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Abstract. Prior knowledge, in the form of simple advice rules, can
greatly speed up convergence in learning algorithms. Online learning
methods predict the label of the current point and then receive the cor-
rect label (and learn from that information). The goal of this work is to
update the hypothesis taking into account not just the label feedback,
but also the prior knowledge, in the form of soft polyhedral advice, so
as to make increasingly accurate predictions on subsequent examples.
Advice helps speed up and bias learning so that generalization can be
obtained with less data. Our passive-aggressive approach updates the
hypothesis using a hybrid loss that takes into account the margins of
both the hypothesis and the advice on the current point. Encouraging
computational results and loss bounds are provided.

1 Introduction

We propose a novel online learning method that incorporates advice into passive-
aggressive algorithms, which we call the Adviceptron. Learning with advice and
other forms of inductive transfer have been shown to improve machine learning
by introducing bias and reducing the number of samples required. Prior work has
shown that advice is an important and easy way to introduce domain knowledge
into learning; this includes work on knowledge-based neural networks [15] and
prior knowledge via kernels [12]. More specifically, for SVMs [16], knowledge
can be incorporated in three ways [13]: by modifying the data, the kernel or the
underlying optimization problem. While we focus on the last approach, we direct
readers to a recent survey [9] on prior knowledge in SVMs.

Despite advances to date, research has not addressed how to incorporate
advice into incremental SVM algorithms from either a theoretical or computa-
tional perspective. In this work, we leverage the strengths of Knowledge-Based
Support Vector Machines (KBSVMs) [6] to effectively incorporate advice into
the passive-aggressive framework introduced by Crammer et al., [4]. Our work
explores the various difficulties and challenges in incorporating prior knowledge
into online approaches and serves as a template to extending these techniques
to other online algorithms. Consequently, we present an appealing framework
for generalizing KBSVM-type formulations to online algorithms with simple,
closed-form weight-update formulas and known convergence properties.
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We focus on the binary classification problem and demonstrate the in-
corporation of advice that leads to a new algorithm called the passive-aggressive
Adviceptron. In the Adviceptron, as in KBSVMs, advice is specified for convex,
polyhedral regions in the input space of data. As shown in Fung et al., [6], advice
takes the form of (a set of) simple, possibly conjunctive, implicative rules. Ad-
vice can be specified about every potential data point in the input space which
satisfies certain advice constraints, such as the rule

(feature7 ≥ 5) ∧ (feature12 ≥ 4) ⇒ (class = +1),

which states that the class should be +1 when feature7 is at least 5 and
feature12 is at least 4. Advice can be specified for individual features as above
and for linear combinations of features, while the conjunction of multiple rules
allows more complex advice sets. However, just as label information of data can
be noisy, the advice specification can be noisy as well. The purpose of advice is
twofold: first, it should help the learner reach a good solution with fewer training
data points, and second, advice should help the learner reach a potentially better
solution (in terms of generalization to future examples) than might have been
possible learning from data alone.

We wish to study the generalization of KBSVMs to the online case within
the well-known framework of passive-aggressive algorithms (PAAs, [4]). Given a
loss function, the algorithm is passive whenever the loss is zero, i.e., the data
point at the current round t is correctly classified. If misclassified, the algorithm
updates the weight vector (wt) aggressively, such that the loss is minimized over
the new weights (wt+1). The update rule that achieves this is derived as the
optimal solution to a constrained optimization problem comprising two terms: a
loss function, and a proximal term that requires wt+1 to be as close as possible to
wt. There are several advantages of PAAs: first, they readily apply to standard
SVM loss functions used for batch learning. Second, it is possible to derive
closed-form solutions and consequently, simple update rules. Third, it is possible
to formally derive relative loss bounds where the loss suffered by the algorithm
is compared to the loss suffered by some arbitrary, fixed hypothesis.

We evaluate the performance of the Adviceptron on two real-world tasks:
diabetes diagnosis, and Mycobacterium tuberculosis complex (MTBC) isolate
classification into major genetic lineages based on DNA fingerprints. The latter
task is an essential part of tuberculosis (TB) tracking, control, and research by
health care organizations worldwide [7]. MTBC is the causative agent of tuber-
culosis, which remains one of the leading causes of disease and morbidity world-
wide. Strains of MTBC have been shown to vary in their infectivity, transmission
characteristics, immunogenicity, virulence, and host associations depending on
their phylogeographic lineage [7]. MTBC biomarkers or DNA fingerprints are
routinely collected as part of molecular epidemiological surveillance of TB. Clas-
sification of strains of MTBC into genetic lineages can help implement suitable
control measures. Currently, the United States Centers for Disease Control and
Prevention (CDC) routinely collect DNA fingerprints for all culture positive TB
patients in the United States. Dr. Lauren Cowan at the CDC has developed
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Fig. 1: Knowledge-based classifier which separates data and advice sets. If the
advice sets were perfectly separable we have hard advice, (3). If subregions of
advice sets are misclassified (analogous to subsets of training data being misclas-
sified), we soften the advice as in (4). We revisit this data set in our experiments.

expert rules for classification which synthesize “visual rules” widely used in the
tuberculosis research and control community [1, 3]. These rules form the basis of
the expert advice employed by us for the TB task. Our numerical experiments
demonstrate the Adviceptron can speed up learning better solutions by exploit-
ing this advice. In addition to experimental validation, we also derive regret
bounds for the Adviceptron.

