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Abstract

We describe our current efforts towards creating a reinforce-
ment learner that learns both from reinforcements provided
by its environment and from human-generated advice. Our
research involves two complementary components: (a) map-
ping advice expressed in English to a formal advice language
and (b) using advice expressed in a formal notation in a re-
inforcement learner. We use a subtask of the challenging
RoboCup simulated soccer task (Noda et al. 1998) as our
testbed.

Introduction
Reinforcement learning (RL) is a common way to create
adaptive systems that learn to act in complex, dynamic envi-
ronments (Sutton & Barto 1998). In RL, the learner repeat-
edly senses the world, chooses an action to perform, and
occasionally receives feedback from its environment, which
the learner then uses to improve its performance. Employing
RL can be a more effective way to create intelligent robots
and software agents than writing programs by hand. In ad-
dition, RL also requires much less human intervention than
supervised machine learning, which requires large sets of
labeled training examples. We describe our current efforts
towards creating a reinforcement learner that learns both
from reinforcements provided by its environment and from
human-written suggestions; in fact, it is our goal that these
suggestions be provided in ordinary English.
Typically, the feedback given to a reinforcement learner is
simply a numeric representation of rewards or punishments.
However, there usually is much more feedback that a hu-
man teacher of such a learner could provide. Several re-
searchers have designed successful methods where this feed-
back can include high-level “advice” expressed by humans
at a natural level of abstraction using statements in a formal
language (Noelle & Cottrell 1994; Maclin & Shavlik 1994;
Siegelmann 1994; Eliassi-Rad & Shavlik 2003). Since the
agent employs machine learning, such advice need not be
perfectly accurate, fully precise, nor completely specified.
In some approaches, the RL-agent’s human partner can pro-
vide advice at any time, based on the agent’s current behav-
ior. The advice may suggest an action to be taken immedi-
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ately (Clouse & Utgoff 1992), or it may contain explicit con-
ditions under which an action should be taken henceforth. It
is the latter case that we consider in this paper. Good advice
can rapidly improve an agent’s performance while an agent
can recover reasonably quickly from poor advice (Maclin
1995).
Natural language (NL) is the most convenient way for or-
dinary users to specify such advice. Methods that learn to
map natural to formal language given training examples of
the desired transformation can help automate the construc-
tion of an NL-advice interpreter. Learning methods also al-
low a system to automatically adapt to the particular lan-
guage of specific users. Mooney’s research group has been
developing successful methods for learning to translate NL
into formal semantic representations (Zelle & Mooney 1996;
Thompson & Mooney 2003; Tang & Mooney 2001). By
mapping instructions expressed in ordinary English to a for-
mal representation, we aim to alleviate the sizable burden of
explicitly supplying formal representations of advice.
In the remainder of this article, we describe our recent
research that involves two complementary components:
(a) mapping advice expressed in English to a formal advice
language and (b) using advice expressed in a formal notation
in a reinforcement learner. We use a subtask of the challeng-
ing RoboCup simulated soccer task (Noda et al. 1998) as
our testbed. Before describing our technical approaches, we
present the subtask of RoboCup soccer that we are using.

The Keepaway Task in RoboCup Soccer
Keepaway is a subproblem of RoboCup simulated soccer
introduced by Stone and Sutton (Stone & Sutton 2001) in
which one team, the keepers, tries to maintain possession of
the ball within a limited region, while the opposing team,
the takers, attempts to gain possession. Whenever the tak-
ers take possession or the ball leaves the region, the episode
ends and the players are reset for another episode (with the
keepers being given possession of the ball again). Parame-
ters of the task include the size of the region, the number of
keepers, and the number of takers. Figure 1 shows a screen
shot of an episode with 3 keepers and 2 takers (called 3 vs.
2, or 3v2 for short) playing in a 20m× 20m region.1

1Flash files illustrating the task are available at http://www.
cs.utexas.edu/˜AustinVilla/sim/keepaway/
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Figure 1: A screen shot from the middle of a 3 vs. 2 keep-
away episode in a 20m x 20m region. Flash files illustrating
the task are available from http://www.cs.utexas.edu/
˜AustinVilla/sim/keepaway/

