Relational Sampling for Statistical Software
Testing

Nicolas Baskiotis and Michele Sebag

LRI, Univer. Paris-Sud, CNRS, INRIA
{nbaskiot,sebag}@lri.fr

Abstract. Motivated by Statistical Software Testing, this paper is in-
terested in sampling the feasible paths in a graph, the control flow graph
of the program being tested. The difficulty comes from the tiny size of
the target region (ranging in [107'° 1075] for medium size programs),
from the restricted amount of initial examples available and from the
non-Markovian nature of the target concept, due to the long-range de-
pendencies between the program nodes.

The new algorithm S4T presented in the paper can be viewed as an Ac-
tive Relational Learning Algorithm, biased toward sampling new positive
examples (feasible paths) and optimizing their diversity.

Experimental validation on real-world and artificial problems demon-
strates significant improvements compared to the state of the art.

1 Introduction

Autonomic Computing is becoming a new application domain for Machine Learn-
ing (ML), motivated by the increasing complexity of current systems [RDTKO6].
Ideally, systems should be able to automatically adapt, maintain and repair
themselves; a first step to this end is to build self-aware systems, using ML to
automatically model the system behaviour. Along these lines, various ML ap-
proaches have been proposed for Software Testing [BGCO01], Software Modeling
[XSHWO05] and Software Debugging [ZJLT06].

Motivated by Statistical Structural Software Testing [DGGO04], this paper is
concerned with sampling the feasible paths in the control graph of the program
being tested. For reasonable size programs, there is a huge gap between the
syntactical description of the program (the control flow graph) and its semantics
(the set of paths which are actually executed for some configurations of the
program input variables, referred to as feasible paths). In practice, the fraction
of feasible paths is tiny, ranging in [10719, 107®] for medium size programs; this
makes the uniform sampling of the control flow graph e.g. based on classical
results from labelled combinatorial structures [FZC94] inefficient.

The use of supervised ML in order to characterize the set of feasible paths
is severely hindered by the available examples (feasible paths are very expensive
and hard to find), on one hand, and by the non-Markovian nature of the under-
lying target concept on the other hand; a path is infeasible as it violates subtle
and usually long-range dependencies among the program nodes. Reinforcement

learning (finding a good policy, i.e. walking in the control graph in order to ul-
timately construct a feasible path) is not applicable as the goal is to find new
feasible paths.

Using frugal propositional representations inspired from Parikh maps [HU79],
propositional learning can be applied to learn an approximation of the “Feasible
Path” concept [BSGGOT]. However, this characterization is not constructive, i.e.
it does not directly allow for generating new feasible paths, which is the core task
for Statistical Structural Software Testing. A Generate-and-Test approach built
on the top of the Parikh map representation was thus proposed in [BSGGO07] to
generate new feasible paths.

This paper presents a new algorithm called S4T (for Structural Sampling for
Statistical Software Testing) aimed at sampling the feasible paths. The contri-
bution of 4T is to hybridize a probabilistic approach with a divide and conquer
heuristics based on the Version Space [Mit82]. Empirical validation on real-world
and artificial problems shows that S4 T significantly improves on the state of the
art.

The paper is organized as follows. Section 2 briefly reviews some work rele-
vant to Machine Learning and Software Testing. Section 3 introduces the formal
background and prior knowledge related to the SST problem; it discusses the
limitations of supervised learning for SST and describes the extended Parikh
representation first presented in [BSGGO07]. Section 4 gives an overview of the
relational active learning S4 T algorithm. Section 5 reports on the empirical val-
idation of the approach on real-world and artificial problems, and discusses the
results compared to the state of the art. The paper concludes with some per-
spectives for further research.

2 Related Work

Interestingly, while Program Synthesis is among the grand goals of Machine
Learning, the application of Machine Learning to Software Testing (ST) has
seldom been considered in the literature.

Ernst et al. [ECGN99] aim at detecting program invariants, through instru-
menting the program at hand and searching for predetermined regularities (e.g.
value ranges) in the traces.

