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Abstract

One-class classification approaches have been proposed
in the literature to learn classifiers from examples of
only one class. But these approaches are not directly ap-
plicable to relational domains due to their reliance on a
feature vector or a distance measure. We propose a non-
parametric relational one-class classification approach
based on first-order trees. We learn a tree-based distance
measure that iteratively introduces new relational fea-
tures to differentiate relational examples. We update the
distance measure so as to maximize the one-class clas-
sification performance of our model. We also relate our
model definition to existing work on probabilistic com-
bination functions and density estimation. We experi-
mentally show that our approach can discover relevant
features and outperform three baseline approaches.

1 Introduction
Traditional classification approaches rely on labeled exam-
ples from all classes to learn a model. But in several real
world problems, labeled examples are available for only one
class. For example, in information extraction from text, a
common annotation approach is to mark the true instances
in the text (UzZaman et al. 2012; Kim et al. 2009). Since
human annotation in these tasks can be quite costly, the neg-
ative examples are not annotated or in rare cases very few
negative examples are annotated. For instance, presidents of
countries will be marked in an article for training, there is
no explicit mention of what the negative examples of pres-
idents are. One possible approach to handle this problem is
to assume that the unmarked instances are negative examples
for the task at hand. Since the number of unmarked exam-
ples can be very large, this can increase the learning time for
standard classification approaches. A bigger problem is that
this can possibly lead to class imbalance where the number
of instances of the negative class can dominate the positive
instances. Finally, this simplistic assumption could be incor-
rect as all instances of positive examples may not be anno-
tated (e.g., all mentions of presidents need not be annotated).

Consequently, a lot of research has focused on developing
one-class classification (OCC) methods (Khan and Madden
2009) that directly learn using examples from only one class
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or using very few examples of the other class. For example,
Tax and Duin (1999) fit a hypersphere with the smallest ra-
dius around the labeled examples. All the examples inside
this hypersphere are assumed to belong to the labeled class.
Anomaly/Novelty detection tasks can also be viewed as an
OCC task where many examples are available for the nor-
mal class and few or no examples of the anomalous class
are provided. One-class classification can also be viewed as
a specific case of semi-supervised learning (Zhu and Gold-
berg 2009) with the labeled data being provided for only
one class. Hence methods such as clustering and nearest-
neighbors have also been used previously for OCC (de Rid-
der, Tax, and Duin 1998). These methods, in general, rely on
a feature space representation (e.g., to fit a hypersphere) or
distance measure (e.g., for clustering) to perform OCC.

While successful, these methods rely on a propositional
representation of the data (i.e., as a flat feature vector). Data
in the real world is inherently relational i.e., they consist
of inter-related objects and dependencies. Such structured
data cannot be easily represented using a fixed-length fea-
ture vector and doing so can result in loss of possible in-
formation (Jensen and Neville 2002). Recently, several al-
gorithms have been developed that exploit the rich struc-
ture while handling uncertainty. Collectively called Statis-
tical Relational Learning (Getoor and Taskar 2007) (SRL),
these algorithms combine rich representations such as first-
order or relational logic with probabilistic models.

While representations such as first-order logic provide a
lossless way to model structured data, they introduce the ad-
ditional complexity of having unbounded features associated
with each example. E.g., consider the task of predicting the
blood type of a person based on his lineage. We can poten-
tially introduce a feature for the bloodtype of every ances-
tor of a person. As a result, standard distance metrics such
as Euclidean norms cannot be naively used for relational
problems. One potential approach for relational OCC is per-
forming propositionalization followed by using the standard
OCC techniques. Standard propositionalization may pick ir-
relevant features and as a result OCC techniques on these
propositionalized datasets can underperform, as we show
empirically. The propostionalization approach needs to se-
lect the features so as to optimize the one-class classification
performance which can be computationally expensive with
standard OCC methods.
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We propose a non-parametric approach for OCC using
a tree-based distance measure between relational examples
which is learned by directly optimizing the OCC perfor-
mance. We define this measure using the path similarity in
relational decision trees. We combine the distances from
multiple incrementally learned trees and labeled examples
to calculate the probability of an example belonging to the
labeled class. We present three interpretations of our ap-
proach: 1) based on combining rules for probability distri-
butions (Natarajan et al. 2008), 2) based on using our dis-
tance with Kernel Density Estimation (Bishop 2006) and 3)
based on using a similarity kernel with Support Vector Data
Description (SVDD). Using this model definition, we de-
rive a scoring method that allows for learning the trees so
as to maximize the likelihood of the labeled examples. Al-
though we use unlabeled examples in our approach to dis-
cover the relevant features, we do not require them to be
specified (which we explain in Section 3). Another interest-
ing interpretation of our approach is to view the method as a
feature selection strategy for standard OCC methods. From
this perspective, our approach can be seen as a way to propo-
sitionalize relational data for OCC methods.