Agents in the RoboCup simulator (Noda et al. 1998) receive
visual perceptions every 150 msec indicating the relative dis-
tance and angle to visible objects in the world, such as the
ball and other agents. They may execute a primitive, pa-
rameterized action such as turn(angle), dash(power),
or kick(power,angle) every 100 msec. Thus the agents
must sense and act asynchronously. Random noise is in-
jected into all sensations and actions. Individual agents
must be controlled by separate processes, with no inter-agent
communication permitted other than via the simulator itself,
which enforces communication bandwidth and range con-
straints. Full details of the RoboCup simulator are presented
in the server manual (Chen et al. 2003).
In this work, we focus exclusively on training the keep-
ers. As a way of incorporating domain knowledge, our
learners choose not from the simulator’s set of primitive ac-
tions but from higher-level actions constructed from a set
of basic skills that were implemented by the CMUnited-99
team (Stone, Riley, & Veloso 2000).
Keepers have the freedom to decide which action to take
only when in possession of the ball. A keeper in possession
may either hold the ball or pass to one of its teammates.
Keepers not in possession of the ball are required to select
the Receive option in which the player who can get there the
soonest goes to the ball and the remaining players try to get
open for a pass.
We further incorporate domain knowledge by providing the
keepers with rotationally-invariant state features computed
from the world state. The keepers’ set of state variables are
computed based on the positions of: the keepers K1–Kn

and takers T1–Tm, ordered by increasing distance from K1;
and C, the center of the playing region. Let dist(a, b) be
the distance between a and b and ang(a, b, c) be the angle
between a and c with vertex at b. For 3 keepers and 2 takers,
we used the following 13 state variables:

dist(K1, C), dist(K2, C), dist(K3, C),
dist(T1, C), dist(T2, C),
dist(K1, K2), dist(K1, K3),
dist(K1, T1), dist(K1, T2),

Min(dist(K2, T1), dist(K2, T2)),
Min(dist(K3, T1), dist(K3, T2)),
Min(ang(K2, K1, T1), ang(K2, K1, T2)),
Min(ang(K3, K1, T1), ang(K3, K1, T2))

For our purposes, the behavior of the takers is “hard-wired”
and relatively simple. The two takers that can get there the
soonest go to the ball, while the remaining takers try to block
open passing lanes.
An obvious performance measure for this task is average
episode duration. The keepers attempt to maximize it while
the the takers try to minimize it. To this end, the keepers
are given a constant positive reward for each time step an
episode persists. For full details on the task and the learning
scenario, see Stone and Sutton (2001).

Natural Language Interface
Allowing human teachers to provide advice in natural lan-
guage allows them to instruct a learning agent without hav-
ing to master a complex formal advice language. In our
approach, a parser automatically translates natural-language
instructions into an underlying formal language appropriate
for the domain. Statements in this formal language are then
used to influence the action policy learned by the agent.
In the RoboCup Coach Competition, teams compete to pro-
vide effective instructions to a coachable team in the sim-
ulated soccer domain. Coaching information is provided in
a formal language called CLANG (Coach Language) (Chen
et al. 2003). By constructing English translations for 500
CLANG statements produced by several teams for the 2003
RoboCup Coach Competition, we produced a corpus for
training and testing a natural-language interface. Below are
some sample annotated statements from this corpus:
− If player 4 has the ball, it should pass the ball to player 2

or 10.
((bowner our {4}) (do our {4} (pass {2 10}))))

− No one pass to the goalie.
((bowner our {0}) (dont our {0} (pass {1}))))

− If players 9, 10 or 11 have the ball, they should shoot and
should not pass to players 2-8.
((bowner our {9 10 11})
(do our {9 10 11} (shoot))
(dont our {9 10 11} (pass {2 3 4 5 6 7 8})))

