
Bootstrapping Knowledge Base Acceleration

Tushar Khot, Ce Zhang,
Sriraam Natarajan+, Christopher Re∗ and Jude Shavlik

University of Wisconsin-Madison, +Indiana University, ∗Stanford University

Abstract

The Streaming Slot Filler (SSF) task in TREC
Knowledge Base Acceleration track involves detect-
ing changes to slot values (relations) over time. To
handle this task, the system needs to extract relations
to identify slot-filler values and detect novel values.
Being the first attempt at KBA, the biggest challenge
that we faced was the scale of the data. We present
the approach used by University of Wisconsin for the
SSF task and the large scale challenge. We used Ele-
mentary, a scalable statistical inference and learning
system, developed in University of Wisconsin as our
core system. We used Stanford NLP Toolkit to gener-
ate parse trees, dependency graphs and named-entity
recognition information. These were then converted
to features for the logistic regression learner of Ele-
mentary. To handle the lack of early SSF training
data, we used our existing Knowledge Base Popula-
tion system to bootstrap a logistic regression model
and added rules to handle the new relations.

1 Introduction

The Knowledge Base Acceleration (KBA) track
seeks to help humans expand knowledge bases like
Wikipedia by automatically recommending edits
based on incoming content streams. To this end,
KBA systems must filter a large stream of text to find
changes to a knowledge base. To recognize changes
in knowledge base profiles for particular entities of
interest, a KBA system will have to extract relations
(slot fillers) for these entities from the corpus stream

and find novel relations from these extractions.

Given the scale of the streaming corpus, running a
relation extraction system on all the documents was
infeasible. Hence, our system had to filter down the
documents for relation extraction. Moreover, the fil-
tering step needs to be much faster than the relation
extraction step. Even after filtering the documents,
we need a scalable learning and inference system to
perform relation extraction. Since many of the rela-
tions in this task were new, we also needed a flexible
system which allows us to easily specify new features
/ rules for these relations.

We used basic string search to quickly filter out ir-
relevant documents (that do not mention the entities
of interest). From the filtered list of documents, we
extracted relations using Elementary [6, 7], a statis-
tical inference and learning system. A key advantage
of the Elementary system is that it is a prototype
system that scales to very large corpuses. A sec-
ondary advantage of this system is that it uses the
richer representation of a probabilistic logic forma-
tion called Markov Logic [2] allowing to model and
capture rules that are likely but not certain to be cor-
rect. We used the Stanford NLP toolkit1 to extract
parse trees, dependency graphs and named entities
to generate the features necessary for Elementary.
We used the model learned for TAC-KBP 2010 [4]
by mapping the relations from KBP domain to the
KBA task. We designed features to handle the new
relations and entity types.

We also learned various lessons in our first at-
tempt at KBA. Although we filtered down the doc-

1http://nlp.stanford.edu/downloads/corenlp.shtml

1

Appears in Text REtrieval Conference (TREC) 2013 Proceedings



uments for relation extraction, we still had to down-
load all the data and decrypt it locally which was
time-consuming. In hindsight, performing the filter-
ing on Amazon Cloud would have been more efficient.
We also assumed given the size of the corpus, most
of the relations would be mentioned multiple times.
Hence we did not rely on having all the possible rules
for each relation, but on capturing the common cases.
But since the set of entities were not popular, we were
not able to extract many slot values for these entities.

The rest of the paper is organized as follows. In
Section 2, we present few details about the Streaming
Slot-Filling task (SSF) that we worked on. Following
that, we present the details of our approach in Sec-
tion 3. Finally, we briefly discuss the results of our
approach and future steps to further improve them.

2 Background

The KBA track provides a large streaming corpus by
breaking the documents up into hourly chunks which
can then be processed sequentially. The track also
provides a list of target entities represented as links
to Wikipedia or Twitter pages. Given the corpus and
entity list as input, the track consists of two tasks:

• Cumulative Citation Recommendation (CCR)
task. The CCR task involves filtering documents
worth citing in a profile of a target entity. The
system needs to recognize whether a document
is useful (time-invariant e.g., place of birth) or
vital (timely e.g. title).

