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Knowledge-Based SVMs

• Introduced by Fung et al (2003)

• Allows incorporation of expert advice into 

SVM formulations

• Advice is specified with respect to polyhedral • Advice is specified with respect to polyhedral 

regions in input (feature) space 

• Can be incorporated into SVM formulation as 

constraints using advice variables
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(feature7 ≥ 5) ∧ (feature12 ≤ 4) ⇒ (class = +1)

(feature2 ≤ −3) ∧ (feature3 ≤ 4) ∧ (feature10 ≥ 0)⇒ (class = −1)

(3feature6 + 5feature8 ≥ 2) ∧ (feature11 ≤ −3) ⇒ (class = +1)



Knowledge-Based SVMs

In classic SVMs, we have T

labeled data points (xt, yt), 

t = 1, …, T. We learn a linear

classifier w’x – b = 0. 

Class A, y= +1

min
1

2
‖w‖2 + λ e′ξ

sub. to Y (Xw − be) + ξ ≥ e,

ξ ≥ 0.

The standard SVM formulation 

trades off regularization and loss:

Class B, y = -1
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Knowledge-Based SVMs
We assume an expert provides 

polyhedral advice of the form

Dx ≤ d ⇒ w′x ≥ b

We can transform the logic 

constraint above using 

Class A, y= +1

constraint above using 

advice variables, u
Dx ≤ d

Class B, y = -1

ECML 2010, Barcelona, Spain

D′u+w = 0,
−d′u− b ≥ 0,

u ≥ 0

These constraints are added to 

the standard formulation to 

give Knowledge-Based SVMs



Knowledge-Based SVMs
In general, there are m advice

sets, each with label             , 

for advice belonging to 

Class A or B,

Dix ≤ di ⇒ zi (w
′x)− b ≥ 0

Class A, y= +1
z = ±1

Each advice set adds the

following constraints to the 

SVM formulation

D′
iu
i + ziw = 0,

−di
′
ui − zib ≥ 0,
ui ≥ 0

D2x ≤ d
2

D1x ≤ d
1

Class B, y = -1

D3x ≤ d
3
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Knowledge-Based SVMs
The batch KBSVM formulation

introduces advice slack variables

to soften the advice constraints
Class A, y= +1

min
1

2
‖w‖2 + λ e′ξ + µ

m∑

i=1

(
ηi + ζi

)
.

s.t. Y (Xw − be) + ξ ≥ e,

D2x ≤ d
2

D1x ≤ d
1

Class B, y = -1

D3x ≤ d
3
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∑ ( )

s.t. Y (Xw − be) + ξ ≥ e,

ξ ≥ 0,

D′
iu
i + ziw + ηi = 0,

−di
′
ui − zib+ ζi ≥ 1,

ui, ηi, ζi ≥ 0, i = 1, ...,m.
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Online KBSVMs

• Need to derive an online version of KBSVMs

• Algorithm is provided with advice and one labeled 

data point at each round

• Algorithm should update the hypothesis at each • Algorithm should update the hypothesis at each 

step, wt, as well as the advice vectors, ui,t
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Passive-Aggressive Algorithms

• Adopt the framework of passive-aggressive 

algorithms (Crammer et al, 2006), where at each 
round, when a new data point is given,
– if loss = 0, there is no update (passive)

– if loss > 0, update weights to minimize loss (aggressive)– if loss > 0, update weights to minimize loss (aggressive)

• Why passive-aggressive algorithms?