For a sufficiently restricted task, such as RoboCup coaching,
parsing natural-language sentences into formal representa-
tions is a reasonably manageable task using current NLP
technology (Jurafsky & Martin 2000). However, developing
such a parser is a very labor-intensive software-engineering
project. Consequently, methods that learn to map natural
language to a given formal language from input/output pairs
such as those above can significantly automate this difficult
development process.
We have previously developed methods for learning to trans-
late natural-language sentences into formal semantic repre-
sentations. In particular, we have developed two integrated
systems, CHILL (Zelle & Mooney 1996), which learns a
parser for mapping natural-language sentences directly to
logical form, and WOLFIE (Thompson & Mooney 2003),



which learns a lexicon of word meanings required by this
parser.
We are currently adapting CHILL and WOLFIE to learn to
map English to CLANG as well as exploring several new ap-
proaches to semantic parsing. Our first new approach uses
pattern-based transformation rules to map phrases in natural
language directly to CLANG. Our second new approach first
uses a statistical parser (Charniak 2000) to produce a syntac-
tic parse tree, then uses pattern-based transformation rules to
map subtrees of this parse to CLANG expressions. Our third
new approach uses a parser that integrates syntactic and se-
mantic analysis by pairing each production in the syntactic
grammar with a compositional semantic function that pro-
duces a semantic form for a phrase given semantic forms for
its subphrases (Norvig 1992). For lack of space, we elabo-
rate only on the first of these new approaches, which is the
simplest method.
CLANG comes with a formal grammar that defines the lan-
guage using production rules such as:

ACTION → (pass UNUM SET)
CONDITION → (bowner our UNUM SET)

where UNUM SET is a non-terminal symbol for a set of
uniform numbers. Our translator uses transformation rules
that map natural-language phrase patterns to subtrees of the
parse tree for the CLANG representation. These transforma-
tion rules are repeatedly applied to construct the parse tree
for the CLANG representation bottom-up. The non-terminal
symbols in the CLANG grammar provide convenient inter-
mediate representations that can be used to write general,
effective transformation rules. For example, consider the
sentence:

“If player 2 has the ball, player 2 should pass to player 10.”

First, the transformation rule:

“player N has the ball” ⇒
CONDITION → (bowner our {N})

rewrites the sentence to

“If CONDITION[(bowner our {2})], player 2
should pass to player 10.”

Next:

“pass to player N” ⇒ ACTION → (pass {N})

rewrites the sentence to

“If CONDITION[(bowner our {2})], player 2
should ACTION[(pass {10})].”

Next:

“player N should ACTION” ⇒
DIRECTIVE → (do our {N} ACTION)

rewrites the result to

“If CONDITION[(bowner our {2})],
DIRECTIVE[(do our 2 (pass {10}))].”

Finally:

“If CONDITION, DIRECTIVE.” ⇒
RULE → (CONDITION DIRECTIVE)

produces the final CLANG result

“RULE[((bowner our {2})
(do our 2 (pass {10})))]”.

We have developed a learning system called SILT, that au-
tomatically induces such transformation rules from manu-
ally annotated sentences (Kate et al. 2004). Current 10-
fold cross-validation experiments on our CLANG corpus, in
which 90% of the sentences are used for training and 10%
for independent testing, demonstrate that the learned parser
produces completely correct translations for about a third
of novel sentences, and mostly correct translations for most
other sentences.

