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Abstract. Several activities related to semantically annotated resources
can be enabled by a notion of similarity, spanning from clustering to re-
trieval, matchmaking and other forms of inductive reasoning. We propose
the definition of a family of semi-distances over the set of objects in a
knowledge base which can be used in these activities. In the line of works
on distance-induction on clausal spaces, the family is parameterized on a
committee of concepts expressed with clauses. Hence, we also present a
method based on the idea of simulated annealing to be used to optimize
the choice of the best concept committee.

1 Introduction

Assessing semantic similarity between objects can support a wide variety of
instance-based tasks spanning from case-based reasoning and retrieval to induc-
tive generalization and clustering.

As pointed out in related surveys [11], initially, most of the proposed similar-
ity measures for concept descriptions focus on the similarity of atomic concepts
within simple concept hierarchies or are strongly based on the structure of the
terms for specific FOL fragments [4]. Alternative approaches are based on re-
lated notions of feature similarity or information content. All these approaches
have been specifically aimed at assessing similarity between concepts (see also
[7]). In the perspective of exploiting similarity measures in inductive (instance-
based) tasks like those mentioned above, the need for a definition of a semantic
similarity measure for instances arises [1, 2, 10].

Recently, semantic dissimilarity measures for specific FOL fragments have
been proposed which turned out to be practically effective for the targeted in-
ductive tasks. Although these measures ultimately rely on the semantics of prim-
itive concepts as elicited from the knowledge base, still they are partly based on
structural criteria (a notion of normal form) which determine also their main
weakness: they are hardly portable to deal with other FOL fragments.

Therefore, we have devised a new family of dissimilarity measures for seman-
tically annotated resources, which can overcome the aforementioned limitations.
Our measures are mainly based on Minkowski’s measures for Euclidean spaces



defined by means of the hypothesis-driven distance induction method [12]. An-
other source of inspiration was provided by the indiscernibility relationships [3]
investigated rough sets theory [9].

Namely, the proposed measures are based on the degree of discernibility of
the input objects with respect to a committee of features, which are represented
by concept descriptions. As such, these new measures are not absolute, since
they depend on both the choice (and cardinality) of the features committee
and the knowledge base they are applied to. Rather, they rely on statistics on
objects that are likely to be maintained by the knowledge base management
system, which can determine a potential speed-up in the measure computation
during knowledge-intensive tasks. Differently from the original idea [12], we give
a definition of the notion of projections which is based on model-theory in LP.

Furthermore, we also propose ways to extend the presented measures to the
case of assessing concept similarity by considering concepts as represented by
their extension, i.e. the set of their instances. Specifically, we recur to notions
borrowed from clustering [5] such as the medoid, the most centrally located
instance in a concept extension w.r.t. a given metric.

Experimentally1, it may be shown that the measures induced by large com-
mittees (e.g. including all primitive and defined concepts) can be sufficiently
accurate when employed for classification tasks even though the employed com-
mittee of features were not the optimal one or if the concepts therein were
partially redundant. Nevertheless, this has led us to investigate on a method to
optimize the committee of features that serve as dimensions for the computation
of the measure. To this purpose, the employment of genetic programming and
randomized search procedures was considered. Finally we opted for an optimiza-
tion search procedure based on simulated annealing [6], a randomized approach
that can overcome the problem of the search being caught in local minima.

The remainder of the paper is organized as follows. The definition of the
family of measures is proposed in Sect. 2, where we prove them to be semi-
distances and extend their applicability to the case of concept similarity. In
Sect. 3, we illustrate and discuss the method for optimizing the choice of concepts
for the committee of features which induces the measures. Possible developments
are finally examined in Sect. 4.

2 A Family of Semi-distances for Instances

In the following, we assume that objects (instances), concepts and relationships
among them may be defined in terms of a function-free (yet not constant-free)
clausal language such as Datalog, endowed with the standard semantics (see [8]
for reference).

We will consider a knowledge base K = 〈P,D〉, where P is a logic pro-
gram representing the schema, with concepts (entities) and relationships defined

1 Such experiments, regarding a nearest neighbor search task, are not further com-
mented here for the sake of brevity.



through definite clauses, and the database D is a set of ground facts concern-
ing the world state. In this context, without loss of generality, we will consider
concepts as described by unary atoms. Primitive concepts are defined in D exten-
sionally by means of ground facts only, whereas defined concepts will be defined
in P by means of clauses. The set of the objects occurring in K is denoted with
const(D).

As regards the necessary inference services, our measures will require per-
forming instance-checking, which amounts to determining whether an object
belongs (is an instance) of a concept in a certain interpretation.

2.1 Basic Measure Definition

It can be observed that instances lack a syntactic structure that may be ex-
ploited for a comparison. However, on a semantic level, similar objects should
behave similarly with respect to the same concepts, i.e. similar assertions (facts)
should be shared. Conversely, dissimilar instances should likely instantiate dis-
joint concepts.

