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ABSTRACT

Many domains in the field of Inductive Logic Programming (ILP) involve highly unbalanced

data, such as biomedical information extraction, citation matching, and learning relationships in

social networks. A common way to measure performance in these domains is to use precision and

recall instead of simply using accuracy, and to examine their tradeoffs by plotting a precision-recall

curve. The goal of this thesis is to find new approaches within ILP particularly suited for large,

highly skewed domains.

I propose and investigate Gleaner, a randomized search method that collects good clauses from

a broad spectrum of points along the recall dimension in recall-precision curves and employs

thresholding methods to combine sets of selected clauses. I compare Gleaner to ensembles of

standard theories learned by Aleph, a standard ILP algorithm, using a number of large relational

domains. I find that Gleaner produces comparable testset results in a fraction of the training time

and outperforms Aleph ensembles when given the same amount of training time.

I explore extensions to Gleaner with respect to searching and combining clauses, namely find-

ing ways to fully explore the hypothesis space as well as to make better use of those found clauses.

I also use Gleaner to estimate the probability that a query is true, further investigate the properties

underlying precision-recall curves, and then conclude with a discussion of future work in this area.
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Chapter 1

Introduction

Imagine you are a new student in graduate school studying genetics, and the time has come

to choose your thesis advisor. One approach you might take is to investigate the current research

topics of the faculty in your department with a literature search through their past publications.

Perhaps you find that one professor studies the correlations between genes and diseases, while

another is discovering new protein interactions. Since your thesis will involve making new dis-

coveries in your field, you try to learn what is currently known about these genes and proteins,

and so your literature search grows. As the stack of publications on your desk increases, you start

wishing there were a way to hierarchically organize these papers by matching their citations to get

a clearer picture of the evolution of your field. Finally, you also wish to know if you would be a

good fit socially for each professor’s lab, so you begin to map out the relationships and politics of

the members of your department.

Through all these tasks, you are searching for a small number of interesting relationships, but

you are quickly overwhelmed by the amount of irrelevant information available on each topic. In-

advertently, you have stumbled upon challenging topics in the field of Artificial Intelligence known

as Inductive Logic Programming (ILP). The goal of this thesis is to find new approaches within ILP

particularly suited for large, highly skewed domains such as extracting genetic disorders, matching

citations or learning social relationships.
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1.1 Finding Needles in Haystacks

Many large relational domains recently addressed by the field of Inductive Logic Programming

(ILP) within Machine Learning intrinsically involve domains with highly unbalanced class distri-

butions, where negative examples greatly outnumber positive examples (Tang et al., 2003; Taskar

et al., 2003; Popescul et al., 2003; Richardson & Domingos, 2006). These domains are similar to

finding the proverbial needle in a haystack, and present problems for traditional ILP algorithms,

where learning has been focused on obtaining accurate, interpretable theories for relatively small

datasets.

One standard approach to ILP is to use a covering algorithm: first-order logical clauses are

learned sequentially, each covering a subset of the positive examples, until almost all of the positive

examples are covered by at least one clause (Fürnkranz, 1999). These clauses are combined to form

a theory. If one uses the traditional approach to combine the clauses, such that a test example need

only match one of the learned clauses to be classified as positive, an individual theory will produce

a set of true/false predictions for the testset examples. These predictions can then be evaluated

using a wide number of standard performance metrics, such as accuracy, true-positive rate, false-

positive rate, precision, and recall (I define these in Chapter 2).

When applying ILP to large relational datasets, one major problem with using a covering al-

gorithm approach is the amount of time needed to generate a theory. Theory search is very time

intensive, due to the repeated sequential process of examining hundreds or thousands of clauses

to find the one “best” clause to add to the theory. This is especially pronounced in large datasets,

where it can take days or weeks to find a complete theory for a large training set.

A second problem involves the quality of theories learned from these ILP domains. The most

common way to measure performance in large highly skewed domains is to use precision and

recall (Manning & Schütze, 1999), two evaluation metrics which focus on the correct classification

of the positive examples. A more useful evaluation is a precision-recall curve, which captures

the trade-off between these two measurements. However, the standard ILP approach is biased

toward producing many high-precision, low-recall clauses, and since each clause generally covers
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distinct positive and negative examples, combining these clauses typically creates a high-recall,

low-precision theory.

1.2 Thesis Statement

This thesis will investigate the following hypotheses through experimentation and evaluation

on relational datasets:

When faced with large and highly unbalanced relational datasets, large benefits can

be seen by using the evaluation metrics of precision and recall as an integral part of

machine learning algorithms. Clauses which are traditionally discarded by ILP search

can be combined to form high-quality theories that cover precision-recall space. En-

sembles, which are combinations of simpler classifiers, can be focused within ILP on

learning diverse (with respect to precision and recall) internal classifiers with for in-

creased quality, and randomized parallel search can quickly find good clauses and the-

ories when constrained with a limited CPU budget. Interesting problems in Biomed-

ical Multi-Slot Information Extraction (IE) can be formulated as relational domains

and used as challenging ILP testbeds. Finally, I believe there are deep connections be-

tween precision-recall space and ROC space that can help in understand the behavior

of these algorithms.

1.3 Thesis Outline

The rest of this thesis is organized as follows: I first review necessary background material

on machine learning, ILP and the evaluation metrics of recall and precision in Chapter 2. I then

present my new algorithm Gleaner and a comparison algorithm of Aleph ensembles in Chapter 3.

Next, I describe five relational datasets in Chapter 4, with an in-depth discussion of one biomedical

information-extraction dataset, followed in Chapter 5 by a discussion of comparison experiments

and results. I report on some further extensions of Gleaner related to searching and combining

clauses in Chapter 6, and extend Gleaner to perform Statistical Relational Learning in Chapter 7.
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Finally, in Chapter 8 I examine weighting methods to create ensembles from a single theory in

Aleph and then investigate further some properties of precision-recall curves in Chapter 9. I con-

clude in Chapter 10 with some proposals for future work in this area.
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Chapter 2

Background

I review here necessary background material for my work on ensembles within Inductive Logic

Programming. The experienced reader may wish to skim this section.

2.1 Supervised Machine Learning

Supervised machine learning is the task of learning to distinguish objects into categories, where

the objects are labeled by an outside, or supervising, observer. The most common form involves di-

viding data into two categories, called positive and negative examples of the concept to be learned.

For instance, one might wish to determine whether a given e-mail message is spam or not, a cer-

tain chemical causes cancer or not, or if a word refers to a protein or not. These examples can

be propositional in nature, and so described with a fixed number of features which give rise to

a feature vector of values for each example, or instead be complex objects with 3D or relational

properties as are found in Inductive Logic Programming problems.

Given numerous positive and negative examples for a given concept as training data, machine-

learning algorithms attempt to induce a hypothesis which explains why the positive examples are

different from the negative examples. Some well-known algorithms include Decision Trees (Quin-

lan, 1986), where the hypotheses formed are nested conditional rules based on the features of the

given examples, and Support Vector Machines (Cristianini & Shawe-Taylor, 2000), which form

hypotheses based on a linear separation of the data, possibly after a transformation to a higher-

dimensional space.
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Machine-learning algorithms often have a tendency to overfit, or memorize, their training data.

To increase generality as well as to estimate future performance of these algorithms on unseen

data, a given dataset is divided into three portions called the training set, the tuning set and the

testing set. Hypotheses are then learned on the training set and evaluated on the tuning set, where

parameter modifications can be made based on the performance of the algorithm. The final tuned

algorithm is then evaluated on the testing set where the classification performance is measured.

However, this performance estimate is biased towards the particular choice of how to divide up

the dataset. Therefore, these estimates are calibrated by using cross-validation. One approach, and

the one used in this thesis, is to first divide the data into n distinct equal-sized subsets, or folds. One

can now perform n experiments by using each fold as a testing set while combining the remaining

n − 1 folds to form the training and tuning sets, in a process called n-fold cross-validation. The

results from these n experiments can then be averaged or pooled for use in statistical comparisons

between algorithms.

2.2 Evaluation Metrics

In machine learning, current research has shifted away from simply presenting accuracy results

when performing an empirical validation of new algorithms. This is especially true when evalu-

ating algorithms that output probabilities of class values. Here I survey the metrics of Receiver

Operating Characteristic (ROC) curves and Precision-Recall (PR) curves as useful alternatives to

accuracy.

2.2.1 Definitions

In a binary decision problem, a classifier labels examples as either positive or negative. The

decision made by the classifier can be represented in a structure known as a confusion matrix or

contingency table. The confusion matrix has four categories: True positives (TP) are examples

correctly labeled as positives. False positives (FP) refer to negative examples incorrectly labeled

as positive. True negatives (TN) correspond to negatives correctly labeled as negative. Finally,

false negatives (FN) refer to positive examples incorrectly labeled as negative.
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actual actual

positive negative

predicted positive TP FP

predicted negative FN TN
(a) Confusion Matrix

Accuracy = TP+TN
TP+FP+TN+FN

True Positive Rate = TP
TP+FN

False Positive Rate = FP
FP+TN

Recall = TP
TP+FN

Precision = TP
TP+FP

F1 Measure = 2×Precision×Recall
Precision+Recall

Fβ Measure = (1+β)×Precision×Recall
(β×Precision)+Recall

(b) Definitions of metrics

Figure 2.1 Common machine learning evaluation metrics.

A confusion matrix is shown in Figure 2.1(a). Given the confusion matrix, I am able to define

the metrics used in Figure 2.1(b). Accuracy is the percentage of classifications that are correct. The

True Positive Rate (TPR) measures the fraction of positive examples that are correctly labeled. The

False Positive Rate (FPR) measures the fraction of negative examples that are misclassified as pos-

itive. Recall is the same as TPR, whereas Precision measures that fraction of examples classified

as positive that are truly positive. The F1 Measure is the harmonic mean between Precision and

Recall, and is generalized in the Fβ measure.

2.2.2 ROC and PR Curves

The confusion matrix can be used to construct a point in either ROC space or PR space. In

ROC space, one plots the FPR on the x-axis and the TPR on the y-axis. In PR space, one plots

Recall on the x-axis and Precision on the y-axis. I will treat the metrics as functions that act on the

underlying confusion matrix, which defines a point in either ROC space or PR space. Thus, given

a confusion matrixA, RECALL(A) returns the Recall associated withA. Oftentimes, a classifier is

able to estimate the probability that an example is positive. This probability can be thresholded at

a particular value to create a confusion matrix as shown above. Alternately, one can examine every

possible threshold to create multiple confusion matrices, thus enabling us to draw a performance

curve for this classifier in either ROC or PR space.
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Provost et al. (1998) have argued that simply using accuracy results can be misleading. They

recommended when evaluating binary decision problems to use ROC curves, which show how the

number of correctly classified positive examples varies with the number of incorrectly classified

negative examples. However, ROC curves can present an overly optimistic view of an algorithm’s

performance if there is a large skew in the class distribution; by scaling each axis to span between

0 and 1, the class skew is ignored, even though a TPR of 0.1 will include many less examples than

a FPR of 0.1.

Datasets with unbalanced class distributions present a number of problems for the Inductive

Logic Programming systems that I will investigate. First, these domains tend to have a large

number of objects and relations, causing a large explosion in the search space of clauses. A first

approach is to sample these objects and reduce the space to a reasonable size. However, even a

moderate number of objects brings about the second problem, a large skew of the data toward neg-

ative examples. Suppose the dataset contains 500 people, each of whom have 10 friends amongst

these 500 people. This defines 5000 positive examples of friendship, assuming that the friendship

relationship is not necessarily symmetric. The negative examples are all other possible friendships,

for 500× 500− 5000 = 245, 000 negative examples, a positive:negative skew of 1:49.

Precision-Recall (PR) curves, often used in information retrieval (Manning & Schütze, 1999;

Raghavan et al., 1989), have been cited as an alternative to ROC curves for tasks with a large

skew in the class distribution (Bockhorst & Craven, 2005; Bunescu et al., 2004; Davis et al.,

2005a; Goadrich et al., 2004; Kok & Domingos, 2005; Singla & Domingos, 2005). An important

difference between ROC space and PR space is the visual representation of the curves. Looking at

PR curves can expose differences between algorithms that are not apparent in ROC space. Sample

ROC curves and PR curves are shown in Figures 2.2(a) and 2.2(b), respectively. These curves,

taken from the same learned models on a highly-skewed cancer detection dataset, highlight the

visual difference between these spaces (Davis et al., 2005a). The ideal in ROC space is to be in

the upper-left-hand corner, and when one looks at the ROC curves in Figure 2.2(a) they appear to

be fairly close to optimal. In PR space the ideal is to be in the upper-right-hand corner, and the PR

curves in Figure 2.2(b) show that there is still vast room for improvement.
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(b) Comparison in PR space

Figure 2.2 The difference between comparing algorithms in ROC vs. PR space using the same
data.

The performances of the algorithms appear to be comparable in ROC space, however, in PR

space one can see that Algorithm 2 has a clear advantage over Algorithm 1. This difference exists

because in this domain the number of negative examples greatly exceeds the number of positives

examples. Consequently, a large change in the number of false positives can lead to a small change

in the false positive rate used in ROC analysis. Precision, on the other hand, by comparing false

positives to true positives rather than true negatives, captures the effect of the large number of

negative examples on the algorithm’s performance.

2.2.3 Interpolation

A key practical issue to address is how to interpolate between points in each space. It is straight-

forward to interpolate between points in ROC space by simply drawing a straight line connecting

the two points. One can achieve any level of performance on this line by flipping a weighted coin

to decide between the classifiers that the two end points represent.



10

However, in Precision-Recall space, interpolation is more complicated. As the level of Recall

varies, the Precision does not necessarily change linearly due to the fact that FP replaces FN in

the denominator of the Precision metric. In these cases, linear interpolation is a mistake that yields

an overly-optimistic estimate of performance.

Remember that any point A in a Precision-Recall space is generated from the underlying true

positive (TPA) and false positive (FPA) counts. Suppose you have two points, A and B which

are far apart in Precision-Recall space. To find some intermediate values, you must interpolate

between their counts TPA and TPB, and FPA and FPB. First, you find out how many negative

examples it takes to equal one positive, or the local skew, defined by FPB−FPA

TPB−TPA
. Now you can

create new points TPA + x for all integer values of x such that 1 ≤ x ≤ TPB − TPA, i.e.

TPA + 1, TPA + 2, ..., TPB − 1, and calculate corresponding FP by linearly increasing the false

positives for each new point by the local skew. The resulting intermediate Precision-Recall points

will be (
TPA + x

Total Pos
,

TPA + x

TPA + x+ FPA + FPB−FPA

TPB−TPA
x

)
.

For example, suppose there is a dataset with 20 positive examples and 2000 negative examples.

Let TPA = 5, FPA = 5, TPB = 10, and FPB = 30. Figure 2.3 shows the proper interpolation of

the intermediate points between A and B, with the local skew of 5 negatives for every 1 positive.

Notice how the resulting Precision interpolation is not linear between 0.50 and 0.25.

2.2.4 Area Under the Curve

Often, the Area Under the Curve (AUC) is used as a simple metric to define how an algorithm

performs over either ROC or PR space (Bradley, 1997; Davis et al., 2005a; Goadrich et al., 2004;

Kok & Domingos, 2005; Macskassy & Provost, 2005; Singla & Domingos, 2005). The area under

the ROC curve (AUC-ROC) can be calculated by using the trapezoidal areas created between each

ROC point, and is equivalent to the Wilcoxon-Mann-Whitney statistic (Cortes & Mohri, 2003),

which calculates the chance that a randomly selected positive will precede a randomly selected

negative in a ranked list of positive and negative examples. The optimal AUC-ROC is 1.0, where
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TP FP REC PREC

A 5 5 0.25 0.500

. 6 10 0.30 0.375

. 7 15 0.35 0.318

. 8 20 0.40 0.286

. 9 25 0.45 0.265

B 10 30 0.50 0.250

(a) Table of interpolation between points A and B
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(b) Results of interpolation in PR space

Figure 2.3 Correct interpolation between two points A and B in PR space for a dataset with 20
positive and 2000 negative examples.

all positive examples are ranked before negative examples, and the score of a random classifier is

0.5. The AUC-ROC provides a quick summary of a ROC graph, which is helpful for comparing

the performance of different machine learning algorithms across a variety of thresholds.

By including the intermediate interpolated PR points from above, I can use the composite

trapezoidal method to approximate the area under the PR curve (AUC-PR). As with ROC curves,

the optimal AUC-PR value is 1.0, however, the AUC-PR value for a random classifier is equal to
TP+FN

TP+FP+TN+FN
, as this is the expected precision for classifying a random sample of examples as

positive.

The effect of incorrect interpolation on the AUC-PR is especially pronounced when two points

are far away in Recall and Precision and the local skew is high. Consider a curve (Figure 2.4)

constructed from a single point of (0.02, 1), and extended to the endpoints of (0, 1) and (1, 0.008)

as described above (for this example, the dataset contains 433 positives and 56,164 negatives).
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Figure 2.4 The effect of incorrect interpolation in PR space.

Interpolating as I have described would have an AUC-PR of 0.031; a linear connection would

severely overestimate with an AUC-PR of 0.50.

2.3 Inductive Logic Programming

Inductive Logic Programming (ILP) combines machine learning with logic programming

(Džeroski & Lavrac, 2001). It is the process of learning first-order clauses to correctly catego-

rize training set data. Typical machine learning algorithms are propositional, using a fixed-sized

feature-vector representation, while ILP uses relations in mathematical logic to describe examples,

and can handle large and variable-sized structures and sequences. Another advantage of ILP is the

incorporation of related background knowledge about the data. Some currently open problems for

ILP include efficiently searching the greatly increased hypothesis space compared to propositional

domains, and appropriately calibrating probability estimates when using Boolean-valued logical

rules, topics I later address in Chapters 6 and 7, respectively. A brief description of some logic
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Figure 2.5 Relational object domains (a) and (b) versus link-learning domains (c).

programming terms can be found in Table 2.1. For further details, I refer the reader to Nilsson and

Maluszyński (2000) for more definitions of standard logic programming terminology.

Domains suitable for ILP can be roughly divided into two main groups, as seen in Figure 2.5.

In one group, there are tasks in which each example has some internal relational structure. One

classic example of this domain is the trains dataset (Michalski & Larson, 1977), where the goal is

to discriminate between two types of trains (east/west), and the trains themselves are relational in

nature, having varying length (i.e. number of cars) and types of objects carried by each car. A more

realistic example is the mutagenesis dataset (Srinivasan et al., 1996), where the goal is to classify a

chemical compound as mutagenic or not using the relational nature of the atomic structure of each

chemical. ILP has proven successful in domains like these by bringing the inherently relational

attributes into the hypothesis space.

The other group of ILP domains contains tasks where examples, in addition to having a rela-

tional structure, have relations to other examples. The goal in these domains is to classify links

between objects instead of the objects themselves. One such domain is the learning of friendship

in social networks (Taskar et al., 2003), where instead of classifying people, one tries to determine
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Table 2.1 Some standard Prolog terms and their definitions.
Term Definition
constants Usually the nouns of an ILP domain. If you imagine trying

to learn family relations, the constants would be people, such as
adam, bob, jan and sue. Following Prolog conventions,
I use lower case for constants and upper case for logical variables.

predicate Predicates are used to represent relations between the objects.
between the objects. Relations involving people would include
father, mother, and friend.

literal Literals are instantiations of the predicates with objects. For example
father(adam,sue), mother(sue,jan), and friend(sue,bob).

definite clause Predicates can be defined in terms of other predicates using
clauses. Clauses have the notation head :- body, where body is
a disjunction of other predicates. Clauses are interpreted as “If
all the body predicates are true, then the head is true.” An
example using the family domain would be:
grandfather(X, Y) :- father(X,Z), mother(Z,Y).

predicate definition A conjunction of clauses for a particular predicate, which
together try to capture the complete definition of a relation. To
continue with the family example, the complete definition which
describes the grandfather predicate would be:
grandfather(X, Y) :- father(X,Z), mother(Z,Y).

grandfather(X, Y) :- father(X,Z), father(Z,Y).

theory A theory is a generalization of a predicate definition, where the set of
clauses can describe more than one predicate. In this thesis
I will be only focusing on theories which are predicate definitions,
and will be using these terms interchangeably.

background knowledge When trying to learn clauses and theories for a particular
predicate, all other objects, predicates and clauses in the
domain are the background knowledge. In the above example, all
groundings of father, mother, and friend would be the
background knowledge for learning the grandfather predicate.
This helps define the search space for the body of clauses.

bottom clause A particular clause created from a positive example (the “seed”),
used to limit the hypothesis space. This clause is created by
chaining through relations until no more facts about the seed
example can be added or a specified limit is reached.

covers A clause covers an example if it proves the example true using
the background knowledge. Formally for clause C, background
knowledge B and example e, C covers e if C ∧B ` e



15

the structural relationships of people based on a combination of their personal attributes and the

attributes of their known friends. Another domain of this type is learning to suggest relevant ci-

tations for scientific publications (Popescul et al., 2003). Link-learning domains are typified by

significant overlap in the background knowledge for each example as well as a large skew toward

negative examples, and this thesis is focused on these link-learning domains.

Aleph (Srinivasan, 2003) is a top-down ILP covering algorithm developed at Oxford University,

UK. It is written completely in Prolog and is open source. Aleph is based on an earlier ILP system

called PROGOL (Muggleton, 1995a). As input, Aleph takes background knowledge in the form

of either intensional or extensional facts, a list of modes declaring how literals can be chained

together, and a designation of one literal as the “head” predicate to be learned. Lists of positive

and negative examples of the head literal are also required.