We introduce some notation before we begin. Scalars are denoted by
lowercase letters (e.g., y, τ), all vectors by lowercase bold letters (e.g., x, η)
and matrices by uppercase letters (e.g., D). Inner products between two vectors
are denoted x′z. For a vector p, the notation p+ denotes the componentwise
plus-function, max(pj , 0) and p⋆ denotes the componentwise step function. The
step function is defined for a scalar component pj as (pj)⋆ = 1 if pj > 0 and
(pj)⋆ = 0 otherwise.

2 Knowledge-Based SVMs

We now review knowledge-based SVMs [6]. Like classical SVMs, they learn a
linear classifier (w′x = b) given data (xt, yt)

T
t=1 with xt ∈ R

n and labels yt ∈
{±1}. In addition, they are also given prior knowledge specified as follows: all
points that satisfy constraints of the polyhedral set D1x ≤ d1 belong to class
+1. That is, the advice specifies that ∀x, D1x ≤ d1 ⇒ w′x− b ≥ 0. Advice can
also be given about the other class using a second set of constraints: ∀x, D2x ≤
d2 ⇒ w′x− b ≤ 0. Combining both cases using advice labels, z = ±1, advice is
given by specifying (D,d, z), which denotes the implication

Dx ≤ d ⇒ z(w′x− b) ≥ 0. (1)

We assume that m advice sets (Di,d
i, zi)

m
i=1 are given in addition to the data,

and if the i-th advice set has ki constraints, we have Di ∈ R
ki×n, di ∈ R

ki and
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zi = {±1}. Figure 1 provides an example of a simple two-dimensional learning
problem with both data and polyhedral advice.

Note that due to the implicative nature of the advice, it says nothing
about points that do not satisfy Dx ≤ d. Also note that the notion of margin
can easily be introduced by requiring that Dx ≤ d ⇒ z(w′x − b) ≥ γ, i.e.,
that the advice sets (and all the points contained in them) be separated by a
margin of γ analogous to the notion of margin for individual data points. Advice
in implication form cannot be incorporated into an SVM directly; this is done by
exploiting theorems of the alternative [11]. Observing that p ⇒ q is equivalent
to ¬p ∨ q, we require that the latter be true; this is same as requiring that the
negation (p ∧ ¬q) be false or that the system of equations

{Dx − d τ ≤ 0, zw′x − zb τ < 0, −τ < 0} has no solution (x, τ). (2)

The variable τ is introduced to bring the system to nonhomogeneous form. Using
the nonhomogeneous Farkas theorem of the alternative [11] it can be shown that
(2) is equivalent to

{D′u + zw = 0, −d′u− zb ≥ 0, u ≥ 0} has a solution u. (3)

The set of (hard) constraints above incorporates the advice specified by a single
rule/advice set. As there are m advice sets, each of the m rules is added as the
equivalent set of constraints of the form (3). When these are incorporated into a
standard SVM, the formulation becomes a hard-KBSVM; the formulation is hard
because the advice is assumed to be linearly separable, that is, always feasible.
Just as in the case of data, linear separability is a very limiting assumption and
can be relaxed by introducing slack variables (ηi and ζi) to soften the constraints
(3). If P and L are some convex regularization and loss functions respectively,
the full soft-advice KBSVM is

minimize
(ξ,ui,ηi,ζi)≥0,w,b

P(w) + λLdata(ξ) + µ
m∑

i=1

Ladvice(η
i, ζi)

subject to Y (Xw − be) + ξ ≥ e,
D′

iu
i + ziw + ηi = 0,

−di′ui − zib + ζi ≥ 1, i = 1, . . . , m,

(4)

where X is the T × n set of data points to be classified with labels y ∈ {±1}T ,
Y = diag(y) and e is a vector of ones of the appropriate dimension. The variables
ξ are the standard slack variables that allow for soft-margin classification of the
data. There are two regularization parameters λ, µ ≥ 0, which tradeoff the data
and advice errors with the regularization.