We make several key contributions in this work: 1) We
present a new distance metric for relational examples that
can be learned incrementally. 2) We propose a relational
one-class classification approach using this distance metric.
3) We relate and place this work in the context of existing
work on combination functions, existing work on density es-
timation and OCC. 4) We show how we can perform feature
selection for propositional OCC methods by evaluating our
trees. 5) Finally, we demonstrate over multiple domains that
our approach can learn more accurate models than standard
relational learning and OCC methods.

2 Related Work
One-class classification (OCC) problem was first described
by Moya et al. (1996) for an automatic target recognition
task using neural networks. Following their work, Scholkopf
et al. (2000) learn a Support Vector Machine (SVM) to sep-
arate the labeled examples from the origin. Tax and Duin
(1999), on the other hand, learn a hypersphere with the
smallest radius that encompasses the labeled examples. They
have also shown that using the Gaussian kernel with a nor-
malized dataset gives solutions comparable to the SVM ap-
proach. DeComite et al. (1999), on the other hand, use mod-
ified C4.5 to perform one-class classification. All these ap-
proaches rely on a propositional representation.

Anomaly/outlier detection methods can also be viewed
as a one-class classification approach. Although there have
been many outlier detection methods proposed in literature
(Chandola, Banerjee, and Kumar 2009), outlier detection ap-
proaches generally assume that outliers are far and isolated
(Liu, Ting, and Zhou 2012). This is not true for the one-
class classification problem where the labeled examples can
be clustered and close to other unlabeled examples. Semi-
supervised learning approaches can also be used for OCC as
shown by Ridder et al. (1998). Our approach can be viewed
as semi-supervised relational learning as it leverages unla-
beled examples for learning the relational distance function.

Figure 1: Relational one-class classification system design

One of the earliest works on relational one-class classifi-
cation (Muggleton 1997) learns the smallest first-order hy-
pothesis that can cover the labeled examples. Since this work
only performed Boolean predictions, it was extended to per-
form relational density estimation (Cussens 1998). This ap-
proach relied on calculating proportions of examples cap-
tured by every hypotheses which can be prohibitively ex-
pensive for large domains.

Multiple propositionalization techniques and distance
measures have been proposed for relational data which
can potentially be used for OCC. One simple unsuper-
vised approach to generate propositional features is by
creating Boolean features corresponding to random first-
order logic clauses (Anderson and Pfahringer 2008). Rela-
tional Instance-based Learning (RIBL) (Horváth, Wrobel,
and Bohnebeck 2001) uses similarity between local neigh-
borhoods to calculate the similarity between examples. Such
unsupervised approaches may not capture long range infor-
mation while we leverage the labeled examples to guide our
approach. kFoil (Landwehr et al. 2010) uses a dynamic ap-
proach to learn clauses to propositionalize relational exam-
ples for SVMs. Each clause corresponds to one Boolean fea-
ture and is scored based on the improvement in the SVM
learned from the propositionalized data. Rather than learn-
ing a new model for every candidate structure, we compute
the error reduction on the fly locally.