At a high-level overview, Aleph sequentially generates clauses for the positive examples by

picking a random example to be a seed. This example used to create the bottom clause, the most

specific clause (relative to a given background knowledge) that covers a given example, a process

known as saturation. This bottom clause is created by chaining through literals until no more facts

about the seed example can be added or a specified limit is reached. The bottom clause determines

the possible search space for clauses. Aleph heuristically searches through the space of possible

clauses until the “best” clause is found or time runs out. When enough clauses are learned to cover

(almost) all of the positive training examples, the learned clauses are combined to form a theory.

As stated earlier, the standard ILP approach is biased toward producing many high-precision,

low-recall clauses, which when combined typically create a high-recall, low-precision theory. Let

K be the number of clauses in a theory andR be the recall of each clause. Assuming independence

of the clauses in a theory, the probability of a given positive example being classified as positive

by the theory is just the probability of it being classified as positive by at least one clause. In other

words, this is 1 minus the probability of it being classified as positive by no clauses. The recall of

the theory can be written as 1 − (1 − R)K . For large values of K, (1 − R)K approaches 0 and

so the entire equation approaches 1. For example when R = 0.06 and K = 100, the recall of the

entire theory, (unrealistically) assuming independence, is 0.99.
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Figure 2.6 Ensembles of multiple classifiers calculate the score of an example by combining each
classifier’s prediction Pi with its weight Wi.

In order for a negative example to be correctly labeled, it must not match any of the K clauses.

The probability of any one clause correctly classifying a negative example (the True Negative

Rate) is 1− [FP/(TN+FP )], which equals TN/(TN+FP ). So the probability of allK clauses

correctly calling it negative is [TN/(TN + FP )]K . Thus the probability of a false positive is

1− [TN/(TN + FP )]K , which approaches 1 for large values of K. In keeping with my focus on

skewed data, suppose I have 100 positive and 1,000 negative examples and a True Negative Rate

of 0.998. R = 0.06 and K = 100 implies the precision of any one clause is 0.75, while precision

for the whole theory of independent clauses is 0.35. One of the main purposes of this thesis is to

find new ways to combine high-precision clauses without sacrificing their precision, and further

results on this can be found in Chapter 3.

2.4 Ensembles

Ensembles are an advance from the 1990’s in machine learning (Dietterich, 2000), where mul-

tiple classifiers are learned and merged to provide a consensus prediction for each example, often

with higher accuracy. Each classifier can compensate for the deficiencies in training of the other

classifiers, and can be combined as illustrated in Figure 2.6. In order for ensembles to have any
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improvement over any single classifier, underlying accurate and diverse classifiers are necessary.

Without accurate classifiers, the consensus is likely to be incorrect, and without diverse classifiers,

incorrect classifiers will not be superseded by correct ones. As this research is in domains where it

is appropriate to use precision and recall, I will be requiring the underlying classifiers to be precise

and diverse to avoid using accuracy.

Bagging (Breiman, 1996) is a popular ensemble approach to machine learning where multiple

classifiers are trained using different subsamples of the training data. This introduces a bias in each

learned hypothesis toward its particular training set. These classifiers then vote on the classification

of testset examples, usually with the majority class being selected as the output classification. How

they vote is user-dependent, with some common schemes being equal voting or weighted according

to the tuneset accuracy of each voter (Dietterich, 1998). Bagging can be used to create confidence

scores for each example by using the percentage of classifiers voting for the majority class. In

general, the confidence score from an ensemble is calculated by summing the result of the weight

associated with each classifier multiplied by its prediction.

Boosting (Freund & Schapire, 1996) also learns multiple classifiers, but uses a different method

to produce diverse classifiers. Examples are initially assigned a uniform weight and classifiers

are learned sequentially. For each classifier, it is likely there will be misclassifications of the

training set examples. Those examples where the classifier is incorrect will be up-weighted to

add emphasis, while correct examples will be down-weighted, forcing the subsequent classifiers to

focus on harder and harder examples. Additionally, each potential classifier is given a score based

on how well it covers the examples, with higher scores correlated with correctly covering highly

weighted examples. As long as each classifier is always greater than 50% accurate and sufficiently

different from the other classifiers, then boosting will theoretically converge to a highly accurate

classifier. Quinlan (2001) has investigated boosting in relation to combining theories learned by

FOIL.
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PubMed Abstract1570306, Sentence 3
The deduced amino acid sequence of the FRE1 protein 
exhibits hydrophobic regions compatible with transmembrane 
domains and has significant similarity to the sequence of the 
plasma membrane cytochrome b558, a critical component of 
a human phagocyte oxidoreductase, suggesting that FRE1 
is a structural component of the yeast ferric reductase.

CLEAR: cytochrome b558 - plasma membrane
AMBIGUOUS: FRE1 - transmembrane
CO-OCCURANCE: all other combinations

Figure 2.7 Sample biomedical sentence with its correct extractions for a protein-localization task.

2.5 Information Extraction

Information Extraction (IE) is the process of scanning unstructured text for objects of interest

and facts about these objects. IE is defined as: given information in unstructured text documents,

extract the relevant objects and relationships between them. There are two main IE tasks, Single-

Slot Extraction and Multi-Slot Extraction.

Named Entity Recognition (NER) is a common subtask of single-slot extraction. NER can be

seen as identifying a single type of object, for example the name of an individual, corporation,

gene, or weapon. Multi-slot extraction builds upon the objects found in NER, and looks for a rela-

tionship between these items in the text, some examples being a parent-child relationship between

individuals, the CEO of a particular company, or the interaction of two proteins in a cell. Multi-slot

extraction is typically much harder; not only must the objects of the relation be identified, but also

the semantic relationship between these two objects.

Biomedical journal articles have been a major source of interest in the IE community for a

number of reasons: the amount of data available is enormous; the objects, proteins and genes,

do not have standard naming conventions; and there is interest from biomedical practitioners to

quickly find relevant information (Blaschke et al., 2002; Shatkay & Feldman, 2003; Ray & Craven,

2001; Bunescu et al., 2004; Goadrich et al., 2006). Recent years have seen a number of challenge
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tasks focused within biomedical IE, including the BioCreAtIvE workshop (Hirschman et al., 2005)

and the Learning Language in Logic protein-interaction task (Nedellec, 2005).

I have focused on learning multi-slot protein localization from Medline1 abstracts, where the

task is to identify links between phrases which correspond to a protein and the location of that

particular protein in a cell. Biomedical journals typically contain highly domain-specific language,

as seen in Figure 2.7. This figure’s sentence comes from the protein-localization dataset. Proteins

(black text in boxes) and locations (white text in boxes) are the named entities of the dataset, and

one wishes to discern if there is any evidence in this sentence to suggest a protein is found in a

particular cell location.

When seen as a relational data task, multi-slot IE clearly falls into the link-learning category

described in Section 2.3. IE is a domain that typically has unbalanced data; for example, only a

very small number of phrases are protein names. Learning the relation between two entities, such

as protein and location, only increases this imbalance, as the number of positive examples is now a

subset of the cross-product of the entities, and the negative examples are every other entity-entity

pairing in the dataset.

I believe that ILP is well-suited for information-extraction in biomedical domains as well as

other link-learning tasks. ILP offers us the advantages of a straight-forward way to incorporate

domain knowledge and expert advice and will produce logical clauses suitable for analysis and

revision by humans to improve performance. Multi-slot IE is an appealing challenge task for ILP,

due to its large amount of examples and background knowledge, as well as the substantial skew of

examples.

Most work in IE has been focused on named-entity recognition. Successful rule-based ap-

proaches for this task include Rapier (Califf & Mooney, 1998), a system which learns clauses with

the format {prefix, extraction, postfix}, and Boosted Wrapper Induction (BWI) (Freitag & Kush-

merick, 2000), a method for boosting weak rule-based classifiers of extraction boundaries into a

powerful extraction method. BWI has been further examined by Kauchak et al. (2004) showing

results with high recall and high precision on a wide variety of tasks.

1http://www.ncbi.nlm.nih.gov/pubmed
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Previous machine learning work in the biomedical multi-slot domain includes a number of

different approaches. Ray and Craven (2001) use a Hidden Markov Model (HMM) modified to

include part of speech tagging, and analyze their method on protein localization, genetic disorder

and protein-protein interaction tasks. This probabilistic approach achieves relatively high precision

in low areas of recall, however maximum recall is limited to 70%. A limitation of this approach is

the difficulty of adding new background knowledge to the hypothesis space, as well as the human

interpretability of the results.

For the same datasets, Eliassi-Rad and Shavlik (2001) implemented a neural network for IE

primed with domain-specific prior knowledge, and achieved significant improvements in both re-

call and precision over the work of Ray and Craven. In their approach, background knowledge

was directly incorporated in the form of the initial weights and structure of the network. The re-

sulting neural-network structure and weights were still uninterpretable, and the sequential nature

of the data required an awkward “sliding window” implementation to fully capture the desired

background knowledge.

Aitken (2002) uses FOIL (Quinlan, 1990) to perform ILP on an IE dataset, working with a

closed ontology of entities, which means that relationships can only be learned between previously

identified objects. He uses a “bag-of-words” representation for each sentence and uses type infor-

mation to incorporate semantic knowledge of the data. His results are limited to a small dataset,

and precision-recall results are only given for one point as opposed to my analysis using a PR

curve.

Bunescu et al. (2004) propose the use of Extraction using Longest Common Subsequence

(ELCS), a bottom-up approach to finding protein interactions with rule templates for sentences.

They use a greedy covering algorithm to repeatedly generalize sentence templates until enough

templates are found to cover most positive examples. Bunescu et al. have also extended Rapier

(Califf & Mooney, 1998) and BWI (Freitag & Kushmerick, 2000) to handle multi-slot extractions.

All of their approaches assume the use of a named entity recognizer to label all the proteins in-

volved in the relationship. One thing notably absent is the incorporation of background knowledge

such as part of speech and word properties. Their results show an extension in recall for ELCS over
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their modified Rapier and BWI algorithms, both of which fared poorly in their protein-interaction

domain due to low recall.
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Chapter 3

Ensemble Approaches with Aleph

Within large, highly-skewed relational domains, the size of the hypothesis space and scarcity

of positive examples introduce challenges to both the quality and speed of Inductive Logic Pro-

gramming algorithms. This section introduces my main contribution of the Gleaner algorithm as a

fast and precise ensemble algorithm for ILP. I also describe a comparison algorithm, ensembles of

Aleph theories, and discuss some of the parameters involved with learning clauses with Aleph.

3.1 Gleaner

In order to rapidly produce good recall-precision curves, I have developed Gleaner, a two-stage

algorithm to (1) learn a broad spectrum of clauses and (2) then combine them into a thresholded

theory aimed at maximizing precision for a particular choice of recall. Pseudo-code for the Gleaner

algorithm appears in Table 3.1. A gleaner is one who gathers grain left behind by reapers, and I

call this algorithm Gleaner because it sifts through clauses discarded by a standard heuristic search

and uses some of them to form its theories. Gleaner currently uses Aleph as its underlying engine

for generating clauses, although it could easily be adapted to use other ILP algorithms such as

FOIL.

3.1.1 Learning Clauses

After initialization, the first stage of Gleaner learns a wide spectrum of clauses, illustrated in

Figure 3.1. Gleaner uses Aleph to search for clauses usingK seed examples to encourage diversity.

In the experiments that appear in Chapter 5, the recall dimension is uniformly divided into B equal
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Table 3.1 The Gleaner algorithm.
1 Initialize Bins:
2 Create B recall bins, bin 1

B
, bin 2

B
, ..., bin1, to uniformly divide the recall range [0,1]

3
4 Populate Bins:
5 For i = 1 to K (can be in parallel)
6 Pick a seed example to generate the bottom clause
7 Use Randomized Local Search to find clauses
8 After each generation of a new clause c
9 Find the recall binr for c on the training set

10 If the Precision×Recall of c is best yet for seed i in binr
11 Store c in binr and discard old best clause of seed i in binr
12 Until N clauses are generated
13
14 Determine Bin Threshold:
15 For each binj
16 Find theory from binm and Lm ∈ [1, K] with highest precision on tuneset such that
17 recall of “At least Lm of K clauses match examples” ≈ recall for binj
18
19 Evaluate On Testset:
20 Find precision and recall of testset using each bin’s “at least L of K” decision process

sized bins, for example, [0, 0.05], [0.05, 0.10], . . . , [0.95, 1]. For each seed, up toN possible clauses

are considered using stochastic local-search methods (Hoos & Stutzle, 2004). As these clauses are

generated, the recall of each clause is computed to determine into which bin the clause falls. Each

bin keeps track of the best clause appearing in its bin for the current seed. Gleaner uses the heuristic

function precision × recall to determine the best clause, since this will increase the generality of

the clauses. At the end of this search process, there will be B clauses collected for each seed and

K seed examples for a total of B ×K clauses (assuming a clause is found that falls into each bin

for each seed).

To perform stochastic local search, I consider four randomized search methods. Rückert et al.

(2002; 2003; 2004) and Železný et al. (2003; 2004), have previously investigated using Stochas-

tic Local Search (SLS) to explore the hypothesis space in both propositional and ILP settings.
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Figure 3.1 A hypothetical run of Gleaner for one seed and 20 bins on the training set, showing
each considered clause as a small circle, and the chosen clause per bin as a large circle. This is

repeated for K seeds to gather B ×K clauses (assuming a clause is found that falls into each bin
for each seed).

Aleph allows for stochastic search functions such as Stochastic Clause Selection (SCS), GSAT and

WalkSAT (Selman et al., 1993), and Rapid Random Restart (RRR):

• SCS randomly picks clauses which are subsets of the bottom clause. Clauses can be gener-

ated uniformly or according to a user-specified distribution of clause lengths. In either case,

SCS has a hard time finding high-quality clauses and is biased to select long clauses due to

the heavy-tailed distribution of clause lengths since it does no local search.

• GSAT selects an initial clause at random and then chooses where to “move” in search space,

either by adding or removing a randomly selected literal; the move is taken if the new,

altered clause is “better” according to the evaluation function. WalkSAT modifies GSAT by

stochastically allowing a certain percent of “bad” moves.

• RRR works similarly to SCS, GSAT and WalkSAT in the initial random clause selection, but

takes time to evaluate the hypothesis space around the initial clause. RRR refines clauses

by using a best-first search when used in conjunction with a heuristic evaluation function,

and restarts with a new random clause after a specified number of evaluations. Where GSAT



25

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

Figure 3.2 Twenty complete recall-precision curves, one from each Gleaner bin, evaluated on
fold 1 of the protein-localization dataset.

and WalkSAT will make more moves in hypothesis space, RRR makes a more thorough

investigation before choosing its next move.

I found that GSAT and WalkSAT make more “uphill” moves in the search space (i.e. removing

predicates from the clause) than RRR, and due to the internal data structures of Aleph, adding

predicates to a clause is much more efficient than removing them. In later experiments, I find that

RRR both takes less time and produces higher quality clauses than the other methods, and I will

use it as Gleaner’s search method in the remainder of this thesis.

A major benefit of Gleaner is the use of different seeds for each Rapid Random Restart search.

This helps achieve many unique clauses in the low-recall bins; since the search space is constrained

to always cover the seed example, there will necessarily be little overlap between clauses learned

from different seeds. In low-recall bins, merely having a bottom clause is enough to bias Gleaner

to find diverse clauses; by definition, the best clause that covers a particular seed example and also

has 10% recall will not cover 90% of the positives, leaving ample room for a different clause to be

found with a different seed.
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3.1.2 Combining Clauses

The second stage takes place once the clauses have been gathered using random search. The

next step is to combine these clauses into a theory and create a final recall-precision curve. A first

approach is to compress these clauses into a single precision/recall point for each bin. One could

choose the best clause collected from each bin; however, this is likely to have poor generalization

to the test set, especially for the low-recall bins. If this theory classifies an example as positive

only if it matches all K clauses collected for a bin, it will obtain high precision, but its recall will

be drastically reduced. Alternatively, if this theory classifies an example as positive if it matches

any of the K clauses, it will probably have high recall but low precision. Instead, it is best to find a

balance between these two extremes, and classify examples to be positive if they are covered by a

large enough subset of clauses. My hypothesis is that this method will produce a theory with about

the same recall as the bin (by construction), but higher precision than any one clause, since it is

required that an example satisfy multiple clauses (assuming L > 1).

Gleaner combines the clauses in each bin to create one large thresholded disjunctive theory, of

the form “At least L of these K clauses must cover an example in order to classify it as a positive.”

This theory should have about the same recall as as that of the clauses in the bin (so that it covers

the full range of possible recalls), thus the best threshold L for each bin must be found. This L

is learned from the training set for each bin by starting with L = K and incrementally lowering

the threshold to increase recall. The lowering stops when any lower L would increase the distance

between the recall of the best L of K clause and the desired recall.

However, if these thresholded theories are examined more closely, each of these learned the-

ories could generate their own recall-precision curves, by exploring all possible values for L, as

shown in Figure 3.2. These curves will overlap in their recall and precision results, and a better

approach would save the highest points along this combined curve, irrespective of the bin which

generated the points. By recording the theory and threshold L which generated the highest points

in each bin on the tuning set, Gleaner will achieve greater area under the curve and increased

generality in the testing set.
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3.1.3 Evaluating Gleaner

With these thresholds L and theories for each bin, Gleaner is now evaluated on the testset and

the precision and recall are recorded. Gleaner will produce B precision/recall points, one for each

bin, that hopefully broadly span the recall-precision curve.

A unique aspect of Gleaner is that each point in the recall-precision curve could be generated

by a separate thresholded theory. This is opposed to the usual setup to create a curve, where

one standard theory is transformed into many by ranking the examples and then finding different

thresholds of classification. This separate-theory method is related to using the ROC convex hull

created from separate classifiers (Fawcett, 2003). I believe using separate theories is a strength of

the Gleaner approach, such that each theory, and therefore each point on the curves, is not hindered

by the mistakes of previous points; each theory is totally independent of the others.

An end-user of Gleaner will be able to choose their preferred operating point from the tuneset

recall-precision curve. Gleaner will then be used to generate testset classifications using the clos-

est bin to their desired recall results along with the found threshold L. If necessary, Gleaner can

produce a confidence score for each example by using the number of clauses that cover this ex-

ample within its selected bin. For this reason, Gleaner is evaluated using macro-averaging (Lewis,

1991) of its results to calculate the AUC-PR, where the AUC-PR is first calculated for each fold

and then averaged to produce one value. In Chapter 7, I discuss the extension of GleanerSRL,

which estimates the probability that examples in the testset are positive without intervention from

the user.

3.2 Control Algorithm: Aleph Ensembles

The use of bagging for ILP has been previously investigated by Dutra et al. (2002) where they

demonstrate bagging to be helpful for modest improvements in accuracy as well as a straight-

forward way to calculate the confidence of a particular example. I investigate here the “random

seeds” approach for creating ensembles from Dutra et al. This approach, shown to have essentially

equivalent predictive accuracy as bagging (Breiman, 1996) with ILP (de Castro Dutra et al., 2002),
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produces diversity in its learned models by starting each run of its underlying ILP system with

a different “seed” example. I compare the Gleaner approach to that of using “random seeds” in

Aleph. In this experimental control, Aleph is called N times to create N theories (i.e., sets of

clauses that cover most of the positive training examples and few of the negative ones). To create

a recall-precision curve from these N theories, an example is classified as positive if at least K of

the theories classify it as positive; varying K from 1 to N produces a family of ensembles, and

each of these ensembles produces a point on a recall-precision curve.

Aleph is a very flexible ILP system with a wide variety of learning parameters available for

modification. The major parameters used in Aleph are:

minimum accuracy This is used to place a lower bound on the accuracy of each clause learned

by Aleph. (Note that this is only the accuracy of the clause on the positive examples, in other

words, precision.)

minimum positives To prevent Aleph from learning overly narrow clauses, ones which only cover

a few examples, this restriction specifies that each acceptable clause must cover at least a

certain number of positives.

clause length The size of a particular clause can be constrained using clause length. By limit-

ing the length, a wider breadth of clauses can be explored, and clauses are prevented from

becoming too specific.

search strategy Aleph allows the user to choose which search function to use. These include the

standard search methods of breadth-first search, depth-first search, iterative beam search,

iterative deepening, and heuristic methods requiring an evaluation function.

evaluation function There are many ways to calculate the value of a node for further exploration.

The default heuristic used in Aleph is coverage. This is defined as the number of posi-

tives covered by the clause minus the number of negatives (TP − FP ). In these highly

skewed domain, coverage will bias the search toward clauses which cover a small number

of false positives, no matter how many true positives they cover. A very similar heuristic is
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compression, which is coverage minus the length of the clause (TP − FP − L). Compres-

sion biases the search toward the minimum description-length hypothesis (Rissanen, 1978),

or the shorter the clause, the better. To improve clause quality and correct accuracy esti-

mates for clauses that only cover a small number of examples, one can also use the Laplace

estimate, ( TP+1
TP+FP+2

). For highly-skewed domains where precision/recall curves are pre-

ferred, other evaluation functions such as precision × recall, and the F1-score, which is

(2×Precision×Recall
Precision+Recall

) can be used. These two metrics try to provide a balance between preci-

sion and recall clause coverage.

coverage in tune set To encourage the learned clauses to be more general, Aleph can requiring

each acceptable clause to cover a small number positive examples in the tuneset. It is hoped

this will help the clauses perform well on the unseen examples in the test set at a low com-

putational overhead during training.