While converting the advice from implication to constraints, we intro-
duced new variables for each advice set: the advice vectors ui ≥ 0. The advice
vectors perform the same role as the dual multipliers α in the classical SVM.
Recall that points with non-zero α’s are the support vectors which additively
contribute to w. Here, for each advice set, the constraints of the set which have
non-zero uis are called support constraints.
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3 Passive-Aggressive Algorithms with Advice

We are interested in an online version of (4) where the algorithm is given T
labeled points (xt, yt)

T
t=1 sequentially and required to update the model hy-

pothesis, wt, as well as the advice vectors, ui,t, at every iteration. The batch
formulation (4) can be extended to an online passive-aggressive formulation by
introducing proximal terms for the advice variables, ui:

arg min
ξ,ui,ηi,ζi,w

1

2
‖w − wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2

i

)

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu

i + ziw + ηi = 0

−di′ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, . . . , m.

(5)

Notice that while L1 regularization and losses were used in the batch version [6],
we use the corresponding L2 counterparts in (5). This allows us to derive passive-
aggressive closed-form solutions. We address this illustrative and effective special
case, and leave the general case of dynamic online learning of advice and weight
vectors for general losses as future work.

Directly deriving the closed-form solutions for (5) is impossible owing to
the fact that satisfying the many inequality constraints at optimality is a com-
binatorial problem which can only be solved iteratively. To circumvent this, we
adopt a two-step strategy when the algorithm receives a new data point (xt, yt):
first, fix the advice vectors ui,t in (5) and use these to update the weight vector
wt+1, and second, fix the newly updated weight vector in (5) to update the ad-
vice vectors and obtain ui,t+1, i = 1, . . . , m. While many decompositions of this
problem are possible, the one considered above is arguably the most intuitive
and leads to an interpretable solution and also has good regret minimizing prop-
erties. In the following subsections, we derive each step of this approach and in
the section following, analyze the regret behavior of this algorithm.

3.1 Updating w Using Fixed Advice Vectors ui,t

At step t (= 1, . . . , T ), the algorithm receives a new data point (xt, yt). The
hypothesis from the previous step is wt, with corresponding advice vectors ui,t,
i = 1, . . . , m, one for each of the m advice sets. In order to update wt based
on the advice, we can simplify the formulation (5) by fixing the advice variables
ui = ui,t. This gives a fixed-advice online passive-aggressive step, where the
variables ζi drop out of the formulation (5), as do the constraints that involve
those variables. We can now solve the following problem (the corresponding
Lagrange multipliers for each constraint are indicated in parentheses):

wt+1 = minimize
w,ξ,ηi

1

2
‖w − wt‖2

2 +
λ

2
ξ2 +

µ

2

m∑

i=1

‖ηi‖2
2

subject to ytw
′xt − 1 + ξ ≥ 0, (α)

D′
iu

i + ziw + ηi = 0, i = 1, . . . , m. (βi)

(6)



6

In (6), D′
iu

i is the classification hypothesis according to the i-th knowledge
set. Multiplying D′

iu
i by the label zi, the labeled i-th hypothesis is denoted

ri = −ziD
′
iu

i. We refer to the ris as the advice-estimates of the hypothesis
because they represent each advice set as a point in hypothesis space. We will
see later that the next step when we update the advice using the fixed hypothesis
can be viewed as representing the hypothesis-estimate of the advice as a point
in that advice set. The effect of the advice on w is clearly through the equality
constraints of (6) which force w at each round to be as close to each of the
advice-estimates as possible by aggressively minimizing the error, ηi. Moreover,
Theorem 1 proves that the optimal solution to (6) can be computed in closed-
form and that this solution requires only the centroid of the advice estimates,
r = (1/m)

∑m

i=1 ri. For fixed advice, the centroid or average advice vector r,
provides a compact and sufficient summary of the advice.

Update Rule 1 (Computing wt+1 from ui,t) For λ, µ > 0, and given ad-
vice vectors ui,t ≥ 0, let rt = 1/m

∑m

i=1 ri,t = −1/m
∑m

i=1 ziD
′
iu

i,t, with
ν = 1/(1 + mµ). Then, the optimal solution of (6) which also gives the closed-
form update rule is given by

w
t+1 = w

t + αtytx
t +

m∑

i=1

ziβ
i,t = ν (wt + αtytx

t) + (1 − ν) rt,

αt =

(
1 − ν ytw

t′xt − (1 − ν) ytr
t′xt

)

+

1

λ
+ ν‖xt‖2

,
ziβ

i,t

µ
= r

i,t − wt + αt⋆ λytx
t + mµ rt

1

ν
+ αt⋆ λ‖xt‖2

.