3 Relational OCC
The high-level overview of our approach to Relational One-
Class Classification (RelOCC) is shown in Figure 1. Our ap-
proach consists of the following steps:

1. Learn a first-order tree for calculating relational distances.
(Section 3.1)

2. Use the distance function to perform OCC. (Section 3.2)

3. Learn the next distance tree to improve the classification.
(Section 3.3)

4. Go to Step 2.

Table 1 presents the terminology used throughout the paper.
We will now describe the individual steps of our approach.

3.1 Tree-based distance
Inspired by semantic similarity measures (D’Amato, Staab,
and Fanizzi 2008), we propose a distance measure based on
the paths taken by examples in a relational decision tree. For



Term Description
x, xi, y Relational examples
{x1, x2, . . . xl} Labeled examples
lca(x1, x2) Lowest Common Ancestor of the leaves

reached by x1 and x2
depth(n) Depth of node n. depth(Root) = 0.
di(x, y) Distance between x and y based on ith tree
D(x, y) Distance between x and y based on all trees
P (y ∈ L) Probability of y being in labeled class
αj Weight of labeled example xj
βi Weight of ith tree
I(condition) Indicator function that returns 1 if condition

is true, 0 otherwise.
P t(y /∈ L) P (y /∈ L) using t trees

Table 1: Description of terms used in this paper.

instance, consider two examples that reach the same node,
n in a decision tree before taking separate paths down the
tree i.e., n is the lowest common ancestor (LCA) of these
examples. If the node n is at depth of three, the two examples
share at least three common attribute values. If n is at depth
of one, they share at least one attribute value. Intuitively, the
two examples in the first case are more likely to be similar
than in second case. Thus, our distance measure is inversely
proportional to the depth of LCA of two example paths.

d(x1, x2) =

{
0 lca(x1, x2) is a leaf
e−λ·depth(lca(x1,x2)) otherwise

Examples that differ at the root node i.e. have no common
attribute will have a distance of 1. A major feature of this
distance definition is that it can be used on any off-the-shelf
tree learner (such as TILDE (Blockeel and Raedt 1998)).
The key difference from a first-order decision tree is that,
in our formulation, there are no values associated with the
leaves since all we are interested in are the paths that deter-
mine the distance between examples. The parameter λ (set to
0.5 in experiments) ensures that the distance value decreases
gradually as the depth increases.

Properties It can be easily shown that this distance func-
tion satisfies the following distance metric properties:
• d(x1, x2) ≥ 0 (non-negative)
• d(x1, x2) = d(x2, x1) (commutative)
• x1 and x2 are identical⇒ d(x1, x2) = 01 (equality)
• d(x1, x3) ≤ d(x1, x2) + d(x2, x3). (triangle property)

Proof: If lij = depth(lca(xi, xj)), l13 ≥ min(l12, l23).
WLOG, l12 = min(l12, l23).
l13 ≥ l12 ⇒ e−l13 ≤ e−l12 ⇒ e−l13 ≤ e−l12 +
e−l23 ⇒ d(x1, x3) ≤ d(x1, x2) + d(x2, x3). This can
also be proven if x1 and x3 reach the same leaf node i.e.,
d(x1, x3) = 0. �
Using just one tree may not suffice when dealing with po-

tentially infinite dimensions in relational data. A simple next
step would be to learn multiple relational trees. However this
step introduces an additional complexity –the need for a way

1The reverse condition does not hold.

Figure 2: Density Estimation using Distance measure

to combine these trees without increasing the complexity of
the already complex problem. Our solution is inspired by
density estimation techniques that we present next.

3.2 Density Estimation Model
We now define a model (shown in Figure 2) to combine dis-
tances from multiple trees and then distances from multiple
examples to perform relational one-class classification. Re-
call that to calculate the probability estimate of an example y
to belong to the labeled class, we use the distances between
y and the labeled examples. We denote the distance between
the current example y and a labeled example x from the ith
tree as di(x, y). D(x, y) combines the tree distances to re-
turn the overall distance between x and y. We finally com-
pute the density estimate P (y ∈ L) using the distances from
all the labeled examples {x1, x2, . . . xl}. The combination
function that we use in both levels is weighted mean:

D(xj , y) =
∑
i

βidi(xj , y) s.t.
∑
i

βi = 1, βi ≥ 0 (1)

P (y /∈ L) =
∑
j

αjD(xj , y) s.t.
∑
j

αj = 1, αj ≥ 0 (2)

One of the key advantage of this function is that it allows
for efficient learning of trees as we show in Section 3.3.
Also, this approach is closely related to existing research
in one-class classification thus making it theoretically well
grounded. We first present the learning of the trees followed
by the relation to existing methods.