Unless otherwise noted, each dataset will use the following default settings; these parameter

choices were made initially and not empirically tuned. While I have not considered all possible

parameter settings and algorithm designs with which Aleph could be used to create an ensemble

of theories, I have evaluated a substantial number of variants and feel that these chosen settings

provide a satisfactory experimental control against which to compare my new algorithm, Gleaner.

I limit the number of clauses considered to 100 thousand per seed processed, and I also limit the

number of individual background predicate evaluations to 100 million (using the call counting

predicate available in YAP Prolog1). I require all clauses to at least cover a minimum of seven

positive examples, and at least two examples in the tuning set. Clauses can be no longer than ten

literals, including the head (the same settings are used for random sampling of the hypothesis space

in my Gleaner approach). I used heuristic search since it scales best to the large size of these tasks,

and investigated a number of different evaluation functions listed above.

A comparison of Gleaner and Aleph ensembles can be found in Chapter 5. The datasets used

for this evaluation are discussed in detail in the following chapter.

1http://www.ncc.up.pt/˜vsc/Yap/yap.html
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Chapter 4

Link-Learning Datasets

This thesis focuses on link-learning datasets that are highly skewed to contain a very small

number of positive examples, summarized in Table 4.1. The first dataset, and one I will examine

in detail, concerns Biomedical Information Extraction (IE), namely learning the location of yeast

proteins in a cell, as illustrated in Figure 2.7. A second genetic-disorder dataset with a similar

structure will also be examined, along with two protein-interaction datasets, one specifically for

agent-target interactions from the Learning, Language and Logic Challenge Task 2005, and another

from Bunescu et al. (2004) looking for protein interactions in general. The final dataset comes

from a different domain, a social-interaction dataset for determining student-advisor relationships

developed by Richardson and Domingos (2006). This chapter explains how these datasets were

collected and labeled, along with additional background information that was used, and shows a

sample clause learned from each dataset.

4.1 Protein Localization

This testbed initially came from Ray and Craven (2001). The data consist of 7,245 sentences

from 871 abstracts found in the Medline database, and contains 1,200 positive phrase-phrase rela-

tions. An ILP task for this data can be formalized as follows:

Given a sentence S, find all protein phrases P and location phrases L that satisfy the

relation protein location(P, L, S).
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Table 4.1 Descriptions of five highly-skewed relational datasets, including the relation to be
learned, the number of positive and negative examples, and the number of folds used for

cross-validation.

Dataset Relation Pos Neg Folds

Protein Localization protein location(P, L, S) 1,773 279,154 5

Genetic Disorder gene disease(G, D, S) 233 103,959 5

Protein Target agent target(A, T, S) 160 824 1

Protein Interaction proti protii(A, B, S) 799 76,678 10

Advisor advised by(S, A) 113 2,711 5

The original dataset was labeled semi-automatically, in order to avoid the laborious task

of labeling by a human. Protein localizations were gathered from the Yeast Protein Database

(YPD) (Hodges et al., 1997), and sentences which contained instances of both a protein and loca-

tion pair were marked as positive by a simple computer program.

4.1.1 Data Labeling

In my early exploration of this dataset, I found that there were a significant number of false pos-

itives that looked like true positives, but were apparently missed by the automated labeling algo-

rithm. Also, some of the labels were ambiguous at best, finding both a protein word and a location

word, whereas the human-judged semantics of the sentence did not involve localization. In addi-

tion, by using this labeling scheme, I did not have data on all yeast proteins in the corpus, only those

listed in YPD. Because of these issues, I, along with Soumya Ray and Louis Oliphant, decided to

relabel the dataset by hand. Our resulting dataset can be found at ftp://ftp.cs.wisc.edu/machine-

learning/shavlik-group/datasets/IE-protein-location.

To label the positive examples, we manually performed first protein and location named-entity

labeling, followed by relational labeling between all found named-entities.

For each example, we labeled the proteins and locations independently. Then, we associated

those proteins and locations that we believed were part of the same relational tuple. The data had
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been previously divided into five folds by abstract, and each abstract was partitioned into sentences

by simple heuristics. We labeled each sentence individually without looking at the whole abstract,

and deleted and merged sentences which were incorrectly split by the previous heuristic program.

We used Medical Subject Headings (MeSH)1 to look up any biological words unknown to us at the

time of labeling. Our labeling standards differ from those used by other groups (Hu, 2003) who

focus on finding general words describing proteins, as our task is to extract the locations of specific

yeast proteins. If there was any disagreement among the three labelers, we did not tag the protein

or location, to make sure our training set was as precise as possible at the expense of some recall.

For the protein labeling, we strove to be specific rather than general, and only labeled words that

directly referred to a protein or gene molecule. This included gene names such as “SMF1,” protein

names like “fet3p” and full chemical names of enzymes, such as “qh2-cytochome c reductase.”

Therefore, while we would label SEC53 from “SEC53 mutant,” we did not label “isp4delta” or

“rrp1-1” as these gene products are defective and would not give rise to a functioning protein

molecule. We did not label protein families such as “hsp70” unless it was an adjective to a protein,

as in “hsp70 dnaK.” Fusion proteins, such as when a gene is combined with a fluorescent tag, were

labeled as proteins. Protein complexes, antibodies and open reading frames were never labeled

as positive protein examples. Also, only proteins that are known to exist in yeast were labeled,

not those which were found in other species, since our dataset dealt with the localization of yeast

proteins.

Labeling the location words was much more direct. We used a list of known cellular locations

listed in an introductory cellular biology text book (Becker et al., 1996), including locations and

abbreviations such as “cytoskeleton,” “membrane,” “lumen,” “ER,” “npc,” “bud,” etc. Also labeled

were location adjectives, such as “nucleoporin” and “ribosomal.”

Each [protein,location] pair was then labeled as either a “co-occurrence,” an “ambiguous” tu-

ple, or a “clear” tuple. “Co-occurrence” indicates that even though the protein and location oc-

curred in the same sentence, they did not belong to the same tuple, i.e. the sentence did not imply

that the protein was found in the marked location. “Ambiguous” indicates that the sentence has

1http://www.nlm.nih.gov/mesh/meshhome.html
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some evidence for localization, but more information is needed (perhaps from the surrounding

context) to determine, especially automatically, that the tuple is present. “Clear” indicates that the

sentence directly implies the relationship. For example:

• Clear. Relationships directly stated in the text, as in protein location(YRB1p,

cytosol) from the sentence “YRB1p is located in the cytosol.”

• Ambiguous. Relationships where the protein location was implied rather than stated, such

as protein location(LIP5, mitochondrial) from the sentence “LIP5 mutants undergo

a high frequency of mitochondrial DNA deletions.”

• Co-occurrence. Pairing of a protein and location that had no relationship at all within the

context of that sentence, such as protein location(ERD1, ER) from the sentence “Cells

lacking the ERD1 gene secrete the endogenous ER protein, BiP.”

Each classification was agreed upon by all three labelers. For my experiments, I used the clear

category as positive examples, and all other phrase pairings as negative examples.

4.1.2 Unbalanced Data Filtering

As previously mentioned, one of the difficulties faced with link-learning domains is the large

number of possible examples to be considered. This dataset contains approximately 7,000 sen-

tences. If each sentence contains approximately 12 phrases then the total number of phrase-

phrase pairings is over 1 million. Only 1,299 of those pairings are positive. This leads to a

positive:negative ratio of over 1:750.

For this domain, I use prior knowledge to help reduce the number of false positive examples.

95% of the positive relations contain noun phrases in both positions, while the overall ratio is

26%, and I use this to limit the size of the training data to only those candidate extractions where

both arguments are noun phrases. This reduces the positive:negative ratio in this data to 1:158,

1,773 positives and 279,154 negatives. As a result, I must necessarily keep track of all discarded

positives in the testing set, i.e., those that have at most one non-noun phrase, and record them as

false negatives in my recall-precision results.
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Figure 4.1 I filter both training and testing sets with the “noun phrase filter,” but only the training
set with the “sampling filter.”

Sentence Fragment

Text

Part Of Speech

Phrase Type

N V V N V NP

NP VP NP VP PP NP

... we haved named YFH1, localizes to mitochondria ...

Figure 4.2 Sample sentence parse from Sundance sentence analyzer (N=noun, V=verb,
P=preposition, NP=noun phrase, VP=verb phrase, PP=prepositional phrase).

To further reduce the positive:negative ratio I randomly under-sample the negatives, retain-

ing only a fourth during training. This filtering, as shown in Figure 4.1, allows for faster clause

learning.

4.1.3 Background Knowledge

Instead of the standard feature-vector machine learning setup (Mitchell, 1997), ILP uses log-

ical relations to describe the data. ILP algorithms attempt to construct logical clauses based on

this background structure that will separate positive and negative examples. For this information-

extraction task, I construct background knowledge from sentence structure, statistical word fre-

quency, lexical properties, and biomedical dictionaries. Table 4.2 shows a sample sentence and

some of the resulting Prolog facts created to capture the structure and semantics.
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Table 4.2 Translation from sample sentence “YRB1p is located in the cytosol,” to Prolog. This
sentence is from the abstract whose PubMed ID is 9121474. Not all facts created are listed.

Background Some of the Prolog facts created
Knowledge
Sentence sentence(ab9121474 sen6).

Structure phrase(ab9121474 sen6 ph0).

phrase(ab9121474 sen6 ph1).

word(ab9121474 sen6 ph0 w1).

word(ab9121474 sen6 ph1 w2).

word(ab9121474 sen6 ph1 w3).

phrase child(ab9121474 sen6 ph0, ab9121474 sen6 ph0 w1).

word next(ab9121474 sen6 ph0 w1, ab9121474 sen6 ph0 w2).

word ID to string(ab9121474 sen6 ph1 w1, ‘YRB1p’).

target arg1 before target arg2(ab9121474 sen6).

Part Of np segment(ab9121474 sen6 ph0).

Speech vp segment(ab9121474 sen6 ph1).

unk(ab9121474 sen6 ph0 w0).

cop(ab9121474 sen6 ph1 w1).

v(ab9121474 sen6 ph1 w2).

Medical phrase contains mesh term(ab9121474 sen6 ph3, ‘cytosol’).

Ontologies phrase contains medDict term(ab9121474 sen6 ph3, ‘cytosol’).

phrase contains go term(ab9121474 sen6 ph3, ‘cytosol’).

Lexical phrase contains alphabetic word(ab9121474 sen6 ph0).

Properties phrase contains specific word(ab9121474 sen6 ph1, ‘is’).

phrase contains originally leading cap(ab9121474 sen6 ph0).

Word phrase contains some arg 5x word(ab9121474 sen6 ph1).

Frequency phrase contains some arg 2x word(ab9121474 sen6 ph3).

The first set of predicates comes from the sentence structure. I use the Sundance sentence

parser (Riloff, 1998) to derive a parse tree for all sentences in the dataset and the part-of-speech

for all words and phrases of the tree. I then flatten this tree, such that there are no nested phrases;

all phrases have the sentence as the root, and therefore all words are only members of one phrase.

Figure 4.2 shows a sample sentence parse divided into one level of phrases.

Each word, phrase, and sentence is given a unique identifier, or constant, based on its ordering

within the given abstract. This allows me to create predicates which relate sentences, phrases and
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words based not on the actual text of the document but on its structure, such as sentence child,

phrase previous and word next about the tree structure and sequence of words, and predicates

like nounPhrase, article, and verb to describe the part of speech structure. To include the

actual text of the sentence in the background knowledge, the predicate word ID to string maps

these identifiers to word constants. In addition, the words of the sentence are stemmed using the

Porter stemmer (Porter, 1980), and currently I only use the stemmed version of words.

Another group of background predicates comes from looking at the frequency of words ap-

pearing in the target phrases in the training set. This is done on a per-fold basis to prevent learning

anything about the test set. I created Boolean predicates for several ratios, 2 times, 5 times and 10

times the general word frequency across all abstracts in a given training set, using the following

formula to determine which words matched which ratios:

ratio for wi =
P (wi = word|wi ∈ Target Phrase)
P (wi = word|wi 6∈ Target Phrase)

For example, the words “body,” “npc,” and “membrane” are at least 10 times more likely to appear

in location phrases than in phrases in general in training set 1. These gradations are calculated

for both target arguments, protein and location, as well as for words that appear more frequently

in between, before or after the two arguments. I create semantic classes consisting of these high

frequency words. These semantic classes are then used to mark up all occurrences of these words

in a given training and testing set.

A third source of background knowledge is derived from the lexical properties of each word.

Alphanumeric words contain both numbers and alphabetic characters, (such as “YRB1p” and

“LIP5”) whereas alphabetic words have only alphabetic characters. Other lexical and morpho-

logical features include singleChar (“a”), hyphenated (“qh2-cytochrome”) and capitalized

(“NIP7p”). Also, words are classified as novelWord (“phosphatidylinositol”) if they do not appear

in the standard /usr/dict/words dictionary in UNIX.

For a fourth source, I incorporate semantic knowledge about biology and medicine into the

background knowledge, such as the Medical Subject Headings (MeSH)2, the Gene Ontology

2http://www.nlm.nih.gov/mesh/meshhome.html
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(GO)3, and the Online Medical Dictionary4. As I did for the sentence structure, I have sim-

plified these hierarchies to only be one level. I have picked three categories from MeSH (pro-

tein, peptide and cellular structure), the cellular-localization category from GO, and the cellular-

biology category from the Online Medical Dictionary. Phrases are labeled with predicates such as

phrase contains mesh term and phrase contains go term if any of the words in the given

phrase match any words in the category. As seen in Table 4.2, the word ‘cytosol’ is found in all

three categories and labeled accordingly.

Sentence-structure predicates like word before and phrase after are added, allowing navi-

gation around the parse tree. Phrases are also tagged as being the first or last phrase in the sentence,

likewise for words. The length of phrases is calculated and explicitly turned into a predicate, as

well as the length (by words and phrases) of sentences. Also, phrases are classified as short,

medium or long. An additional piece of useful information is the predicate different phrases,

which is true when its two arguments are distinct phrases.

Lexical predicates are augmented to make them more applicable to the phrase

level. If a phrase contains an alphabetic word, the phrase is given the predicate

phrase contains alphabetic word(A). Similarly, phrases are marked with a predicate for their

actual word text, such as phrase contains specific word(A, ‘‘lumen’’). This is the equiv-

alent of adding both phrase child(A,B) and word ID to string(B, ‘‘lumen’’) at once.

These predicates are also created for pairs and triplets of words, so it can be asserted that a phrase

has the word “golgi” labeled as a noun all in one step when the hypothesis space is searched.

Finally, predicates are added to denote the ordering between the phrases.

Target arg1 before target arg2 asserts that the protein phrase occurs before the

location phrase, similarly for target arg2 before target arg1. Also created are

adjacent target args (which is true when the protein and location phrases are adjacent to each

other in the sentence, such as the phrase “the nucleoporin NPL3”), and identical target args

(which says the same noun phrase contains both the protein and its location), as well as the count of

3http://www.geneontology.org/
4http://cancerweb.ncl.ac.uk/omd/
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phrases before and after the target arguments. Overall, I have defined 215 predicates for use in de-

scribing the training examples; all these predicates can be found in Appendix A. Our dataset can be

found on-line at ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/datasets/IE-protein-location

4.2 Genetic Disorder

This second dataset is the Online Mendelian Inheritance in Man genetic-disorder biomedical

information extraction dataset from Ray and Craven (2001). From a sentence such as “Mutations in

the COL3A1 gene have been implicated as a cause of type IV Ehlers-Danlos syndrome, a disease

leading to aortic rupture in early adult life,” the goal is to extract the mention of a relationship

between the COL3A1 gene and Ehlers-Danlos syndrome.

For this dataset I use the original labelings and five folds, and construct the background knowl-

edge in the same fashion as the protein-localization dataset, substituting MeSH categories related

to diseases where appropriate. Due to memory-size limitations in Yap Prolog, I uniformly sampled

25% of the abstracts per fold used by Ray and Craven to create this dataset. This resulted in 233

positive and 103,959 negative examples.

4.3 Protein Target

My third dataset is from the Learning Language in Logic challenge task5, where the goal is

to learn to recognize the interaction in English sentences between protein agents and their gene

targets in Bacillus subtilis. Sentences in the training set contained either a direct reference between

an agent and a target, such as “GerE stimulates cotD transcription,” or an indirect reference, such

as “GerE binds to a site on one of these promoters, cotX [...],” where the relation between GerE

and cotX is mediated by the phrase “these promoters.” The organizers call these two subtasks

without co-reference and with co-reference and I chose to learn on them separately, first learning

only relationships without co-reference, and second learning only relationships with co-reference.

5http://genome.jouy.inra.fr/texte/LLLchallenge/
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The training data consist of 80 sentences found in the Medline6 database, and contain 106

relations without co-reference and 59 relations with co-reference. For each subtask, I used the

other trainset as the tuneset to find an appropriate threshold for making testset predictions. While

they are slightly different tasks, I found that the benefit of more examples outweighed subdividing

the training sets into a training and tuning set.

4.3.1 Example Filtering

Positive examples for this dataset, consisting of word/word pairings, have been labeled by the

challenge-task committee, while negative examples were left up to the participants. I define neg-

ative examples on a per-sentence basis by first finding all words which participate in a positive

relationship. The pairings among these words which are not labeled as positives are used as nega-

tives for training and tuning. This produced 414 without co-reference negative examples and 261

with co-reference negative examples.

The testset as provided was unlabeled, and contained sentences for both the task with co-

reference and the task without co-reference. Unlike the training data, the testset also contained

sentences which did not contain any relations. For the testset, I created examples from the pairing

of all possible protein and gene names found in a provided dictionary. This produced 936 total

testset examples. In subsequent experiments, I reduced this to 618 examples by removing testset

examples where the agent and target of the relation were identical (since this never happened in

the trainset). Ultimately there were 54 positive and 410 negative test examples for the without

co-reference task and 29 positive and 384 negative test examples for the with co-reference task.

4.3.2 Background Knowledge

To prepare the data for learning via Inductive Logic Programming, I again constructed a variety

of background knowledge from sentence structure, statistical word frequencies, lexical properties,

and biomedical dictionaries, in a similar fashion as my preparation for the protein-localization

dataset.
6http://www.ncbi.nlm.nih.gov/pubmed
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One difference in the formulation for this dataset is the use of a different sentence parser to

determine the sentence structure. I use the Brill tagger (1995) retrained on the GENIA dataset

(Kim et al., 2003) to predict the part of speech for each word. Then I employ a shallow parser

created by Burr Settles that uses Conditional Random Fields (Lafferty et al., 2001) trained on a

standard corpus (Sang, 2001) to derive a flat parse tree, such that there are no nested phrases, for

all sentences in this dataset. All phrases have the sentence as the root, and all words are only

members of one phrase.

4.3.3 Enriched Data

Background knowledge was also provided by the challenge-task organizers. They processed

the corpus with Link Parser (Temperly et al., 1999), a tool for automatically constructing a syntac-

tic parse tree, and refined the output to create two types of additional information. First, each word

was assigned its root word, called a lemma. For instance, the word “are” would have the lemma

“be.” The second type of information was the syntactic relations between words. This included

appositive, complement, modifier, negation, object and subject relations about the sentence gram-

mar, as well as predicted parts of speech for each word in a relationship, for a total of 27 possible

relations. For example, in the sentence “ykuD was transcribed by SigK RNA polymerase from T4

of sporulation,” Link Parser reports that the noun ‘yukD’ is the subject of the verb ‘transcribed’,

‘polymerase’ and ‘T4’ are complements of ‘transcribed’, and ‘RNA’ and ‘SigK’ are modifiers of

‘polymerase’. I chose to ignore the lemma information, since I previously incorporated the stem of

each word, and only focused on the 27 syntactic information predicates. I compare the inclusion

versus exclusion of this enriched background information in my results.

4.4 Protein Interaction

This final information extraction dataset is also concerned with protein interactions and comes

from Bunescu et al. (2004). In order to generate a corpus for testing the extraction of protein

interactions, they manually tagged 225 abstracts from Medline. 200 of these were previously
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known to contain protein interactions, found in the Database of Interacting Proteins7. There are

4084 protein are referenced and 1000 interactions are tagged in this dataset.

I formulated this domain into ILP structures as described above for the protein-localization

domain, to produce 799 positive and 76,678 negative phrase-phrase examples. As with the protein-

target domain, the GENIA-trained tagger and Conditional Random Field parser from Burr Settles

was used to obtain the sentence structures. The difference of 201 positive examples is due to the

differences in labeling between their framework and mine. Whereas I have previously labeled

phrases as positive or negative after a sentence has been parsed, this domain was labeled using

wrapping tags as found in XML before any sentence parsing. This caused some a misalignment

between my phrases and their tags in two ways. First, duplicate examples were removed, where

a single phrase contained multiple protein tags, and compressed these into one positive example.

Second, one tag could span multiple phrases, and this was resolved alignment by choosing the last

such phrase included in the tag, as this usually contained the noun phrase of interest.

4.5 Advisor

This dataset is derived from the University of Washington CS Department. It was constructed

by Richardson and Domingos (2006). The goal is to predict the advisor of a graduate student,

where students, professors, courses and papers are known to be related by author, instructor,

and teaching-assistant relations. Additional background information is known about the level

of courses, how long and at what phase students are in the CS program, and who belongs to

which projects. This background knowledge has been augmented with additional aggregation

predicates concerning publications which are self-explanatory: allPublicationsWith(A,B),

numberOfPubs(A,N), commonPub(A,B), and commonPubsRatio(A,B,R), and two predicates for

the comparison of numbers, geq(X,Y) for X is greater-than or equal-to Y, and diff(X,Y) to say

X is a different number than Y. This dataset contains five disjoint folds with a total of 113 positive

examples and 2,711 negative examples.

