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Abstract. This paper presents an algorithm of using Co-training with
the precision/recall-driven decision-tree algorithm to handle the labeled-
unlabeled problem of XML classification. The two views are generated
using a predicate rewrite system mechanism which is built on a higher-
order logic representation formalism. Experimental results show that this
method performs well on classifying XML documents using only a few
labeled examples and a large number of unlabeled examples.
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1 Introduction

One key weakness of the supervised learning is that it usually requires a large,
often prohibitive, number of labeled training examples to learn accurately. How-
ever, example labelling has typically to be done by a human or sometimes an
expert, and it is a painfully time-consuming task. On the contrary, unlabeled
data are often abundant and easy to get. This is particularly true for online
data sources such as XML documents. Early studies [14, 11, 16] have proved the-
oretically and empirically that unlabeled data is useful in helping improve the
classification performance.

Blum and Mitchell [2] proposed the Co-training algorithm for data with two
separate views. For example, with a web page classification problem, one view
is the words in the web page itself, and the other is the words on the hyperlinks
pointing to this page. The idea behind Co-training is that one classifier can add
examples that are easy for it to classify and that provide useful information to
improve the accuracy of the other classifier. The Co-training algorithm assumes
that each of the two views contain information sufficient to classify the exam-
ples and these two views are conditionally independent given the classification.
Co-training has been proved successful in making using of unlabeled data in
classification [12, 8, 15].

The XML document classification is a natural application of the Co-training
algorithm. An XML document consists of multiple substructures - elements,
and these elements could and normally does contain redundancy information
for classification. For example, in the Reuters dataset [1], element TITLE and
element BODY can generate two redundantly sufficient views.
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2 Knowledge representation for XML

The knowledge representation formalism used in this paper is based on a typed
higher-order logic. Its basic principle is that an individual should be represented
as a (closed) term [9]. This representation method is particularly suitable for
structured data as all the information about an individual is stored in one place
and the structure of the term provides strong guidance on the search for a
suitable hypothesis.

2.1 Representation of XML documents

A well-formed XML document has a well-nested structure. We developed a com-
plete representation for a well-formed XML document with the above formalism
[19]. Here, we only give the representation of the top-level XML document as an
example.

type XML = XMLDecl ×Misclist ×DTD ×Misclist × Element ×Misclist

An XML document is represented as a 6-tuple type, with the first component
representing the XML declaration and the second, fourth and sixth representing
a list of miscellaneous stuff, and the third component representing the document
type declaration, and the fifth representing the root element. All thesis six types
are non-atomic types, but only type Element is recursive.

2.2 Predicate construction using predicate rewrite systems

A novel feature construction mechanism is presented in [9] accompanying the
higher-order logic representation for individuals. Predicates are built up incre-
mentally by composition of simpler functions called transformations. A trans-
formation f is a function having signature f : (%1 → Ω) → . . . → (%k → Ω) →
S → T , where %1, . . . , %k, S and T are all types and k ≥ 0. For example,

projRootElement : XML → Element

is a transformation projecting an XML document onto its root element.
The predicate rewrite system is a mechanism to define and enumerate a set

of predicates relevant to a particular application by using the transformations.
A predicate rewrite system is a finite relation ½ on the set of all standard
predicates. A predicate rewrite is in the form of p ½ q where p and q are
two types and p is more general than q. In applications, to generate a search
space of predicates, we start from some initial predicate p0 (normally the weakest
predicate top) and generate all the predicates that can be obtained by a predicate
deviation step from p0, then all the predicates that can be obtained from those
by a predicate derivation step, and so on. A predicate rewrite system defines
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a predicate search space. For example, the following simple predicate rewrite
system

top ½ projRootElement ◦ top
top ½ ∧2 (projTagName ◦ top projContents ◦ top)

could generate the search space of

top
projRootElement ◦ top
projRootElement ◦ ∧2 (projTagName ◦ top projContents ◦ top)

3 Class Probability Trees

Decision trees which output probabilistic decisions are called statistical decision-
trees or class probability trees [3, 4, 10, 5]. Theoretically, supposing |D| examples
{d1, . . . , d|D|} which are assigned to |C| classes {c1, . . . , c|C|}, probabilistic trees
return the posterior probability of each class given a new example dnew and a
tree classifier T , i.e., Pr(ci|dnew, T ), i = 1, . . . , |C|.