Giving Advice to the Keeper
Previously, Stone and Sutton (2001) achieved success-
ful learning results in the keepaway domain using a
reinforcement learning algorithm called episodic SMDP
Sarsa(λ) (Sutton & Barto 1998). They represented the state
of the work via linear tile-coding function approximation
(CMACs (Albus 1981)). We are using the same reinforce-
ment learning methods in this work.
The function approximator takes in the keeper’s set of state
variables as input and produces values for each of the avail-
able actions: hold or pass to teammate k. The free variables
in the function approximator (feature weights) are adjusted
so that the value associated with a particular action approxi-
mates the expected episode duration should the learner se-
lect that action. Normally, these values are then used to
determine the keeper’s action, with the keeper typically se-
lecting the action with the highest value (occasionally rein-
forcement learners also need to take exploratory actions, i.e.,
actions that do not have the highest value).
In order to incorporate advice, we add a new component to
the learner called the advice unit. Like the function approx-
imator, the advice unit generates values for the possible ac-
tions in the current world state. However, the output of the
advice unit is not learned. Instead, it is determined by advice
supplied by the user.
As stated previously, in our system, advice rules are rep-
resented using the standardized coach language, CLANG.
CLANG rules consist of conditions specifying when the rule
is triggered and directives specifying which action a player
should or should not take. The conditions are composed of
high-level predicates over the world state, such as: “is the
ball within 10m of player 7?”. CLANG includes the ability
to refer to basic skills, such as: pass, dribble, shoot, etc.
The input to the advice unit is a set of features about the
world state sufficient to evaluate CLANG conditions. Ini-
tially, all action values are set to zero. In each time step in
which an action is to be chosen, the conditions of the rules
supplied to the advice unit are matched against the current
world state. If a rule “fires” (i.e., the LHS is satisfied) the
corresponding action value is increased or decreased by a
constant amount (±2.0) depending on whether the directive
advises for or against the action. The values generated by



the advice unit are added to those generated by the function
approximator and presented to the learning algorithm.
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Figure 2: A pictorial summary of the complete advice integration
scheme.

One of the nice things about this advice incorporation
method is that it does not require the function approximator
and the advice unit to use the same set of features to describe
the world. At the same time, it allows for the advice to be
adjusted by the learner. By adjusting the function approxi-
mator’s value for an advised action, the agent can effectively
“unlearn” the given advice.

Experiments with Advice Giving
We conducted a series of preliminary experiments to mea-
sure the impact of advice on the quality of the learned poli-
cies and the speed at which those policies converge. In each
experiment, we add a single piece of advice at the beginning
of the learning trial. The advice applies to every member of
the keeper team and remains active for the duration of the
experiment.

Four Sample Pieces of Advice
We created four pieces of sample advice to test the system.
The advice has not been extensively engineered to maximize
performance. It is simply a collection of “first thoughts”
made from observing the players during training and recog-
nizing some of their shortcomings.
The first piece of advice, Hold Advice, states that the player
in possession of the ball should choose to hold onto the ball
rather than pass if no opponents are within 8m. We observed
that early in learning the keepers tend to pass more often
than they probably should. Therefore, it seems reasonable
to advise them not to pass when the takers are too far away
to be a threat. Figure 3 illustrates this advice. The keep-
ers are represented as darkly-filled circles and the takers are
represented as lightly-filled circles.
To give a sense of how advice is represented in the syntax of
CLANG, the following is the CLANG rule corresponding to
the Hold Advice:

(definerule hold-advice direc
((ppos opp {0} 0 0

(arc (pt self) 0 8 0 360))
(do our {0} (hold))))

The rule describes a circular region (shown dashed in Fig-
ure 3) centered at one of the keepers with a radius of 8m,

Figure 3: Hold Advice - If no opponents are within 8m then hold.

and states that if exactly 0 opponents are in that region, the
keeper is advised to perform the hold action.
The next piece of example advice we call Quadrant Ad-
vice. As seen in Figure 4, the play region is divided into
four quadrants. A player is advised to pass to a teammate
if that teammate is in a different quadrant and that quadrant
contains no opponents. This advice aims to encourage play-
ers to pass to teammates that are not being defended.

Figure 4: Quadrant Advice - Pass to a teammate if he is in a
different quadrant that contains no opponents.

Lane Advice (see Figure 5) instructs players to pass to a
teammate when the passing lane to that teammate is open.
A passing lane is defined as an isosceles triangular region
with its apex at the position of the player with the ball and its
base midpoint at the position of the intended pass recipient.
A lane is open if no opponents are inside the region. The
purpose of this advice is to encourage passes that are likely
to succeed.

Figure 5: Lane Advice - Pass to a teammate if there are no oppo-
nents in the corresponding passing lane.

