
Appears in Proceedings of the 14th International Conference on Inductive Logic Programming (ILP). Porto, Portugal.

September, 2004.

Learning Ensembles of First-Order Clauses

for Recall-Precision Curves:

A Case Study in

Biomedical Information Extraction

Mark Goadrich, Louis Oliphant and Jude Shavlik

Department of Biostatistics and Medical Informatics and
Department of Computer Sciences,

University of Wisconsin-Madison, USA

Abstract. Many domains in the field of Inductive Logic Programming
(ILP) involve highly unbalanced data. Our research has focused on In-
formation Extraction (IE), a task that typically involves many more
negative examples than positive examples. IE is the process of finding
facts in unstructured text, such as biomedical journals, and putting those
facts in an organized system. In particular, we have focused on learning
to recognize instances of the protein-localization relationship in Medline
abstracts. We view the problem as a machine-learning task: given posi-
tive and negative extractions from a training corpus of abstracts, learn a
logical theory that performs well on a held-aside testing set. A common
way to measure performance in these domains is to use precision and
recall instead of simply using accuracy. We propose Gleaner, a random-
ized search method which collects good clauses from a broad spectrum of
points along the recall dimension in recall-precision curves and employs
an “at least N of these M clauses” thresholding method to combine the
selected clauses. We compare Gleaner to ensembles of standard Aleph
theories and find that Gleaner produces comparable testset results in a
fraction of the training time needed for ensembles.

1 Introduction

Domains suitable for Inductive Logic Programming (ILP) can be roughly divided
into two main groups. In one group, there are tasks in which each example
has some inherent relational structure. One classic example of this domain is
the trains dataset [20], where the goal is to discriminate between two types of
trains, and the trains themselves are relational objects, having varying length and
types of objects carried by each car. A more realistic example is the mutagenesis
dataset [29], where the goal is to classify a chemical compound as mutagenic or
not using the relational nature of the atomic structure of each chemical. ILP
has proven successful in these domains by bringing the inherently relational
attributes into the hypothesis space.

The other group contains tasks where examples, in addition to having a
relational structure, have relations to other examples. One such domain is the



learning of friendship in social networks [2], where instead of classifying people,
we try to determine the structural relationships of people based on a combination
of their personal attributes and the attributes of their known friends. Another
domain of this type is learning to suggest citations for scientific publications [21],
where a correct citation can be a combination of data in this particular paper
as well as the currently listed citations. The overall goal in these domains is to
classify links between objects instead of the objects themselves.

Our research has focused on Information extraction (IE), the process of find-
ing facts from unstructured text such as biomedical journals and putting those
facts in an organized system. In particular, we have focused on learning multi-
slot protein localization from Medline1 abstracts, where the task is to identify
links between phrases which correspond to a protein and the location of that
particular protein in a cell. When seen as a relational data task, multi-slot IE
clearly falls into the link-learning category described above.

Link-learning tasks present a number of problems to an ILP system. First,
these domains tend to have a large number of objects and relations, causing
a large explosion in the search space of clauses. A first approach is to sample
these objects and bring the space down to a reasonable size. However, even a
moderate number of objects brings about the second problem, a large skew of
the data toward negative examples. Suppose in the social network domain we
have 500 people, each of whom have 10 friends amongst these 500 people. This
gives us 5000 positive examples, assuming that the friendship relationship is not
necessarily symmetric. Our negative examples must include all other possible
friendships, for 500× 500− 5000 = 245, 000 negative examples, a skew of 1:49.

Information extraction is a domain that typically has unbalanced data; for
example, only a very small number of phrases are protein names. Learning the
relation between two entities, such as protein and location, only increases this
imbalance, as the number of positive examples is now a subset of the cross-
product of the entities, and the negative examples are every other pairing in the
dataset.

These issues lead us away from using the standard performance measure
of accuracy. Letting TP stand for true positives, FP for false positives, TN

for true negatives and FN for false negatives, accuracy can be defined as
TP+TN

TP+FP+TN+FN
. With the positive class so small relative to the negative class,

it is trivial to achieve high accuracy by labeling all test examples negative. To
concentrate on the positive examples, more appropriate performance measures
are precision, defined as TP

TP+FP
, and recall, defined as TP

TP+FN
. Precision can be

seen as a measure of how accurate we are at predicting the positive class, while
recall is a measure of how many of the total positives we are able to identify.

We chose to pursue IE from a machine-learning perspective. Given a set of
journal abstracts manually tagged with protein-localization relationships, our
goal is to learn a theory that extracts only these relations from a set of abstracts
and performs well on unseen abstracts. We use five-fold cross validation, with
approximately 250 positive and 120,000 negative examples in each fold. Our

1 http://www.ncbi.nlm.nih.gov/pubmed



division of examples is not uniform because we chose to split our data into folds
at the journal-abstract level (so that all the sentences in a given abstract are in
the same fold), and the number of examples per abstract is variable.

We believe that ILP can be applied successfully for Information Extraction
in biomedical domains as well as other link-learning tasks. ILP offers us the ad-
vantages of a straight-forward way to incorporate domain knowledge and expert
advice and will produce logical clauses suitable for analysis and revision by hu-
mans to improve performance. We use Aleph [27], a mature ILP system, to learn
first-order clauses.