7http://dip.doe-mbi.ucla.edu/
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4.6 Sample Learned Clauses

Presented here are sample clauses from the above relational domains, to further illustrate the

relations found in these datasets, as well as to show some typical results from using Gleaner to

search the hypothesis space. These clauses were chosen from the middle bin range for Gleaner.

4.6.1 Protein Localization

A sample clause chosen by Gleaner for the Protein Localization task is shown in Table 4.3.

Gleaner has found that the protein phrase tends to contain alphanumeric words. The location

part of the sentence contains words previously marked as locations in the training set, and has a

familiar pattern starting with an article, “a,” “an,” or “the.” Also important for this clause is the

sentence structure, requiring that the protein phrase comes before the location phrase, and that the

location phrase is not the last phrase in the sentence.

A positive extraction of this clause would be protein location(‘NPL3’, ‘a nuclear

protein’) from the sentence “NPL3 encodes a nuclear protein with an RNA recognition mo-

tif and similarities to a family of proteins involved in RNA metabolism.” A negative extrac-

tion (i.e. a false positive) is found in protein location(‘the 1455 amino acid Vps15p’,

‘the cytoplasmic face’) from the sentence “Subcellular fractionation studies further demon-

strate that the 1455 amino acid Vps15p is peripherally associated with the cytoplasmic face of a

late Golgi or vesicle compartment.”

4.6.2 Genetic Disorder

A sample clause chosen by Gleaner for the genetic-disorder dataset is shown in Table 4.4.

Gleaner has picked up on the tendency of the gene phrase to contain all capitalized words have an

unknown part of speech. The disease part of the sentence contains a specific word that is alphabetic,

not in the dictionary, and has been seen in the training set as a disease.



43

Table 4.3 Sample clause with 29% recall and 34% precision on testset 1, where P is the protein
phrase, L is the location phrase, S is the sentence, and ‘ ’ indicates variables that only appear

once in the clause.

protein location(P,L,S) :-

target arg1 before target arg2(P,L,S),

first word in phrase(L,A),

phrase contains some art(L,A),

phrase contains some marked up location(L, ),

phrase after(L, ),

few alphanumeric words in phrase(P),

few alphanumeric words in sentence(S),

after both target phrases(S, ).

Table 4.4 Sample clause with 35% recall and 97% precision on training fold 3, where G is the
gene phrase, D is the disease phrase, S is the sentence, and ‘ ’ indicates variables that only appear

once in the clause.

gene disease(G,D,S) :-

phrase contains some all caps word(G, ),

phrase contains some marked gene word(G, ),

phrase contains some unk(G, ),

phrase contains novelword(D,W),

marked disease(D,W),

phrase contains some alphabetic unknown(D,W).

A positive extraction of this clause would be gene disease(‘BRCA1 abnormalities’,

‘both breast and ovarian cancer’) from the sentence “BRCA1 abnormalities were iden-

tified in all four families with ovarian cancer only in 67% of 27 families with

both breast and ovarian cancer and in 34% of 35 families with breast cancer only.” A negative

extraction (i.e. a false positive) is found in gene disease(‘25,000 and PWS’, ‘the most

common syndromal cause’) from the sentence “The incidence is estimated to be about 1 in

25,000 and PWS is the most common syndromal cause of human obesity.”
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Table 4.5 Sample clause with 11% recall and 80% precision on training fold 1, where A is the
agent word, T is the target word, S is the sentence, and ‘ ’ indicates variables that only appear

once in the clause.

agent target(A,T,S) :-

alphabetic(A),

word parent(A,B),

phrase contains some internal cap word(B,A),

alphabetic(T),

novelword(T),

word next within phrase(T, ),

pos pair in between target phrases(S, det, noun),

last sentence in abstract( ,S).

4.6.3 Protein Target

A sample clause chosen by Gleaner for the protein-target dataset is shown in Table 4.5. For

this clause, the agent A is found to be an alphabetic word with an internally capitalized letter, the

target T is also alphabetic word not in the dictionary, and not the last word in its phrase, and there

are two parts of speech, a determinant and a noun, between A and T in the sentence.

A positive extraction of this clause would be agent target(‘YfhP’, ‘yfhQ’) from the

sentence “These results suggest that YfhP may act as a negative regulator for the transcrip-

tion of yfhQ, yfhR, sspE and yfhP.” A negative extraction (i.e. a false positive) is found in

agent target(‘ComK’, ‘sigmaD’) from the sentence “ComK negatively controls the transcrip-

tion of hag by stimulating the transcription of comF-flgM, thereby increasing the production of the

FlgM antisigma factor that inhibits sigmaD activity.”

4.6.4 Protein Interaction

A sample clause chosen by Gleaner for the protein-interaction dataset is shown in Table 4.6.

This domain was more challenging, since the major information of this clause is that the two

protein phrases A and B contain words previously seen as protein in the dataset, and does not



45

Table 4.6 Sample clause with 33% recall and 7% precision on training fold 9, where A and B are
the protein phrases, S is the sentence, and ‘ ’ indicates variables that only appear once in the

clause.

proti protii(A,B,S) :-

isa np segment(A),

phrase contains some n(A,C),

marked up protein(C),

phrase contains some marked up protein(B, ,),

target arg1 before target arg2(S),

in between target phrases(S, ),

first phrase in sentence(S,G),

phrase contains some leading cap(G, ).

concentrate much on the surrounding sentence structure. This clause also seemed to find irrelevant

material, such as the first phrase in the sentence must contain a capitalized word.

A positive extraction of this clause would be proti protii(‘EBP residues’, ‘EPO

binding’) from the sentence “We used alanine substitution of EBP residues that con-

tact EMP1 in the crystal structure to investigate the function of these residues in both

EMP1 and EPO binding.” A negative extraction (i.e. a false positive) is found in

proti protii(’IL-1beta’, ’previously described cyokine receptor complexes’)

from the sentence “The crystal structure shows that s-IL1R consists of three immunoglob-

ulin like domains which wrap around IL-1beta in a manner distinct from the structures of

previously described cytokine receptor complexes.”

4.6.5 Advisor

A sample clause chosen by Gleaner for the advisor dataset is shown in Table 4.7. Gleaner

finds that person A has taught a course; persons A, B, and C have all published together in some

combination; and C has been in the program for a different number of years than his/her number

of publications.
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Table 4.7 Sample clause with 36% recall and 55% precision on training fold 4, where S is the
student, A is the advisor, and ‘ ’ indicates variables that only appear once in the clause.

advisedby(S,A) :-

taughtBy( ,A, ),

commonPub(A,C),

commonPub(S,A),

commonPub(C,S),

yearsInProgram(C,E),

numberOfPubs(C,D),

diff(D,E).
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Chapter 5

Empirical Comparison of Aleph Ensembles and Gleaner

My main hypothesis to be tested in this chapter is that by dividing up the recall-precision area,

both for collecting clauses and combining clauses into theories, Gleaner can quickly find theories

with high area under the recall-precision curve. I explore this hypothesis through experiments on

the five relational domains described in the previous chapter. Prior versions of these results were

published by Goadrich et al. (2004; 2005; 2006).

5.1 Aleph-Ensemble Tuning

First, I use the train and test sets of fold 1 of the protein-localization dataset to choose good

parameter settings for the Aleph ensembles algorithm (since this is the experimental control against

which I compare the Gleaner algorithm, it is “fair” to use the testset to tune parameters). I consider

two settings for minimum accuracy for learned clauses: 0.75 and 0.90.

For these parameter evaluations on fold 1, the best Area Under the Curve for Precision-Recall

(AUC-PR) was found for Aleph ensembles using Laplace as the evaluation function and a mini-

mum clause accuracy of 0.75, as shown in Table 5.1. Under this setting, the average number of

clauses considered per constructed theory is approximately 35,000.

One new finding I encountered that was not reported by Dutra et al. (2002) is that it is better

to limit the size of theories. Figure 5.1 plots the AUC-PR as a function of the maximum number

of clauses allowed in the learned theories. Running Aleph to its normal completion given the

above parameters leads to theories containing 271 clauses on average. However, if this is limited

to the first C clauses, the AUC-PR can be drastically better. The likely reason for this is that
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Table 5.1 AUC-PR results on testing fold 1 of protein-localization dataset, 25 clauses per theory,
50 theories. Chapter 2 contains definitions of the heuristic functions below.

Minimum Heuristic

Accuracy Function AUC-PR

Laplace 0.38

0.75 coverage 0.35

F1-score 0.20

precision × recall 0.19

Laplace 0.34

0.90 coverage 0.35

F1-score 0.34

precision × recall 0.31

larger theories have less diversity amongst themselves than do smaller ones, and diversity is the

key to ensembles (Dietterich, 1998). Therefore in subsequent experiments on this dataset, I stop

the clause learning for each theory after 50 clauses. A convenient side-effect of limiting theory

size is that the runtime of individual Aleph executions is substantially reduced.

5.2 Protein Localization

I divided the protein-localization data into five folds. Each training set consisted of three folds,

with one fold held aside for tuning and another for testing. For these experiments, I required each

clause learned on the training set to cover at least two positive examples in the tuning set in order

to increase generalization. Gleaner uses the tuning set to pick the appropriate threshold L for each

bin.

The Aleph-based method for producing ensembles has two parameters that I vary: N , the

number of theories (i.e., the size of the ensemble), and C, the number of clauses per theory. To
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Figure 5.1 AUC-PR for Aleph ensembles, where N = 100, with varying number of clauses on
protein-localization dataset.

produce ensemble points for these experiments, I letN be 100 and chooseC from {1, 5, 10, 15, 20,

25, 50}, with the average nodes explored per clause learned being 35,000. To extend this analysis

to lower numbers of clauses generated, I let C be 1 and choose N from {10, 25, 50, 75, 100}. I

also compare in these experiments the scenario where the number of nodes explored is drastically

limited, to 1,000. In this latter experiment using 1,000 nodes, approximately 20% of the seed

examples per theory resulted in singletons, i. e. they did not yield a suitable clause within the time

allowed. These wasted clause evaluations are included in the comparisons. Further attempts to

limit the nodes explored to 100 resulted in approximately 350 singletons per theory; when these

singletons are included in learning time, it becomes more expensive to limit the nodes to 100 than

1,000.

For the parameters of Gleaner, I use 20 equal-sized recall bins. I use Rapid Random Restart

(Železný et al., 2003) with the precision × recall heuristic function to construct 1,000 clauses

derived from the initial random clause before restarting with a new random clause. I generate

AUC-PR data points for Gleaner by choosing 100 seed examples and using the values of {1,000,

10,000, 25,000, 50,000, 100,000, 250,000, 500,000} for the number of candidate clauses generated
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Figure 5.2 Comparison of AUC-PR from Gleaner and Aleph ensembles by varying the number of
clauses generated.

per seed. I further reduce the number of seed examples to {25, 50, 75} to explore performance on

lower numbers of clauses generated.

The results of this comparison are found in Figure 5.2; the points are averaged over all five

folds. Note that this figure has a logarithmic scale in the number of clauses generated. It shows that

Gleaner can find comparable AUC-PR numbers while generating three orders of magnitude fewer

clauses than Aleph ensembles with 35,000 nodes per learned clause. Aleph ensembles improve

when limited to considering 1,000 nodes per learned clause, however Gleaner is still more than

one order of magnitude faster. It is interesting to note that the Gleaner curve is very consistent (i.e.

flat) across the number of clauses allowed, while the Aleph ensemble method increases when more

clauses are considered. This demonstrates the benefit of saving more than just the “best” clause

when searching hypothesis space, as well as showing that Gleaner is resistant to overfitting. In

later chapters, I will show some extensions to Gleaner which further improve the AUC-PR results

on this dataset and others; however, these results and parameter settings clearly show the benefits

of the Gleaner algorithm.
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Figure 5.3 Comparison of RP curves between Gleaner and Aleph Ensembles for various numbers
of clauses generated. Curves were averaged across all five folds.
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Figure 5.4 Comparison of AUC-PR from Gleaner and Aleph ensembles by varying the number of
clauses generated on the genetic-disorder dataset.

In Figures 5.3(a)-(c), I show a comparison of RP curves between Gleaner and Aleph ensembles,

using 100,000, 1,000,000 and 10,000,000 as the number of total clauses evaluated. These results

are generated by averaging the precision across all five folds at 100 equally-spaced recall values.

After 100,000 clauses, the benefits of saving high-recall clauses can be seen, as Gleaner quickly

spans the whole recall-precision space, while Aleph ensembles are initially limited in their recall

ability. Aleph ensembles achieve higher recall and precision at 1,000,000 and 10,000,000 clauses,

and the major benefit from Gleaner is increased precision for low as well as high recall.

5.3 Genetic Disorder

I also evaluate Gleaner on the genetic-disorder biomedical information extraction dataset from

Ray and Craven (2001). I compare Aleph ensembles using only 1,000 nodes per clause learned to

the Gleaner algorithm, using the same parameter settings as in the protein-localization experiments.

Figure 5.4 shows the comparison results on the genetic-disorder dataset. Gleaner again con-

sistently achieves a higher AUC-PR than Aleph ensembles across all values for the number of

candidate clauses. Note that Gleaner consistently improves as more clauses are examined, reach-

ing a maximum AUC-PR score of 0.44 as compared to 0.36 for Aleph ensembles. The peak in
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Table 5.2 Results of Gleaner, Aleph theory, and baseline all-positive prediction on the
protein-target task without co-reference.

EXP ALG F1 RECALL PRECISION

GLEANER 41.7 79.6 28.3

BASIC ALEPH 1K 50.0 62.9 40.6

ALEPH 25K 30.7 44.4 23.5

GLEANER 25.1 79.6 14.9

ENRICHED ALEPH 1K 31.0 59.2 21.0

ALEPH 25K 26.1 42.5 18.8

BOTH ALL POS 20.1 100.0 11.2

Gleaner’s performance at 75,000 clauses indicates there could be a benefit from pruning clauses

found through Gleaner, since this point was found by using 75 seeds and 1,000 clauses gener-

ated per seed. In this domain, early stopping after 15 clauses per theory would improve the final

AUC-PR of Aleph ensembles; I show here all data points for completeness.

5.4 Protein Target

For the protein-target dataset, there were two dimensions on which to vary the training meth-

ods: learning on data containing co-references or on data without co-references, and including the

provided linguistic information (enriched) or using only the basic data. Tables 5.2 and 5.3 show

the results of Gleaner on the testset data for all four combinations, using the restriction that the

same word cannot be both agent and target in a relation.

The preferred operating point was selected by choosing the bin with the highest F1 measure

on the tuning set; these were bin [0.55, 0.60] on the basic dataset without co-reference, [0.65,

0.70] on the enriched dataset without co-reference and bin [0.90, 0.95] on the dataset with co-

reference. With the enriched data, similar recall points can still be achieved, however there is a

marked decrease in precision for the without co-reference dataset.
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Table 5.3 Results of Gleaner, Aleph theory, and baseline all-positive prediction on the
protein-target task with co-reference.

EXP ALG F1 RECALL PRECISION

GLEANER 17.7 79.3 10.0

BASIC ALEPH 1K 31.6 51.7 22.7

ALEPH 25K 19.9 20.6 19.3

GLEANER 18.5 82.7 10.4

ENRICHED ALEPH 1K 19.3 37.9 13.0

ALEPH 25K 19.1 24.1 15.9

BOTH ALL POS 12.5 100.0 6.7

I also show a comparison of Gleaner to two other algorithms. First, I examine the results of

a single Aleph theory learned for each training set combination. I restrict each clause learned to

have a minimum precision of 75.0 and to cover a minimum of 5 positives in the training set. I

also consider a maximum of both 1,000 and 25,000 clauses for each “best” clause in a theory.

With the basic data, Aleph improves in precision, however recall is much lower that the results

with Gleaner. There is also a large drop in precision and recall between 1,000 clauses and 25,000

clauses, which can be attributed to overfitting. Second, I compare to the algorithm of calling every

example positive, which guarantees us 100% recall, and notice that Gleaner has an increase in

precision over this baseline in both datasets.

Figure 5.5 shows recall-precision curves for Gleaner and recall-precision points for the Aleph

theories on the dataset without co-reference, while Figure 5.6 shows results on the dataset with

co-reference. Gleaner is able to span the whole recall-precision dimension, although with less than

stellar results on the without co-reference dataset. Gleaner seemed to suffer by not distinguishing

well between the agent and target; when genic interaction(A,B) was predicted, most often Gleaner

also predicted genic interaction(B,A), keeping the precision lower than 50%. Another cause of

these low results could be the fact that sentences with genes and proteins, but no relationships

between them, were not included in the training sets, but made up almost half of the testing set.
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Figure 5.5 Precision-Recall Curves for Gleaner and Aleph on the protein-target dataset without
co-reference.
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Figure 5.6 Precision-Recall Curves for Gleaner and Aleph on the protein-target dataset with
co-reference.

This lack of negative sentences in the training sets hampered Gleaner’s ability to distinguish be-

tween good and bad sentences when learning clauses. Also, the size of the protein-target dataset

was small in comparison to the other datasets, creating the possibility of overfitting. Particularly

affected were the enriched linguistic predicates and the statistical predicates, which focused on
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Figure 5.7 Comparison of AUC-PR from Gleaner and Aleph ensembles by varying the number of
clauses generated on protein-interaction dataset.

irrelevant words (e.g. specific gene and protein words like “sigma A” and “gerE”). Although col-

lecting labeled data for biomedical information extraction can be expensive, I believe the benefits

are worth the cost.

5.5 Protein Interaction

The results from a comparison between Gleaner and Aleph ensembles on the protein-

interaction dataset, found in Figure 5.7, show similar behavior to the first two large biomedi-

cal information-extraction datasets. I again compare Aleph ensembles using only 1,000 nodes

per clause learned to the Gleaner algorithm, using the same parameter settings as in the protein-

localization experiments. For Aleph ensembles 50% of the chosen seed examples resulted in sin-

gleton clauses (only covering the seed example); these wasted clause explorations are factored into

the results shown.

On this dataset, Gleaner and Aleph Ensembles reach the same asymptotic behavior. However,

the major benefits of using Gleaner are seen when relatively small numbers of clauses are exam-

ined. Saving clauses with high recall brings a marked increase in AUC-PR performance to Gleaner

when only 10 or 25 seed examples are used. The overall AUC-PR scores for both algorithms are
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Figure 5.8 Comparison of AUC-PR from Gleaner and Aleph ensembles by varying the number of
clauses generated on advisor dataset.

much lower in comparison to the protein-localization and genetic-disorder datasets; I believe this

is due to the open-ended nature of both protein types in this head predicate, as opposed to a closed

type such as a cellular location or genetic disease.

5.6 Advisor

Finally, I evaluate Gleaner on the small advisor dataset, with the results shown in Figure 5.8.

I compare Aleph ensembles using only 1,000 nodes per clause learned to the Gleaner algorithm,

using the same parameter settings as in the protein-localization experiments, except that I let both

algorithms search only 50 seeds as the dataset was very small.

As in the protein-target interaction, Gleaner does not outperform Aleph ensembles after evalu-

ating only a very small number of clauses. For this small dataset, there are on average 16 learned

clauses per theory, which contributes to the rapid increase in performance for Aleph ensembles.

Where Gleaner exceeds Aleph Ensembles is after 25,000 clauses have been examined per seed;

while Aleph ensembles again converge to lower AUC-PR scores due to overfitting, Gleaner main-

tains and increases performance as more clauses are learned, eventually achieving AUC-PR scores

of 0.44.
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Table 5.4 AUC-PR results averaged over five folds on the protein-localization dataset for naı̈ve
Bayes, HMM, Aleph Ensembles and Gleaner. For Aleph Ensembles and Gleaner, the right-most

point in the curve from Figure 5.2 is used.

Learning Algorithm Testset AUC-PR

naı̈ve Bayes with 5 bags 0.018

naı̈ve Bayes with 2 bags 0.032

Structural HMM 0.141

Aleph Ensembles 0.447

Gleaner 0.461

5.7 Other Comparison Algorithms

For the protein-localization task, I also compare these results to Ray and Craven’s structural

HMMs (2001), which were retrained and evaluated on the cleaned dataset, and to a propositional

naı̈ve Bayes approach for text classification found in Mitchell (1997). Under Ray and Craven’s

HMM approach, a phrase that has more than one protein or location, such as “pif1 and pif2,”

would be counted multiple times when part of a positive relation. Due to this different problem

representation, the HMM approach has slightly more positive examples than my ILP framework,

since my examples are based on the phrase constants only and not their constituent words.

For propositional naı̈ve Bayes, I created two feature sets, one with a bag of words for each of

the two phrases in the relation, and one with five bags of words for each example: one for each

phrase in the relation, and one each for words before, between and after the target phrases. I also

used Mitchell’s m-estimate equation of m
m×|V ocabulary| with m values of 1, 10 and 100 and found

the best results with m = 1. No relational features were used in this experiment, only the stemmed

words of the sentences, to keep this approach propositional.

The results when comparing to structural HMMs and naı̈ve Bayes are shown in Table 5.4.

Naı̈ve Bayes only performs slightly better than random guessing in this domain, and I believe this

is partially due to relational nature of the dataset, since each protein phrase in a positive example is
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repeated in many more negative examples when not correctly paired with a location phrase. Also,

many of the protein words to be classified in the testset are novel and therefore receive the “data-

free” m-estimate score. The HMM approach of Ray and Craven (2001) fares better, nevertheless

it suffers from low recall, achieving its highest recall of 0.31 on the testset for fold 3. Skounakis

et al. (2003) have extended Structural HMMs into Hierarchical HMMs with increases in precision

and recall, however, their highest recall achieved for this dataset is still less than 0.50.