3.3 Model Learning
Tree Learning As shown in Figure 1, we update the dis-
tance measure by iteratively adding to the set of trees. As-
sume that we have learned t trees already and are now learn-
ing the (t+1)th one.We can use any off-the-shelf tree learner
and we employ the method described by TILDE tree learn-
ing (Blockeel and Raedt 1998). Since our distance metric
only relies on the LCA position, we can make local scoring
decisions at every node. If a pair of examples are already
split by the tree, any further splits at lower levels will have no
impact on the distance between these examples i.e., adding



a node to the tree only affects the distance between the pair
of examples that are split at that node. Specifically, split-
ting example xi and xj at node n, increases their distance
dt+1(xi, xj) from zero to ∆t+1(xi, xj) = e−depth(n).

We use a modified splitting criterion which is the squared
error over the examples i.e.,

∑
y [I(y /∈ L)− P (y /∈ L)]

2.
I(y /∈ L) is the indicator function which returns 1 if y
is an unlabeled example. Hereafter we use I(y) to com-
pactly represent I(y /∈ L). As can be seen here, our scoring
function does rely on using the unlabeled examples in the
dataset. Even if unlabeled examples are not provided, these
can be generated by using constants of matching types (e.g.
{friends(x, y)|∀x, y ∈ People, friends(x, y) /∈ L}). Re-
lying on only the labeled examples for learning a distance
function will result in trivial distances of d(x, y) = 0.

Consider x to be the set of examples that reach node n.
xl and xr are the set of examples that take the left and right
branch respectively. Since introducing the node has no im-
pact on the distances (and in turn probabilities) for examples
not reaching node n, the squared error is∑

y∈x
[I(y /∈ L)− P (y /∈ L)]

2

=
∑
y

[I(y)− Σjαj{Σtiβidi(xj , y) + βt+1∆t+1(xj , y)}]2

=
∑
y

[
I(y)− P t(y /∈ L)− Σjαjβt+1∆t+1(xj , y)

]2
At every node in the tree, we minimize this squared error.
If y is close to the labeled examples (P t(y /∈ L) ≈ 0) for
an unlabeled example (I(y) = 1), increase in the distances
to the labeled examples will reduce the squared error. If y is
already spread apart from the labeled examples (i.e. P t(y /∈
L) ≈ 1), the distances to the labeled examples will not be
increased any further. As a result, minimizing the squared
error introduces new features to spread out the examples and
prevents redundant features being added.

Since introducing node n only increases the distance be-
tween the pair of examples split at the node, ∆t+1(xj , y) 6=
0 for xj ∈ xl, y ∈ xr or xj ∈ xr, y ∈ xl. Hence the splitting
criterion can be modified to

min
∑
y∈xr

[
I(y)− P t(y /∈ L)− Σj:xj∈xl

αjβt+1∆t+1(xj , y)
]2

+
∑
y∈xl

[
I(y)− P t(y /∈ L)− Σj:xj∈xrαjβt+1∆t+1(xj , y)

]2
We use a greedy search procedure for learning the tree where
we pick the feature whose split reduces this squared error.
The key insight is that the use of the mean squared error
along with our relational path based distance function allows
us to efficiently make these local scoring decisions. Note that
our approach is non-parametric as the only parameter is the
number of trees that increases as more data is obtained. Thus
we can potentially update the distances in online fashion.