The standard approach to ILP is to learn clauses sequentially until almost
all of the positive examples are covered by at least one clause, thus creating a
theory. By itself, an individual theory will produce one value for precision and
recall, at least if one uses the standard logical approach of disjunction to combine
the clauses in a theory. A more useful evaluation would be to create a recall-
precision curve, which illustrates the trade-off between these two measurements.
One way to create a recall-precision curve from a theory containing M clauses is
to require that at least N of the clauses are satisfied. By varying N from 1 to M ,
one can obtain a variety of points in the recall-precision curve [10]. However, ILP
systems have not traditionally been designed to produce recall-precision curves,
and it is likely that specially designed algorithms will do better than simply
counting the number of clauses that are satisfied by a given example.

To address the goal of efficiently producing good recall-precision curves with
ILP, we propose the Gleaner algorithm. Gleaner is a randomized search method
that collects good clauses from a broad spectrum of points along the recall dimen-
sion in recall-precision curves and employs an “at least N of these M clauses”
thresholding method to combine the selected clauses. We compare Gleaner to
ensembles of standard Aleph theories [11]. We find that Gleaner produces compa-
rable results in a fraction of the training time needed for Aleph ensembles. These
smaller theories will also reduce classification time, an important consideration
when working with large domains.

2 Biomedical Information Extraction

Information Extraction (IE) is the process of scanning plain text files for objects
of interest and facts about these objects. As a learning task, IE is defined as:
given information in unstructured text documents, extract the relevant objects
and relationships between them. There are two main IE tasks, Named Entity
Recognition (NER) and Multi-Slot Extractions. NER can be seen as identifying
a single type of object, for example the name of an individual, corporation, gene,
or weapon. Successful rule-based approaches for named-entity IE include Rapier
[8], a system which learns clauses with the format prefix, extraction, postfix, and
Boosted Wrapper Induction (BWI) [14], a method for boosting weak rule-based
classifiers of extraction boundaries into a powerful extraction method. BWI has
been further examined by Kauchak et al. [17] showing results with high recall
and high precision on a wide variety of tasks.



“We suggest that SMF1 and SMF2 are mitochondrial membrane proteins that influence
PEP-dependent protein import, possibly at the step of protein translocation.”

protein location(SMF1, mitochondrial)

protein location(SMF2, mitochondrial)

Fig. 1. Sample Sentence with its Correct Extractions

Multi-slot extraction builds upon the objects found in NER, and looks for
a relationship between these items in the text, some examples being a parent-
child relationship between individuals, the CEO of a particular company, or
the interaction of two proteins in a cell. Multi-slot extraction is typically much
harder; not only must the objects of the relation be identified, but also the
semantic relationship between these two objects.

Recently, biomedical journal articles have been a major source of interest in
the IE community for a number of reasons: the amount of data available is enor-
mous, the objects, proteins and genes, do not have standard naming conventions,
and there is a definite interest from biomedical practitioners to quickly find rele-
vant information [3, 26]. Biomedical journals also contain highly domain-specific
language, as seen in Figure 1.

Previous machine-learning work in the biomedical multi-slot domain includes
a number of different approaches. Ray and Craven [23] use a Hidden Markov
Model (HMM) modified to include part of speech tagging, and analyze their
method on protein localization, genetic disorder and protein-protein interaction
tasks. For the same datasets, Eliassi-Rad and Shavlik [13] implemented a neural
network for IE primed with domain-specific prior knowledge. Aitken [1] uses
FOIL to perform ILP, working with a closed ontology of entities, while Brunescu
et al. [7] propose the use of ELCS, a bottom up approach to finding protein
interactions with rule templates for sentences. Brunescu et al. have also extended
Rapier and BWI to handle multi-slot extractions.

2.1 Data Labeling

In this paper, we focus on one particular dataset, learning the location of yeast
proteins in a cell as illustrated in Figure 1. Our testbed comes from Ray and
Craven [23]. The data consist of 7,245 sentences from 871 abstracts found in
the Medline database, and contains 1,200 relations. In the original dataset, the
labeling was performed semi-automatically, in order to avoid the laborious task of
labeling by a human. Protein localizations were gathered from the Yeast Protein
Database (YPD), and sentences which contained instances of both a protein and
location pair were marked as positive by a computer program.

In our early exploration of the dataset, we found that there were a signifi-
cant number of false positives that looked like true positives but were apparently
missed by the automated labeling algorithm. Also, some of the labelings were



ambiguous at best, finding both parts of a positive protein localization, whereas
the human-judged semantics of the sentence did not involve localization. In ad-
dition, by using this labeling scheme, we did not have data on all yeast proteins
in the corpus, only those listed in YPD. Because of these issues, we decided to
relabel the dataset by hand. We were assisted in this effort by Soumya Ray.

To label the positive examples, we manually performed both protein and
location named-entity labeling and relational labeling. Our labeling standards
differ from those used by other groups [16], as our task is to extract the locations
of yeast proteins. If there was any disagreement among the labelers, we did not
tag the protein or location, to make sure our training set was as precise as
possible at the expense of some recall.

For the protein labeling, we strove to be specific rather than general, and
only labeled those words that directly refered to a protein or gene molecule.
This included gene names such as “SMF1”, protein names like “fet3p” and full
chemical names of enzymes, such as “qh2-cytochome c reductase”. Therefore,
while we would label SEC53 from “SEC53 mutant”, we did not label “isp4delta”
or “rrp1-1” as these gene products are defective and would not give rise to a
functioning protein molecule. We did not label protein families such as “hsp70”
unless it was an adjective to a protein, as in “hsp70 dnaK”. Fusion proteins, such
as when a gene is combined with a fluorescent tag, were labeled as proteins.
Protein complexes, antibodies and open reading frames were never labeled as
positive protein examples. Also, only proteins that are known to exist in yeast
were labeled, not those which were found in other species, since our dataset dealt
with the localization of yeast proteins.