(7)

The numerator of αt is the combined loss function,

ℓt = max
(

1 − ν ytw
t′xt − (1 − ν) ytr

t′xt, 0
)

, (8)

which gives us the condition upon which the update is implemented. This is
exactly the hinge loss function where the margin is computed by a convex com-
bination of the current hypothesis wt and the current advice-estimate of the
hypothesis rt. Note that for any choice of µ > 0, the value of ν ∈ (0, 1] with
ν → 0 as µ → ∞. Thus, ℓt is simply the hinge loss function applied to a con-
vex combination of the margin of the hypothesis, wt from the current iteration
and the margin of the average advice-estimate, rt. Furthermore, if there is no
advice, m = 0 and ν = 1, and the updates above become exactly identical to
online passive-aggressive algorithms for support vector classification [4]. Also, it
is possible to eliminate the variables βi from the expressions (7) to give a very
simple update rule that depends only on αt and rt:

wt+1 = ν(wt + αtytx
t) + (1 − ν)rt. (9)

This update rule is a convex combination of the current iterate updated by the
data, xt and the advice, rt.
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3.2 Updating ui,t Using the Fixed Hypothesis wt+1

When w is fixed to wt+1, the master problem breaks up into m smaller sub-
problems, the solution of each one yielding updates to each of the ui for the i-th
advice set. The i-th subproblem (with the corresponding Lagrange multipliers)
is shown below:

ui,t+1 = arg min
ui,η,ζ

1

2
‖ui − ui,t‖2 +

µ

2

(
‖ηi‖2

2 + ζ2
i

)

subject to D′
iu

i + ziw
t + ηi = 0, (βi)

−di′ui − 1 + ζi ≥ 0, (γi)

ui ≥ 0. (τ i)

(10)

The first-order gradient conditions can be obtained from the Lagrangian:

ui = ui,t + Diβ
i − diγi + τ i, ηi =

βi

µ
, ζi =

γi

µ
. (11)

The complicating constraints in the above formulation are the cone constraints
ui ≥ 0. If these constraints are dropped, it is possible to derive a closed-form
intermediate solution, ũi ∈ R

ki . Then, observing that τ i ≥ 0, we can compute
the final update by projecting the intermediate solution onto ui ≥ 0.

ui,t+1 =
(
ui,t + Diβ

i − diγi

)
+

. (12)

When the constraints ui ≥ 0 are dropped from (10), the resulting problem can be
solved (analogous to the derivation of the update step for wt+1) to give a closed-
form solution which depends on the dual variables: ũi,t+1 = ui,t + Diβ

i − diζi.
This solution is then projected into the positive orthant by applying the plus
function: ui,t+1 = ũi,t+1

+ . This leads to the advice updates, which need to applied
to each advice vector ui,t, i = 1, . . . , m individually.

Update Rule 2 (Computing ui,t+1 from wt+1) For µ > 0, and given the
current hypothesis wt+1, for each advice set, i = 1, . . . , m, the update rule is
given by

u
i,t+1 =

(
u

i,t + Diβ
i − d

iγi

)

+

,

[
βi

γi

]
= H−1

i g
i,

Hi,t =




−(D′

iDi + 1

µ
In) D′

id
i

di′Di −(di′di + 1

µ
)



 , g
i,t =




D′
iu

i,t + ziw
t

−di′ui,t − 1


 , (13)

with the untruncated solution being the optimal solution to (10) without the cone
constraints ui ≥ 0.

Recall that, when updating the hypothesis wt using new data points xt and the
fixed advice (i.e., ui,t is fixed), each advice set contributes an estimate of the

hypothesis (rti
= −ziD

′
iu

i,t) to the update. We termed the latter the advice-
estimate of the hypothesis. Here, given that when there is an update, β 6= 0,
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Algorithm 1 The Passive-Aggressive Adviceptron Algorithm

1: input: data (xt, yt)
T
t=1, advice sets (Di,d

i, zi)
m
i=1, parameters λ, µ > 0

2: initialize: ui,1 = 0, w1 = 0
3: let ν = 1/(1 + mµ)
4: for (xt, yt) do

5: predict label ŷt = sign(wt′xt)
6: receive correct label yt

7: suffer loss ℓt = 1 − νytw
t′xt − (1 − ν)ytr

t′xt where rt = − 1

m

∑m

i=1
ziD

′
iu

i,t

8: update hypothesis using ui,t, as defined in Update 1

α = ℓt/(
1

λ
+ ν‖xt‖2), w

t+1 = ν (wt + α ytx
t ) + (1 − ν) rt

9: update advice using wt+1, (Hi, gi) as defined in Update 2

(βi, γi) = H−1

i g
i, u

i,t+1 =
(
u

i,t + Diβ
i − d

iγi

)

+

10: end for

γi > 0, we denote si = βi/γi as the hypothesis-estimate of the advice. Since βi

and γi depend on wt, we can reinterpret the update rule (12) as

ui,t+1 =
(
ui,t + γi(Dis

i − di)
)
+

. (14)

Thus, the advice variables are refined using the hypothesis-estimate of that ad-
vice set according to the current wt; here the update is the error or the amount
of violation of the constraint Dix ≤ di by an ideal data point, si estimated by
the current hypothesis, wt. Note that the error is scaled by a factor γi.