Weight Learning We set uniform weights on the exam-
ples and trees initially. After learning each tree, we update
the weights α and β for weighted mean function. We use a

co-ordinate gradient descent approach where we iteratively
update α and β to minimize the squared error. Since there
is no closed form solution, we update the weights only af-
ter learning an entire tree instead of updating after learning
every node in the tree. The gradient of error w.r.t. α is

∂

∂αj

∑
y

[I(y)− ΣjαjΣiβidi(xj , y)]
2

= −2
∑
y

[I(y)− P (y /∈ L)] Σiβidi(xj , y)

and the gradient w.r.t. β is

−2
∑
y

[I(y)− P (y /∈ L)] Σjαjdi(xj , y)

To ensure that weights are always greater than 0 and sum to
1, we project them as described by Natarajan et al. (2008).

3.4 Model Interpretations
We now place our work in context to existing work on learn-
ing parameters in SRL and propositional OCC methods.

Combining Rules: Since di(x, y) ≤ 1, it can be inter-
preted as the probability of example x being not equal to y
based on the ith tree, i.e., Pi(x 6= y) = di(x, y). Similarly
D(x, y) can be viewed as overall probability of example x
being not equal to y, i.e., P (x 6= y) = D(x, y). This can be
viewed as using two-level combining rules (Natarajan et al.
2008) in directed SRL models with the weighted mean com-
bination function. At first level, we combine probabilities
from the set of trees (Eqn. 1). At second level, we combine
probabilities based on individual examples (Eqn. 2).

Kernel Density Estimation: An alternate interpretation
of our model is that of using Kernel Density Estimation
(Bishop 2006) with a triangular kernel2 and bandwidth 1.

1−
n∑
j

αj
∑
i

βidi(xj , y) =

n∑
j

1

n
(1−

∑
i

αjβidi(xj , y))

=

n∑
j

1

n
|1−D′(xj , y)| =

n∑
j

1

nh
K(

D′(xj , y)

h
) for h=1

where D′(xj , y) =
∑
i αjβidi(xj , y). Since the term |xj −

y| cannot be defined easily for relational examples, we use
D′ function to represent the absolute distance needed by the
kernel density estimator. The value of D′ is always below 1
and as a result is within the bounds of the triangular kernel.

SVDD: SVDD (Tax and Duin 1999) approach learns a
hypersphere around the labeled one-class examples. An ex-
ample z is classified as belonging to the labeled class if
(z · z)− 2

∑
i αi(z · xi) +

∑
i,j αiαj(xi · xj) ≤ R2. Since

the classification only depends on the dot product, SVDD
also uses kernel functions. Using the function 1 −D in our
case as the kernel functions3 changes the function used for
classification to 1 − D(z, z) − 2

∑
i αi(1 − D(z, xi)) +∑

i,j αiαj(1 − D(xi, xj)) ≤ R2. Since D(z, z) = 0, we

2K(x, y) = (1− |x− y|) · I(|x− y| < 1)
3this is possible as kernel functions are similarity functions



can rewrite the decision boundary as 1 −
∑
i αiD(z, xi) ≥

1−
∑
i αiD(xk, xi)

4 where xk is any labeled example. We
use the left hand side of the equation as the probability es-
timate for z belonging to the labeled class. Our definition
allows to return probabilistic estimates, but we can now also
use 1 −

∑
i αiD(xk, xi) as a decision boundary to predict

the example class. Since we optimize a different function,
it is not necessary for all examples xk to result in the same
boundary. But we can approximate it by using the average
distance to all labeled examples.

Feature Selection for OCC: It is also possible to view
our proposed approach as a feature selection strategy for
standard one-class classification methods. More specifically,
we can convert every path from root to leaf into a Boolean
feature since these paths can be represented as a horn clause.
Since the resulting feature is Boolean, doing this for every
path will yield a propositionalized data set that can then em-
ploy standard OCC methods such as SVM-OCC. We call
this approach SVMOCC-Rel and show the importance of
this feature selection strategy in our experiments. Proposi-
tionalization of relational data can possibly result in infi-
nite features as a walk through the relational graph can lead
to several resulting features. For instance, when reasoning
about a particular genetic disposition, it is possible to use
generations of ancestors’ information. Our method on the
other hand, can be seen as selecting these relational features
(i.e., identifying the most important set of ancestors) for a
propositional classifier making it possible for the proposi-
tional methods to work with relational data more seamlessly.