Labeling the location words was much more direct. We used a list of known
cellular locations listed in an introductory cellular biology text book, includ-
ing locations and abbreviations such as “cytoskeleton”, “membrane”, “lumen”,
“ER”, “npc”, “bud”, etc. Also labeled were location adjectives, such as “nucle-
oporin” and “ribosomal”.

To determine if there was a relationship between any tagged pro-
teins and tagged locations, we used three classifications: clear, ambigu-
ous, or co-occurrence. Relationships directly implied by the text, as in
protein location(YRB1p, cytosol) from the sentence “YRB1p is located in
the cytosol,” were classified as clear, while those relationships where the pro-
tein location was implied rather than stated, such as protein location(LIP5,

mitochondrial) from the sentence “LIP5 mutants undergo a high frequency of
mitochondrial DNA deletions,” were labeled as ambiguous. The correct classifi-
cation was agreed upon by all three labelers. For our experiments, we used the
clear category as positive examples, and all other phrase pairings as negative
examples. A future goal is to improve our manual-labeling interface.

2.2 Background Knowledge

Instead of the standard feature-vector machine learning setup, ILP uses logical
relations to describe the data. Algorithms attempt to construct logical clauses
based on this background structure that will separate positive and negative



Sentence Fragment

Text

Part Of Speech

Phrase Type

N V V N V NP

NP VP NP VP PP NP

... we haved named YFH1, localizes to mitochondria ...

Fig. 2. Sample Sentence Parse from Sundance Sentence Analyzer (N=noun, V=verb,
P=preposition or phrase)

examples. For our information extraction task, we construct background knowl-
edge from sentence structure, statistical word frequency, lexical properties, and
biomedical dictionaries.

Our first set of relations comes from the sentence structure. We use the Sun-
dance sentence parser [24] to automatically derive a parse tree for all sentences
in our dataset and the part-of-speech for all words and phrases of the tree. This
tree is then flattened to some degree, so that there are no nested phrases; all
phrases have the sentence as the root, and therefore all words are only members
of one phrase. Figure 2 shows an example sentence parse.

Each word, phrase, and sentence is given a unique identifier based on its
ordering within the given abstract. This allows us to create relations between
sentences, phrases and words not based on the actual text of the document
but on its structure, such as sentence child, phrase previous and word next

about the tree structure and sequence of words, and relations like nounPhrase,
article, and verb to describe the sentence structure. To include the actual text
of the sentence in our background knowledge, the predicate word ID to string

maps these identifiers to the words. In addition, the words of the sentence are
stemmed using the Porter stemmer [22], and currently we only use the stemmed
version of words.

Another group of background relations comes from looking at the frequency
of words appearing in the target phrases in the training set. This is done on a per-
fold basis to prevent learning from the test set. For example, the words “body”,
“npc”, and “membrane” are at least 10 times more likely to appear in location
phrases than in phrases in general in training set 1. We created predicates for
several gradations from 2 times to 10 times the general word frequency across
all abstracts in a given training set. These gradations are calculated for both
arguments–protein and location–as well as for words that appear more frequently
in between the two arguments or before or after them. We create semantic classes,
consisting of these high frequency words. These semantic classes are then used
to mark up all occurrences of these words in a given training and testing set.

A third source of background knowledge is derived from the lexical properties
of each word. Alphanumericwords contain both numbers and alphabetic charac-
ters, whereas alphabetic words have only alphabetic characters. Other lexical
and morphological features include singleChar, hyphenated and capitalized.
Also, words are classified as novelWord if they do not appear in the standard
/usr/dict/words dictionary in UNIX.



Sentence Structure Predicates
phrase after(Phrase1,Phrase2)
phrase contains specific word(Phrase,Word,WordString)

Statistical Word Frequency Predicates
phrase contains 2x word(Phrase,Argument)
phrase contains no between halfX word(Phrase,Argument,PartOfSpeech)

Lexical Properties Predicates
alphabetic(Word)
few wordPOS in sentence(Sentence,PartOfSpeech)

Biomedical Dictionaries Predicates
phrase contains mesh term(Phrase,Term,StemmedTerm)
phrase contains go term(Phrase,Term,StemmedTerm)

Fig. 3. Sample Predicates used in our Information Extraction Task

Finally, we incorporate semantic knowledge about biology and medicine into
our background relations, such as the Medical Subject Headings (MeSH)2, the
Gene Ontology (GO)3, and the Online Medical Dictionary4. As in sentence
structure, we have simplified these hierarchies to only be one level. We have
picked three categories from MeSH (protein, peptide and cellular structure), the
cellular-localization category from GO, and the cellular-biology category from
the Online Medical Dictionary, and have labeled phrases with these predicates
if any of the words in the given phrase match any words in the category.

Sentence structure predicates like word before and phrase after are added
allowing navigation around the parse tree. Phrases are also tagged as being the
first or last phrase in the sentence, likewise for words. The length of phrases is
calculated and explicitly turned into a predicate, as well as the length (by words
and phrases) of sentences. Also, phrases are classified as short, medium or long.
An additional piece of useful information is the predicate different phrases,
which is true when its arguments are distinct phrases.