Now, update Rules 1 and 2 can be combined together to yield the full
passive-aggressive Adviceptron (Algorithm 1).

4 Analysis

In this section, we analyze the behavior of the passive-aggressive adviceptron
by studying its regret behavior and loss-minimizing properties. Returning to (4)
for a moment, we note that there are three loss functions in the objective, each
one penalizing a slack variable in each of the three constraints. We formalize
the definition of the three loss functions here. The loss function Lξ(w; xt, yt)
measures the error of the labeled data point (xt, yt) from the hyperplane w;
Lη(wt,ui; Di, zi) and Lζ(u

i; di, zi) cumulatively measure how well w satisfies
the advice constraints (Di, di, zi). In deriving Updates 1 and 2, we used the
following loss functions:

Lξ(w; xt, yt) = (1 − ytw
′xt)+, (15)

Lη(w,u; Di, zi) = ‖D′
iu + ziw‖2, (16)

Lζ(u; di, zi) = (1 + di′u)+. (17)
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Also, in the context of (4), Ldata = 1
2L2

ξ and Ladvice = 1
2 (Lη + L2

ζ). Note that in
the definitions of the loss functions, the arguments after the semi-colon are the
data and advice, which are fixed.

Lemma 1. At round t, if we define the updated advice vector before projection
for the i-th advice set as ũi, the following hold for all w ∈ R

n:

1. ũi = ui,t − µ∇uiLadvice(u
i,t),

2. ‖∇uiLadvice(u
i,t)‖2 ≤

(
‖Di‖

2Lη(ui,t,w) + ‖di‖2L2
ζ(u

i,t)
)

.

The first inequality above can be derived from the definition of the loss functions
and the first-order conditions (11). The second inequality follows from the first
condition using convexity: ‖∇uiLadvice(u

i,t)‖2 = ‖Diη
i−diγi‖

2 = ‖Di(D
′
iu

i,t +

ziw
t+1) + di(di′ui,t + 1)‖2 ≤ ‖Di(D

′
iu

i,t + ziw
t+1)‖2 + ‖di(di′ui,t + 1)‖2. The

inequality follows by applying ‖Ax‖ ≤ ‖A‖‖x‖. We now state additional lemmas
that can be used to derive the final regret bound. The proofs are in the appendix.

Lemma 2. Consider the rules given in Update 1, with w1 = 0 and λ, µ > 0.
For all w∗ ∈ R

n we have

‖w∗ − wt+1‖2 − ‖w∗ − wt‖2 ≤

νλLξ(w
∗)2 −

νλ

1 + νλX2
Lξ(ŵ

t)2 + (1 − ν)‖w∗ − rt‖2.

where ŵt = νwt + (1− ν)rt, the combined hypothesis that determines if there is
an update, ν = 1/(1 + mµ), and we assume that ‖xt‖2 ≤ X2, ∀t = 1, . . . , T .

Lemma 3. Consider the rules given in Update 2, for the i-th advice set with
ui,1 = 0, and µ > 0. For all u∗ ∈ R

ki

+ , we have

‖u∗ − ui,t+1‖2 − ‖u∗ − ui,t‖2 ≤ µLη(u∗,wt) + µLζ(u
∗)2

−µ
(
(1 − µ∆2)Lη(ui,t,wt) + (1 − µδ2)Lζ(u

i,t)2
)
.

where we assume that ‖Di‖
2 ≤ ∆2 and ‖di‖2 ≤ δ2.

Lemma 4. At round t, given the current hypothesis and advice vectors wt and
ui,t, for any w∗ ∈ R

n and ui,∗ ∈ R
ki

+ , i = 1, . . . , m, we have

‖w∗ − rt‖2 ≤
1

m

m∑

i=1

Lη(w∗,ui,t) =
1

m

m∑

i=1

‖w∗ − ri,t‖2

The overall loss suffered over one round t = 1, . . . , T is defined as follows:

R(w,u; c1, c2, c3) =

(
c1Lξ(w)2 +

m∑

i=1

(c2Lη(w,u) + c3Lζ(u)2)

)
.

This is identical to the loss functions defined in the batch version of KBSVMs
(4) and its online counterpart (10). The Adviceptron was derived such that it
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minimizes the latter. The lemmas are used to prove the following regret bound
for the Adviceptron1.