– readily applicable to most SVM losses

– possible to derive elegant, closed-form update rules

– simple rules provide fast updates; scalable

– analyze performance by deriving regret bounds
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• There are m advice sets, 

• At round t, the algorithm receives

• The current hypothesis is       , and the current 

advice variables are                           

wt

Online KBSVMs

(xt, yt)

ui,t, i = 1, ...,m

(Di, d
i, zi)

m
i=1
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min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu
i + ziw + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

At round t, the formulation for deriving an update is



• There are m advice sets, 

• At round t, the algorithm receives

• The current hypothesis is       , and the current 

advice variables are                           

wt

Formulation At The t-th Round

(xt, yt)

ui,t, i = 1, ...,m

(Di, d
i, zi)

m
i=1

proximal terms for hypothesis and advice vectors
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min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu
i + ziw + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

proximal terms for hypothesis and advice vectors



Formulation At The t-th Round

data loss advice loss

• There are m advice sets, 

• At round t, the algorithm receives

• The current hypothesis is       , and the current 

advice variables are                           

wt

(xt, yt)

ui,t, i = 1, ...,m

(Di, d
i, zi)

m
i=1
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min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζi

2
)
,

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu
i + ziw+ ηi = 0

−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

data loss advice loss



Formulation At The t-th Round

parameters

• There are m advice sets, 

• At round t, the algorithm receives

• The current hypothesis is       , and the current 

advice variables are                           

wt

(xt, yt)

ui,t, i = 1, ...,m

(Di, d
i, zi)

m
i=1
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min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu
i + ziw + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

parameters



Formulation At The t-th Round
• There are m advice sets, 

• At round t, the algorithm receives

• The current hypothesis is       , and the current 

advice variables are                           

wt

(xt, yt)

ui,t, i = 1, ...,m

(Di, d
i, zi)

m
i=1
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min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu
i + ziw + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

inequality constraints 

make deriving a closed-

form update impossible



• There are m advice sets, 

• At round t, the algorithm receives

• The current hypothesis is      , and the current 

advice-vector estimates are                           

wt

Formulation At The t-th Round

(xt, yt)

ui,t, i = 1, ...,m

(Di, d
i, zi)

m
i=1
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min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu
i + ziw + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

inequality constraints 

make deriving a closed-

form update impossible



• First sub-problem: update hypothesis by fixing 
the advice variables, to their values at the t-th
iteration

Decompose Into m+1 Sub-problems

min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to ytw
′xt − 1 + ξ ≥ 0,



ui = ui,t

ECML 2010, Barcelona, Spain

t
′ − ≥

D′
iu
i + ziw + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

• Some objective terms and constraints drop out

of the formulation



• First sub-problem: update hypothesis by fixing 
the advice vectors

• Update advice vectors by fixing the hypothesis

– Breaks down into m sub-problems, one for each 
advice set

Deriving The Hypothesis Update

wt+1 = min
w,ξ,ηi

1

2
‖w −wt‖22 +

λ

2
ξ2 +

µ

2

m∑

i=1

‖ηi‖22

subject to ytw
′xt − 1 + ξ ≥ 0, (α)

D′
iu
i,t + ziw + ηi = 0, i = 1, ...,m. (βi)
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D′
iu + ziw + η = 0, i = 1, ...,m. (β )



• First sub-problem: update hypothesis by fixing 
the advice vectors

• Update advice vectors by fixing the hypothesis

– Breaks down into m sub-problems, one for each 
advice set

Deriving The Hypothesis Update

wt+1 = min
w,ξ,ηi

1

2
‖w −wt‖22 +

λ

2
ξ2 +

µ

2

m∑

i=1

‖ηi‖22

subject to ytw
′xt − 1 + ξ ≥ 0, (α)

D′
iu
i,t + ziw + ηi = 0, i = 1, ...,m. (βi)
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D′
iu + ziw + η = 0, i = 1, ...,m. (β )

fixed, advice-estimate of 

the hypothesis according 

to i-th advice set ; denote 

as ri,t



• First sub-problem: update hypothesis by fixing 
the advice vectors

• Update advice vectors by fixing the hypothesis

– Breaks down into m sub-problems, one for each 
advice set

Advice-Estimate Of Current Hypothesis

wt+1 = min
w,ξ,ηi

1

2
‖w −wt‖22 +

λ

2
ξ2 +

µ

2

m∑

i=1

‖ηi‖22

subject to ytw
′xt − 1 + ξ ≥ 0, (α)