The most obvious way of determining class probabilities of a decision tree is
to compute them directly from the counts of training examples at the leaf nodes.
That is, if an example that is being classified ends up at a leaf node which has
100 examples (90 positive ones and 10 negative ones) from the training set, then
the probability of being positive is 0.9. The disadvantage of this approach is
that the number of examples at each leaf is often too small to reliably compute
the probability and the distribution of the training examples at the leaf can not
reflect the distribution of the training set.

Many other approaches have been proposed to construct class probability
trees. [17] proposes an approach to refine the class probability estimates in a
greedily induced decision tree using local kernel density estimates. Johnson et
al. [7] uses a tree-shrinking method [6] to get a probabilistic decision tree. A
context tree weighting method is proposed in [18] which has been borrowed by
other researchers for producing class probability trees [7].

Buntine [4] uses a Bayesian approach for tree smoothing to improve the naive
probabilities obtained from the leaves only. Smoothing is to compute the class
probabilities for a leaf by combining the leaf probabilities with the node proba-
bilities on the path from the root down to this leaf. The posterior probability of
class ci given the new example dnew and the decision tree T takes the form of
an average calculated along the branch traversed by the new example

Pr(ci|dnew, T ) =
∑

N∈path(dnew,T )

Pr(node(N)|D, C, T )Pr(ci|leaf(N); D,C, T ),
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where Pr(node(N)|D, C, T ) is the node probability of the node N , and
Pr(ci|leaf(N); D, C, T ) is the local probability of ci in node N , i.e., the leaf
probability. The node probability of each internal node is computed recursively
from the root node. The leaf probability of each leaf is computed via the Laplace
correction of the naive probability of the class probability in each leaf.

With the smoothing method, the probabilistic tree is obtained via two steps.
The first step transfers a binary decision tree into an intermediate tree that
computes the node probability and leaf probability for each internal node and
the leaf probability for each leaf. The second step transfers the intermediate tree
to the final class probability tree that has the final class probability for each
class in each leaf.

The PRDT (Precision/recall-driven Decision Tree) algorithm [19] is modified
using this smoothing method to get the SmoothPRDT algorithm which output
probabilistic decisions. This new algorithm is shown in Figure 1.

function SmoothPRDT (E , ½); returns: a probabilistic decision tree;

inputs: E , a set of examples;
½, a predicate rewrite system;

T := PRDT (E , ½);

transfer T to an intermediate tree T
′

by computing the node probability and leaf
probability for each node in T ;
transfer T

′
to the final tree T

′′
by combining the leaf probability with the node

probability for each node on the path from the root down to the leaf;
return T

′′
;

Fig. 1. The probabilistic decision-tree algorithm by smoothing the PRDT tree

4 XML classification with Co-training

4.1 The Co-training framework

Co-training [2], invented by Blum and Mitchell, is a new strategy for using
unlabeled data which has two seperate and redundant views. For example, with
a web page classification problem, one view is the words in the web page itself,
and the other is the words on the hyperlinks pointing to this page. Two classifiers
induced from the two views are built incrementally through an iteration. Each
classifier is initialised with its corresponding feature set of the labeled data only.
In each iteration, each classifier labels the unlabeled data and add the most
confidently labeled data into the training set. The two classifiers are rebuilt in
each iteration with the updated training set.

The basic idea behind the co-training framework is to exploit the compatibil-
ity between different views on an example. In the traditional supervised learning
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environment, we have an individual space X, a target function f : X → Y , and
labeled examples {< xi, f(xi) >}. In the co-training setting, we assume such
a supervised learning problem in which the individuals are drawn from X ac-
cording to some fixed probability distribution. We further assume the individual
space X = X1 × X2, where X1 and X2 correspond to two different “views” of
an example, and C1 and C2 be concept classes defined over X1 and X2. That
is, each example x in X can be factored into two sets of features (x1, x2). The
co-training paradigm requires that X1 and X2 each contain information suffi-
cient to classify the example and these two views are compatible. By compatible,
it means that there exists some function f1 ∈ C1 and some function f2 ∈ C2

such that for all x ∈ X, f(x) = f1(x) = f2(x). If the above constraints on X1

and X2 are satisfied, then X1 and X2 are said to be redundantly sufficient to
classify X with respect to f . It also requires that x1 and x2 are conditionally
independent given the classification. In a word, two assumptions exist for the co-
training framework: there are two distinct “views” of an example, each of which
is sufficient for classification, and the two views are conditionally independent
given the class label.