Lexical predicates are augmented to make them more applicable to the phrase
level. If a phrase contains an alphabetic word, the phrase is given the pred-
icate phrase contains alphabetic word(A). Similarly phrases with specific
words are marked with phrase contains specific word(A, ‘‘lumen’’). This
is the equivalent of adding both phrase child(A,B), word ID to string(B,

‘‘lumen’’) at once. These predicates are also created for pairs and triplets of
words, so we can assert that a phrase has the word “golgi” labeled as a noun all
in one search step.

2 http://www.nlm.nih.gov/mesh/meshhome.html
3 http://www.geneontology.org/
4 http://cancerweb.ncl.ac.uk/omd/



Finally, predicates are added to denote the ordering between the phrases.
Target arg1 before target arg2 asserts that the protein phrase occurs before
the location phrase, similarly for target arg2 before target arg1. Also cre-
ated are adjacent target args (which is true when the protein and location
phrases are adjacent to each other in the sentence), and identical target args

(which says the same noun phrase contains both the protein and its location), as
well as the count of phrases before and after the target arguments. A list of our
predicate categories and some sample predicates are found in Figure 3. Overall,
we have defined 251 predicates for use in describing the training examples.

2.3 Unbalanced Data Filtering

As previously mentioned, one of the difficulties we face with this domain is the
large number of possible examples we must consider. Within each sentence, we
need to examine each pair of phrases. With only a few positive examples, our
positive:negative ratio is 1:600, leading to severely unbalanced data.

For this domain, we use prior knowledge to help reduce the number of false
positive examples. We observe that 95% of our positive relations contain only
noun phrases, while the overall ratio is 26%, and use this to limit the size of
our training data to only those candidate extractions where both arguments are
noun phrases. This reduces the positive:negative ratio in our data to 1:158. We
must necessarily keep track of all missed positive in the testing set, those that
have at most one non-noun phrase, and record them as false negatives in our
recall-precision results.

To further reduce the positive:negative ratio we randomly under-sample the
negatives, retaining only a fourth during training. This allows for faster clause
learning. Future work includes selecting the “close” negative examples to use
during training rather than randomly selecting them.

3 Aleph

Aleph [27], is a top-down ILP covering algorithm developed at Oxford University,
UK. It is written completely in Prolog and is open source. As input, Aleph takes
background information in the form of predicates, a list of modes declaring how
these predicates can be chained together, and a designation of one predicate
as the “head” predicate to be learned. Also required are lists of positive and
negative examples of the head predicate.

As a high-level overview, Aleph generates clauses for the positive examples
by picking a random example to be a seed. This example is saturated to create
the bottom clause, i.e. every relation in the background knowledge that can be
reached from this example. The bottom clause becomes the possible search space
for clauses. Aleph heuristically searches through the space of possible clauses
until the “best” clause is found or time runs out. The standard way to use
Aleph is to combine these learned clauses into a theory when enough clauses are
learned to cover almost all positive training examples.



Aleph is a very flexible ILP system with a wide variety of learning parameters
available for modification. Some of the parameters we utilized were:

minimum accuracy. We can place a lower bound on the accuracy of all clauses
learned by our system. This is only the accuracy of the clause on the examples
covered by it, in other words, precision.

minimum positives. To prevent Aleph from learning narrow clauses, ones
which only cover a few examples, we can specify that each acceptable clause
must cover at least a certain number of positives.

clause length. The size of a particular clause can be constrained using clause
length. By limiting the length, we can explore a wider breadth of clauses
and prevent clauses from becoming too specific.

search strategy. As Aleph uses search to find good clauses, the type of search
is a parameter. These include the standard search methods of breadth-first
search, depth-first search, iterative beam search, iterative deepening, as well
as heuristic methods requiring an evaluation function.

evaluation function. There are many ways to calculate the value of a node for
further exploration. The most common heuristic used in ILP is coverage. This
is defined as the number of positives covered by the clause minus the number
of negatives (TP − FP ). A very similar heuristic is compression, which is
coverage minus the length of the clause (TP −FP −L). Since we are working
within domains to generate precision/recall curves, we also explored as our
heuristic-search’s evaluation function (a) precision× recall, and (b) the F1
measure, which is ( 2·Precision·Recall

Precision+Recall
). To improve clause quality and correct

accuracy estimates for clauses that cover a small number of examples, one
can also use the Laplace estimate, ( TP+1

TP+FP+2
).

coverage in tune set. To encourage our clauses to be more general, we added
a parameter to Aleph requiring each recorded clause to have some small
positive coverage in the tuneset. We believe this will help our clauses on the
unseen examples in the test set.

4 Gleaner

Since our biomedical IE task is a link-learning task, we need to evaluate the
success of our methods using precision and recall. In order to rapidly produce
good recall-precision curves, we have developed Gleaner, a two-stage algorithm
to (1) learn a broad spectrum of clauses and (2) then combine them into a
thresholded disjunctive clause aimed at maximizing precision for a particular
choice of recall. Our algorithm is summarized in Figure 4.

Our first stage of Gleaner learns a wide spectrum of clauses. We have Aleph
search for clauses using K seed examples. We diversify the search by first
uniformly dividing the recall dimension into B equal sized bins, for example,
[0, 0.05], [0.05, 0.10], . . . , [0.95, 1]. For each seed, we consider up to N possible
clauses using a random local-search method. As these clauses are generated, we
compute the recall of each clause and determine into which bin the clause falls.