The final piece of advice used in our experiments, Edge
Advice, differs from the previous advice in that it advises
against an action rather than for one. As shown in Figure 6,
this rule defines edge regions along the sides of the playing
field. These regions are each 5m wide. A player is advised



not to pass to a teammate if both players are in the same edge
region. The goal of this advice is to discourage passes along
the edges of the play region, which have a high probability
of going out of bounds due to noise in the simulator.

X

Figure 6: Edge Advice - Do not pass along the edges of the play
region.

Empirical Results when Using Advice
For each piece of advice tested, we ran five learning trials
starting from a different random initial state of the learner’s
function approximator. The results are compared with five
learning trials during which no advice is given. For each
learning trial, we measure the average episode duration over
time. Episodes are averaged using a 1000-episode sliding
window. We plot the learning curves for every trial on the
same graph to give a sense of the variance. The results are
shown in Figures 7-10. In all experiments, 3 keepers played
against 2 takers on a 20m × 20m field.
By default in the RoboCup simulator, players are only able
to see objects that are within a 900 view cone. Although
we have shown previously that the learning method used in
this paper is able to work under this condition (Kuhlmann
& Stone 2004), in this work, we have simplified the prob-
lem by giving the players 360o. This simplification ensures
that the conditions of the advice unit are always accurately
evaluated.
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Figure 7: Learning curves comparing Hold Advice to no advice.

It is clear from Figure 7, that the Hold Advice is helpful.
Learning with this advice consistently outperforms learning
without it. However, it is surprising that the players do not
learn faster as a result.
Similarly, the results for the Quadrant Advice shown in
Figure 8 demonstrate that this advice, while not speeding up
learning, helps the learners to perform better than without it.
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Figure 8: Learning curves comparing Quadrant Advice to no ad-
vice.
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Figure 9: Learning curves comparing Lane Advice to no advice.

Figure 9 shows that the Lane Advice is also helpful. How-
ever the performance improvement is not as dramatic as in
the previous cases.
Finally, from Figure 10, we see that the learners did not find
the Edge Advice to be consistently beneficial. However, it
appears that in one learning trial, the keepers were able to
benefit from the advice.

Additional Experiments
After establishing that several different kinds of advice are
beneficial in isolation, we started exploring the possibility of
combining the advice. We ran several experiments in which
two or more pieces of advice were active at the same time.
Typically, while the learners still performed better than with
no advice, the results are not as good as those learned with
the advice activated individually.
A possible explanation for this result is that in situations in
which two pieces of advice that recommend different actions
are triggered at the same time, they effectively cancel each
other out. Additional work is needed to fully understand and
resolve this difficult issue. We plan to continue to explore
ways to combine advice to achieve the desired additive effect
that has been reported in other work (Maclin 1995).

Conclusion and Future Work
Allowing humans to provide high-level advice to their soft-
ware assistants is a valuable way to improve the dialog be-
tween humans and the software they use. It changes the
metaphor from that of giving commands to computers to that
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Figure 10: Learning curves comparing Edge Advice to no advice.

of giving them advice. By their being able to accept, adapt,
and even discard advice, advice-taking systems have the po-
tential to radically change how we interact with robots and
software agents.
We have empirically investigated the idea of giving advice
to an adaptive agent that learns how to use the advice effec-
tively. We show that some simple, intuitive advice can sub-
stantially improve a state-of-the-art reinforcement learner on
a challenging, dynamic task. Several pieces of advice were
shown to improve performance on the RoboCup keepaway
task, and we plan to continue extending our work on advis-
able reinforcement learning to cover the complete simulated
RoboCup task.
We are currently investigating additional ways of mapping
English statements into formal advice and alternate ap-
proaches for using advice in reinforcement learners. We
are developing multiple approaches to automatically learn-
ing to translate natural-language to semantic representations
and we will evaluate them on our assembled English/CLANG
corpus. Besides extending how we use advice with a
CMAC-based learner (e.g., by modifying the weights in the
CMAC directly or changing the learner’s exploration func-
tion to give higher consideration to advised actions), we are
also investigating the use of knowledge-based support vec-
tor machines (Fung, Mangasarian, & Shavlik 2002) and in-
structable agents that use relational learning methods (Dze-
roski, Raedt, & Driessens 2001).
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