Implementation details: Our approach begins with the
distance of 0 between every pair of examples. During ev-
ery tree learning step, we use only a subsample of examples
for efficiency which has shown to improve performance in
highly skewed datasets (Chan and Stolfo 1998). We further
subsample the examples based on their current predictions.
Based on active learning (Settles 2012) techniques, we pick
unlabeled examples based on their proximity to the deci-
sion boundary as well as the misclassified examples. For the
weight learning step, we use a step length of η = 0.001.

4 Experiments
We evaluate the following different algorithms:
• RelOCC: This approach is our relational OCC method us-

ing the predictions from the combination function.
• RND: We modify the tree learner to randomly pick fea-

tures at every node. To ensure a strong baseline, we do
not pick any feature that results in more than 95% exam-
ples going to one branch.

• O-Rel: This refers to the strategy described above for us-
ing SVM-OCC with features generated from RelOCC.

• O-Rnd: This refers to SVM-OCC with features from RND
trees (i.e, random features).

• SVM: Instead of using only labeled examples, we use all
the examples for training a standard SVM on the propo-
sitionalized data. We use S-Rel and S-Rnd to denote the
SVM learned from RelOCC and RND trees respectively.
4after expanding R2

• RPT: As we are learning conditional discriminative mod-
els, we learn relational probability trees (Neville et al.
2003) for the target class as a relational baseline.

We use area under the Precision-Recall curve (AUC-PR) and
accuracy to compare our approaches. These datasets have
extremely skewed distributions, so using all the examples
for testing can achieve a very high precision when predicting
the most common label. We use a subset of examples with a
reduced skew (twice the negatives to positives) for testing to
avoid this issue. The same subset is used for all approaches
within each domain. Since one-class SVM methods return
only binary predictions we compare the accuracies, while we
compare the AUC-PR values for the relational approaches.

We aim to explicitly evaluate the following questions:
(Q1) Does RelOCC compare favorably to the baseline re-
lational learning methods for the OCC tasks? and (Q2) Do
the features extracted out of RelOCC help the propositional
one-class classifier (O-Rel)?

4.1 UW-CSE
UW-CSE dataset (Richardson and Domingos 2006) is a
standard SRL dataset developed at University of Washing-
ton. The goal is to predict the advisedBy relationship
between a student and a professor. The data set contains
information about professors, students and courses from five
different sub-areas of computer science. It includes relations
such as professor, student, publication,
advisedBy, hasPosition etc. Since the primary
motivation of our approach is one-class classification where
all the positive examples are not marked, we use only a
subset of positive examples and assume they were the only
ones marked by annotators. We pick 20%, 40% and 60% of
the labeled examples for training and use all the positives
for testing. The results for five-fold cross-validation are
shown in Table 2 and Table 3.

% marked RelOCC RND RPT
20% 0.93 0.87 0.76
40% 0.93 0.81 0.81
60% 0.92 0.83 0.88

Table 2: AUC-PR on UW dataset. Bold shows the best approach.

% marked RelOCC O-Rel O-Rnd S-Rel S-Rnd
20% 89.75 77.39 75.24 60.56 60.58
40% 89.97 75.55 74.94 60.56 60.56
60% 89.60 76.02 74.43 60.56 60.56

Table 3: Accuracy on UW dataset

As can be seen from the AUC-PR values, our approach
outperforms both OCC with random feature selection and
discriminative learning using RPTs thus answering Q1 af-
firmatively. Our approach also has a higher accuracy than
both using SVM-OCC and standard SVMs on the proposi-
tionalized dataset. The training dataset is highly skewed and



as a result basic SVM approaches (S-Rel and S-Rnd) pre-
dict the most common label. Thus Q2 can also be answered
affirmatively in that using our method for feature selection
helps SVM over the other feature selection methods. For
all other datasets, S-Rel and S-Rnd show similar behavior
where they predict all examples belonging to the negative
class and hence we do not show them in other data sets.