Create B recall bins, uniformly dividing the range [0,1]
For i = 1 to K

Pick a seed example to generate bottom clause
Use Random Local Search to find clauses
After each generation of a new clause r

Find the recall bin bk for r

If the Precision × Recall of r is best yet
Store r in bk

For each bin b

Find Lb ∈ [1, K] on trainset such that
recall of “At least L of K clauses match examples” ≈ recall for this bin

Find precision and recall of testset using each bin’s “at least L of K” decision process

Fig. 4. Gleaner Algorithm

Each bin keep tracks of the highest precision clause learned in that bin so far
and will be replaced when a more precise clause is found (actually, rather than
finding the highest precision clause within each bin, we save the clause whose
product of precision and recall is highest among those clauses falling into this
recall bin). At the end of this search process, there will be B clauses collected
for each seed and K seed examples for a total of B × K clauses (assuming a
clause is found that falls into each bin for each seed).

To perform random local search, we considered four search methods, Rapid
Random Restart (RRR), Stochastic Clause Selection (SCS), GSAT, and Walk-
SAT. SCS randomly picks clauses which are subsets of the bottom clause ac-
cording to the distribution of clauses based on length. SCS has a hard time
finding high quality clauses and is biased to select long clauses due to the heavy-
tailed distribution of clause lengths. GSAT selects an initial clause at random
and then chooses to either add or remove a randomly selected literal if the new
clause is “better” according to the evaluation function; WalkSAT modifies GSAT
by allowing a certain percent of “bad” moves. RRR works similarly to GSAT
and WalkSAT in the initial clause selection, but only refines clauses by adding
predicates (using best first search), restarting with a new clause after a speci-
fied number of evaluations. GSAT and WalkSAT occasionally make “downhill”
moves in the search space, while RRR does not, and due to the interal workings
of Aleph, adding predicates to a clause is much more efficient than removing
them. We found that RRR both takes less time and produces higher quality
clauses than the other methods, and we use it as Gleaner’s search method in the
remainder of this article.

The second stage takes place once we have gathered our clauses using ran-
dom search. We need a way to combine these clauses into a single precision/recall
point for each bin. We could choose the best clause collected from each bin, how-
ever this is likely to have poor generalization to the test set, especially for the
low-recall bins. If we classify an example as positive only if it matches all K

clauses collected for a bin, we obtain high precision, but our recall will be dras-



tically reduced. Alternatively, if we classify an example as positive if it matches
any of our K clauses, we will probably have a theory with high recall but low
precision. Instead, we need to find a balance between these two extremes, and
classify examples to be positive if they are covered by a large enough subset of
clauses. Our hypothesis is that this method will produce a theory with about the
same recall as the bin (by construction), but higher precision than any one clause,
since we require that an example satisfy multiple clauses (assuming L > 1).

Gleaner combines the clauses in each bin to create one large thresholded
disjunctive clause, of the form “At least L of these K clauses must cover an
example in order to classify it as a positive.” We want this clause to have about
the same recall as as that of the clauses in the bin (so that we cover the full
range of possible recalls), thus we need to find the best threshold L for each bin.
We can find this L on the training set for each bin by starting with L = K and
incrementally lowering the threshold to increase recall. We stop when any lower
L would increase the distance between the recall of the best L of K clause and
our desired recall. With this L, we now evaluate our disjunctive clause on the
testset and record the precision and recall. We will end up with B precision/recall
points, one for each bin, that span the recall-precision curve.

5 Ensembles in ILP

Bagging [6] is a popular ensemble approach to machine learning where multiple
classifiers are trained using different subsamples of the training data. These
classifiers then vote on the classification of testset examples, usually with the
majority class being selected as the output classification. How they vote is user-
dependent, with some common schemes being equal voting or weighted according
to the tuneset accuracy of each voter. The main idea of bagging is that it will
produce diverse classifiers that make their mistakes in different regions of the
input space; when their votes are combined, prediction errors will be reduced.

The use of bagging for ILP has been previously investigated by Dutra et al.
[11] where they demonstrate bagging to be helpful for modest improvements in
accuracy as well as a straight-forward way to calculate the confidence of a par-
ticular example. We use their “random seeds” approach for creating ensembles.
This approach, which Dutra et al. showed to have essentially equivalent predic-
tive accuracy as bagging, produces diversity in its learned models by starting
each run of its underlying ILP system with a different “seed” example.

We compare our Gleaner approach to that of using “random seeds” in Aleph.
In this experimental control, we call Aleph N times and have it create N theories
(i.e., sets of clauses that cover most of the positive training examples and few
of the negative ones). To create a recall-precision curve from these N theories,
we simply classify an example as positive if at least K of the theories classify it
as positive; varying L from 1 to N produces a family of ensembles, and each of
these ensembles produces a point on a recall-precision curve.

Aleph involves a large number of parameters, and we use the train and test
sets to choose a good set (since this is the experimental control against which we



Fig. 5. Area Under the Recall-Precision Curve for 100 Aleph Ensembles With Varying
Number of Clauses

compare our Gleaner system, it is “fair” to use the testset to tune parameters).
We compare several different evaluation functions for judging clauses: Laplace
(which essentially measures accuracy, but corrects for small coverage), coverage
(the number of positive examples covered minus the number of negatives cov-
ered), precision × recall, and F1 (the harmonic mean of precision and recall;
F1 is the most commonly used performance measure in information extraction).
We consider two settings for minimum accuracy for learned clauses: 0.75 and
0.90. We require all clauses to at least cover seven positive examples and to
be no longer than ten terms (the same settings we use for random sampling of
the hypothesis space in our Gleaner approach). We limit the number of clauses
considered to 100 thousand and we also limit the number of reductions to 100
million (using the call counting predicate available in YAP Prolog5).