Theorem 1. Let S = {(xt, yt)}
T
t=1 be a sequence of examples with (xt, yt) ∈

R
n × {±1}, and ‖xt‖2 ≤ X ∀t. Let A = {(Di, di, zi)}

m
i=1 be m advice sets

with ‖Di‖2 ≤ ∆ and ‖di‖2 ≤ δ. Then the following holds for all w∗ ∈ R
n and

ui ∈ R
ki

+ :

1

T

T∑

t=1

R

(
wt,ut;

λ

1 + νλX2
, µ(1 − µ∆2), µ(1 − µδ2)

)

≤
1

T

T∑

t=1

R(w∗,u∗; λ, 0, µ) + R(w∗,ut; 0, µ, 0) + R(wt+1,u∗; 0, µ, 0)

+
1

νT
‖w∗‖2 +

1

T

M∑

i=1

‖ui,∗‖2.

(18)

If the last two R terms in the right hand side are bounded by 2R(w∗,u∗; 0, µ, 0),
then the regret behavior becomes similar to truncated-gradient algorithms [8].

5 Experiments

We performed experiments on three data sets: one artificial (see Figure 1) and
two real world. Our real world data sets are Pima Indians Diabetes data set
from the UCI repository [2] and M. tuberculosis spoligotype data set (both are
described below). We also created a synthetic data set where one class of the data
corresponded to a mixture of two small σ Gaussians and the other (overlapping)
class was represented by a flatter (large σ) Gaussian. For this set, the learner is
provided with three hand-made advice sets (see Figure 1).

5.1 Diabetes Data Set

The diabetes data set consists of 768 points with 8 attributes. For domain ad-
vice, we constructed two rules based on statements from the NIH web site on risks
for Type-2 Diabetes2. A person who is obese, characterized by high body mass
index (BMI ≥ 30) and high bloodglucose level (≥ 126) is at strong risk for dia-
betes, while a person who is at normal weight (BMI ≤ 25) and low bloodglucose

level (≤ 100) is unlikely to have diabetes. As BMI and bloodglucose are features
of the data set, we can give advice by combining these conditions into conjunc-
tive rules, one for each class. For instance, the rule predicting that diabetes is
false is (BMI ≤ 25) ∧ (bloodglucose≤ 100) ⇒ ¬diabetes.

5.2 Tuberculosis Data Set

These data sets consist of two types of DNA fingerprints of M. tuberculosis com-
plex (MTBC): the spacer oglionucleotide types (spoligotypes) and Mycobacterial

1 The complete derivation can be found at http://ftp.cs.wisc.edu/machine-

learning/shavlik-group/kunapuli.ecml10.proof.pdf
2 http://diabetes.niddk.nih.gov/DM/pubs/riskfortype2
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#pieces of #pieces of
Class #isolates Positive Advice Negative Advice

East-Asian 4924 1 1
East-African-Indian 1469 2 4
Euro-American 25161 1 2
Indo-Oceanic 5309 5 5
M. africanum 154 1 3
M. bovis 693 1 3

Table 1: The number of isolates for each MTBC class and the number of positive
and negative pieces of advice for each classification task. Each task consisted of
50 training examples drawn randomly from the isolates with the rest becoming
test examples.

Interspersed Repetitive Units (MIRU) types of 37942 clinical isolates collected
by the US Centers for Disease Control and Prevention (CDC) during 2004–2008
as part of routine TB surveillance and control. The spoligotype captures the
variability in the direct repeat (DR) region of the genome of a strain of MTBC
and is represented by a 43-bit long binary string constructed on the basis of
presence or absence of spacers (non-repeating sequences interspersed between
short direct repeats) in the DR. In addition, the number of repeats present at
the 24th locus of the MIRU type (MIRU24) is used as an attribute.

Six major lineages of strains of the MTBC have been previously iden-
tified: the “modern” lineages: Euro-American, East-Asian and East-African-
Indian and the “ancestral” lineages: M. bovis, M. africanum and Indo-Oceanic.
Prior studies report high classification accuracy of the major genetic lineages
using Bayesian Networks on spoligotypes and up to 24 loci of MIRU [1] on this
dataset. Expert-defined rules for the classification of MTBC strains into these
lineages have been previously documented [3, 14]. The rules are based on ob-
served patterns in the presence or absence of spacers in the spoligotypes, and in
the number of tandem repeats at MIRU of a single MIRU locus – MIRU24, associ-
ated with each lineage. The MIRU24 locus is known to distinguish ancestral versus
modern lineages with high accuracy for most isolates with a few exceptions.

The six TB classification tasks are to distinguish each lineage from the
rest. The advice consists of positive advice to identify each lineage, as well as
negative advice that rules out specific lineages. We found that incorporation
of negative advice for some classes like M. africanum significantly improved
performance. The number of isolates for each class and the number of positive
and negative pieces of advice for each classification task are given in Table 1.
Examples of advice are provided below3.