5.8 Results Summary

In general, Gleaner outperforms Aleph ensembles when limited to a small number of clause

evaluations. This is much more pronounced in the larger datasets of protein-localization and

protein-interaction, where saving more clauses with Gleaner leads to marked increases in early

recall. On three of the datasets, Gleaner achieves a higher maximum AUC-PR score than Aleph

Ensembles when the runs of both algorithms are extended, and Gleaner never appears to overfit the

training data.

Gleaner’s thresholded “L of K” clauses should theoretically produce higher precision than

individual clauses with the same recall, as long as (a) the coverage of positives is greater than the

coverage of negatives and (b) the clauses are independent. In practice, Gleaner’s clauses are not as

independent as I would like and have a tendency to cover the same negatives. This is especially true

in the high-recall bins, with many of the learned clauses being identical, and I believe this overlap

degrades the performance. In the next few chapters, I report on extensions to Gleaner made to

increase the diversity and independence of the learned clauses.
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Chapter 6

Extensions to Gleaner

Gleaner has proven successful on a number of relational datasets. In the next three chapters I

will discuss extensions to the basic algorithm in order to test Gleaner’s robustness and to find areas

for improvement. My choices of extensions are focused on the three core pieces of Gleaner, namely

searching the hypothesis space, combining the learned clauses, and evaluating the ensemble on the

testset. The extensions presented are by no means exhaustive; I have also investigated changing

the size and number of recall bins, selecting subsets of learned clauses, and saving more than one

‘best’ clause per bin per seed. However, the results presented here proved the most promising upon

preliminary explorations within our datasets.

In this chapter, which focuses on searching the hypothesis space, I first attempt to increase the

diversity of the learned clauses while retaining the parallel nature of Gleaner. Second, I direct the

search through clause space by varying the Fβ measure as a search heuristic.

6.1 Increasing the Diversity of Learned Clauses

When using Aleph to learn theories of clauses, each iteration to learn a new clause begins

with a different seed example which is not yet covered by the theory. Since the search space is

constrained to always cover this seed example, there will typically be some difference between

clauses learned from different seeds.

One strength of Gleaner is its ability to learn clauses in parallel while using different initial

seeds for each run. Remember that the second stage of Gleaner finds clauses for each bin b ∈ B,

where B is the number of bins. In low-recall bins, merely having a bottom clause is enough to bias
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Figure 6.1 Diversity of learned clauses for the genetic-disorder dataset, shown by the fraction of
unique clauses found across 100 runs on training fold 1.

Gleaner to find diverse clauses; by definition, the best clause that covers a particular seed example

and also has 10% recall will not cover 90% of the positives. Thus, clauses collected in low-recall

bins have an inherent bias towards diversity.

In my experiments from Chapter 5, I have noticed a lack of diversity among the collected

clauses in the high-recall bins of Gleaner. When semantically duplicate clauses (i.e. those with

identical coverage in the training set) are removed, Gleaner is left with only 10 to 20 clauses out

of 100 per bin, whereas in the low recall bins, it retains 80 to 90 clauses. With high-recall bins,

such as 90% recall, the same clause will be the best clause for approximately 80% of the positive

examples, thus limiting diversity. A sample run from Gleaner on the genetic-disorder dataset can

be seen in Figure 6.1, where the drop-off in unique clauses can be clearly seen; this snapshot is

taken after 10,000 clauses have been examined per seed example. Bins are labeled by the upper

bound of the bin range, such that a bin spanning [0, 0.05] would be labeled 5; only those bins where

clauses were found are shown, thus there were no clauses found for bins 95 and 100. Diversity is

measured by the percent of unique clauses found in that bin; since not all runs are able to find a

clause for each bin, this measures the relative diversity per bin.

Once clauses are learned within bin b, they are combined to form a theory tb which can be

thresholded to create a PR curve. Then for each bin, Gleaner finds the theory tm, where 0 ≤ m ≤ B
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Figure 6.2 Origins of the final Gleaner overlapping curves learned from training fold 1 of the
advisor dataset; within bin b on the x axis, theory m on the y axis scored highest.

with the highest precision point within the bounds of that bin; these saved theories are then used

to create the final PR curve. Figure 6.2 shows what theory tm (y-axis) had the highest AUC-PR in

each recall bin b (x-axis) on the tuning set for the advisor dataset; here, the curves are found after

exploring 500,000 clauses per seed, which is feasible due to the small size of the dataset. This

shows that the best theory m for a particular bin b is most often not tb; theories from low-recall

bins tend to dominate the final PR curve until b reaches 80, and many theories are not included in

the final PR curve at all. I believe a lack of diverse clauses in the high-recall bins results in their

exclusion from the final PR curve. I therefore investigate in this section ways of keeping more

diverse clauses for these high-recall bins.
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6.1.1 Negative Salt

In the search for diverse high-recall clauses, the use of a bottom clause generated from a seed

positive example will be less relevant than when searching for low-recall clauses. Instead of a con-

straint stating “this positive must be covered by any clause learned,” I introduce a similar constraint

such as “this negative must not be covered by any clause learned.”

To create negative examples with a high cost of coverage, I chose to artificially inflate selected

negative examples in the training set. This method, which I call “negative multiply,” will work

with a number of different heuristic functions by increasing the count of the chosen negatives

while keeping all other learning factors constant. For my first method, I used four separate runs of

Gleaner, each using only one quarter of the usual number of seeds (i.e. 25 seeds). The first set was

left unchanged and run as normal Gleaner runs. For the other three, I multiplied a certain random

fraction of the negatives to increase their weight, namely 1%, 0.5% and 0.1% of the negatives

were multiplied by 50, 100 and 500, respectively. Gleaner can apply these constraints in parallel

with a different choice of negative examples for each run, in essence by choosing these negative

examples between lines 6 and 7 of the algorithm described in Table 3.1 and altering the Random

Local Search heuristic of line 7.

It is possible that these settings for multiplying the negative examples are too high. In the

protein-interaction dataset, the smallest setting of 0.1% of the negative examples would still be

approximately 45 examples. Many negatives look the same, and picking too many will create the

same situation as before and not make any part of the space off-limits. A second method I investi-

gated was much more selective, and chose only one negative example per seed and multiplied this

example by 5000. I call this constraint a “negative salt” example, as it will discourage growth, in

opposition to a “positive seed” example which directs the clause growth.

The end result will hopefully be a large number of high-recall clauses that cover different

negative examples, which when combined will produce higher precision along with high recall.

When using Gleaner’s thresholding approach for converting a theory into a PR curve, if there are

clauses that cover the same positives but each covers a relatively disjoint set of negatives, the
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Figure 6.3 Comparison of Gleaner to Negative Multiply and Negative Salt on the advisor dataset
for training fold 4.

cumulative score for the positive examples will be higher than that for the negative examples. This

will in turn hopefully lead to better ranking of the examples and higher AUC-PR scores.

6.1.2 Experimental Results

I conducted experiments using the ideas of negative-example weighting on three datasets, the

protein-localization and genetic-disorder biomedical information-extraction datasets, and on the

advisor dataset from the University of Washington. As the results across the many folds of each

dataset were consistent, I report here results from one fold per dataset for clarity. In most cases,

very similar total numbers of clauses were found per bin across the three different methods. For

the advisor dataset, comparisons were made after 500,000 clauses per seed, while with the protein-

localization and genetic-disorder datasets, I compared after 10,000 clauses per seed.

Figure 6.3 shows Gleaner in comparison to both Negative Multiply and Negative Salt. Both

standard Gleaner and the salt approach of choosing only one negative example have a clear advan-

tage over the layered approach of Negative Multiply. Between Gleaner and Negative Salt, Gleaner

tends to find more unique clauses in low-recall bins, while Negative Salt encourages clause diver-

sity in higher recall bins. Based on these results, and the simplicity of Negative Salt using just one

negative example per run, I only compare Gleaner to Negative Salt on the other two datasets.
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Figure 6.4 Comparison of Gleaner to Negative Salt on the genetic-disorder dataset for training
fold 1.
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Figure 6.5 Comparison of Gleaner to Negative Salt on the protein-localization dataset for training
fold 5.

The same behavior can be seen in Figure 6.4 for the genetic-disorder dataset. Gleaner has a

slight advantage over Negative Salt in low-recall bins, but Negative Salt is able to find more unique

clauses from bin 40 to bin 75.

Slightly different behavior is found in the protein-localization dataset, shown in Figure 6.5.

Here, Negative Salt increases the diversity in low and mid-recall bins as opposed to high-recall

bins seen before. The result in bin 95 is an anomaly of measuring the percent of unique clauses



66

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Recall Bin

Th
eo

ry
 R

ec
al

l B
in Salt

Gleaner

Figure 6.6 Comparison of theory origination from Gleaner to Negative Salt on the advisor dataset.

instead of the absolute number of unique clauses; here Negative Salt only found 11 total clauses, 6

of which were unique, as opposed to Gleaner finding 90 clauses but only 18 being unique.

With the above increase in diversity, I now investigate the effect of adding Negative Salt on

the final composition of the Gleaner curve. Figures 6.6, 6.7 and 6.8 show the origins of the final

theories for the Advisor, genetic-disorder, and protein-localization datasets, respectively. Whereas

Negative Salt has led to more diverse sets of clauses per bin, this has not translated into a more

diverse theory composition for the final Gleaner curves. A few of the recall bins which showed an

increase in the percent of unique clauses have found their way into the final curves, however there

is still a tendency for low-recall theories to dominate the final curve composition. The protein-

localization curve is of note, since this curve makes the most use of a wide range of theories; also,

there is a surprise early appearance of theory 65 across bins 35, 40, 45 and 50, whereas in other

datasets, most later bins are dominated by earlier theories.

Finally, I report on the Area Under the Curve for Precision-Recall (AUC-PR) of both Gleaner

and Negative Salt on all three datasets in Figure 6.9. While there is an increase for advisor and
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Figure 6.7 Comparison of theory origination from Gleaner to Negative Salt on the
genetic-disorder dataset.
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Figure 6.8 Comparison of theory origination from Gleaner to Negative Salt on the
protein-localization dataset.
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Figure 6.9 End Result of AUC-PR for Gleaner and Negative Salt for all datasets.

Protein Localization, this is not statistically significant, and in fact the relative performance of

these two algorithms varies as the number of clauses considered is increased.

One explanation for these results is that the number of good high-recall clauses is too small.

The methods described above could be attempting to increase the diversity in a space where there

are no more good clauses to be found. This could be due to the fact that higher-recall clauses need

less constraints to cover an example, and therefore tend to be shorter in length than lower-recall

clauses.

6.2 Focusing the Search Space

An alternate way to increase the diversity of clauses learned is to fine-tune the available search

strategies. My initial experiments showed the best results when using the Rapid Random Restart

(RRR) search strategy along with the precision × recall heuristic. Here, I investigate possible

reasons to prefer these strategies over other approaches by visualizing the clause space searched

by Gleaner.

When searching the hypothesis space with Random Local Search (line 7 of the algorithm in

Table 3.1), Gleaner attempts to find those clauses with high precision across a broad spectrum of

recall values. To analyze where Gleaner spent time within the search space, I recorded the precision
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Figure 6.10 A sample run of SCS versus RRR search on the genetic-disorder dataset shows that
RRR finds clauses with higher precision across the same recall bins as SCS. Lighter regions
indicate a higher clause count for that area, and the white background area was never visited.
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and recall for each clause examined on the training set, and created a three-dimensional histogram

by grouping clauses by their integer values for precision and recall (i.e., both 65.2 and 65.9 recall

would be recorded as 65). The histogram values are then logarithmically scaled and displayed as

a contour graph from blue to red, where red regions indicate a higher clause count for that area,

and the white background area was never visited. Unfortunately in grayscale, red appears darker

than the intermediary colors of orange and yellow, therefore I recommend viewing this section in

color. Figure 6.10 demonstrates the advantages of using RRR with the precision × recall heuristic

function versus Stochastic Clause Selection. This contour graph is from one run of up to 25,000

clauses for the genetic-disorder domain. It highlights the differences in their search space in terms

of precision and recall, where a majority of the clauses found with RRR have higher precision for

the same recall space, thus explaining why RRR outperforms Stochastic Clause Selection.

Within RRR, there is still the free parameter of the heuristic function. Because of its ability to

emphasize either precision or recall, I next explore using the Fβ search in conjunction with RRR.

Remember that Fβ is defined as (1+β)×Precision×Recall
(β×Precision)+Recall

. I choose β from nine different values of

[0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 100], where lower values will bias the search toward precision and

higher values toward recall, and show here a sample run of RRR on each of the genetic-disorder,

protein-interaction and advisor datasets. Through investigating many different runs, I found that

these sample runs are indicative of the general behavior for each dataset.

The first dataset explored is the genetic-disorder dataset, seen in Figure 6.11. It is clear that

the extreme values of 0.01 and 100 indeed bias the search to prefer high precision and high recall,

respectively, while intermediate values centered around β = 1 provide the best combination of

both precision and recall. The largest coverage of the whole space is found between 2 and 10,

however this is at the expense of finding high-precision clauses. Note that the graph where β = 1

is different from that shown in Figure 6.10 for RRR, showing the difference between using Fβ and

precision × recall.

Figure 6.12 shows sample Fβ runs for the protein-interaction dataset. In Chapter 5, I found that

the AUC-PR scores for Gleaner on this dataset were centered around 0.20, while in other datasets,

Gleaner achieved scored close to 0.45. These histograms give some indication of why the AUC-PR



71

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

10

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

1

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

0.01

 

 

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

2

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

5

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

0.1

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

0.2

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

0.5

Figure 6.11 Fβ searches for the genetic-disorder dataset, from β = 0.01 to β = 100.

scores are lower for this dataset. There appears to be a large variety of clauses found, and the same

general trends from the genetic-disorder dataset are also seen here, but the PR space explored with

RRR search is unable to find clauses with both high recall and high precision.

In contrast to the other two domains, sample runs from the advisor dataset look very incom-

plete, as shown in Figure 6.13, taken from training fold 1. There are large holes in the precision-

recall space where there are no clauses to be found. I believe this to be due to the small size of

the dataset in terms of both number of examples and number of predicates. While there may still



72

0.01 0.1 0.2

0.5 1 2

5 10 100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n
Recall

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0
0

Pr
ec

is
io

n

Recall

Figure 6.12 Fβ searches for the protein-interaction dataset, from β = 0.01 to β = 100.

be a large number of clauses to be found, they do not have widely varying behavior, at least with

respect to their positive and negative coverage on the training set.

It is evident that varying the Fβ parameter causes changes in the precision-recall space to be

explored, and I now investigate whether this has an effect on Gleaner’s ability to achieve high

AUC-PR scores. I chose to look at the genetic-disorder dataset, as this had the largest disparity

of coverage of the three datasets illustrated above, and the protein-localization dataset. I used 100

seeds and the same parameters as used in Chapter 5, with the exception of varying the heuristic
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Figure 6.13 Fβ searches for the advisor dataset, from β = 0.01 to β = 100.

search function to use Fβ with the nine values explored above. These results were calculated

after Gleaner searched 25,000 clauses for the genetic-disorder dataset and 50,000 clauses for the

protein-localization dataset.

Table 6.1 shows the genetic-disorder testset AUC-PR results of Gleaner for this experiment.

The best results are found for F0.5 and F10; the drop in performance as β approaches 0.01 or 100

is much less than expected given the variety of performance on the training data. On the protein-

localization dataset, shown in Table 6.2, the results are similar, with a high found when using



74

Table 6.1 AUC-PR comparison of 9 values for Fβ search on the genetic-disorder dataset.

Setting for β Testset AUC-PR

0.01 0.401

0.1 0.396

0.2 0.394

0.5 0.414

1 0.395

2 0.409

5 0.381

10 0.414

100 0.401

Table 6.2 AUC-PR comparison of 9 values for Fβ search on the protein-localization dataset.

Setting for β Testset AUC-PR

0.01 0.497

0.1 0.500

0.2 0.494

0.5 0.511

1 0.504

2 0.501

5 0.503

10 0.495

100 0.498

F0.5, however, none of these results are statistically significant. I believe this behavior shows the

robustness of Gleaner; while each choice for β focuses on a different portion of the precision-recall
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space, Gleaner’s ensemble approach can compensate for clauses with lower precision as long as

some clauses can be found in each bin. One difference from my previously reported results is the

much-higher AUC-PR values for Gleaner on the protein-localization dataset across all choices of

β; this suggests that the Fβ search is a better fit for this domain over the heuristic function precision

× recall.

6.3 Related Work

In my research, I have taken a passive approach to searching for diverse clauses by biasing the

search heuristics. Oliphant and Shavlik (2007) use a directed approach by learning two Bayesian

networks, one to model the structure of good clauses, and one to model the space of visited clauses.

These networks are then used to actively guide the search toward clauses with predicted high scores

as well as towards unvisited areas of the search space. DiMaio and Shavlik (2004) take a similar

approach, instead using a neural network to bias the heuristic search. Outside of ILP, the most

related work is by Boyan and Moore (2000), who learn the trajectory of heuristic functions within

large satisfiability problems.
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Chapter 7

Calculating Probabilities from Gleaner

Statistical Relational Learning (SRL) (Getoor & Taskar, 2007) combines the benefits of prob-

abilistic machine learning approaches with complex, structured domains from Inductive Logic

Programming (ILP). I propose a new SRL algorithm, GleanerSRL, to estimate the probability that

an example is positive for highly-skewed relational domains. In this chapter, I combine clauses

from Gleaner with the propositional learning technique of support vector machines (Cristianini &

Shawe-Taylor, 2000) to learn well-calibrated probabilities. I find that the results are comparable to

SRL algorithms SAYU and SAYU-VISTA (Davis et al., 2007) on a well-known relational testbed.

A prior version of this work was published by Goadrich and Shavlik (2007).

7.1 Introduction

Inductive Logic Programming (ILP) is the process of learning first-order clauses to correctly

categorize domains of relational data. ILP uses relations expressed in mathematical logic to de-

scribe examples, and can handle variable-sized structures and sequences (Džeroski & Lavrac,

2001). Statistical Relational Learning (SRL) builds on the benefits of relational data and intro-

duces methods for learning from large and noisy datasets, typically in combination with producing

probabilistic outputs as opposed to strict classifications. Prominent work within SRL includes the

generative approaches of Probabilistic Relational Models by Friedman et al. (1999) and Markov

Logic Networks from Richardson and Domingos (2006), as well as discriminative algorithms such

as SAYU and SAYU-VISTA from Davis et al. (2007).
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I propose the use of Gleaner as the foundation for a new discriminative SRL algorithm called

GleanerSRL. Gleaner is a two-stage algorithm developed to first learn a broad spectrum of clauses

and then combine them into thresholded theories aimed at maximizing precision for a particular

choice of recall. Gleaner can run quickly on large datasets when one has a set of available pro-

cessors. Already new desktop computers include multiple cpu’s (called ‘cores’), and within a few

years it will be common for desktop computers to have 32, 64, 128, or more cores. Also, I have

shown that Gleaner can achieve good performance from only a relatively small number of clause

evaluations per seed, because it keeps more than one good clause per seed.

Here I modify the two-stage approach used by Gleaner into GleanerSRL, which learns clauses,

produces feature vectors, and generates probabilities. I then evaluate the quality of these ap-

proaches using Mean Cross Entropy (Caruana & Niculescu-Mizil, 2006) in comparison to SAYU

and SAYU-VISTA. Finally, I conclude by discussing future directions and related work.

7.2 Learning Probabilities with GleanerSRL

GleanerSRL is a four-stage algorithm to directly estimate probabilities for relational domains,

as shown in Figure 7.1. The first stage learns a wide variety of clauses from a large number of seed

examples. The second stage uses the clauses learned to generate a feature vector for each example,

while the third stage uses this feature vector in propositional learners to learn a numeric score for

each example, and the fourth stage calibrates these scores into probabilities. In essence, I will

be transforming these tasks into propositional domains through the medium of Gleaner’s learned

clauses and then using standard propositional learners to estimate these probabilities. In reference

to the original Gleaner algorithm from Table 3.1, I will be replacing lines 14-20 with the stages

described below.

7.2.1 Gleaning Clauses

The first stage of GleanerSRL is identical to that of the original Gleaner from Chapter 3,

and learns a wide spectrum of clauses. Gleaner brings in a training set of positive and nega-

tive examples along with the background knowledge. Gleaner uses Aleph (Srinivasan, 2003) to
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Figure 7.1 GleanerSRL takes training, tuning and testing examples and returns a probability
estimate for the testing examples after four stages of processing. Black arrows denote

dependencies in training for a stage, while grey arrows denote only data transformations. Note
that the testset is not examined until training is complete in order to allow for unbiased estimates

of future performance.

search for clauses using K seed examples to encourage diversity. In the experiments that appear

in Section 7.3, the recall dimension is uniformly divided into B equal-sized bins, for example

[0, 0.05], [0.05, 0.10], . . . , [0.95, 1]. For each seed, Gleaner considers up to N possible clauses

using stochastic local-search methods (Hoos & Stutzle, 2004). As these clauses are generated,

Gleaner computes the recall of each clause and determine into which bin the clause falls. Each bin

keeps track of the best clause appearing in its bin for the current seed. At the end of this search

process, there will be B clauses collected for each seed and K seed examples for a maximum of

B × K clauses (assuming a clause is found that falls into each bin for each seed). Since clauses

can be learned independently for each seed, Gleaner is fast for large datasets because each seed

can be explored in parallel.