We obtained our best area under the recall-precision curve using Laplace as
the evaluation function and a minimum clause accuracy of 0.75. (Under this
setting, the average number of clauses considered per constructed theory is ap-
proximately 35,000.)

One new finding we encountered that was not reported by Dutra et al. is that
it is better to limit the size of theories. Figure 5 plots the area under the recall-
precision curve (AURPC) as a function of the maximum number of clauses we
allow in the learned theories. Running Aleph to its normal completion given the
above parameters leads to theories containing 271 clauses on average. However,
if we limit this to the first C clauses, the AURPC can be drastically better.
The likely reason for this is that larger theories have less diversity amongst
themselves than do smaller ones, and diversity is the key to ensembles [12]. A
nice side-effect of limiting theory size is that the runtime of individual Aleph
executions is substantially reduced.

In the next section, where we evaluate our Gleaner algorithm, we limit theory
size in our “ensemble of Aleph theories” approach to 50 clauses, since as seen
in Figure 5, testset AURPC has essentially peaked by then. In that section’s

5 http://www.ncc.up.pt/˜vsc/Yap/yap.html



experiments we do vary the size of the ensemble (i.e., number of theories) and
the number of clauses in each theory, in order to see the impact on AURPC as
a function of the amount of time spent training.

While we are from having considered all possible parameters settings and
algorithm designs with which one could use Aleph to create an ensemble of the-
ories, we have evaluated a substantial number of variants and feel that our chosen
settings provide a satisfactory experiment control against which to compare our
new algorithm, Gleaner.

6 Results

For our experiments, we divided the protein localization data into five folds,
equally divided at the journal-abstract level. Each training set consisted of three
folds, with one fold held aside for tuning and another for testing. For our current
experiments we only use the tuning set minimally, requiring each clause learned
on the training set to cover at least two positive examples in the tuning set.

To evaluate the performance of our algorithms, we use recall-precision curves
[19], or more precisely, we use the Area Under the Recall-Precision Curve (AU-
RPC) to gather a single score for each algorithm. AUC has traditionally been
used to analyze ROC curves [5], which plot the true positive rate versus the false
positive rate. To calculate the AURPC, we first standardize our recall-precision
curves to always cover the full range of recall values and then interpolate be-
tween the threshold points. From the first threshold point, which we designate
(Rfirst, Pfirst), the curve is extended horizontally to the point (0, Pfirst), since
we could randomly discard a fraction, f , of the extracted relations and expect
the same precision on the remaining examples; the setting of f would determine
the recall. An ending point of (1, Pos

Neg
) can always be found by calling everything

a positive example. This will give us a closed curve extending from 0 to 1 along
the recall dimension.

For any two points A and B in a recall-precision curve, we must inter-
polate between their true positive (TP ) and false positive (FP ) counts in
order to calculate the area. To do this, we create new points for each of
TPA + 1, TPA + 2, ..., TPB − 1, increasing the false positives for each new point
by FPB−FPA

TPB−TPA
. Interpolation for the recall-precision curve is different than for

an ROC curve; whereas the ROC interpolation would be a linear connection
between the two points, in recall-precision space the connection can be curved,
depending the actual number of positive and negative examples covered by each
point. The curve is especially pronounced when two points are far away in recall
and precision. Consider a curve constructed from a single point of (0.02, 1), and
extended to the endpoints of (0, 1) and (1, 0.008) as described above (for this
example, our dataset contains 433 positives and 56,164 negatives). Interpolating
as we have described, would produce an AURPC of 0.031; a linear connection
would overestimate with an AURPC of 0.50 (Figure 8 shows this graphically).

A sample clause found by Gleaner is shown in Figure 6. We can see for
our dataset that it is important to require the protein phrase to contain



protein location(P,L,S) :-
first word in phrase(L,A),
phrase after(L, ),
target arg1 before target arg2(P,L,S),
after both target phrases(S,B),
phrase contains some marked up location(L, ),
few POS in phrase(P,alphanumeric),
few wordPOS in sentence(S,alphanumeric),
phrase contains no between halfX word(B,between arg1 and arg2,verb),
phrase contains some art(L,A).

where P is the protein phrase, L is the location phrase, S is the sentence,
and ‘ ’ indicates variables that only appear once in the clause.

Positive Extraction
“NPL3 encodes a nuclear protein with an RNA recognition motif and similarities to
a family of proteins involved in RNA metabolism.”
protein location(‘NPL3’, ‘a nuclear protein’)

Negative Extraction (i.e., a false positive)
“Subcellular fractionation studies further demonstrate that the 1455 amino acid
Vps15p is peripherally associated with the cytoplasmic face of a late Golgi
or vesicle compartment.”
protein location(‘the 1455 amino acid Vps15p’, ‘the cytoplasmic face’)

Fig. 6. Sample Clause with 29% Recall and 34% Precision on Testset 1

alphanumeric words. Also important for this clause is the sentence structure,
requiring that the protein phrase comes before the location phrase, and that the
location phrase is not the last phrase in the sentence.