Spacers(1-34) absent ⇒ East-Asian

At least one of Spacers(1-34) present ⇒ ¬East-Asian
Spacers(4-7, 23-24, 29-32) absent ∧ MIRU24≤1 ⇒ East-African-Indian

Spacers(4-7, 23-24) absent ∧ MIRU24≤1 ∧ at least one spacer of (29-32)

present ∧ at least one spacer of (33-36) present⇒ East-African-Indian

3 The full rules can be found in http://ftp.cs.wisc.edu/machine-learning/

shavlik-group/kunapuli.ecml10.rules.pdf
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Spacers(3, 9, 16, 39-43) absent ∧ spacer 38 present ⇒ M. bovis

Spacers(8, 9, 39) absent ∧ MIRU24>1 ⇒ M. africanum

Spacers(3, 9, 16, 39-43) absent ∧ spacer 38 present ⇒ ¬ M. africanum

For each lineage, both negative and positive advice can be naturally expressed.
For example, the positive advice for M. africanum closely corresponds to a known
rule: if spacers(8, 9, 13) are absent ∧ MIRU24 ≤1⇒ M. africanum. How-
ever, this rule is overly broad and is further refined by exploiting the fact that M.
africanum is an ancestral strain. Thus, the following rules out all modern strains:
if MIRU24 ≤ 1 ⇒ ¬ M. africanum. The negative advice captures the fact that
spoligotypes do not regain spacers once lost. For example, if at least one of

Spacers(8, 9, 39) is present ⇒ ¬ M. africanum. The final negative rule
rules out M. bovis, a close ancestral strain easily confused with M. africanum.

5.3 Methodology

The results for each data set are averaged over multiple randomized iterations
(20 iterations for synthetic and diabetes, and 200 for the tuberculosis tasks).
For each iteration of the synthetic and diabetes data sets, we selected 200
points at random as the training set and used the rest as the test set. For each
iteration of the tuberculosis data sets, we selected 50 examples at random
from the data set to use as a training set and tested on the rest. Each time, the
training data was presented in a random order, one example at a time, to the
learner to generate the learning curves shown in Figures 2(a)–2(h). We compare
the results to well-studied incremental algorithms: standard passive-aggressive
algorithms [4], margin-perceptron [5] and ROMMA [10]. We also compare it to
the standard batch KBSVM [6], where the learner was given all of the examples
used in training the online learners (e.g., for the synthetic data we had 200 data
points to create the learning curve, so the KBSVM used those 200 points).

5.4 Analysis of Results

For both artificial and real world data sets, the advice leads to significantly faster
convergence of accuracy over the no-advice approaches. This reflects the intuitive
idea that a learner, when given prior knowledge that is useful, will be able to
more quickly find a good solution. In each case, note also, that the learner is able
to use the learning process to improve on the starting accuracy (which would
be produced by advice only). Thus, the Adviceptron is able to learn effectively
from both data and advice.

A second point to note is that, in some cases, prior knowledge allows
the learner to converge on a level of accuracy that is not achieved by the other
methods, which do not benefit from advice. While the results demonstrate that
advice can make a significant difference when learning with small data sets, in
many cases, large amounts of data may be needed by the advice-free algorithms
to eventually achieve performance similar to the Adviceptron. This shows that
advice can provide large improvements over just learning with data.
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Finally, it can be seen that, in most cases, the generalization performance
of the Adviceptron converges rapidly to that of the batch-KBSVM. However,
the batch-KBSVMs take, on average, 15–20 seconds to compute an optimal
solution as they have to solve a quadratic program. In contrast, owing to the
simple, closed-form update rules, the Adviceptron is able to obtain identical test-
set performance in under 5 seconds on average. Further scalability experiments
represent one of the more immediate directions of future work. One minor point
to note is regarding the results on East-Asian and M. bovis (Figures 2(e) and
2(h)): the advice (provided by a tuberculosis domain expert) was so effective that
these problems were almost immediately learned (with few to no examples).

6 Conclusions and Related Work

We have presented a new online learning method, the Adviceptron, that is a novel
approach that makes use of prior knowledge in the form of polyhedral advice.
This approach is an online extension to KBSVMs [6] and differs from previous
polyhedral advice-taking approaches and the neural-network-based KBANN [15]
in two significant ways: it is an online method with closed-form solutions and it
provides a theoretical mistake bound.

The advice-taking approach was incorporated into the passive-aggressive
framework because of its many appealing properties including efficient update
rules and simplicity. Advice updates in the adviceptron are computed using
a projected-gradient approach similar to the truncated-gradient approaches by
Langford et al., [8]. However, the advice updates are truncated far more aggres-
sively. The regret bound shows that as long as the projection being considered
is non-expansive, it is still possible to minimize regret.

We have presented a bound on the effectiveness of this method and a
proof of that bound. In addition, we performed several experiments on artificial
and real world data sets that demonstrate that a learner with reasonable advice
can significantly outperform a learner without advice. We believe our approach
can serve as a template for other methods to incorporate advice into online
learning methods.