There are many applications which have natural feature splits, i.e., multiple
“views”. In [2, 11], Blum and Mitchell are interested in classification of web pages,
and they suggest to describe a web page from two different views: the words on
the page itself, and the words in all hyperlinks pointing to this page. Other
applications include classifying noun phrases into semantic classes in which one
view is the noun phrase itself and the other is the linguistic context of this
phrase, and the problem of object recognition in multimedia data in which the
two views are the video and audio signals.

Under the above theoretical setting, the goal of the Co-training model is to
boost the performance of a weak classifier using the unlabeled data (Figure 2).

input: a sample D = Dl ∪Du where
D = {(xi = (x1,i, x2,i), yi)|1 ≤ i ≤ m}
Dl,1 = {(x1,i, yi)|1 ≤ i ≤ m}
Dl,2 = {(x2,i, yi)|1 ≤ i ≤ m}
Du = {xi = (x1,i, x2,i)|m + 1 ≤ i ≤ n}

output: a function h = (h1, h2) such that:
1. h1(x1,i) = h2(x2,i) = yi for i = 1, . . . , m;
2. h1(x1,i) = h2(x2,i) for i = m + 1, . . . , n.

Fig. 2. The objective of Cotraining model

The intuition behind the Co-training algorithm is that it may be easier for one
learner to identify an example and this example may provide useful information
to the other learner. Therefore, the basic idea of the Co-training algorithm is
one learner inclemently trains on the other learner’s classification of unlabelled
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examples. The Co-training algorithm works in an iterative manner. Given a
small set of labeled data, Dl, and a large set of unlabeled data, Du, the learner
updates a set of labeled data, Dw, and two hypothesis h1 and h2 on X1 and X2,
respectively. Initially, Dw = Dl. In each iteration, train hypothesis h1 on the X1

of Dw and hypothesis h2 on the X2 of Dw. Use h1 to label the unlabeled data
in Du and select the examples that most confidently labeled and add them into
Dw. Same operations with h2. This process repeats until certain conditions are
satisfied or all the data in Du has been moved to Dw. The final hypothesis is
the combination of h1 and h2.

4.2 Generate views using predicate rewrite systems

Now we can take the advantage of the flexible control of the feature space via
the predicate rewrite system and create multiple feature subsets. S½ is defined
as the set of all predicates that can be obtained from a predicate rewrite system
½ , starting from some initial predicate. Figure 3 shows the view generating
process via predicate rewrite systems.

... ...

... ...
... ...

...

... ...

... ...
... ...

...

rewrite system 1

rewrite system 2

X

.

.

X2

X1S1

S2

x

x1

x2

.

Fig. 3. Two predicate rewrite systems map the individual space onto two views

The system is given two different predicate rewrite systems ½1 and ½2

which generate two predicate search spaces S½1 and S½2 , respectively. The
individual space X is mapped onto two subspaces X1 and X2 by S½1 and
S½2 , respectively, and an individual x ∈ X is mapped onto two views (x1, x2) ∈
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X1×X2 correspondingly. X1 and X2 can be easily changed by slightly modifying
½1 and ½2. If x is an XML document, then x1 and x2 are two substructures
withdrawn by S½1 and S½2 .

Unlike the previous investigation of Co-training [13, 12, 8] in which the two
views are fixed and set up before running, the two views (x1, x2) here are only
created on the run during learning. Predicate rewrite systems ½1 and ½2 can
be easily modified to change the two views X1 and X2 without going deep inside
the data and dig out different splits of features.