Brehelin et al. [BGCO1] consider a deterministic test procedure, generating
sequences of inputs for a PLA device. An HMM is trained from these sequences
and further used to generate new sequences, increasing the test coverage.

In [VSVA04], the goal is to test a concurrent asynchronous program against
user-supplied constraints (model checking). Grammatical Inference is used to
characterise the paths relevant to the constraint checking.

Xiao et al. [XSHWO05] aim at testing a game player, e.g. discovering the
regions where the game is too easy/too difficult; they use active learning and
rule learning to construct a model of the program. A more remotely related work
presented by [ZJL106], is actually concerned with software debugging and the
identification of trace predicates related to the program misbehaviours.

In [ECGN99,VSVA04], ML is used to provide better input to ST approaches;
in [BGCO01], ML is used as a post-processor of ST. In [XSHWO05], ML directly
provides a model of the black box program at hand; the test is done by manually
inspecting this model.

3 Position of the problem

This section introduces statistical software testing (SST) and discusses how Ma-
chine Learning can be made to support SST. The representation used throughout
the paper, based on extended Parikh maps, is last described.

3.1 Statistical Structural Software Testing

Many Software Testing methods are based on the generation of test cases, where
a test case associates a value to every input variable of the program being tested.
For each test case, the program output is compared to the expected output
(determined e.g. after the program specifications) to find out misbehaviours
or bugs in the program implementation. The quality of the test thus reflects
the coverage of the test cases (see below). Statistical testing methods, enabling
intensive test campaigns, most often proceed by sampling the input space; the
drawback is that rare cases, e.g. exceptions, are difficult to retrieve without
structural analysis. In order to overcome this limitation, [DGGO04] introduce
a method combining statistical testing and structural analysis, based on the
control flow graph of the program being tested (Fig. 1).

)

Fig. 1. Program FCT4 includes 36 nodes and 46 edges.

The control flow graph provides a syntactical representation of the program.
Formally, the control flow graph is a Finite State Automaton (FSA) based on
some finite alphabet X, where X includes the program nodes (conditions, blocks
of instructions), and the FSA specifies the transitions between the nodes. A
program path is represented as a finite length string on X, obtained by iteratively
choosing a node among the successors of the current node until the final node
noted vy is found.

The semantics of the program is expressed by the fact that not every path
in the FSA is feasible, i.e. is such that the path is actually executed for some

values of the program input variables. The infeasibility of a given path arises as
it violates some dependencies between different parts of the program or it does
not comply with the program specifications. Two most general causes for path
infeasibility are the XOR and the Loop patterns.

XOR pattern. Given a program where two if nodes are based on some (un-
changed) expression, the successors of these nodes will be correlated in every
feasible path: if the successor of the first if node is the then (respectively,
else) node, then the successor of the second if node must be the then (resp.
else) node. Such patterns, referred to as XOR patterns, express the possibly
long-range dependencies between the fragments of the program paths.

Loop(n) pattern. The number of times a loop is executed happens to be
restricted by the semantics of the application; e.g. when the problem involves 18
or 19 uranium beams to be controlled, the control procedure will be executed
exactly 18 or 19 times. This pattern is referred to as Loop(n) pattern.

While the length of program paths is not upper bounded in general, for
practical reasons coverage-based approaches to software testing consider program
paths with bounded length 7. Well-known results from labelled combinatorial
structures [FZC94] thus enable the uniform sampling of the T-length paths in the
control flow graph [DGGO04]. Eventually, every path is rewritten as a Constraint
Satisfaction Problem, expressing the set of conditions on the input variables of
the program ensuring that the path is exerted. If the constraint solver finds a
solution, the path is labelled feasible and the solution precisely is the test case;
otherwise the path is infeasible.

As already mentioned, the main limitation of this approach is when the
fraction of feasible paths is tiny, which is the general case for medium length
programs [DGGO4]. In such cases, the number of retrieved test cases remains
insufficient while the computational effort of the CSP resolution increases dra-
matically; it needs some days of computation to find out a few dozen or hundred
test cases. The test expert then proceeds by inspecting the program, manually
decomposing the control flow graph and/or adding conditions in order to get out
of the infeasibility region.