7.2.2 Creating Features

Whereas the second stage of Gleaner combines these learned clauses in an attempt to maximize

precision-recall (PR) curves on an unseen testset, here I wish to instead estimate probabilities. I

cannot directly convert Gleaner’s final PR curve into numeric scores, since each point in the test
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curve may come from a distinct theory and threshold combination. Standard Gleaner requires the

user to find the point closest to their desired tradeoff between recall and precision and then uses

this theory to rank the testset examples based on the particular theory which generated this point.

Since I am interested in directly generating probabilities instead of recall-precision curves, I intro-

duce here a new second stage for GleanerSRL to transform the learned clauses into propositional

features.

The first transformation is the Boolean feature method. I create one feature for each clause

and assign the feature a value of 1 if the clause is true and 0 if the clause is false. In a scenario

with 20 bins and 100 seeds, this would generate 2000 features, given that there is a clause found

within each bin for all seeds and all clauses are unique. I have found in practice that there are many

less features generated than the complete 2000 due to duplicate clauses within the high-recall bins.

These Boolean feature vectors are created for the trainset, tuneset and testset examples.

A second approach is the binned feature method. I make use of the theories and thresholds as

previously calculated by the second stage Gleaner, making one feature per bin. For each example,

the value of a feature is equal to the cumulative precision of each clause in this bin’s theory that

match this example. This reduces the features to only the number of bins no matter how many seeds

are explored. In my earlier work with Gleaner, I noticed that duplicate clauses were found more

often in the high-recall bins. This binning feature method will retain a more uniform coverage of

the recall space and will also take advantage of combining similar clauses. I look at two binning

feature methods, one with the features as raw score of the cumulative precision for each bin, and

one with the cumulative precision normalized to between 0 and 1 for each bin. The precision for

each clause is calculated on the trainset, and bin feature vectors are created for the trainset, tuneset

and testset examples. Using the tuneset to calculate the precision is also recommended, but I reuse

the trainset to maintain a suitably large number of positive examples for these calculations.

7.2.3 Learning to Predict Scores

With the feature vectors calculated from the second stage, these datasets are now propositional

in nature. The third stage of GleanerSRL uses standard propositional approaches to estimate the
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probability for each example. I will be using classifiers where each feature f is assigned a weight

wf through training. For a new example xi, where 0 < i ≤ N for a testing set of size N and

xi,j is the value of feature f on example xi, I discriminate between positive and negative using a

threshold b as follows:

If
∑

f∈feats

(wf × xi,f ) > b then +, else -

I can achieve a richer feature space by using a kernel matrix K to find a notion of similarity

between example xi and the examples in the training set (minus those set aside in the tuning

set). The simplest kernel is constructed by taking the dot product of xi and example xj , such that

K(xi, xj) =
∑

f∈feats(xi,f ×xj,f ). I can then replace the weighted feature model from above with

If
∑

j∈examples

(αj ×K(xi, xj)) > b then +, else -

where αj is a weight on each kernel-induced feature. For the purposes of estimating probabilities,

I am only really interested in the weighted sum from the above thresholded classification, and I use

this as a numeric score s for each example.

My prefered classifier choice is the Support Vector Machine (SVM) (Cristianini & Shawe-

Taylor, 2000). SVMs learn weights for αj that maximize the margin between the classification

hyperplane and the training data by solving a linear or quadratic program. Formally, for a dataset

of examples (xi, yi) whereKi is the kernel transformation of the feature vector xi, and yi is the clas-

sification for example i (here I use 1 for positive, -1 for negative). This linear program minimizes

the following optimization:

min ||α||+ C
∑
i

ξi such that yi(αK̇i − b) ≥ 1− ξi

In practice (especially when using linear programming), most αj values will be 0, thus ignoring a

large number of the kernel-induced features.

I examine here five different kernels, shown in Table 7.1, for use within the SVM. First I

use a simple dot-product kernel discussed above in combination with both of the binning feature

methods. As for kernels on Boolean features, I also use a dot-product kernel, as well as four

attempts to incorporate statistics from the tuning set about each clause.
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Table 7.1 Five different kernel methods for calculating K(xi, xj) =
∑

f∈features k(xi,f , xj,f ) for
Boolean feature vectors.

Kernel k(xi,f , xj,f )

Dot-Prod k(1, 1) : 1, else : 0

Precision k(1, 1) : precisionf , else : 0

Recall k(1, 1) : 1− recallf , else : 0

Both-Pos k(1, 1) : precision2
f , else : 0

Info

k(1, 1) : −log2((
TP+FP
|trainset|)

2)

k(1, 0) or k(0, 1) : −log2(2× TP+FP
|trainset| × (1− TP+FP

|trainset|))

k(0, 0) : −log2((1− TP+FP
|trainset|)

2)

Since the similarity under the dot-product kernel is only increased when two examples match

on a feature (when features are all Boolean valued), I can score each match instead by the precision

of that clause as calculated on the training set. This means that examples will be more similar when

they are both covered by high-precision clauses. Similarly for recall, I use the score 1 − recallf .

Since GleanerSRL aims to collect clauses that have high precision in the first stage, matching an

example on a low-recall clause should be more meaningful in relation to the positive examples.

I also explore two kernel methods related to the probability that a given clause is expected to

match a particular example, called both-pos and info. Precision equals the probability of an exam-

ple being truly positive given that it matched the clause; therefore, precision2
f is the probability

that any two examples are truly positive given that they both match on xi,f , assuming indepen-

dence, and I use this as the weight for both-pos. The actual probability of a given clause matching

any example is based on the number of true and false positives for that clause: probf = TP+FP
|dataset| .

For the info kernel, I consider the information content for the probabilities of both, only one, or

none of the examples matching (using −log2(p(X)) for each case). Two other kernel method,

explored but not reported here are the Hamming distance between two clauses (where clauses are

more similar if they return the same classification on a given example, be it positive or negative)

and a Gaussian kernel, as they were outperformed by the above kernels in preliminary tests.
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7.2.4 Calibrating Probabilities

The SVM weighted sums from above will not be strict probabilities between 0 and 1. Therefore

in the final stage of GleanerSRL, I calibrate these scores into proper probabilities. A simple linear

transformation, where

calibratedscore(x) =
score(x)−minscore

maxscore

has the unfortunate result of returning probabilities clumped around 0.5 due to extreme outliers in

the margin scores. Another approach proposed by Zadrozny and Elkan (2001) is to bin the scores

on a tuning set using a set number of equal-sized bins. Each test example is found to lie within a

bin based on its margin score, and the probability score is the percentage of tuning examples which

are positive within that bin. However, binning has difficulties when the dataset is unbalanced and

the number of bins must be chosen with a limited testing set.

Zadrozny and Elkan (2002) and Niculescu-Mizil and Caruna (2005) recommend Isotonic Re-

gression for large highly-skewed datasets. The main idea behind isotonic regression is to transform

the sorted list of SVM scores into monotonically increasing probability scores which minimize the

probability errors, and can be seen as an adaptive method for automatically finding the proper bin

widths based on the tuning data. I achieve this isotonic regression by using the Pool Adjacent Vio-

lators (PAV) algorithm (Barlow et al., 1972). Given a set of examples (si, ci), where each example

i consists of the weighted SVM score s along with the classification c, where c is now 1 for positive

examples and 0 for negative examples, PAV will return a mapping for a range of si scores to their

calibrated ci values. I calibrate the probabilities on a tuning set and then use the found mapping to

assign probabilities p(xi) on the testing set. Note that this step is not necessary when using naı̈ve

Bayes or logistic regression, as they directly output probabilities, but is still advisable.

7.3 Experimental Results

I follow the methodology of Caruna and Niculescu-Mizil (2006), and evaluate the probability

estimates from GleanerSRL using the metric of Mean Cross Entropy (MCE). Cross entropy calcu-

lates the difference of predicted probability from the true probability; the formula is derived from
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Figure 7.2 Comparison of Mean Cross Entropy for GleanerSRL kernel methods
and SAYU, ordered from least to most on each dataset.

information theory and Kullback-Liebler divergence. Formally,

MCE = −
∑n

i=0(a(xi)log(p(xi)) + (1− a(xi))log(1− p(xi))
n

where n is the testset size, a(xi) is the actual probability of example xi (in this case 0 or 1) and

p(xi) is the estimate. To properly compute these numbers, I enforced a bound on the probability

estimates so that 0 < probmin ≤ p(X) ≤ 1 − probmin < 1. I tune this bound on the tuning set

using leave-one-out cross-validation. This bound is helpful when there is a complete mistake in

probability, where the actual probability is 1 and the predicted probability is 0, or vice versa, since

the cross-entropy error would be infinity.

I report results on two highly-skewed domains, the genetic-disorder and advisor datasets. For

the parameters of GleanerSRL, I ran Gleaner with 100 seeds for the genetic-disorder dataset and

50 seeds for advisor until 25,000 clauses were examined for each seed. In combination with the

SVM for stage three, I tuned with nine values for the complexity parameter C ranging from 10,000

to 0.0001 1, and in stage four I tested nine values for probmin from 0.25 to 0.00012. C and probmin

values were chosen independently for each fold.

Figure 7.2(a) shows the results of the kernel choices for GleanerSRL on the genetic-disorder

dataset. Binnned feature vectors combined with the dot-product kernel outperforms the rest, how-

ever, this is only a statistically significant difference with the Boolean match kernel. It is interesting

1C values were chosen from 10,000, 1,000, 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001.
2probmin values were chosen from 0.25, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 and 0.0001.
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to note that the highest scoring approaches use the dot-product kernels for both types of feature

vectors.

The results on Advisor in Figure 7.2(b) again show that Binned Dot Product outperforms the

other approaches. Once again the dot-product kernel is the best choice. I also compare to SAYU

and SAYU-VISTA from Davis et al. (2007), using a tree-augmented network (Friedman et al.,

1997) and an eager rule-adoption policy. SAYU learns a Bayesian network for classification by

continually adding features when a clause makes a significant improvement in the Area Under

the Curve for Precision and Recall (AUC-PR). VISTA builds on SAYU by incorporating new

predicates throughout the learning process. The difference between GleanerSRL both SAYU-

VISTA and SAYU is not statistically significant. I separately explored directly optimizing the

MCE for SAYU, and found the results were slightly worse than optimizing for AUC-PR, but the

difference was not statistically significant.

7.4 Related and Future Work

Support Vector Machines are a recent addition to the SRL toolkit, with contributions of Sup-

port Vector Inductive Logic Programming (SVILP) from Muggleton et al. (2005), and kFOIL by

Landwehr et al. (2006). SVILP is most similar to my work, in that both use learned first-order

clauses to create a kernel for probabilistic output. However, where they use mainly a Gaussian

kernel with a prior probability over the clauses, I explore kernel methods and clause generation

that are informed by precision and recall on the training set. kFOIL presents a dynamic kernel-

construction process, where the choice of clauses to add is informed by the current classification

accuracy. Conversely, GleanerSRL learns clauses first and then constructs the kernel, and through

the use of Gleaner it can quickly and in parallel explore a large area of large hypothesis spaces.

I have explored the use of GleanerSRL through comparisons on two relational domains. In

future work, I plan to compare with other SRL methods and apply GleanerSRL to much larger and

additional testbeds, where I hope to see significant speedups in search time due to using Gleaner

over other methods. I also plan to investigate other kernel methods and propositional learning

algorithms, as well as alternate feature-vector transformations.
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Chapter 8

Single-Theory Ensembles

A theory learned by Inductive Logic Programming can itself be viewed as an ensemble, or

disjunction, of clauses. In this chapter, I explore various straight-forward methods for weighting

the influence of each clause on the overall classification of each example, and the effects this can

have on the Gleaner algorithm.

8.1 Weighting Methods

Under an ensemble interpretation, each clause in an ILP theory has one vote. Following stan-

dard mathematical logic, if any clause votes positive for an example, the ensemble as a whole will

classify this example as positive. This view can be extended by creating a decision threshold which

must be met before the ensemble returns a positive classification, such as L of K clauses must vote

positive, and then varying this threshold to create an ROC or PR curve.

However, these clauses are not learned in isolation; their performance on both the training and

tuning sets is known and can be calculated. Instead of giving each clause an equal vote in the

ensemble, a clause can be weighted by its performance. For each clause c in the set of clauses

C, one can calculate the confusion matrix on the tuning set, to find cTP , cTN , cFP and cFN , along

with the resulting performance metrics, which I will abbreviate as cprecision, cm−estimate, etc. For

an example x in a dataset X , let Cx be the set of clauses in C that cover x. The goal is to now find

a score s for each example x using clauses in Cx.

I follow the work of Fawcett (2001), who compares a number of propositional-rule weighting

methods in relation to their ROC area under the curve (AUC) performance. There are a number
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of differences between my datasets and algorithms and the ones examined by Fawcett. First, I use

ILP to only learn clauses which cover the positive class, whereas the propositional-rule learners

examined earlier by Fawcett have rules for both positive and negative examples. For this reason, I

am unable to compare to a number of his weighting schemes. Second, my data is highly skewed

toward the negative examples, while Fawcett’s previous work has examined datasets which have

a fairly balanced distribution. One final difference to note is that I am using the AUC-PR for

recall-precision curves instead of the AUC-ROC.

I investigate the following weighting methods by using the tuneset to gather statistics, and then

compare these different weighting schemes on four datasets: protein-localization, genetic-disorder,

advisor, and protein-interaction. I believe that weighting methods that use the performance statis-

tics from the training set can compete with other more-complicated weight-learning algorithms to

be discussed here.

Ranked List This method treats a theory as a list of clauses, ordered by using an m-estimate on

the precision of each clause on the tuneset ( TP+m
TP+FP+2m

). For a given testset example, its

score is generated by finding the set of clauses which cover this example and using the score

of the highest-scoring clause. Fawcett calls this method First, and it is also employed by

Craven and Slatterly (2001) within ILP. Ranked List would produce a score for example x

equal

s = max(cm−estimate) for c ∈ Cx

Lowest False Positive Rate LFPR is another one of Fawcett’s proposed schemes. It is similar to

the Ranked List method above, using the false-positive rate on the tuning data instead of the

m-estimate as the score for each clause, and using the lowest instead of the highest-ranked

clause. In this case,

s = min(cFPR) for c ∈ Cx

CN2 Also compared is the unordered rule resolution method mentioned by Clark and Boswell

(1991) for CN2, a propositional-rule learner. First, the set of clauses that match each example

is found. One can then separately sum the true positives and false positives for each matching
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clause on the tuneset, and the score assigned to each example is the resulting aggregated

precision. In this case,

s =

∑
c∈Cx

cTP∑
c∈Cx

cTP +
∑

c∈Cx
cFP

Weighted Vote Along the same lines as CN2 is Fawcett’s weighted-vote method. This first finds

the precision of each matching clause and an example’s score is the average of these preci-

sion scores for the matching clauses. In this case,

s =

∑
c∈Cx

cTP

cTP +cFP

|Cx|

Cumulative A class of weighting schemes not examined by others is to use the size of the set

of matching clauses as the score for each example. This single-theory ensemble approach is

partially inspired by Blockeel and Dehaspe (2000) with their proposal for using cumulativity

in ILP. I call this method equal weighting, where each clause has one vote, and the score of an

example is the number of matching clauses. I also explored using other methods to determine

the weight of each clause’s vote, such as the precision, recall or F1 score of each clause, as

well as a diversity metric adapted from Opitz and Shavlik (1996). The score in this scheme

would be

s =
∑
c∈Cx

cw

where w is the weighting metric for clause c, one of precision, recall, F1 score or diversity.

For simplicity, I let cequal = 1 for every clause. To separate the effect of using cumulativity

versus any particular weighting score based on the tuning set statistics, I also generate a

random positive weight for each clause (crandom being a random number between 0 and 1)

as a control experiment.

Naı̈ve Bayes and TAN The method of first learning a theory and then learning weights can be

seen as a way to combine feature selection with propositionalization. I therefore compare

with two propositional learners discussed in Davis et al. (2005c), naı̈ve Bayes and Tree

Augmented Networks (TAN) (Friedman et al., 1997), which augments naı̈ve Bayes as a way

to account for the dependence between features.
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Figure 8.1 Comparison of AUC-PR for various weighting approaches on the protein-localization
dataset with error bars for the standard deviation across the 30 theories, minus fold variations.

8.2 Experimental Results

For the protein-localization dataset, I used standard Aleph to learn 30 theories on each training

set fold, using a minimum accuracy setting of 0.75 and a maximum nodes setting of 1,000. The

150 learned theories, 30 for each fold, contained on average 271 clauses. Figure 8.1 shows the

results of these different weighting schemes in this task, ordered by performance on the testsets.

The five leftmost columns are for the cumulative weighting schemes, the next two are from the

propositional learning methods, then ranking schemes, followed by the averaging schemes.

In my experiments on this dataset, I found that the highest-scoring scheme was cumulative

weighting using precision. In fact, the cumulative weighting schemes outscored all other ap-

proaches. However the difference between naı̈ve Bayes, TAN and the cumulative schemes is not

quite statistically significant, with p value slightly less than 0.10. These results are a contrast to

those of Fawcett, who found that LFPR and Weighted Vote scored equally well, while Ranked List

lagged behind.
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Figure 8.2 Comparison of AUC-PR for various weighting approaches on the genetic-disorder
dataset with error bars for the standard deviation across the 30 theories, minus fold variations.

Figure 8.2 shows the results of these experiments with the genetic-disorder dataset, where the

theories averaged 25 learned clauses. Here again it is seen that the cumulative methods gener-

ally outperforming other weighting methods, with precision having the highest AUC-PR. Equal-

weighting is no longer one of the top performing methods, however, Ranked List still outscores

LFPR and Weighted Vote.

These results also hold in the advisor dataset, shown in Figure 8.3, where the theories averaged

16 learned clauses. CN2 and Weighted Vote are consistently the worst weighting methods, while

cumulative weighting using precision scores the highest. For this dataset, the minimum accuracy

was lowered to 10%, otherwise a large majority of the clauses learned would only cover the seed

example.

For the protein-interaction dataset, whose results are shown in Figure 8.4 and where Aleph

learned an average of 165 clauses per theory, the top-performing weighting schemes were from the

cumulative category. In this case, the F1 score and recall were higher than precision.

Figure 8.5 shows the trends in statistical significance across all four datasets. Each cell shows

for what percent of the datasets the weighting scheme of row i outperforms the weighting scheme

of column j with a p-value of at most 0.05, using black for 100% dominance and white for 0%. The
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Figure 8.3 Comparison of AUC-PR for various weighting approaches on the advisor dataset with
error bars for the standard deviation across the 30 theories, minus fold variations.
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Figure 8.4 Comparison of AUC-PR for various weighting approaches on the protein-interaction
dataset with error bars for the standard deviation across the 30 theories, minus fold variations.

columns are ordered from least to most dominated scheme. Precision excels across all datasets.

Precision is never dominated by any other method, while CN2 and Fawcett-weighted-vote are

dominated by all other methods. While the cumulative methods overall performed well, it is clear
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Figure 8.5 Each cell i, j shows for what percent of the datasets the weighting scheme of row i
outperforms the weighting scheme of column j with a p-value of at most 0.05.

that the choice of internal weighting scheme is important, as seen by the high performance of

precision, diversity and F1 score in comparison with the random positive weighting approach.

8.3 Using Weighting Methods for Combining Clauses in Gleaner

Recall that Gleaner uses an L of K thresholding method within each bin to create multiple

overlapping PR curves, described in lines 16-17 of the algorithm in Table 3.1. This is equivalent

to using the equal weighting version of the cumulative method above. As shown in the previous

section, depending on the dataset, there may be better methods of weighting each clause. Here I

investigate ways to combine these rules to form better theories within Gleaner, and compare them

with the previous L of K overlap method.

The simplest change to Gleaner can be made by only replacing the weighting method used to

generate individual theories. My choices for this comparison are to use (1) the precision of each

clause as the weight, and (2) to learn the weights for the clauses using naı̈ve Bayes. I chose these

approaches since they were among the highest-scoring methods in the previous section and each

had a different underlying learning bias.

A second approach is to use only a subset of the clauses found in each bin, where the choice

of clauses is directed by the precision of each clause. This is accomplished in a similar fashion
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Figure 8.6 Comparison of AUC-PR for various weighting approaches within Gleaner on the
protein-localization, advisor and genetic-disorder datasets.

to backward feature selection (Kohavi, 1994). I first sorted the clauses C for each bin by their

precision on the tuning set. Gleaner usesC as the basis for creating a theory, and then computes the

PR curve generated from C. Finally, the lowest-scoring clause is removed from C to create C ′ and

the curve is recomputed, with C ′ being saved if it improves precision on the tuneset. This lowest-

clause removal is repeated until there are no more clauses left in C. To compute the PR curve with

C on each iteration, I investigate using both the equal-weighting and precision-weighting methods.

Figure 8.6 shows the AUC-PR results of this experiment on the protein-localization, genetic-

disorder and advisor datasets, using the same parameter settings as discussed in Chapter 5, such that

Gleaner explored each seed example for 1000 clauses. For the protein-localization dataset and the

advisor dataset, there is a slight improvement when using precision over equal-weighting or naı̈ve

Bayes. A much larger improvement can be seen in the genetic-disorder dataset, where precision

increases from 0.36 to 0.48, and this is a statistically significant difference. It is interesting to note

that these trends found from incorporating weighting methods into Gleaner match the results found

in the previous section.
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Across all datasets, the sorted method with equal weighting outperforms standard equal weight-

ing, but this result is only significant on the genetic-disorder dataset. In contrast, the sorted method

with precision weighting is never significantly higher than standard precision weighting, and is

lower on the advisor dataset. When comparing standard precision weighting to sorted equal

weighting, the differences are not statistically significant across all three datasets. I would there-

fore recommend using standard precision weighting due to its performance as well as lower time-

complexity when compared with the sorted methods.