One drawback of our approach is the restriction to certain types of loss
functions. More direct projected-gradient approach or other related online con-
vex programming [17] approaches can be used to develop algorithms with similar
properties. This also allows for the derivation of general algorithms for different
loss functions. KBSVMs can also be extended to kernels as shown in [6], and is
yet another direction of future work.
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Appendix

Proof of Lemma 2

The progress at trial t is ∆t = 1

2
‖w∗ − wt+1‖2 − 1

2
‖w∗ − wt‖2 =

1

2
‖wt+1 − w

t‖2 +

(wt − w
∗)′(wt+1 − w

t). Substituting wt+1 − wt = ν αtytx
t + (1 − ν)(rt − wt), from
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the update rules, we have

∆t ≤ 1

2
ν2α2

t‖xt‖2 + ναt

(
ν ytw

t′
x

t + (1 − ν) ytr
t′
x

t − ytw
∗′
x

t
)

+
1

2
(1 − ν) ‖rt − w

∗‖2.

The loss suffered by the adviceptron is defined in (8). We focus only on the case
when the loss is > 0. Define ŵt = νwt + (1 − ν)rt. Then, we have 1 − Lξ(ŵ

t) =
ν ytw

t′xt + (1 − ν) ytr
t′xt. Furthermore, by definition, Lξ(w

∗) ≥ 1 − ytw
∗′xt. Using

these two results,

∆t ≤ 1

2
ν2α2

t‖xt‖2 + ν αt(Lξ(w
∗) − Lξ(w

t)) +
1

2
(1 − ν) ‖rt − w

∗‖2. (19)

Adding 1

2
ν ( αt√

λ
−
√

λℓ∗t )
2 to the left-hand side of the and simplifying, using Update 1:

∆t ≤ 1

2

ν Lξ(w
t)2(

1

λ
+ ν ‖xt‖2

) − 1

2
ν λLξ(w

∗)
2

+
1

2
(1 − ν) ‖rt − w

∗‖2.

Rearranging the terms above and using ‖xt‖2 ≤ X2 gives the bound. �

Proof of Lemma 3

Let ũi,t = ui,t + Diβ
i − diγi be the update before the projection onto u ≥ 0. Then,

ui,t+1 = ũ
i,t
+ . We also write Ladvice(u

i,t) compactly as L(ui,t). Then,

1

2
‖u∗ − u

i,t+1‖2 ≤ 1

2
‖u∗ − ũ

i,t‖2

=
1

2
‖u∗ − u

i,t‖2 +
1

2
‖ui,t − ũ

i,t‖2 + (u∗ − u
i,t)′(ui,t − ũ

i,t)

=
1

2
‖u∗ − u

i,t‖2 +
µ2

2
‖∇

u
iL(ui,t)‖2 + µ(u∗ − u

i,t)′∇
u

iL(ui,t)

The first inequality is due to the non-expansiveness of projection and the next steps
follow from Lemma 1.1. Let ∆t = 1

2
‖u∗ − ui,t+1‖2 − 1

2
‖u∗ − ui,t‖2. Using Lemma 1.2,

we have

∆t ≤ µ2

2

(
‖Di‖2Lη(ui,t, wt) + ‖di‖2Lζ(u

i,t)2
)

+µ(u∗ − ui,t)′
(

1

2
∇

u
iLη(ui,t, wt) + Lζ(u

i,t)∇
u

iLζ(u
i,t)

)

≤ µ2

2

(
‖Di‖2Lη(ui,t, wt) + ‖di‖2Lζ(u

i,t)2
)

+
µ

2

(
Lη(u∗, wt) − Lη(ui,t,wt)

)
+

µ

2

(
Lζ(u

∗)2 − Lζ(u
i,t)2

)

where the last step follows from the convexity of the loss function Lη and the fact that

Lζ(u
i,t)(u∗ − ui,t)′∇

u
iLζ(u

i,t)

≤ Lζ(u
i,t)
(
Lζ(u

∗) − Lζ(u
i,t)
)

(convexity of Lζ)

≤ Lζ(u
i,t)
(
Lζ(u

∗) − Lζ(u
i,t)
)

+
1

2

(
Lζ(u

∗) − Lζ(u
i,t)
)2

.

Rearranging the terms and bounding ‖Di‖2 and ‖di‖2 proves the lemma. �
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(a) Synthetic Data (b) Diabetes

(c) Tuberculosis: East-Asian (d) Tuberculosis: East-African-Indian

(e) Tuberculosis: Euro-American (f) Tuberculosis: Indo-Oceanic

(g) Tuberculosis: M. africanum (h) Tuberculosis: M. bovis

Fig. 2: Results comparing the Adviceptron to standard passive-aggressive,
ROMMA and perceptron, where one example is presented at each round. The
baseline KBSVM results are shown as a square on the y-axis for clarity; in each
case, batch-KBSVM uses the entire training set available to the online learners.