3.2 Software Testing and Supervised Learning

In order to support Statistical Structural Software Testing, one possibility is to
use supervised learning, exploiting a sample of labelled paths as training set.
From such a training set & = {(s;,4:),s: € XT,y; € {-1,+1},i = 1...,n},
where s; is a path with length at most T and y; is 1 iff s; is feasible, supervised
ML can be made to approximate the program semantics, specifically to construct
a classifier predicting whether some further path is feasible or infeasible. Such a
classifier would be used as a pre-processor on the CSP, filtering out the paths
that are deemed infeasible and thus significantly reducing the computational
cost.

In a supervised learning perspective, the SSST application presents some
specificities. Firstly, it does not involve noise, i.e. the oracle (constraint solver)

does not make errors!. Secondly, the complexity of the example space is huge
with respect to the number of available examples. In most real-world problems,
XY includes a few dozen symbols; a few hundred paths are available, each a few
hundred symbols long. The number of available paths is limited by the labelling
cost, i.e. the runtime of the constraint solver (on average a few seconds per
program path). Thirdly, the data distribution is severely imbalanced (infeasible
paths outnumber the feasible ones by many orders of magnitude). Lastly, the
label of a path depends on its global structure; many more examples would be
required to identify the desired long-range dependencies between the transitions,
within a Markovian framework. Specifically, probabilistic FSAs and likewise sim-
ple Markov models can hardly model the infeasibility patterns such as the XOR
or Loop patterns. Indeed Variable Order Markov Models could accommodate
such patterns [BEY'Y04]; however they are ill-suited to the sparsity of the initial
data available.

In summary, supervised learning is impaired by the poor quality of the avail-
able datasets relatively to the complexity of the instance space. This limitation is
addressed through a frugal and flexible representation inspired by Parikh maps,
first presented in [BSGGO7].

3.3 Extended Parikh representation

Parikh maps [HU79] characterize a string from its histogram with respect to
alphabet X; to each symbol v in X is associated an integer attribute a,, counting
the number of v occurrences in every string.

As this representation is clearly insufficient to account for long range depen-
dencies in the strings, additional attributes are defined. For each pair (v,i) in
X x N, attribute a, ; is defined as follows; to each string s in X'* it associates
the successor of the i-th occurrence of the v symbol in s, or vy if the number of
v occurrences in the string is less than 4.

VEXY Say: XY= IN
(v,8) EX XN = ay,; : X' > ¥
For s € Xay(s) = |{ti, s[ti] = v, ti < tiy1}|
@y,i(s) = s[t; + 1] or vy if ¢ > ay(s)

Table 1. Extended Parikh representation

The size of this propositional representation is | X| x k where k << T is the
maximal number of occurrences of any symbol in a T-length string.

! In all generality, three classes should be considered (feasible, infeasible and undecid-
able) as the underlying constraint satisfaction problem is undecidable. However the
undecidable class depends on the constraint solver and its support is negligible in
practice.

However, while the extended Parikh representation decreases the gap between
the complexity of the instances and the number of available training examples,
the number of training examples is still insufficient to enable supervised learning.

In summary, the use of discriminant ML to support statistical structural
software testing faces a bootstrap problem: ML requires more feasible paths; but
more feasible paths is all what SSST requires, too. It thus comes to recast the
discriminant ML task as an active learning task, oriented toward the generation
of new feasible paths. We only need to keep in mind that active learning is
severely impaired when dealing with tiny concepts [Das05].

4 Overview

This section describes the S4T system aimed at the generation of new feasible
paths, composed of three modules. The Init module constructs a maximally spe-
cific (disjunctive) description of the initial feasible paths (the S set, in terms
of Version Space). The Constrained Exploration module achieves the generation
of paths subject to some constraints. The Generalization module on one hand
generalizes the S set based on the new feasible paths, and on the other hand
provides the Constrained Exploration module with new constraints, focussing
the exploration of the search space. All three modules interact with the Ora-
cle module (the CSP solver), labelling every new path generated as feasible or
infeasible.