Therefore, we introduce novel dissimilarity measures for objects, whose ra-
tionale is the comparison of their semantics w.r.t. a fixed number of dimensions
represented by concept descriptions (predicate definitions). Namely, instances
are compared on the grounds of their behavior w.r.t. a reduced (yet not nec-
essarily disjoint) committee of features, represented by a collection of concept
descriptions, say F = {F1, F2, . . . , Fm}, which stands as a group of discriminat-
ing features expressed in the language taken into account. In this case, we will
consider unary predicates which have a definition in the knowledge base.

Following [12], a family of totally semantic distance measures for objects can
be defined for clausal representations. In its simplest formulation, inspired by
Minkowski’s metrics, these functions can be defined as follows:

Definition 2.1 (family of measures). Let K be a knowledge base. Given a
set of concept descriptions F = {F1, F2, . . . , Fm}, a family {dF

p}p∈IN of functions
dF

p : const(D)× const(D) 7→ [0, 1] is defined as follows:

∀a, b ∈ const(D) dF
p(a, b) :=

1
m

[
m∑

i=1

| πi(a)− πi(b) |p
]1/p

where ∀i ∈ {1, . . . ,m} the i-th projection function πi is defined by:

∀a ∈ const(D) πi(a) =
{

1 K ` Fi(a)
0 otherwise

The superscript F will be omitted when the set of features is fixed.

2.2 Discussion

We can prove that these functions have the standard properties for semi-distances:



Proposition 2.1 (semi-distance). For a fixed feature set and p ∈ IN, function
dp is a semi-distance.

Proof. In order to prove the thesis, given any three objects a, b, c ∈ const(D) it
must hold that:
1. dp(a, b) ≥ 0 (positivity)
2. dp(a, b) = dp(b, a) (symmetry)
3. dp(a, c) ≤ dp(a, b) + dp(b, c) (triangular inequality)
Now, we observe that:

1. trivial, by definition
2. trivial, for the commutativity of the operators involved
3. it follows from the properties of the power function:

dp(a, c) =
1
m

[
m∑

i=1

| πi(a)− πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a)− πi(b) + πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a)− πi(b) |p + | πi(b)− πi(c) |p
]1/p

=
1
m

[
m∑

i=1

| πi(a)− πi(b) |p +
m∑

i=1

| πi(b)− πi(c) |p
]1/p

≤ 1
m

[
m∑

i=1

| πi(a)− πi(b) |p
]1/p

+
1
m

[
m∑

i=1

| πi(b)− πi(c) |p
]1/p

= dp(a, b) + dp(b, c)

As such, these are only a semi-distances. Namely, it cannot be proved that
dp(a, b) = 0 iff a = b. This is the case of indiscernible instances with respect to
the given set of hypotheses F [3].

Here, we make the assumption that the feature-set F may represent a suf-
ficient number of (possibly redundant) features that are able to discriminate
really different objects. As hinted in [12], redundancy may help appreciate the
relative differences in similarity.

Compared to other proposed distance (or dissimilarity) measures, the pre-
sented functions are not based on structural (syntactical) criteria; namely, they
require only deciding whether an object can be an instance of the concepts in
the committee.

Note that the computation of projection functions can be performed in ad-
vance (with the support of suitable DBMSs) thus determining a speed-up in
the actual computation of the distace measure. This is very important for the
integration of these measures in instance-based methods which massively use
distances, such as in case-based reasoning and clustering.



2.3 Extensions

The definition above might be further refined and extended by recurring to model
theory. Namely, the set of Herbrand models of the knowledge base MK ⊆ 2|BK|

may be considered, where BK stands for its Herbrand base.
Now, given two instances a and b to be compared w.r.t. a certain feature Fi,

i = 1, . . . ,m, we might check whether they can be distinguished in the world
represented by a Herbrand interpretation I ∈ MK: I |= Fi(a) and I |= Fi(b).
Hence, a distance measure should count the cases of disagreement, varying the
Herbrand models of the knowledge base: The resulting definition for a dissimi-
larity measure is the following:

∀a, b ∈ const(D) dF
p(a, b) :=

1
m · |MK|

[ ∑
I∈MK

m∑
i=1

| πIi (a)− πIi (b) |p
]1/p

where the projections are computed for a specific world state as encoded by a
Herbrand interpretation I:

∀a ∈ const(D) πI
i (a) =

{
1 Fi(a) ∈ I
0 otherwise

Following the rationale of the average link criterion used in clustering [5], the
measures can be extended to the case of concepts, by recurring to the notion of
medoids. The medoid of a group of objects is the object that has the highest
similarity w.r.t. the others. Formally. given a group G = {a1, a2, . . . , an}, the
medoid is defined:

m = medoid(G) = argmin
a∈G

n∑
j=1

dF
p(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding groups
of objects obtained by retrieval Ri = {a ∈ const(D) | K |= Ci(a)}, and their
resp. medoids mi = medoid(Ri) for i = 1, 2 w.r.t. a given measure dF

p (for some
p > 0 and committee F). Then we can define the function for concepts as follows:

dF
p(C1, C2) := dF

p(m1,m2)

Alternatively, a metric can be defined based on the single-link and complete-
link principles [5]:

dF
p(C1, C2) =

min{dF
p(a, b) | K |= C1(a) ∧ C2(b)}

max{dF
p(a, b) | K |= C1(a) ∧ C2(b)}

3 Optimization

Although the measures could be implemented according to the definitions, their
effectiveness and also the efficiency of their computation strongly depends on the



choice of the feature committee (feature selection). Indeed, various optimizations
of the measures can be foreseen as concerns their parametric definition.