How to choose the two predicate rewrite systems is a key point to the success
of the Co-training. It is an open question how to generate two conditionally
independent views for an individual. The general method is first generate a
complete predicate rewrite system ½ for a particular application. Then identify
two parallel substructures (elements) E1 and E2 that could contain sufficient
information for classification. Generate predicate rewrite system ½1 by removing
the predicate rewrite that generates predicates on E1. Similarly, generate ½2

by removing the predicate rewrite that generates predicates on E2. In this way,
we actually screen E1 in X1 and E2 in X2. This idea is best illustrated with an
example.

In the XML version of Reuters dataset, a document contains about 12 ele-
ments. The following two predicate rewrite systems generate two separate feature
spaces corresponding to the text contents in element TITLE and element BODY.

The first predicate rewrite system ½1 is as follows.

top ½ projRootElement◦top
top ½ ∧2 (projTagName◦top projContents◦ top
top ½ listToSet◦top
top ½ setExists1 (∧2 (isElement projContentElement◦top))
top ½ setExists1 (∧2 (isFeature projContentFeature◦top))
top ½ setExists1 (∧2 (proFeaturePos◦top projFeatureWeight◦top))
top ½ (= REUTERS )
. . .

top ½ (= TITLE )
top ½ (= 0 )
. . .

top ½ (= 299 )
top ½ (≥ 0 .0 )
. . .

top ½ (≤ 1 .0 )
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The second predicate rewrite system ½2 is obtained by replacing top ½ (= TITLE )
by top ½ (= BODY ).

top ½ projRootElement◦top
top ½ ∧2 (projTagName◦top projContents◦ top
top ½ listToSet◦top
top ½ setExists1 (∧2 (isElement projContentElement◦top))
top ½ setExists1 (∧2 (isFeature projContentFeature◦top))
top ½ setExists1 (∧2 (proFeaturePos◦top projFeatureWeight◦top))
top ½ (= REUTERS )
. . .

top ½ (= BODY )
top ½ (= 0 )
. . .

top ½ (= 299 )
top ½ (≥ 0 .0 )
. . .

top ½ (≤ 1 .0 )

4.3 The CotrainPRDT algorithm

Now we introduce our CotrainPRDT algorithm which is a combination of the
Co-training algorithm and the PRDT algorithm [19]. The PRDT algorithm is
an decision-tree algorithm driven by precision and recall criteria. It is specially
designed for XML document classification. The PRDT algorithm takes two pa-
rameters, a set of training examples and a predicate rewrite system ½, as inputs
and outputs a decision-tree. Since the Co-training framework requires decision
confidence on unlabeled data, we replace the PRDT algorithm with its proba-
bilistic version of SmoothPRDT which is described in Section 3.

Figure 4 gives the CotrainPRDT algorithm.
Given a set Dl of labeled examples, a set DU of unlabeled examples, and two

different predicate rewrite systems ½1 and ½2, the algorithm first creates a
smaller pool Du by randomly selecting u examples from DU . Blum and Mitchell
[2] found that the Co-training algorithm can obtain better results when using a
smaller pool Du from DU , and we adopt this idea here. The algorithm then enters
an iteration. First, use SmoothPRDT algorithm to learn a tree T1 with Dl and
½1, and a tree T2 with Dl and ½2. Second, allow each of these two classifiers to
label the unlabeled examples in Du and select the p examples it most confidently
labels as positive, and the n examples it most confidently labels as negative.
Normally, p and n are set to match the ratio of positive to negative examples in
the underlying data distribution. These two sets of p+n newly labeled examples
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could be contradictably labeled by the two classifiers, and these contradictably
labeled examples will surely hurt the classifiers performance if added into the
labeled data. Therefore only the non-contradictably newly labeled examples are
added, along with the label assigned, into Dl, and removed from Du. Finally,
the pool Du is replenished to u examples by randomly drawing examples from
DU .

function CotrainPRDT (Dl,Du,½1,½2); returns: two decision trees;

inputs: Dl, a set of labeled examples;
DU , a set of unlabeled examples;
½1 and ½2, two independent predicate rewrite systems;

Create a smaller pool Du by randomly select a certain number of unlabeled exam-
ples from DU ;
while Du 6= φ do