4.1 Init Module

With respect to the Parikh representation, the feasible path target concept is a
small disjunct concept [HAP89]: the conjunction of XOR and Loop patterns is
rewritten as a disjunction of conjuncts noted C; V...V Ck.

The Init module is a two step process, first determining for every pair of
feasible paths whether they can belong to the same conjunct, and thereafter
constructing a maximally specific description of every conjunct represented in
the training set. The identification of other conjuncts is left for further study.

The first step of the Init module is based on the following proposition. If
two feasible paths s and s’ belong to the same Cj;, then their least general
generalization lgg(s, s') is correct, i.e. it does not cover any unfeasible path; if
s and s’ do not belong to the same Cj, then an example generated in lgg(s, s)
will be unfeasible with high probability, for the C;’s have tiny coverage.

Accordingly, a stochastic approximation of the predicate “s and s’ belong to
the same C;”, noted R (s, s'), is implemented (Table 4.1.a). This approximation
calls the Constrained Exploration module to independently generate and label
p paths in lgg(s, s'). If all p paths are feasible, R(s, s') returns true, otherwise it
returns false and the infeasible paths are added to £~. It is clear that R (s, s’)
implements a complete but incorrect approximation of the predicate s and s’
belong to the same conjunctive sub-concept, and the incorrection probability ex-
ponentially decreases with p; a typical value for p in the experiments (section 5)
is p=2.

(a) Routine R(s, s') (b) Routine Clique(s)

So(s) = {s}

If (Igg(s,s’) covers an unfeasible path) t=1

return False Vi = {s'/R(s',s") for all s" € S;_1(s)}
Fori=1top While V; is not empty

s''= Exploration (lgg(s,s’)) s’ = argmazy, {|{s" in Vi/R(s',s")}}

If (label(s”) = unfeasible) Si(s) = Si—1(s) U {s"}

return False t—t+1

Return True Return S:(s)

Table 2. The Init Module

In a second step, the Init module extracts maximal cliques from the graph
defined from the set £T of the initial feasible paths, and the R relation. For
each path s in £1 (not already covered by a clique), the maximal clique S(s)
containing s is greedily and iteratively constructed as follows (Table 4.1.b). Let
So(s) = {s}. At each step ¢t > 0, let Vi(s) denote the set of elements related
by R to all elements of Si(s). If V;(s) is empty, stop; otherwise, determine the
element s’ in V;(s) which is related by R to the most elements of V;(s) (ties are
randomly broken); add s’ to the clique (Siy1(s) = Se(s) U {s'}).

Finally, the Init module produces a set of cliques noted Cs; every feasible
path in £ belongs to at least one such clique. By abuse of notations, C; is both
viewed as a set of feasible paths and their lgg.

It is shown that with high probability, for every target conjunct C; repre-
sented in £ there will be some C; such that C; is a specialization of Cj; the
probability exponentially increases with the number of representatives of C; in
ET (proof omitted due to space limitation).

4.2 Generalization Module

The Generalization module aims at maximally generalizing every C produced by
the Init module; it proceeds by generating new paths s “close” to C and using
them to generalize C if these are labelled feasible.

Two generation procedures are considered. The first one, referred to as e-
Greedy generalization, is based on decorating the FSA (section 3.1) with proba-
bilities, alternatively exploiting these probabilities and updating them after the
current path has been labelled. The second one, referred to as Near-Miss-based
generalization, exploits the unfeasible paths close to C.

e-Greedy generalization. Formally, let s denote the path under construction
(initialized to the start symbol), let v denote the last symbol in s and assume
that the number of v occurrences in s is ¢ (a,(s) = 7). Let w denote a possible
successor of the v node and let j denote the current number of occurrences of w

in s (ay(s) = 7).