8.4 Related Work

One typical approach to weighting a theory in ILP is propositionalization, where each clause in

a theory is translated into a Boolean feature. This allows for a number of propositional learning al-

gorithms to be used for learning weights on each clause. Pompe and Kononenko (1995) use a naı̈ve

Bayes classifier to find their weights, while Srinivasan and King (1996) use logistic regression, a

technique to find weights that will maximize the likelihood of the data.

Koller and Pfeffer (1997) learn the weights for clauses in a theory by first creating a Bayesian

network model for the theory. They then use an Expectation Maximization algorithm to set the

parameters to maximize the likelihood of the data. Their results are on a toy dataset with three

clauses, so it is unknown how well this would extend to the very large datasets I investigate here.

Richardson and Domingos (2006) extend work with Relational Markov Networks (Taskar et al.,

2003) to formulate Markov Logic Networks. Their setup can take clauses from either ILP or a do-

main expert, translate them to a Markov Network, and then learn the weights on the clauses using

logistic regression. Davis et al. (2005c) compare naı̈ve Bayes, TAN, and the sparse candidate al-

gorithm as alternate methods of learning appropriate weight parameters. As in the above methods,

there is no attempt to modify the learned theory, only the weights.

Fürnkranz and Flach (2005) explore the effect of different heuristic functions on the resulting

learned theories. A few researchers have made progress by learning clauses and their probabilities

in concert with each other. Hoche and Wrobel (2001) implement a version of Boosting in FOIL to
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sequentially learn clauses. Only examples covered by a clause are reweighted, with positive exam-

ples being down-weighted and negative examples up-weighted. After each clause is learned, a con-

fidence score is created for that clause based on the current example weights and clause coverage.

Popescul et al. (2003) proposed an upgrade to logistic regression called Structural Logistic Re-

gression (SLR). They use a top-down search of the ILP hypothesis space plus aggregates to gather

clauses which are then weighted using logistic regression, as in Srinivasan and King (1996). SLR

guides the search toward those clauses which improve the current AIC score, however, they only

compare their algorithm to a flat data representation and not to other methods of learning weights

for clauses. Landwehr et al. (2005) and Davis et al. (2005b) concurrently proposed nFOIL and

SAYU algorithms for scoring features based on their contribution to a growing Bayesian classifier.

Muggleton (1995b) adds a probability distribution over the ground predicates, and later incor-

porates methods for learning these probabilities from data (Muggleton, 2000). A common ap-

proach to learning weights for clauses is to perform Statistical Relational Learning (SRL), which

combines the probabilistic benefits of Bayesian networks with the structural data representation

of ILP. Friedman et al. (1999) approach the problem from a database perspective, and upgrade

Bayesian networks to operate and aggregate with relational database schema. They have made

progress with both learning parameters for joint probability tables and the correct database struc-

ture. Kersting and De Raedt (2000) propose a Bayesian Logic Program framework and show how

both logical and probabilistic approaches can be expressed with one common formalism.

8.5 Summary

In this chapter, I have examined many weighting methods for transforming a set of first-order

clauses into a precision-recall curve. My main contributions are the introduction of cumulative

weighting methods as a competitive approach when compared to previously explored methods,

such as naı̈ve Bayes, TAN and CN2, a demonstration of their behavior on highly-skewed relational

datasets, and the incorporation of these methods into Gleaner. Within both single-theory ensembles

and Gleaner, I found that using precision to weight the clauses achieved the highest performance

across many datasets.
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Chapter 9

Further Results on Precision and Recall

Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves are typically gen-

erated to evaluate the performance of a machine learning algorithm on a given dataset, where each

dataset contains a fixed number of positive and negative examples. I believe it is important to study

the connection between these two spaces, and whether some of the interesting properties of ROC

space also hold for PR space.

9.1 Overview

I show, in collaboration with Jesse Davis (2006), that for any dataset, and hence a fixed number

of positive and negative examples, the ROC curve and PR curve for a given algorithm contain the

“same points.” Therefore the PR curves for Algorithm I and Algorithm II in Figure 9.1(b) are, in

a sense that we formally define, equivalent to the ROC curves for Algorithm I and Algorithm II,

respectively in Figure 9.1(a). Based on this equivalence for ROC and PR curves, we show that a

curve dominates in ROC space if and only if it dominates in PR space. Second, we introduce the

PR space analog to the convex hull in ROC space, which we call the achievable PR curve. We

show that due to the equivalence of these two spaces we can efficiently compute the achievable

PR curve. Finally, we show that an algorithm that optimizes the area under the ROC curve is not

guaranteed to optimize the area under the PR curve.

9.2 Relationship between ROC Space and PR Space

We show here that there exists a deep relationship between ROC and PR spaces.
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Figure 9.1 The difference between comparing algorithms in ROC vs. PR space.

Theorem 9.2.1. For a given dataset of positive and negative examples, there exists a one-to-one

correspondence between a curve in ROC space and a curve in PR space, such that the curves

contain exactly the same confusion matrices, if Recall 6= 0.

Proof. Note that a point in ROC space defines a unique confusion matrix when the dataset

is fixed. Since in PR space we ignore TN , one might worry that each point may correspond to

multiple confusion matrices. However, with a fixed number of positive and negative examples,

given the other three entries in a matrix, TN is uniquely determined. If Recall = 0, one is unable

to recover FP , and thus cannot find a unique confusion matrix.

Consequently, there is a one-to-one mapping between confusion matrices and points in PR

space. This implies that there is also a one-to-one mapping between points (each defined by a

confusion matrix) in ROC space and PR space; hence, one can translate a curve in ROC space to

PR space and vice-versa.

One important definition needed for our next theorem is the notion that one curve dominates

another curve, “meaning that all other...curves are beneath it or equal to it (Provost et al., 1998).”
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(a) Case 1: FPR(A) > FPR(B)
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(b) Case 2: FPR(A) = FPR(B)

Figure 9.2 Two cases for Claim 1 of Theorem 9.2.2.

To be more specific, Drummond and Holte (2006) define dominance as follows: “One point in

ROC space dominates another if it is above and to the left, i.e. has a higher true positive rate and a

lower false positive rate. If point A dominates point B, A will have a lower expected cost than B

for all operating points. One set of ROC points, A, dominates another set, B, when each point in B

is dominated by some point in A and no point in A is dominated by a point in B.”

Theorem 9.2.2. For a fixed number of positive and negative examples, one curve dominates a

second curve in ROC space if and only if the first dominates the second in Precision-Recall space.

Proof.

Claim 1 (⇒): If a curve dominates in ROC space then it dominates in PR space. Proof by

contradiction. Suppose there are two curves, as shown in Figure 9.2, such that curve I dominates

in ROC space, yet, once we translate these curves in PR space, curve I no longer dominates. Since

curve I does not dominate in PR space, there exists some point A on curve II such that the point

B on curve I with identical Recall has lower Precision. In other words, PRECISION(A) >

PRECISION(B) yet RECALL(A) = RECALL(B). Since RECALL(A) = RECALL(B)
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and Recall is identical to TPR, we have that TPR(A) = TPR(B). Since curve I dominates curve

II in ROC space FPR(A) ≥ FPR(B). Remember that total positives and total negatives are fixed

and since TPR(A) = TPR(B):

TPR(A) =
TPA

Total Positives

TPR(B) =
TPB

Total Positives

This shows that TPA = TPB and thus denote both as TP . Remember that FPR(A) ≥ FPR(B)

and

FPR(A) =
FPA

Total Negatives

FPR(B) =
FPB

Total Negatives

This implies that FPA ≥ FPB because

PRECISION(A) =
TP

FPA + TP

PRECISION(B) =
TP

FPB + TP

It is now shown that PRECISION(A) ≤ PRECISION(B). But this contradicts the original

assumption that PRECISION(A) > PRECISION(B).

Claim 2 (⇐): If a curve dominates in PR space then it dominates in ROC space. Proof by

contradiction. Suppose there are two curves, as shown in Figure 9.3, such that curve I dominates

curve II in PR space, but once translated in ROC space curve I no longer dominates. Since curve I

does not dominate in ROC space, there exists some point A on curve II such that point B on curve

I with identical TPR yet FPR(A) < TPR(B). Since RECALL and TPR are the same, we

get that RECALL(A) = RECALL(B). Because curve I dominates in PR space it is known that

PRECISION(A) ≤ PRECISION(B). Remember that RECALL(A) = RECALL(B) and

RECALL(A) =
TPA

Total Positives

RECALL(B) =
TPB

Total Positives
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(a) Case 1: PRECISION(A) < PRECISION(B)
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(b) Case 2: PRECISION(A) = PRECISION(B)

Figure 9.3 Two cases of Claim 2 of Theorem 9.2.2.

It is known that TPA = TPB, so they are denoted simply as TP . Because PRECISION(A) ≤

PRECISION(B) and

PRECISION(A) =
TP

TP + FPA

PRECISION(B) =
TP

TP + FPB

It is shown that FPA ≥ FPB. Substituting gives us

FPR(A) =
FPA

Total Negatives

FPR(B) =
FPB

Total Negatives

This implies that FPR(A) ≥ FPR(B) and this contradicts the original assumption that

FPR(A) < FPR(B).
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(a) Convex hull in ROC space
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(b) Curves in ROC space
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(c) Equivalent curves in PR space

Figure 9.4 Convex hull and its PR analog dominate the naı̈ve method for curve construction in
each space. Note that this achievable PR curve is not a true convex hull due to non-linear

interpolation. Linear interpolation in PR space is typically not achievable.

9.3 Convex Hull and Achievable Curve

In ROC space the convex hull is a crucial idea. Given a set of points in ROC space, the convex

hull is a continuous line that must meet the following three criteria:
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1. Linear interpolation is used between adjacent points.

2. No point lies above the final curve.

3. For any pair of points used to construct the curve, the line segment connecting them is equal

to or below the curve.

Figure 9.4(a) shows an example of a convex hull in ROC space. For a detailed algorithm of

how to efficiently construct the convex hull, see Cormen et al. (1990). In PR space, there exists an

analogous curve to the convex hull in ROC space, which we call the achievable PR curve, although

it cannot be achieved by linear interpolation. The issue of dominance in ROC space is directly

related to this convex hull analog.

Corollary 9.3.1. Given a set of points in PR space, there exists an achievable PR curve that

dominates the other valid curves that could be constructed with these points.

Proof. First, convert the points into ROC space (Theorem 3.1), and construct the convex hull of

these points in ROC space. By definition, the convex hull dominates all other curves that could be

constructed with those points when using linear interpolation between the points. Thus converting

the points of the ROC convex hull back into PR space will yield a curve that dominates in PR space

as shown in Figures 9.4(b) and 9.4(c). This follows from Theorem 9.2.2. The achievable PR curve

will exclude exactly those points beneath the convex hull in ROC space.

The convex hull in ROC space is the best legal curve that can be constructed from a set of

given ROC points. Many researchers, myself included, argue that PR curves are preferable when

presented with highly skewed datasets. Therefore it is surprising that one can find the achievable

PR curve (the best legal PR curve) by first computing the convex hull in ROC space and the

converting that curve into PR space. Thus the best curve in one space gives you the best curve in

the other space.

An important methodological issue must be addressed when building a convex hull in ROC

space or an achievable curve in PR space. When constructing a ROC curve (or PR curve) from

an algorithm that outputs a probability, the following approach is usually taken: first find the
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probability that each test set example is positive, next sort this list and then traverse the sorted list

in ascending order. To simplify the discussion, let class(i) refer to the true classification of the

example at position i in the array and prob(i) refer to the probability that the example at position

i is positive. For each i such that class(i) 6= class(i + 1) and prob(i) < prob(i + 1), create a

classifier by calling every example j such that j ≥ i+ 1 positive and all other examples negative.

Thus each point in ROC space or PR space represents a specific classifier, with a threshold for

calling an example positive. Building the convex hull can be seen as constructing a new classifier,

as one picks the best points. Therefore it would be methodologically incorrect to construct a convex

hull or achievable PR curve by looking at performance on the test data and then constructing a

convex hull. To combat this problem, the convex hull must be constructed using a tuning set as

follows: First, use the method described above to find a candidate set of thresholds on the tuning

data. Then, build a convex hull over the tuning data. Finally use the thresholds selected on the

tuning data, when building an ROC or PR curve for the test data. While this test-data curve is not

guaranteed to be a convex hull, it preserves the split between training data and testing data.

As I have previously discussed interpolation for PR space in Section 2.2.3, I can give the

complete algorithm for finding the achievable PR curve. First, find the convex hull in ROC space

(Corollary 3.1). Next, for each point selected by the algorithm to be included in the hull, use the

confusion matrix that defines that point to construct the corresponding point in PR space (Theorem

3.1). Finally, perform the correct interpolation between the newly created PR points.

9.4 Optimizing Area Under the Curve

Several researchers have investigated using AUC-ROC to inform the search heuristics of their

algorithms. Ferri et al. (2002) alter decision trees to use the AUC-ROC as their splitting criterion,

Cortes and Mohri (2003) show that the boosting algorithm RankBoost (Freund et al., 1998) is also

well-suited to optimize the AUC-ROC, Joachims (2005) presents a generalization of Support Vec-

tor Machines which can optimize AUC-ROC among other ranking metrics, Prati and Flach (2005)

use a rule selection algorithm to directly create the convex hull in ROC space, and both Yan et

al. (2003) and Herschtal and Raskutti (2004) explore ways to optimize the AUC-ROC within neural
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Figure 9.5 Difference in optimizing area under the curve in each space.

networks. Also, ILP algorithms such as Aleph (Srinivasan, 2003) can be changed to use heuristics

related to ROC or PR space, at least in relation to an individual rule.

Knowing that a convex hull in ROC space can be translated into the achievable curve in

Precision-Recall space leads to another open question: do algorithms which optimize the AUC-

ROC also optimize the AUC-PR? Unfortunately, the answer generally is no, and we prove this by

the following counter-example. Figure 9.5(a) shows two overlapping curves in ROC space for a

domain with 20 positive examples and 2000 negative examples, where each curve individually is

a convex hull. The AUC-ROC for curve I is 0.813 and the AUC-ROC for curve II is 0.875, so

an algorithm optimizing the AUC-ROC and choosing between these two rankings would choose

curve II. However, Figure 9.5(b) shows the same curves translated into PR space, and the differ-

ence here is drastic. The AUC-PR for curve I is now 0.514 due to the high ranking of over half of

the positive examples, while the AUC-PR for curve II is far less at 0.038, so the opposite choice

of curve I should be made to optimize the AUC-PR. This is because in PR space the main contri-

bution comes from achieving a lower recall range with higher precision. Nevertheless, based on
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Theorem 9.2.2 ROC curves are useful in an algorithm that optimizes AUC-PR. An algorithm can

find the convex hull in ROC space, convert that curve to PR space for an achievable PR curve, and

score the classifier by the area under this achievable PR curve.

9.5 Related Work

Two current methods for comparing algorithms on the recall-precision curve are the Uninter-

polated Average Precision (UAP; Manning & Schutze, 1999) and the maximum F1-score. Unin-

terpolated Average Precision is essentially AUC-PR but without smoothed interpolation between

each recall point.

The AUC-PR has advantages over the breakeven point statistic, defined as the point on a curve

where precision = recall, since our curves are not necessarily generated from a ranked list of

examples. The AUC-PR can also be seen as a more exact measure than the 11-point average

precision statistic (Manning & Schütze, 1999), since we calculate and interpolate between all

precision points.

Drummond and Holte (2000; 2004; 2006) have recommended using cost curves as an alterna-

tive to evaluation using ROC and PR. While they are directly analogous to ROC space, the main

advantage of a cost curve is that conclusions can be made easily through visual inspection without

the need for complicated translation formulas. However, ROC and PR space is much more useful

when evaluating curves rather than single points, since every point in ROC space translates to a

line in cost-curve space, and thus converting a whole ROC or PR curve produces an inordinate

number of lines to be visually examined.
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Chapter 10

Conclusions and Future Work

The field of Inductive Logic Programming has matured to the point that large, real-world prob-

lems are being formulated and attempted. My research with Gleaner addresses the issues of unbal-

anced data and large hypothesis spaces that frequently arise in these datasets.

10.1 Conclusions

I believe there are two main strengths to the Gleaner algorithm. First is its ability to retain

a large number of clauses in a wide range of performance areas, allowing Gleaner to quickly

learn accurate theories. Second is its ability to combine these collected clauses into separate the-

ories providing high precision theories across the full recall range. It is the combination of these

two properties that help Gleaner outperform Aleph ensembles on the previously discussed highly

skewed relational datasets. Gleaner produces comparable results to Aleph ensembles in a fraction

of the time on most datasets, and when both are given the same fixed budget of CPU time, Gleaner

can achieve statistically significantly higher areas under Precision-Recall (PR) curves (AUC-PR).

I have found Gleaner to be robust relative to the choice of heuristic function and search strategy.

I investigated the weighting of negative examples to adversely influence the search in an attempt

to increase clause diversity. In my experiments, Gleaner learned a larger percentage of unique

clauses when individual negative examples were highly weighted for each seed; however, I did not

find an increase in Gleaner’s AUC-PR scores when it used these clauses. I separately used the Fβ

heuristic function with various parameters for β to bias the search toward recall, precision, or a
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balance between the two. While Gleaner exhibited large discrepancies between coverage on the

training sets, the resulting AUC-PR scores proved to be robust across many choices for β.

Gleaner has also been shown to produce accurate probabilistic estimates when extended into

GleanerSRL through propositionalization and calibration, and these estimates are comparable with

SAYU (Davis et al., 2005b) on a well-known relational dataset. When using ILP to learn a single

theory of clauses, I investigated multiple ways for weighting each clause to produce PR curves. I

found that the most successful weighing approach was cumulative precision. When incorporated

into Gleaner, cumulative-precision weighting produced results that are statistically significantly

higher than standard Gleaner.

Finally, I investigated some of the properties underlying Precision-Recall (PR) curves, finding

that there is an analogous curve to the ROC convex hull in PR space. However, interpolation in PR

space is not linear as with ROC space, and optimizing the area under the curve for ROC space will

not necessarily optimize the area under the curve for PR space.

10.2 Future Work

There are many ways to extend and modify the basic Gleaner algorithm. Even with more

clauses gathered, though, Gleaner is still limited by its Rapid Random Restart approach. There

is no direct search for clauses in all areas of recall; this is only a byproduct of generating many

clauses along the way. For high-recall bins, I believe a more active approach is needed. High-recall

clauses tend to be the most general, and these are found at the beginning of top-down searches,

since each additional literal added to a clause can never increase its positive and negative coverage.

I propose to incorporate into Gleaner a more-exhaustive approach such as breadth-first search, or

a heuristic search where the search strategy is guided by finding general rather than more specific

clauses. As in the original Gleaner algorithm, these new clauses will be sorted into the appropriate

recall bins. Another approach would be to sacrifice some of the parallel speed of Gleaner to allow

for an active transfer of information between the differently seeded runs, as opposed to my earlier

approach using negative examples to bias the search space.
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Currently, Gleaner keeps one clause per seed for each recall bin; it is possible that saving more

clauses will be able to increase the AURPC as more clauses are processed. Remember that Rapid

Random Restart search selects a random clause and then performs heuristic search for a set number

of moves before jumping to another place in hypothesis space. In my previous experiments, I

searched through 1000 clauses before jumping to another random clause. One way to retain a

larger number of clauses is to record the best found per bin per seed per jump, since each jump will

hopefully examine new clauses in a different area of the hypothesis space. Some alternate ways to

save more clauses are to store the best five or ten highest-scoring clauses per bin per seed, or to

increase the number of bins used in the training phase, since this will create some diversity within

each seed in addition to between seeds.

The above datasets are all link-learning tasks relevant to ILP. I plan to compare on datasets

where there is not a severe skew between the positive and negative examples, to see if Gleaner

can be a general-purpose algorithm or should only be used for recall-precision type problems. For

these balanced-data problems, I believe the Gleaner approach can be modified to partition the ROC

space instead of the recall-precision space. I also believe that these techniques for optimizing the

recall-precision graph will be applicable outside of ILP, and plan to explore how to adapt Gleaner

to work with propositional datasets. The most straight-forward translation would be to use CN2

(Clark & Niblett, 1989) instead of Aleph as the clause-learning engine.

10.3 Final Wrapup

In this thesis, I have introduced Gleaner as a fast way to create effective ensembles of first-

order clauses. Gleaner has been shown to outperform Aleph Ensembles in both speed and the

area under the Precision-Recall curve (AUC-PR) on a number of relational datasets. I explored

three main extensions to Gleaner: increasing the diversity of the learned clauses while retaining

the speed of parallel search, modifying Gleaner to produce accurate probabilistic estimates, and

incorporating clause quality into the combination method of Gleaner ensembles to improve overall

performance. As relational datasets continue to grow, there will be an increased need for fast and
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accurate learning techniques; it is in this area where ensemble algorithms such as Gleaner can

make a significant contribution.
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Appendix A: Biomedical Predicates Used in the Protein-
Localization Dataset

This is a list of predicates and literals that we use in the information-extraction protein-

localization task and some detailed definitions. I only discuss this one large dataset, since it is

the most widely used in my experiments. The other information-extraction tasks have a very simi-

lar structure and contain essentially the same predicates. Not all of these predicates will be found

in clauses, as some are superceded by another predicate used by Aleph. In the definitions below,

“target args” are referring to the arguments to the protein-localization predicate. “Target arg1” is

the protein phrase and “target arg2” is the location phrase.

