigns 

fixed equal voting weights for each expert, and reweights exemplars using a much simpler function 

of the number of mistakes made by prior experts.  Breiman has shown that under some situations  

Arc-x4 performs as well as the more complex AdaBoost. 
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An entire section of this paper was devoted to finding the right ensemble size.  There have been 

many experiments on this issue.  As mentioned above, Hanson has suggested that ensembles 

sizes greater than ten are not needed (Hansen 1990).  It should be noted however that this work 

was done on very specific data sets.  Other recent work does show that ensemble sizes up to 30 

help reduce error rates (Opitz & Maclin 1999) (Cox 1999).  In our experiments we found that sizes 

of 20 worked well. 

 

VI. Future Work 

Applying the ANN to the Game8 

Applying an ID3 decision to a bot at run time is a tricky matter.  Remember that a standard bot in a 

Quake3 game knows nothing about its surroundings. For example, it has no idea a priori that if it 

walks forward, it will hit a wall.  This makes it difficult to directly apply the results to a real situation.  

This means some sort of back-end controller for the bot is needed to approximate what �back, 

forward, right, left, cover and shoot� means.  Many games use some sort of node system to 

partition the playable areas for the bots (DeLoura 2000).  This means that any time the bots are 

within a node they will know what nodes are in front of them, what nodes are for cover, what nodes 

are reachable from the given node, and what other enemies or players are in any given node.  The 

figure below shows an example map.   A circle represents a �node�, a solid line is a connection and  

solid walls are shown by shaded polygons. 
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Simple geometry can be used to derive what nodes are in front or back of each other in relation to 

the player.  The height of walls is also known in an FPS.  If a node intersects a wall at one height, 

but does not intersect higher up, this may be a possible duck point.    

 

Finite States and Putting It All Together 

A set of macro actions that can be performed at will is needed. For example, a routine to find a 

node that will give us cover from closest enemy, or a routine to move forward, towards the closest 

enemy could be used.  Again, this is easy to do because there is a system in place for moving the 

agent about the world.  Another reason some sort of controller is needed is that even if the AI tells 

the bot to attack, it might not know how to attack. What gun should the agent attack with, and what 

about grenades?  All these things can be decided easily by some hand-coded rules.  Each set of 

rule will be contained within a finite state  Once the high level attack action is determined the finite 

states can then sort out the details.   

                                                                                                                                                                     
8 This thesis used version 0.13 of Soldier of Fortune 2. 

Figure 8: Sample Node System 
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Knowing how to attack is one example where a set of finer grained instructions is needed.  But 

even a simple command to move forward isn�t easy to interpret.  Does the agent want to move the 

most directly forward, or off a little bit at an angle?  This exact decision can also be made by some 

further rules.  For example, perhaps it�s better to move forward to spots that are close by.  These 

kind of assumptions will need to be made while we�re getting the learning system up and running. 

Perhaps someday these micro decisions can also be decided by player modeling. 

 

In our system some of the authority is delegated to a smaller expert system, but in the meantime 

the classifier can control the more general behavior of fleeing, fighting, or holding our ground.  This 

means that it will be more difficult for the player to spot a pattern.  Patterns in FPS games often 

manifest themselves in how these higher level decisions are made.  For example, if the player is 

there, the agent goes towards him. This unfortunately results in the player learning that course of 

action, and learning to account for it. However, now the basic direction of the bot can be modeled 

from player reactions. In practice this indeed holds to be true.  Playing this simple combat map one 

can see agents deciding to run back for cover.  Once the bots get to the desired spot the finite 

state takes over telling them the details of what to do next.  For example, after running backwards 

because of the higher level decision the finite state may tell the bot to make sure and reload if their 

gun is empty.  In general, this combination provides for a more dynamic game. 