4.2 IMDB
IMDB is another popular SRL dataset (Mihalkova and
Mooney 2007) containing information about actors, direc-
tors and movies obtained from imdb.com. We focused on
the task of predicting the workedUnder relation in this
dataset. We performed five-fold cross-validation and the re-
sults are presented in Table 4 and 5. The results are simi-
lar to UW-CSE where RelOCC outperforms the SVM-based
approaches. But for this dataset, RPT are also able to learn
with few positive examples and have similar performance to
RelOCC. Both these approaches still outperform RND.

% marked RelOCC RND RPT
20% 0.98 0.80 0.99
40% 0.98 0.88 0.97
60% 0.97 0.91 0.97

Table 4: AUC-PR on IMDB dataset.

% marked RelOCC RND O-Rel O-Rnd
20% 93.88 56.76 81.15 84.10
40% 94.68 60.49 81.27 78.90
60% 94.36 62.14 78.69 77.53

Table 5: Accuracy on IMDB dataset

4.3 NFL
One of the primary motivations of our work was to learn
models for information extraction data sets with only posi-
tive labels. To this end, we evaluate our approach on the task
of extracting winners of National Football League (NFL)
games from sports articles. The annotations only provided
few positive examples. We use the Stanford NLP toolkit 5

to convert the text into NLP structures such as parse trees
and dependency graphs. Since this dataset only has few an-
notated positives, we do not drop any labeled examples in
our experiments. The results for ten-fold cross-validation on
this task are shown in Table 6 and 7.

RelOCC outperforms the other relational approaches thus
answering Q1. But as compared to the SVM-based ap-
proaches, using the RelOCC features for SVM-OCC (O-
Rel) does as well as the relational OCC approach in terms of
the accuracy. This shows clearly that our proposed approach
serves as a good feature selection method as well (answer-
ing Q2). Since this dataset has a large number of possible
features, random feature selection is not able to pick the rel-
evant attributes and both RND and O-Rnd are much worse.

5http://nlp.stanford.edu/software/corenlp.shtml

RelOCC RND RPT
0.63 0.35 0.59

Table 6: AUC-PR (NFL)

RelOCC RND O-Rel O-Rnd
69.95 34.92 70.22 47.70

Table 7: Accuracy results (NFL)

4.4 Heart
To evaluate the quality of feature selection, we use the Heart
dataset 6 which is a multivariate data set with 13 attributes.
The task is to predict the presence of heart disease in pa-
tients. We performed four-fold cross-validation and show the
results in Tables 8 and 9.

% marked RelOCC RND RPT
20% 0.47 0.38 0.39
40% 0.44 0.37 0.36
60% 0.43 0.38 0.43

Table 8: AUC-PR on Heart dataset

While RelOCC is better than both RND and RPT, using
SVM-OCC with RelOCC as a feature selection procedure
does much better than using the RelOCC model. Since this
dataset is originally a propositional dataset, the complex in-
teractions captured by the distance function in RelOCC are
not required and can possibly overfit the data. Hence with
fewer examples marked (20%), RelOCC does as well as
SVM-OCC and better than all the other approaches. The re-
sults here show that SVM benefits from the feature selection
as it is better than both O-Rnd and the baseline SVM meth-
ods answering Q2 affirmatively.

% marked RelOCC RND O-Rel O-Rnd
20% 63.85 38.71 62.73 50.64
40% 50.34 37.67 62.59 49.50
60% 46.38 39.31 60.55 51.53

Table 9: Accuracy on Heart dataset

5 Conclusion
We presented a non-parametric approach for one-class clas-
sification from relational data. We defined a new distance
metric based of first-order decision forest and a density es-
timation model using the distance metric. We can efficiently
update the distance metric to improve the classifier’s perfor-
mance. Our approach as a side effect introduces novel and
relevant features which can also be used to augment proposi-
tional OCC methods. The next step is to apply our approach
to other information extraction tasks such as TempEval (Uz-
Zaman et al. 2012) and BioNLP (Kim et al. 2009). Integrat-
ing other kernels and combination functions into our method
might help in further improving the performance.

6http://archive.ics.uci.edu/ml/datasets/Heart+Disease
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