• Streaming Slot Filling (SSF) task. The SSF task
involves detecting changes to slot filler values (re-
lations) for target entities. The system needs to
extract slot filler values for target entities and
then recognize changes to slot values. We con-
centrated only on this task in our system.

3 Our Approach

The three key challenges that we faced with Stream-
ing Slot Filling task were:

1. Handling the large scale of data

2. Extracting slot values for target entities

3. Detecting novel slot values

To solve each of these problems, we developed heuris-
tic approaches that we outline in this section.

3.1 Large scale

Due to the scale of the proposed task, it is not feasible
to perform relation extraction on the entire corpus.
Similarly, employing many of the standard, publicly
available natural language processing tools would not
be feasible as well. In order to make the corpus
size manageable, we searched for target entities (and
variants of their names) in the articles. For e.g., if
“William Smith” is a person of interest, we will ac-
cept any document that mentions “William”, “Bill”
or ”Smith”. If an article contains any useful infor-
mation about a target entity, we assume that some
variant of the target entity name will be mentioned
in the article. This heuristic is very fast as it does
not require any processing to be done on the article
and we only need to find the first match for a target
entity in the article. We use a simplified version of
the Aho-Corasick algorithm [1] since we only need to
find the first match. This reduces the size of the cor-
pus from ∼60TB to a manageable ∼1TB. We imple-
mented parallel version of the filtering algorithm on
these articles to further speed up our system. Since
we ran this step on our local cluster with limited stor-
age space, this step still took a week to run. Going
forward, we will move this step to the Amazon cloud
service and reduce the amount of data downloaded
to our local cluster.

3.2 Extracting slot values

To perform relation extraction, we first extracted
parse trees and dependency graphs for sentences in
the filtered articles. Although TREC does provide
some basic NLP annotations as part of the corpus,
we employed Stanford toolkit since we needed depen-
dency graphs as features for relation extraction. We
then used the Elementary system developed at Uni-
versity of Wisconsin-Madison to perform relation ex-
traction. At a high level, Elementary first creates the

2



potential mentions based on the named entities. It
then creates a list of potential relations between pairs
of mentions in the same sentence. For each potential
relation, the path in the dependency graph and parse
tree is calculated and used as features for a logistic
regression model. The weights are learned for each
feature and each relation type using gold-standard
training data as well as distant supervision examples
[5]. We also manually can specify rules which can be
as simple as just specifying feature weights or even
constraints on the relations. For further details about
Elementary, please refer to Niu et al. [6].

Once these features were obtained, we needed to
learn the weighs for features in Elementary. It should
be mentioned that for the initial runs of the SSF task,
there was no available training data. Hence, we used
a model that had been learned using distant super-
vision on a subset of the relations for the Knowledge
Base Population (TAC KBP 2010) task [4]. We found
mappings between the relation names from KBP task
to the KBA task. The mapping between the KBA
and KBP relations is shown in Table 1. For the re-
lations in KBA that couldn’t be mapped, we manu-
ally created features based on few sample sentences.
To do so, we searched for sample sentences contain-
ing these relations and added the corresponding de-
pendency path or parse tree features to the model.
We assumed that capturing few features for these
new relations would be sufficient. Given the scale
of the data, we assumed that at least one mention of
a valid relation will be extracted using a simple rela-
tion extractor. Once we extracted the relations, we
employed Elementary’s entity-linking model to link
the slot filler entities with the target entities. We fil-
tered out the relations that did not include any target
entities.

3.3 Novelty detection

Given the extracted relations, we processed them
chronologically based on the document time to check
for any change in slot value. Unlike the previous
steps, this step can not be performed in parallel. For
every relation, we check if we have already extracted
any relations of the same type for the same entity. If
not, we accept this relation as a novel slot value. If

KBP Relations KBA Relation

per : date of death DateOfDeath
per : title Titles
per : spouse SignificantOther
per : employee of,

EmployeeOf
per : member of,
org : member of,
org : top employees
org : top members TopMembers
org : subsidiaries,

Affiliate
per : schools attended

Table 1: Mapping between KBP and KBA relations.
All extractions of the relation type on the left were
marked as KBA relations of the type on right.