Ideally, the next node in s is selected in order to maximize the probability
for s to be feasible (a,,i(s) = argmaz,{Pr(swx* feasible)} where sw* stands for
any path with prefix sw). However due to the sparsity of the available examples,
such probabilities cannot be estimated accurately. We therefore associate to each
possible successor w of the last node v the fraction p,, of feasible paths, among
all paths s’ in £ having w as successor of the i-th occurrence of symbol v,
and with at least j + 1 occurrences of w (pw = Premp(s’ feasible| [a,,i(s') =
w] A [aw(s") > j]))- If p,, is defined for all successors w of the current node, the
e-Greedy generalization selects the next node w that maximizes p,,. Otherwise,
(there exists some successor w that was never encountered as successor of the i-th
occurrence of v, neither for the feasible nor for the unfeasible paths), w is selected
with probability e. Other heuristics enforcing a more sophisticated exploration
vs exploitation trade-off, e.g. based on the multi-armed bandit UCB algorithm
[ACBF02] were also considered; but they are hindered as the reward probability
is very low (being reminded that the fraction of feasible paths commonly is below
1079).

Near-Miss-based generalization. Let C denote the current clique consid-
ered. Notably, C induces a partial ordering < on the paths, defined as s <¢
s'iff lgg(C U {s}) < lgg(C U {s'}) where A < B is meant for A is more specific
than B in the extended Parikh representation.

Among the paths that are minimal after the above order relation, a specific
case is that of unfeasible paths which differ from C by a single attribute?. Other
minimal unfeasible paths are referred to as nearest-miss examples. For every
nearest-miss example s, the Constrained Exploration module is required to gen-
erate examples in lgg(C' U {s}) —lgg(C). The generated examples are labelled;
if they are feasible, C is generalized; otherwise, they are used to update the set
of near-miss.

4.3 Constrained Exploration module

Given a set of paths E and a set of constraints expressed in the extended Parikh
representation, the constrained generation module aims to generate a path s
which satisfies the constraints, noted c(s).

Two cases are distinguished. In the first case, referred to as explicit, the
constraints can be expressed by specializing the FSA (section 3.1) describing
the path search space. In this case, the uniform sampling of the T-length paths
based on the FSA can achieved analytically [FZC94].

In the second and most frequent case, referred to as implicit, the constraints
are expressed using the Parikh representation and they cannot be expressed
analytically within the FSA: ensuring that a given path in the FSA will satisfy
these constraints boils down to solving a CSP. In the implicit case, the e-Greedy
generation procedure above is extended to account for the constraints c¢(s).

% Such unfeasible paths, referred to as near-miss examples, signal that the single dis-
criminant attribute must not be generalized [Mit82].

5 Experimental Validation

This section presents our experimental setting and goals, and reports on the
results of S4T.

5.1 Experimental Setting

S4T is first validated on the real-world Fct4 problem, including 36 nodes and
46 edges (Fig. 1). The ratio of feasible paths is circa 107° for a maximum path
length T = 250.

For the sake of extensive validation, a stochastic problem generator was also
designed, made of two modules. The first module defines the “program syntax”,
made of a control flow graph generated from a probabilistic BNF grammar3.
The second module constructs the “program semantics”, or target concept tc,
determining whether a given path in the above graph is feasible. After section
3, the target concept is a conjunction of XOR concepts and Loop conditions. In
order to generate satisfiable target concepts, a set P of paths uniformly generated
from the control flow graph is first constructed; iteratively, i) one selects a XOR
concept covering a strict subset of P; ii) paths not covered by the XOR, concept
are removed from P. Finally, the target concept tc is made of the conjunction of
the selected XOR concepts and the Loop concepts satisfied by the paths in P.
The coverage of each conjunction is measured on an independent set of 100,000
paths uniformly generated in the conjunction.

Ten artificial problems are considered, with coverage ratio ranging in [10715,1073],
number of nodes in [20,40] and path length in [120, 250]. Ten runs are launched
for each problem, considering independent training sets £ composed of 50 fea-
sible and 50 infeasible paths*. For each conjunct C identified, the e-Greedy or
Near-miss generalization module is launched 400 times; the new distinct feasible
paths are gathered in £*.