T1 := SmoothPRDT (Dl,½1);
T2 := SmoothPRDT (Dl,½2);
use T1 to label the unlabeled data in Du;
use T2 to label the unlabeled data in Du;
select p positive and n negative most confidently labeled data by T1 and
T2 and add the non-contradictable ones to Dl;
refill Du by random data from DU ;

return two decision trees T1 and T2 whose predications are combined when
classifying new data;

Fig. 4. The CotrainPRDT algorithm

5 Experimental Results

We have evaluated our CotrainPRDT algorithm on two XML datasets. One is a
semi-artificial one that satisfies both of the Co-training assumptions. The other
one is a real-world dataset that partly satisfies the Co-training assumptions.

5.1 The Reuters 2x2 dataset

The Reuters 2x2 dataset is a modified subset of Reuters collection [1], created to
satisfy the two assumptions of the Co-training setting, with the similar method
in [12].

Four classes of documents that have high performance with PRDT algorithm
were selected from the Reuters collection, which are Earn, Acq, Grain and Crude.
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We used the positive documents of Grain and Crude to create the positive doc-
uments in the new semi-artificial dataset, and the positive documents of Earn
and Acq to create the negative documents in the new semi-artificial dataset. In
a newly created XML document, the contents of element TITLE and element
BODY come from two XML documents of two different classes correspondingly.
Thus, the two elements are conditionally independent.

There are 1872 XML documents in total being created, with 385 in the
positive class and 1487 in the negative class. Each of the two views generated by
½1 and ½2 is sufficient to get a good classifier (with 96.1% and 96.5% at BEP,
respectively). Therefore, Reuters 2x2 satisfies the Co-training requirements.

Five fold experiments were done and the average results are reported here.
In each fold, we randomly select 468 examples as test set, 12 (3 positive and 9
negative) as labeled set (Dl), the rest 1392 as unlabeled set (DU ). At the start
of each experiment, 75 unlabeled documents are withdrawn randomly from DU

to form the smaller pool Du.
Figure 5 shows the averaged results on Reuters 2x2 using CotrainPRDT

with different numbers of iterations. Figure 6 shows the behaviour of the two
classifiers and the combined classifier in one fold experiment. The two classifiers
boost each other during the iteration and the performance of the combined
classifier increases as that of the two classifiers increases.
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Fig. 5. the performance of CotrainPRDT on the Reuters 2x2 dataset

5.2 The real-world Reuters dataset

The real-world dataset is the XML version of the Reuters dataset [1]. We did
experiments on three classes: Earn, Acq and Grain. Five fold experiments were
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Fig. 6. the performance of the two classifiers from the two views and the combined
classifier in one fold experiment on Reuters 2x2 dataset.

done on each class. In each fold, we randomly select 329 examples as test set, 12
(3 positive and 9 negative) as labeled set Dl, and the rest 9591 as unlabeled set
DU . Du is set to 75 random examples from DU .

In the experiments, the predicate rewrite systems ½1 and ½1 generate two
views corresponding to element TITLE and element BODY. However, unlike the
Reuters 2x2 dataset, the two views here are not conditionally independent given
the class.

Figure 7 shows the curves of the performance on the three classes. The Co-
trainPRDT works very efficient on class Earn, but not very well on class Acq and
Grain. We executed PRDT on each of the two views for the three classes, and
found that both views of class Earn are strong enough to get a good classifier,
with 86.4% and 94.3% at BEP, respectively. However, one of the two views of
both class Acq and Grain is not strong enough to get a good classifier. For class
Acq, the BEP values one two views are 63.0% and 85.5%, respectively, and for
class Grain, they are 69.7% and 86.9%, respectively.

6 Conclusions

This paper has presented an algorithm which combines the Co-training strategy
with a decision-tree algorithm driven by precision/recall breakeven point. The
two views of the Co-training are created using two different predicate rewrite
systems that are built on a novel higher-order logic representation method for
XML documents. Experimental results show that the CotrainPRDT algorithm
can be used to successfully classification XML documents using a few labeled
examples together with a large number of unlabeled example, provided that
there are two sufficient views with the documents.
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