Figure 1: Overall System Design.

we already have a slot value extracted, we compare
the slot values and accept the new relation as novel
if the edit distance between the two values is large
enough.

Figure 1 shows the overall system design as a
flowchart. As mentioned before, we filter the doc-
uments using a basic entity filter. We perform Entity
Linking and Relation Extraction using Elementary.
We only accept relations over mentions linked to the
target entities. We then perform our basic novelty de-
tection over the stream of extracted relations where
the previous extraction are cached. Only the novel
relations are then used to create the output for the
SSF task.

3



4 Results

We now discuss the results of our system on the SSF
task. There were two evaluation measures used by
TREC for this task: (1) average F-1 score and (2)
average Scaled Utility (SU) [3]. Each score is calcu-
lated over four stages in a pipeline:

• SSF-DOCS: In this stage, the system’s capa-
bility to identify the slot type in a document is
evaluated. The scores are calculated by compar-
ing the slot types of the output run against the
annotations (the slot values are ignored).

• SSF-OVERLAP: This stage evaluates the slot
values of the output run by checking for overlap
with the annotations, but only considers the true
positives from the previous stage.

• SSF-FILL: This stage too takes as input the
true positives from the previous stage but checks
if the output run recognizes the equivalence be-
tween the same slot values.

• SSF-DATE HOUR: This stage checks if the
system is able to recognize the first occurrence
of the slot value and ignores the duplicates.

Since our approach concentrated on a subset of the
relations, the F1 score on any of these measures av-
eraged over all the relations was very low. In gen-
eral for all the stages, our F1 score was close to zero
but the scaled utility was close to the median value.
Also, our basic assumption that most of the relations
would be mentioned multiple times in multiple ways
was flawed. Since we only relied on capturing the
common cases, we missed many extractions for the
uncommon entities resulting in a low recall.

5 Conclusion

We present the design of our system for the stream-
ing slot-filling task. We use a high-throughput and
high-recall filter to get a smaller corpus for the com-
putationally intensive relation extraction step. We
use a scalable and highly flexible system, Elementary
to perform relation extraction. We bootstrapped this

system by transferring the learned model from TAC
KBP 2010 thereby circumventing the need for train-
ing examples.

We have learned various lessons in our first attempt
at this task. Going forward, we will move the filter-
ing task to Amazon Cloud to make it much more
computationally efficient. We will work on training a
model for all the relations of this domain via distant
supervision. We also will work on manually evaluat-
ing our results to check for the sources of errors in
our system.

Acknowledgements
The authors gratefully acknowledge support of the DARPA
DEFT Program under the Air Force Research Laboratory
(AFRL) prime contract no. FA8750-13-2-0039. Any opinions,
findings, and conclusion or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the view of the DARPA, AFRL, ARO, or the US government.

References
[1] A. V. Aho and M. J. Corasick. Efficient string matching:

an aid to bibliographic search. Communications of the
ACM, 18(6), 1975.

[2] P. Domingos and D. Lowd. Markov Logic: An Interface
Layer for AI. Morgan & Claypool, San Rafael, CA, 2009.

[3] D. Hull and S. Robertson. The TREC–8 filtering track
final report. In TREC, 1999.

[4] H. Ji, R. Grishman, H. Dang, and K. Griffit. An overview
of the TAC 2010 knowledge base population track. In TAC,
2010.

[5] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled data.
In ACL, 2009.

[6] Feng Niu, Ce Zhang, Christopher Ré, and Jude Shavlik.
Elementary: Large-scale knowledge-base construction via
machine learning and statistical inference. IJSWIS Special
Issue on Web-Scale Knowledge Extraction, 2012.

[7] Ce Zhang and Christopher R. Towards high-throughput
gibbs sampling at scale: A study across storage managers.
2013.

4