 

It has been shown that four ensembles of neural networks can be used to model player actions at 

any point in time.  The accuracy on these is pretty decent, ranging all the way up to 96% accuracy 

for basic �move back� and �move forward� operations.  It has also been shown that not all decisions 

in the game need to be learned. It�s not necessary to have 100% accuracy here, but just to look 
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intelligent and to present a challenge to the player.  Many things remain to be done.  For one the 

available actions should be extended to include crouching and various speeds of movement (e.g. 

run vs. walk).  Also, finer grained decisions could be incorporated, i.e. the decision to shoot vs. 

throw a grenade. Since the actions taken do not have to be exact and it�s in fact more enjoyable if 

it�s dynamic, it might be interesting to try an algorithm with a bit more activity in the solution space. 

For example, genetic algorithms and their notion of occasional mutations may prove interesting.   

 

VII. Conclusion 

This thesis has explored several popular machine learning algorithms and shown that these 

algorithms can successfully be applied to the complex domain of the First Person Shooter (FPS). 

We performed our experiments on decision trees, naïve bayes classifiers, neural networks, and 

neural networks with boosting and bagging.  We have shown that a subset of AI behaviors can 

easily be learned by player modeling using machine learning techniques. Under this system we 

have successfully been able to learn the combat behaviors of an expert player and apply them to 

an agent in the Soldier of Fortune 2� FPS. The following tasks were learned: acceleration, 

direction of movement, direction of facing and jumping. We evaluate both empirically and 

aesthetically which learner performed the best and make recommendations for the future. We have 

created a system which uses these learned behaviors in a finite state system within the game at 

real time. 

 

Since all the tasks shown in this project benefit to varying degrees from boosting, it is 

recommended to use boosting for the FPS domain. The artificial neural network (ANN) performed 

the best for any data set sizes over 2000.  In practice it�s most likely that learning will be done 

offline.  So it�s recommended to use an artificial neural network for computing these task decisions.  
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If learning is online, Naïve Bayes or ID3 with boosting may be a better option.  This paper has 

shown that an ensemble size of 20 is a good choice. 

 

As seen in the future work section there are many details to the first person shooter domain.  A 

filter has been implemented in this project to transfer game data into training examples.  Several 

learning algorithms have been implemented that learn crucial tasks well.  But some work remains 

to efficiently allow game agents to make use of these classifiers.   
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Appendix A 
We now show portions of four decision trees (Accelerate, Jump, Move Direction, and Face 
Direction) learned by the ID3 algorithm.  To conserve space the nodes of the trees are labeled with 
the following conventions: 
 

Feature Name From Table 1   Node Label 
Closest Enemy Health   EnemyHealth 
Number Enemies in Sector 1  #EnemySector1 
Number Enemies in Sector 2   #EnemySector2 
Number Enemies in Sector 3  #EnemySector3 
Number Enemies in Sector 4  #EnemySector4 
Player Health    Health 
Closest Goal Distance   ClosestGoal 
Closest Goal Sector     GoalSector 
Closest Enemy Sector   EnemySector 
Distance to Closest Enemy  EnemyDistance 
Current Move Direction        CurrentMove 
Current Face Direction   CurrentFace 

 
The edges represent the possible values for each feature. Some value ranges are not present to 
conserve space.  The feature values yes and forward will be represented as 1, while feature values 
no and backward will be represented as 0.  If a node ends with no further connections it is either a 
leaf node or a sub tree that is not illustrated.  In the case of leaf nodes we list the number of 
occurrences at this node and the decision that was made.  In the case of a sub tree we list the 
number of occurrences of each decision that was made in the abbreviated sub tree.  
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Accelerate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
Figure 9: A partial decision tree as produced by ID3 on the Accelerate task 
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Jump 
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Figure 10: A partial decision tree as produced by ID3 on the Jump task 
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Move Direction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: A partial decision tree as produced by ID3 on the Move Direction task 
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Face Direction 
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Figure 12: A partial decision tree as produced by ID3 on the Face Direction task 