The algorithm performance is assessed by comparing for each conjunct C' of
the target concept represented in the training set, its initial and final coverage,
that is, the fraction of paths covered by C' that respectively belong to £ and
EUE*, noted i(C) and f(C). For a better visualization, the average final coverage
is computed using a Gaussian convolution: f(z) = Ecngﬂ HOean(rla i)

’ D cnexo P(—K(z—i(C))?)
The standard deviation is similarly computed. In both cases, & is set to 100.

The goal of the experiments is firstly to see whether S4T can efficiently

sample the conjuncts that are represented in the initial training set, and how the

3 Three non-terminal nodes were considered (the generic structure B, the if and the
while structures), together with two terminal nodes (the Instruction and the Condi-
tion node. The probabilities on the production rules control the length and depth of
the control flow graph. Eventually, the instructions are pruned in such a way that
each instruction has at least two successor instructions; further, each instruction and
condition is associated a distinct label.

4 Increasing the number of infeasible training paths does not make any difference, as
only infeasible paths “close” to the feasible ones convey useful information.

Final Coverage

efficiency depends on the initial coverage of the conjunct in the training set. The
second goal is to compare the two e-greedy and Near-Miss based generalization
procedures.

5.2 e-greedy S4T

Fig. 2.(a) displays the final vs initial coverage provided by S47 on 10 artificial
problems, using the e-Greedy generalization module with € = .1,.5 and 1. The
detailed results with standard deviation are reported on Fig. 2.(b) for € = .5.
These results show that S4T efficiently samples the conjuncts that are repre-
sented in the training set. More detailed results are presented in Table 3; when
the initial coverage of the conjunct is tiny to small, the gain ranges from 5 to
2 orders of magnitude. A factor gain of 3 is observed when the initial coverage
is between 10% to 30%. For conjuncts which are already well represented in the
initial training set, the gain can only be moderate.

Final Coverage

0.1 0.2 0.7 0.8 0 0.1 0.2 0.7 0.8

03 . 04 05 06 03. 04 05 06

Initial Coverage Initial Coverage

(a) Final vs Initial coverage (b) Final vs Initial coverage o
fore=.1,.5and 1 (b) for e = .5

Fig. 2. 54T with e-Greedy generalization. Final vs Initial conjunct coverage, average
results on 10 artificial problems x 10 runs.

[0,107%] [107%,107%] [1073,1077] [1072%,10'] [1,.3] [3,.6] [.6,1]
log(f/i)[5.7+£1.2 53+1.2 3.7+ .86 2+.72

fli 3.1 16+311+.1
Table 3. Gain obtained with e-greedy generalization for various ranges of the initial
coverage of the conjunct.

The Fig. 3 reports the gain obtained on the real-world fct4 problem compar-
atively to [BSGGO7] (EXIST algorithm) for 10 independent runs for an identical
number of generated paths (around 3.000). The gain is considered excellent by
the software testing experts.

The computational effort ranges from 3 to 5 minutes (on PC Pentium 3Ghz)
for the Init Module and is less than 3 minutes for 400 runs of the generalization
module (excluding labelling cost).

0.8 - « x <
o % Initial EXIST S4T
Sost 1 coverage Final Coverage Final Coverage
g (0,.03) 0.01 + 0.01 25 + 0.1
e .l | (.09, .13) 0.1 £ 0.06 45 £+ 0.07
R (21,.39) 044 +0.16 .78 £ 0.07
< (.49, .52) 0.71 £ 0.05 .83 £ 0.07
0.2 ;g< -
T e O

Fig. 3. 54T with e-Greedy generalization (e = .5) vs EXIST algorithm, average results
on 10 runs on FCT4.

5.3 Near-Miss S4T

In contrast, the Near-Miss variant of 54T did not provide satisfactory results, for
the following reason. As noted in section 4.2, near-miss unfeasible paths s only
signal that the single attribute discriminating s from the current conjunct C
should not be generalized [Mit82]. For this reason, only nearest-miss unfeasible
paths were used to guide the Constrained Exploration module. However, it turns
out that the Constrained Exploration module fails to construct examples in
lgg(CUs) —C.