Our Aleph-based method for producing ensembles has two parameters that
we vary: N , the number of theories (i.e., the size of the ensemble), and C, the
number of clauses per ensemble. To produce ensemble points in Figure 7, we
choose N from {10, 25, 50, 75, 100} and C from {1, 5, 10, 15, 20, 25, 50},
producing 20 combinations for each fold.

For the parameters of Gleaner, we used 20 recall bins and 100 seed exam-
ples to collect 2,000 clauses total. We told RRR to construct 1,000 clauses be-
fore restarting with a new random clause. We generate AURPC data points for
Gleaner by choosing the number of seed examples from {25, 50, 75, 100}, and
using the intervals of {1K, 10K, 25K, 50K, 100K, 250K, 500K} for the number
of candidate clauses generated per seed.

The results of our comparison are found in Figure 7; the points are averaged
over all five folds. Note this graph has a logarithmic scale in the number of
clauses generated. We see that Gleaner can find comparable AURPC numbers
using two orders of magnitude fewer clauses. It is interesting to note that the



Fig. 7. Comparison of AURPC from Gleaner and Aleph Ensembles by Varying Number
of Clauses Generated

Fig. 8. A Sample Gleaner Recall-Precision Curve From Fold 5

Gleaner curve is very consistent across the number of clauses allowed, while the
ensemble method increases when more clauses are considered. It is a topic of
future work to devise a new version of Gleaner that is able to better utilize
additional candidate clauses.

In Figure 8, we show one of the better recall-precision curve produced by
Gleaner using 10,000 candidate clauses per seed and 100 seed examples (on fold
5). For comparison, we also show the one-point interpolation curve mentioned
above. Gleaner’s “L of K” clauses theoretically should produce higher precision
than individual rules with the same recall, as long as coverage of positives is
greater than coverage of negatives. In practice, our clauses are not as independent
as we would like, especially in the high-recall bins, with many of the learned
clauses being identical. This overlap degrades the performance.



7 Conclusions and Future Work

Multi-Slot Information Extraction is a an appealing challenge task for ILP, due
to its large amount of examples and background knowledge, as well as the sub-
stantial skew of examples. We have developed a method called Gleaner, which
gathers a wide spectrum of clauses and combines them within bins based on
recall using an “at least N of these M clauses” thresholding method.

We find that Aleph ensembles can perform well when using early stopping
(i.e., only learning a dozen or two rules); however, Aleph ensembles suffer when
allotted a limited amount of time to create multiple theories. Our method of
Gleaner results in similar curves to Aleph ensembles, and outperforms ensembles
when both are only allowed to evaluate a limited number of clauses. There are not
many large, heavily skewed datasets available for ILP research, and we believe
this information-extraction task will provide a useful testbed for further ILP
research. To aid in ILP research this dataset is being made available at our
website (see Acknowledgements).

There are a number of approaches relating to the combination of learned
clauses to produce a confidence measure, as opposed to combining multiple the-
ories as in bagging or Gleaner. Propositionalization of the feature space has been
examined by Lavrac et al. [18], which allows for any propositional learner that
generates confidence measures to be used. Similarly, Srinivasan [28] investigated
using ILP as a feature construction tool for propositional learners, namely linear
regression. Craven and Slatterly [10] use a logical setup combined with Naive
Bayes classifiers for IE and generate recall-precision curves with their result-
ing theories. We plan to compare these within-theory ensemble methods to the
multiple theory ensemble methods and to Gleaner.

In this same vein, we see the use of boosting in ILP [15] as another alterna-
tive method to searching for clauses and learning how to combine them in one
single step. Recent work has shown that a RankBoost, a variant of boosting,
directly optimizes the area under the ROC curve [9]. We believe that a similar
optimization of the area under the recall-precision curve can be achieved, and
plan to implement this algorithm in Aleph for comparison to Gleaner.

We noticed that many of our learned clauses are focused on learning the
individual entities of the relation, in our case, creating logical clauses for protein
and location, and little of the clause is relevant to the relation between these two
entities. We believe that using a named-entity classifier to identify promising
pieces of our relation first could both reduce the number of examples as well as
produce high quality clauses due to their direct focus on the relation. Blaschke et
al. [4, 3] and Rindflesh et al. [25] have found success in biomedical information
extraction using domain expert rules, and Temkin and Gilder [31] use hand-
crafted context-free grammars to similar ends. Another step in this direction is
taking these clauses from a domain expert and learning to revise their advice,
similar to work by Eliassi-Rad and Shavlik [13].

Finally, there are many more datasets in Information Extraction where we
are planning to test our method for comparison, namely the genetic disorder and
protein interaction from Ray and Craven [23] and a protein interaction dataset



from Brunescu et al. [7]. Other datasets outside of IE where we believe Gleaner
will be useful include the nuclear smuggling dataset from Tang et al. [30], the
social network dataset from Taskar et al. [2], and the CiteSeer citation dataset
from Popescul et al. [21]

8 Acknowledgements

Our dataset can be found at ftp://ftp.cs.wisc.edu/machine-learning/shavlik-
group/datasets/IE-protein-location

This work was supported by National Library of Medicine (NLM) Grant 5T15
LM007359-02, NLM Grant 1R01 LM07050-01, DARPA EELD Grant F30602-01-
2-0571, and United States Air Force Grant F30602-01-2-0571. We would like to
thank Ines Dutra and Vitor Santos Costa for their help with Yap, the UW
Condor Group for Condor assistance, Soumya Ray and Marios Skounakis for
their help with labeling the data, and David Page for his help with Aleph, as
well as the anonymous reviewers for their informative comments.