A.1 Literals

The basic literals used are for abstracts, sentences, phrases and words. Let A be the PubMed ab-

stract identification number, S the sentence number within the abstract starting at 1, P be the phrase

number within a sentence starting at 0, and W be the word number within a sentence starting at 0.

Abstract literals are then denoted as “abA”, sentences as “abA senS”, phrases as “abA senS phP”

and words as “abA senS phP wW”. For example, ab1316274 sen1 ph2 w6 denotes the 6th word

in the 1st sentence of PubMed abstract 1316274. Note that words are references as to their place

in the sentence, not in the phrase within a sentence.

Other literals included are the actual strings, denoted by the argument string below, of text for

the words, phrases and sentences, and the fold identification for abstracts to allow us to compute

statistics on the training set without using the testing set predicates.

A.2 Basic Predicates

These predicates form the basis of the objects and relations.

PREDICATE DEFINITION

abstract(abstract) Type predicate, for example
abstract(ab1316274).
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PREDICATE DEFINITION

sentence(sentence) Type predicate, for example
sentence(ab1316274 sen1).

phrase(phrase) Type predicate, for example
phrase(ab1316274 sen1 ph2).

word(word) Type predicate, for example
word(ab1316274 sen1 ph2 w6).

assigned subfold(abstract, subfold) Records the subfold to which each abstract is
assigned, useful for keeping statistical
predicates only created from the training set.

different phrases(phrase, phrase) These two phrases are not the same literal.

different words(word, word) These two words are not the same literal.

word ID to string(word, string) A mapping of the literal to the actual
word content.

phrase ID to string(phrase, string) A mapping of the literal to the actual
phrase content.

sentence ID to string(sentence, string) A mapping of the literal to the actual
sentennce content.

A.3 Sentence-Structure Predicates

The sentence parses from Sundance give us a parse tree with hierarchical relationships between

abstracts, sentence, phrases and words.

PREDICATE DEFINITION

sentence parent(sentence, abstract) Abstracts are “parents” of sentences.

sentence child(sentence, phrase) Phrases are “children” of sentences.

sentence descendent(sentence, phrase) Phrases are under sentence.

sentence descendent(sentence, word) And so are words.

phrase ancestor(phrase, sentence) Ancestors are parents, parent’s parents, etc.

phrase descendent(phrase, word) Descendants are children’s children.
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PREDICATE DEFINITION

phrase child(phrase, word) Words are “children” of phrases.

phrase parent(phrase, sentence) Sentences are “parents” of phrases.

phrase previous(phrase, phrase) The phrase immediately previous this phrase.

phrase next(phrase, phrase) The phrase immediately following
this phrase.

phrase before(phrase, phrase) A phrase somewhere before this phrase
in the sentence.

phrase after(phrase, phrase) A phrase somewhere after this phrase
in the sentence.

phrase sibling(phrase, phrase) A phrase either before or after
this phrase in the sentence.

word ancestor(word, phrase) Phrases are “parents” of words.

word ancestor(word, sentence) Phrases are “parents” of words.

word parent(word, phrase) Phrases are “parents” of words.

word previous(word, word) The word immediately previous this
word in the sentence.

word next(word, word) The word immediately following this
word in the sentence.

word before(word, word) A word somewhere before this
word in the sentence.

word after(word, word) A word somewhere after this
word in the sentence.

word sibling(word, word) A word either before or after
this word in the sentence.

word previous within phrase(word, word) The word immediately previous this
word not crossing phrase boundaries.

word next within phrase(word, word) The word immediately following this word
not crossing phrase boundaries.

word before within phrase(word, word) A word somewhere before this word
not crossing phrase boundaries.
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PREDICATE DEFINITION

word after within phrase(word, word) A word immediately previous this word
not crossing phrase boundaries.

word sibling within phrase(word, word) The word immediately previous this word
not crossing phrase boundaries.

A.4 Part of Speech and Lexical Predicates

Phrase segments and words are labeled with their parts of speech. Because of the flattening of

the Sundance parses, some words which fell outside of the natural segments listed above became

their own phrases, as shown below.

PREDICATE DEFINITION

pp segment(phrase) This is a prepositional phrase (of, with, etc)

vp segment(phrase) This is a verb phrase.

adj segment(phrase) This is an adjective phrase.

np segment(phrase) This is a noun phrase.

np conj segment(phrase) This is a conjunctive noun phrase

isa np segment(phrase) Either np segment or np conj segment.

c m(phrase) This is a connective phrase (eg. that).

art(phrase) This is an article phrase.

adj(phrase) This is an adjective phrase.

prep(phrase) This is a prepositional phrase.

conj(phrase) This is a conjunction phrase.

adv(phrase) This is an adverb phrase.

n(phrase) This is a noun phrase.

lex(phrase) This is a lexigraphical phrase.

part(phrase) This is a participle phrase.

v(phrase) This is a verb phrase.
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PREDICATE DEFINITION

c m(word) This is a connective word (eg. that).

art(word) This is an article.

adj(word) This is an adjective

prep(word) This is a preposition.

conj(word) This is a conjunction.

adv(word) This is an adverb.

n(word) This is a noun.

lex(word) This is a lexigraph.

part(word) This is a participle.

v(word) This is a word.

cop(word) This is a cooperative verb.

det(word) This is a determinant.

unk(word) This is of unknown type.

pn(word) This is a proper noun.

num(word) This is a number.

ger(word) This is a gerund.

inf(word) This is an infinitive.

aux(word) This is an auxiliary verb.

novelword(word) This word was not found in
the standard UNIX Webster’s dictionary.

alphabetic(word) This word contains only letters.

alphanumeric(word) This word contains both numbers and letters.

singleChar(word) There is only one character in this word.

hyphenated(word) There is a hypen in this word.

all caps(word) All letters in this word are capitalized.

leading cap(word) The first letter of this word is capitalized.

internal cap(word) An internal letter of this word is capitalized.
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A.5 Phrase and Sentence Descriptive Predicates

PREDICATE DEFINITION

first word in phrase(phrase, word) This word is the first word in this phrase.

last word in phrase(phrase, word) This word is the last word in this phrase

first phrase in sentence(sentence, phrase) This phrase is the first phrase in this sentence.

last phrase in sentence(sentence, phrase) This phrase is the last phrase in this sentence.

short phrase(phrase) Short phrases have ≤ 3 child words in a
phrase child(word, phrase) relation.

medium phrase(phrase) Medium phrases have between 3 and 7 words.

long phrase(phrase) Long phrases have ≥ 7 words.

short sentence(sentence) Short sentences have ≤ 10 words.

avg length sentence(sentence) Average Length sentences have between
10 and 30 words.

long sentence(sentence) Long sentences have ≥ 30 words.

few phrases in sentence(sentence) Sentences with less than 6 phrases.

several phrases in sentence(sentence) Sentences with between 6 and 18 phrases.

many phrases in sentence(sentence) Sentences with more than 18 phrases.

first sentence in abstract(abstract, sentence) The first sentence in the abstract.

middle sentence in abstract(abstract, sentence) Not the first or last sentence in the abstract.

last sentence in abstract(abstract, sentence) The last sentence in the abstract.

short abstract(abstract) Abstracts with less than 5 sentences.

medium abstract(abstract) Abstracts with between 5 and 10 sentences.

long abstract(abstract) Abstracts with 10 or more sentences.

phrase contains go term(phrase, This phrase contains a word listed in
string, string, word) the Gene Ontology.

phrase contains medDict term(phrase, This phrase contains a word listed in
string, string, word) the Online Medical Dictionary.

phrase contains mesh term(phrase, This phrase contains a word listed in
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string, string, word) the Medical Subject Headings (MeSH).

phrase contains mesh protein(phrase, This phrase contains a word listed in
string, string, word) MeSH protein (D12.776)

phrase contains mesh peptide(phrase, This phrase contains a word listed in
string, string, word) MeSH peptide (D12.644)

phrase contains mesh cellular structure( This phrase contains a word listed in
phrase, string, string, word) MeSH cellular structure (A11.284)

phrase contains some prep(phrase, word) This phrase contains a preposition.

phrase contains some art(phrase, word) This phrase contains an article.

phrase contains some adj(phrase, word) This phrase contains an adjective.

phrase contains some n(phrase, word) This phrase contains a noun.

phrase contains some v(phrase, word) This phrase contains a verb.

phrase contains some cop(phrase, word) This phrase contains a cooperative noun.

phrase contains some det(phrase, word) This phrase contains a determinant.

phrase contains some unk(phrase, word) This phrase contains an unknown word.

phrase contains some pn(phrase, word) This phrase contains a proper noun.

phrase contains some adv(phrase, word) This phrase contains an adverb.

phrase contains some c m(phrase, word) This phrase contains a connective word.

phrase contains some num(phrase, word) This phrase contains a number.

phrase contains some ger(phrase, word) This phrase contains a gerund.

phrase contains some inf(phrase, word) This phrase contains an infinitive.

phrase contains some conj(phrase, word) This phrase contains a conjunctive verb.

phrase contains some aux(phrase, word) This phrase contains an auxiliary verb.

phrase contains some lex(phrase, word) This phrase contains a lexigraph.

phrase contains some part(phrase, word) This phrase contains a participle.

phrase contains some marked up arg( This phrase contains a word seen in
phrase, arg, word, fold) the training set for this argument arg.

phrase contains some unknown word( This phrase contains a word not found in
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phrase, pos, word) the standard UNIX webster dictionary.

phrase contains some alphabetic( This phrase contains a word with all
phrase, pos, word) with all alphabetic characters.

phrase contains some alphanumeric( This phrase contains a word with both
phrase, pos, word) alphabetic and numeric characters.

phrase contains some numeric( This phrase contains a word with only
phrase, pos, word) numbers.

phrase contains some singlechar word( This phrase contains a word with only
phrase, pos, word) one character.

phrase contains some hyphenated word( This phrase contains a word with a
phrase, pos, word) hyphen.

phrase contains some all caps word( This phrase contains a word in which
phrase, pos, word) every letter is capitalized.

phrase contains some leading cap word( This phrase contains a word with the
phrase, pos, word) first letter capitalized.

phrase contains some internal cap word( This phrase contains a word with an
phrase, pos, word) internal character capitalized.

no POS in phrase(phrase, pos) This phrase has no pos Parts of Speech.

one POS in phrase(phrase, pos) This phrase has one pos Part of Speech.

few POS in phrase(phrase, pos) This phrase has 0-2 pos Parts of Speech.

some POS in phrase(phrase, pos) This phrase has 3-5 pos Parts of Speech.

many POS in phrase(phrase, pos) This phrase has ≥ 6 pos Parts of Speech.

no wordPOS in sentence(sentence, pos) This sentence has no pos Parts of Speech.

one wordPOS in sentence(sentence, pos) This sentence has one pos Parts of Speech.

few wordPOS in sentence(sentence, pos) This sentence has 0-3 pos Parts of Speech.

some wordPOS in sentence(sentence, pos) This sentence has 4-7 pos Parts of Speech.

many wordPOS in sentence(sentence, pos) This sentence has ≥ 8 pos Parts of Speech.

no phrasePOS in sentence(sentence, pos) This sentence has no phrase pos.

one phrasePOS in sentence(sentence, pos) This sentence has one phrase pos.
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few phrasePOS in sentence(sentence, pos) This sentence has 0-2 phrase pos.

some phrasePOS in sentence(sentence, pos) This sentence has 3-5 phrase pos.

many phrasePOS in sentence(sentence, pos) This sentence has ≥ 6 phrase pos.

phrase contains POS(phrase, word, pos) This phrase contains this word with pos.

phrase contains POS pair(phrase, word, This phrase contains these two words and
word, pos, pos) their parts of speech.

phrase contains POS triple(phrase, word, This phrase contains these three words and
word, word, pos, pos, pos) their parts of speech.

phrase contains specific word(phase, This phrase contains a word and the
word, string) actual text matters.

phrase contains specific word pair(phrase, This phrase contains two words and their
word, word, string, string) actual text matters.

phrase contains specific word triple(phrase, This phrase contains three words and their
word, word, word, string, string, string) actual text matters.

sentence contains specific phrase(sentence, This sentence contains a phrase where the
phrase, string) actual text matters.

sentence contains specific word( This sentence contains a word where the
sentence, phrase, word, string) actual text matters.

sentence contains specific word pair( This sentence contains two words where the
sentence, phrase, phrase, actual text matters.

word, word, string, string)

sentence contains specific word triple( This sentence contains three words where the
sentence, phrase, phrase, actual text matters.

phrase, word, word, word,
string, string, string)

sentence contains POS pair(sentence, phrase, This sentence contains two words with
phrase, word, word, pos, pos) particular Parts of Speech.

sentence contains POS triple(sentence, phrase, This sentence contains three words with
phrase, phrase, word, word, particular Parts of Speech.

word, pos, pos, pos)

sentence contains specific word POS pair( This sentence contains two words where the



129

PREDICATE DEFINITION

sentence, phrase, phrase, actual text and Part of Speech matters.
word, word, string, pos)

sentence contains specific POS word pair( This sentence contains two words where the
sentence, phrase, phrase, Part of Speech and actual text matters
word, word, pos, string)

A.6 Target-Args Predicates

Predicates related to the target args (protein being arg1, location being arg2) and their location

within the sentence are listed below.

PREDICATE DEFINITION

adjacent target args(example, dataset, fold) The two target phrases are adjacent
in the sentence.

identical target args(example, dataset, fold) The two target phrases are the exact
same phrase.

few phrases before target args(example, There are 0-2 phrases before the
dataset, fold) target args.

some phrases before target args(example, There are 3-5 phrases before the
dataset, fold) target args.

many phrases before target args(example, There are ≥ 6 phrases before the
dataset, fold) target args.

few phrases between target args(example, There are 0-2 phrases between the
dataset, fold) target args.

some phrases between target args(example, There are 3-5 phrases between the target args.
dataset, fold)

many phrases between target args(example, There are≥ 6 phrases between the target args.
dataset, fold)

few phrases after target args(example, There are 0-2 phrases after the target args.
dataset, fold)

some phrases after target args(example, There are 3-5 phrases after the target args.
dataset, fold)
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many phrases after target args(example, There are ≥ 6 phrase after the target args.
dataset, fold)

few words before target args(example, There are 0-3 words before the target args.
dataset, fold)

some words before target args(example, There are 4-9 words before the target args.
dataset, fold)

many words before target args(example, There are ≥ 10 words before the target args
dataset, fold)

few words between target args(example, There are 0-3 words between the target args.
dataset, fold)

some words between target args(example, There are 4-9 words between the target args.
dataset, fold)

many words between target args(example, There are≥ 10 words between the target args.
dataset, fold)

few words after target args(example, There are 0-3 words after the target args.
dataset, fold)

some words after target args(example, There are 4-9 words after the target args.
dataset, fold)

many words after target args(example, There are ≥ 10 words after the target args.
dataset, fold)

before both target phrases(example, This phrase is before both target args.
dataset, fold, phrase)

in between both target phrases(example, This phrase is between both target args.
dataset, fold, phrase)

after both target phrases(example, This phrase is after both target args.
dataset, fold, phrase)

word before both target phrases(example, This word is before both target args.
dataset, fold, phrase, word, string)

word in between both target phrases(example, This word is between both target args.
dataset, fold, phrase, word, string)
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word after both target phrases(example, This word is after both target args.
dataset, fold, phrase, word, string)

target arg1 before target arg2(example, The first target (protein phrase) is before the
dataset, fold) second (location phrase).

target arg2 before target arg1(example, The second target (location phrase) is before
dataset, fold) the first (protein phrase).

word prev target arg1(example, dataset, This word is before the protein phrase.
fold, phrase, word, string)

word prev target arg2(example, dataset, This word is before the location phrase.
fold, phrase, word, string)

word next target arg1(example, dataset, This word is after the protein phrase.
fold, phrase, word, string)

word next target arg2(example, dataset, This word is after the location phrase.
fold, phrase, word, string)

word pair in between both target phrases( These words are in between both target args.
example, dataset, fold, phrase, phrase,

word, word, string, string)

pos pair in between both target phrases( These Parts Of Speech are in
example, dataset, fold, phrase, between both target args.
phrase, pos, pos, string, string)

word pos in between both target phrases( This word, Part Of Speech pair is in
example, dataset, fold, phrase, between both target args.

phrase, word, pos, string, string)

pos word in between both target phrases( This Part Of Speech, word pair is in
example, dataset, fold, phrase, between both target args.

phrase, pos, word, string, string)

word pair prev target arg2(example, These two words are before arg2.
dataset, fold, phrase, phrase,

word, word, string, string)

word pair prev target arg1(example, These two words are before arg1.
dataset, fold, phrase, phrase,

word, word, string, string)
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word pair next target arg2(example, These two words are after arg2.
dataset, fold, phrase, phrase,

word, word, string, string)

word pair next target arg1(example, These two words are after arg1.
dataset, fold, phrase, phrase,

word, word, string, string)

A.7 Frequency Predicates

These predicates are all tied to a particular fold, so they can be learned on the trainset and

evaluated on the test set without any information leakage. The log odds are calculated for each

word in the training set based on whether it is in arg1 or not, arg2 or not, or in-between the two

args or not. For example, a score of 2 means a particular word is found twice as many times within

this category than without. This is then used to threshold the creation of the predicates below.

PREDICATE DEFINITION

phrase contains some arg 10x word(phrase, This phrase contains a word with
arg, pos, word, fold) log-odds > 10 for a particular arg.

phrase contains some arg 5x word(phrase, This phrase contains a word with
arg, pos, word, fold) log-odds > 5 for a particular arg.

phrase contains some arg 2x word(phrase, This phrase contains a word with
arg, pos, word, fold) log-odds > 2 for a particular arg.

phrase contains some arg halfX word(phrase, This phrase contains a word with
arg, pos, word, fold) log-odds < 0.5 for a particular arg.

phrase contains several arg 10x word(phrase, This phrase contains > 1 words with
arg, pos, fold) log-odds > 10 for a particular arg.

phrase contains several arg 5x word(phrase, This phrase contains > 1 words with
arg, pos, fold) log-odds > 5 for a particular arg.

phrase contains several arg 2x word(phrase, This phrase contains > 1 words with
arg, pos, fold) log-odds > 2 for a particular arg.
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phrase contains many arg 10x word(phrase, This phrase contains > 5 words with
arg, pos, fold) log-odds > 10 for a particular arg.

phrase contains many arg 5x word(phrase, This phrase contains > 5 words with
arg, pos, fold) log-odds > 5 for a particular arg.

phrase contains many arg 2x word(phrase, This phrase contains > 5 words with
arg, pos, fold) log-odds > 2 for a particular arg.

phrase contains no arg halfX word(phrase, This phrase contains 0 words with
arg, pos, fold) log-odds < 0.5 for a particular arg.

phrase contains some between 10x word( This phrase contains a word with
phrase, arg, pos, word, fold) log-odds > 10 between the two args.

phrase contains some between 5x word( This phrase contains a word with
phrase, arg, pos, word, fold) log-odds > 5 between the two args.

phrase contains some between 2x word( This phrase contains a word with
phrase, arg, pos, word, fold) log-odds > 2 between the two args.

phrase contains some between halfX word( This phrase contains a word with
phrase, arg, pos, word, fold) log-odds < 0.5 between the two args.

phrase contains several between 10x word( This phrase contains > 1 words with
phrase, arg, pos, fold) log-odds > 10 between the two args.

phrase contains several between 5x word( This phrase contains > 1 words with
phrase, arg, pos, fold) log-odds > 5 between the two args.

phrase contains several between 2x word( This phrase contains > 1 words with
phrase, arg, pos, fold) log-odds > 2 between the two args.

phrase contains many between 10x word( This phrase contains > 5 words with
phrase, arg, pos, fold) log-odds > 10 between the two args.

phrase contains many between 5x word( This phrase contains > 5 words with
phrase, arg, pos, fold) log-odds > 5 between the two args.

phrase contains many between 2x word( This phrase contains > 5 words with
phrase, arg, pos, fold) log-odds > 2 between the two args.

phrase contains no between halfX word( This phrase contains 0 words with
phrase, arg, pos, fold) log-odds < 0.5 between the two args.

very high phrase log odds(phrase, arg, fold) This phrase has a log-odds score > 10.
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high phrase log odds(phrase, arg, fold) This phrase has a log-odds score > 5.

med phrase log odds(phrase, arg, fold) This phrase has a log-odds score > 2.

positive high phrase log odds(phrase, arg, fold) This phrase has a log-odds score > 0.

very rare word(word, fold) Less than 5 of this word in total.

rare word(word, fold) Less than 10 of this word in total.

uncommon word(word, fold) Less than 25 of this word in total.

common word(word, fold) Greater than 25 of this word total.

very common word(word, fold) Greater than 100 of this word total.

only in one sentence(word, fold) Word only appears in one sentence.

only in one abstract(word, fold) Word only appears in one abstract.

in few sentences(word, fold) Word appears in < 5 sentences.

in few abstracts(word, fold) Word appears in < 5 abstracts.

in several sentences(word, fold) Word appears in ≥ 2 sentences.

in several abstracts(word, fold) Word appears in ≥ 2 abstracts.

in many sentences(word, fold) Word appears in ≥ 5 sentences.

in many abstracts(word, fold) Word appears in ≥ 5 abstracts.

in very many sentences(word, fold) Word appears in ≥ 10 sentences.

in very many abstracts(word, fold) Word appears in ≥ 10 abstracts.