This failure is explained as the attributes in the extended Parikh representa-
tion are not independent: selecting one successor node instead of another one usu-
ally entails other consequences (e.g. increasing the number of occurrences of an-
other node). For this reason, most nearest-miss examples are actually near-miss,
in the sense that they are maximally close to the current conjunct: lgg(CUs)—C
is empty.

Therefore, the Near-Miss generalization module should rather use unfeasi-
ble paths that are sufficiently “far” from C. Preliminary results along this line
show convincing improvements, although it remains to adjust the appropriate
Hamming distance between the useful unfeasible examples and the current C.

6 Conclusion and Perspectives

The presented application of Machine Learning to Software Testing relies on an
efficient representation of paths in a graph, coping with long-range dependencies

and data sparsity. Further research aims at a formal characterization of the
potentialities and limitations of this extended Parikh representation (see also
[CFWO06)), in software testing and in other structured domains.

The second contribution of the presented work is to construct a distribution
on the top of this representation, enabling the active sampling of desired paths.
Active Learning, a hot topic in the Machine Learning field for over a decade
[CGJ95], is convincingly motivated by the cost of example labelling and the
abundance of unlabelled examples in quite a few application domains. However,
in other domains such as Numerical Engineering, examples must be constructed
on purpose and their construction is expensive. The ability of biasing the ex-
ample construction in order to satisfy desired properties, might thus open new
application perspectives to Relational Machine Learning.

With respect to Statistical Software Testing, the presented approach dra-
matically increases the ratio of (distinct) feasible paths generated, compared to
the former uniform sampling approach [DGGO04]. Further research is concerned
with sampling conjuncts which are not represented in the initial training set.
In the longer run, the extension of this approach to related applications such
as equivalence testers or reachability testers for huge automata [Yan04] will be
studied.

References

[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning, 47(2-3):235-256, 2002.

[BEYY04] R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order
markov models. JAIR, 22:385-421, 2004.

[BGCO01] L. Bréhélin, O. Gascuel, and G. Caraux. Hidden markov models with
patterns to learn boolean vector sequences and application to the built-in
self-test for integrated circuits. IEEE Trans. Pattern Anal. Mach. Intell.,
23(9):997-1008, 2001.

[BSGGO7] N. Bastiokis, M. Sebag, M.-C. Gaudel, and S.-D. Gouraud. Software Test-
ing: A Machine Learning Approach. In IJCAI pages 2274-2279, 2007.

[CFW06] A. Clark, C. C. Florencio, and C. Watkins. Languages as hyperplanes:
Grammatical inference with string kernels. In ECML, to appear, 2006.

[CGJ95] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning
with statistical models. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems, volume 7, pages 705—
712. The MIT Press, 1995.

[Das05] S. Dasgupta. Coarse sample complexity bounds for active learning. In
NIPS, pages 235-242, 2005.

[DGGO04] A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic method for statis-
tical testing. In ISSRE, pages 25—34, 2004.

[ECGN99] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically dis-
covering likely program invariants to support program evolution. In ICSE,
pages 213-224, 1999.

[FZC94] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the ran-
dom generation of labelled combinatorial structures. Theor. Comput. Sci.,
132(2):1-35, 1994.

[HAP89] R.C. Holte, L.E. Acker, and B.W. Porter. Concept learning and the problem
of small disjuncts. In Proceedings of IJCAI-89, pages 813-818. Morgan
Kaufmann, 1989.

[HUT79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[Mit82] T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226,
1982.

[RDTKO06] I. Rish, R. Das, G. Tesauro, and J. Kephart. ECML-PKDD Workshop
Automatic Computing: A new Challenge for Machine Learning. 2006.

[VSVA04] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to
verify safety for FIFO automata. In FSTTCS, pages 494-505, 2004.

[XSHWO05] G. Xiao, F. Southey, R. C. Holte, and D. F. Wilkinson. Software testing
by active learning for commercial games. In AAAI pages 898-903, 2005.

[Yan04] M. Yannakakis. Testing, optimization, and games. In ICALP, pages 2845,
2004.

[ZJL1t06] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical
debugging: simultaneous identification of multiple bugs. In ICML, pages
1105-1112, 2006.