References

1. S. Aitken. Learning Information Extraction Rules: An Inductive Logic Program-
ming Approach. In F. van Harmelen, editor, Proceedings of the 15th European
Conference on Artificial Intelligence, Amsterdam, 2002.

2. M.-F. W. Ben Taskar, Pieter Abbeel and D. Koller. Label and Link Prediction in
Relational Data. In IJCAI Workshop on Learning Statistical Models from Rela-
tional Data, 2003.

3. C. Blaschke, L. Hirschman, and A. Valencia. Information Extraction in Molecular
Biology. Briefings in Bioinformatics, 3(2):154–165, 2002.

4. C. Blaschke and A. Valencia. Can Bibliographic Pointers for Known Biological
Data be Found Automatically? Protein Interactions as a Case Study. Comparative
and Functional Genomics, 2:196–206, 2001.

5. A. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of
Machine Learning Algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

6. L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.
7. R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ramani, and Y. Wong.

Comparative Experiments on Learning Information Extractors for Proteins and
their Interactions. Journal of Artificial Intelligence in Medicine, 2004.

8. M. Califf and R. Mooney. Relational Learning of Pattern-Match Rules for Infor-
mation Extraction. In Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing, pages 6–11, Menlo Park, CA, 1998.
AAAI Press.

9. C. Cortes and M. Mohri. AUC Optimization vs. Error Rate Minimization. In
Neural Information Processing Systems NIPS2003, 2003.

10. M. Craven and S. Slattery. Relational Learning with Statistical Predicate Inven-
tion: Better Models for Hypertext. Machine Learning, 43(1/2):97–119, 2001.

11. I. de Castro Dutra, D. Page, V. S. Costa, and J. Shavlik. An Empirical Evaluation
of Bagging in Inductive Logic Programming. In Twelfth International Conference
on Inductive Logic Programming, pages 48–65, Sydney, Australia, 2002.



12. T. Dietterich. Machine-Learning Research: Four Current Directions. The AI Mag-
azine, 18(4):97–136, 1998.

13. T. Eliassi-Rad and J. Shavlik. A Theory-Refinement Approach to Information Ex-
traction. In Proceedings of the 18th International Conference on Machine Learning,
2001.

14. D. Freitag and N. Kushmerick. Boosted Wrapper Induction. In AAAI/IAAI, pages
577–583, 2000.

15. S. Hoche and S. Wrobel. Relational Learning Using Constrained Confidence-Rated
Boosting. In 11th International Conference on Inductive Logic Programming, Stras-
bourg, France, 2001.

16. Z. Hu. Guidelines for Protein Name Tagging. Technical report, Georgetown Uni-
versity, 2003.

17. D. Kauchak, J. Smarr, and C. Elkan. Sources of Success for Boosted Wrapper
Induction. Journal of Machine Learning Research, 5:499–527, May 2004.

18. N. Lavrac, F. Zelezny, and P. Flach. RSD: Relational Subgroup Discovery through
First-order Feature Construction. In Proceedings of the 12th International Confer-
ence on Inductive Logic Programming (ILP’02), Sydney, Australia, 2002.

19. C. Manning and H. Schutze. Foundations of Statistical Natural Language Process-
ing. MIT Press, 1999.

20. R. Michalski and J. Larson. Inductive Inference of VL Decision Rules. In Proceed-
ings of the Workshop in Pattern-Directed Inference Systems, May 1977.

21. A. Popescul, L. Ungar, S. Lawrence, and D. Pennock. Statistical Relational Learn-
ing for Document Mining. In IEEE International Conference on Data Mining,
ICDM-2003, 2003.

22. M. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137, 1980.
23. S. Ray and M. Craven. Representing Sentence Structure in Hidden Markov Models

for Information Extraction. In Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence (IJCAI-2001), 2001.

24. E. Riloff. The Sundance Sentence Analyzer. http://www.cs.utah.edu/projects/nlp/,
1998.

25. T. Rindflesch, T. Tanabe, L. Weinstein, and J. Hunter. Edgar: Extraction of drugs,
genes and relations from the biomedical literature. In Proceedings of the Pacific
Symposium on Biocomputing., 2000.

26. H. Shatkay and R. Feldman. Mining the Biomedical Literature in the Genomic
Era: An Overview. Journal of Computational Biology, 10(6):821–55, 2003.

27. A. Srinivasan. The Aleph Manual Version 4.
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/, 2003.

28. A. Srinivasan and R. King. Feature Construction with Inductive Logic Program-
ming: A Study of Quantitative Predictions of Biological Activity Aided by Struc-
tural Attributes. In S. Muggleton, editor, Proceedings of the 6th International
Workshop on Inductive Logic Programming, pages 352–367. Stockholm University,
Royal Institute of Technology, 1996.

29. A. Srinivasan, S. Muggleton, M. Sternberg, and R. King. Theories for Mutagenicity:
A Study in First-Order and Feature-Based Induction. Artificial Intelligence, 85(1-
2):277–299, 1996.

30. L. Tang, R. Mooney, and P. Melville. Scaling up ILP to Large Examples: Results
on Link Discovery for Counter-Terrorism. In KDD Workshop on Multi-Relational
Data Mining, 2003.

31. J. Temkin and M. Gilder. Extraction of Protein Interaction Information From
Unstructured Text Using a Context-Free Grammar. Bioinformatics, 19(16):2046–
2053, 2003.