Among the possible committees, those that are able to better discriminate
the objects in the ABox ought to be preferred:

Definition 3.1 (good feature set). Let F = {F1, F2, . . . , Fm} be a set of con-
cept descriptions. We call F a good feature set for the knowledge base K = 〈T ,A〉
iff ∀a, b ∈ const(D) ∃i ∈ {1, . . . ,m} : πi(a) 6= πi(b).

Note that, when the function defined in the previous section adopts a good
feature set, it has the properties of a metric on the related instance-space.

Since the function strongly depends on the choice of concepts included in the
committee of features F, two immediate heuristics can be derived:

1. controlling the number of concepts of the committee (which has an impact
also on efficiency), including especially those that are endowed with a real
discriminating power;

2. finding optimal sets of discriminating features of a given cardinality, by al-
lowing also their composition employing the specific refinement operators.

Both these heuristics can be enforced by means of suitable ILP techniques es-
pecially when knowledge bases with large sets of instances are available. Namely,
part of the entire data can be drawn in order to induce optimal F sets, in ad-
vance with respect to the application of the measure for other specific purposes
as those mentioned above. The adoption of genetic programming has been con-
sidered for constructing optimal sets of features. Yet these algorithms are known
to suffer from being possibly caught in local minima. An alternative may consist
in employing a different probabilistic search procedure which aims at a global
optimization. Thus a method based on simulated annealing [6] has been devised,
whose algorithm is reported in Fig. 1.

Essentially the algorithm searches the space of all possible feature committees
starting from an initial guess (determined by makeInitialFS(K)) based on the
concepts (both primitive and defined) currently referenced in the knowledge
base. The loop controlling the search is repeated for a number of times that
depends on the temperature which gradually decays to 0, when the current
committee can be returned. The current feature set is iteratively refined calling
a suitable procedure randomSuccessor(). Then the fitness of the new feature
set is compared to that of the current one determining the increment of energy
∆E. If this is positive then the candidate committee replaces the current one.
Otherwise it will be replaced with a probability that depends on ∆E.

As regards the heuristic fitnessValue(F), it can be computed as the average
discernibility factor [9, 3] of the objects w.r.t. the feature set. For example, given
a set of objects IS = {a1, . . . , an} ⊆ const(D) the fitness function may be defined:

fitnessValue(F) = k ·
∑

1≤i<j≤n

m∑
h=1

| πh(ai)− πh(aj) |



FeatureSet optimizeFeatureSet(K, ∆T )
input K: Knowledge base

∆T : function controlling the decrease of temperature
output FeatureSet
local currentFS: current Feature Set

nextFS: next Feature Set
Temperature: controlling the probability of downward steps

begin
currentFS ← makeInitialFS(K)
for t← 1 to ∞ do

Temperature ← Temperature−∆T (t)
if (Temperature = 0)

return currentFS
nextFS ← randomSuccessor(currentFS,K)
∆E ← fitnessValue(nextFS)− fitnessValue(currentFS)
if (∆E > 0)

currentFS ← nextFS
else // replace FS with given probability

replace(currentFS, nextFS, e∆E)
end

Fig. 1. Feature Set optimization based on a Simulated Annealing procedure.

where k is a normalization factor which may be set to: (1/m) (n · (n− 1)/4− n),
depending on the number of couples of different instances that really determine
the fitness measure.

As concerns finding candidates to replace the current committee (random-
Successor()), the function was implemented by recurring to simple transfor-
mations of a feature set:

– adding (resp. removing) a concept C: nextFS← currentFS ∪ {C}
(resp. nextFS← currentFS \ {C})

– randomly choosing one of the current concepts from currentFS, say C, and
replacing it with one of its refinements C ′ ∈ ref(C)

Refining concept descriptions is language-dependent. For the adopted clausal
logic, various refinement operators have been proposed in the literature [8]. Com-
plete operators are to be preferred to ensure exploring the whole search-space.

4 Conclusions and Ongoing Work

In the line of past works on distance-induction, we have proposed the definition
of a family of semi-distances over the instances in a clausal knowledge base. The
measures are parameterized on a committee of concepts. Therefore, we have also
presented a randomized search method to find optimal committees.



Possible subsumption relationships between clauses in the committee may
be explicitly exploited in the measure for making the relative distances more
accurate. The extension to the case of concept distance may also be improved.

The measures may have a wide range of application in distance-based meth-
ods to knowledge bases. They have been integrated in an instance-based learning
system implementing a nearest-neighbor learning algorithm: an experimentation
on performing semantic-based retrieval proved the effectiveness of the new mea-
sures.

The next step will concern exploiting the measures in a conceptual clustering
algorithm where clusters will be formed by grouping instances on the grounds
of their similarity assessed through the measure, triggering the induction of new
emerging concepts.
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