D′
iu
i,t + ziw + ηi = 0, i = 1, ...,m. (βi)
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D′
iu + ziw + η = 0, i = 1, ...,m. (β )

fixed, advice-estimate of 

the hypothesis according 

to i-th advice set ; denote 

as ri,t
average advice-estimates 

over all m advice vectors 

and denote as 

rt =
1

m

m∑

i=1

ri,t



The Hypothesis Update
For λ, µ > 0, and advice-estimate rt, the hypothesis update is

wt+1 = ν (wt + αtytx
t) + (1− ν) rt,

αt =

(
1

λ
+ ν‖xt‖2

)−1
·max

(
1− ν ytw

t′xt − (1− ν) ytr
t′xt , 0

)
.
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For λ, µ > 0, and advice-estimate rt, the hypothesis update is

wt+1 = ν (wt + αtytx
t) + (1− ν) rt,

αt =

(
1

λ
+ ν‖xt‖2

)−1
·max

(
1− ν ytw

t′xt − (1− ν) ytr
t′xt , 0

)
.

The Hypothesis Update

Update is convex combination 

ECML 2010, Barcelona, Spain

Update is convex combination 

of the standard passive-

aggressive update and the 

average advice-estimate

ν =
1

1 +mµ

Parameter of convex 

combinations is



For λ, µ > 0, and advice-estimate rt, the hypothesis update is

wt+1 = ν (wt + αtytx
t) + (1− ν) rt,

αt =

(
1

λ
+ ν‖xt‖2

)−1
·max

(
1− ν ytw

t′xt − (1− ν) ytr
t′xt , 0

)
.

The Hypothesis Update

Update is convex combination 
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Update is convex combination 

of the standard passive-

aggressive update and the 

average advice-estimate
Update weight depends on 

hinge loss computed with 

respect to a composite weight 

vector that is a convex 

combination of the current 

hypothesis and the average 

advice-estimate

ν =
1

1 +mµ

Parameter of convex 

combinations is



• Second sub-problem: update advice vectors by 
fixing the hypothesis

Deriving The Advice Updates

min
ξ,ui,ηi,ζi≥0,w

1

2
‖w −wt‖2 +

1

2

m∑

i=1

‖ui − ui,t‖2 +
λ

2
ξ2 +

µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to ytw
′xt − 1 + ξ ≥ 0,

D′
iu
i + ziw + ηi = 0

i′ i



i = 1, ...,m.

w = wt+1
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−di
′
ui − 1 + ζi ≥ 0

ui ≥ 0





i = 1, ...,m.

• Some constraints and objective terms drop out

of the formulation



• Second sub-problem: update advice vectors by 
fixing the hypothesis

Deriving The Advice Updates

min
ui,ηi,ζi≥0,

1

2

m∑

i=1

‖ui − ui,t‖2 +
µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to

D′
iu
i + ziw

t+1 + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

i





i = 1, ..., m.
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− − ≥

ui ≥ 0







• Second sub-problem: update advice vectors by 
fixing the hypothesis

Deriving The Advice Updates

min
ui,ηi,ζi≥0,

1

2

m∑

i=1

‖ui − ui,t‖2 +
µ

2

m∑

i=1

(
‖ηi‖2 + ζ2i

)
,

subject to

D′
iu
i + ziw

t+1 + ηi = 0

−di
′
ui − 1 + ζi ≥ 0

i





i = 1, ..., m.
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− − ≥

ui ≥ 0





split into m sub-problems



• m sub-problems: update the i-th advice vector 
by fixing the hypothesis

Deriving The i-th Advice Updates

ui,t+1 = min
ui,η,ζ

1

2
‖ui − ui,t‖2 +

µ

2

(
‖ηi‖22 + ζ

2
i

)

subject to D′
iu
i + ziw

t+1 + ηi = 0, (βi)

−di
′
ui − 1 + ζi ≥ 0, (γi)
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−di
′
ui − 1 + ζi ≥ 0, (γi)

ui ≥ 0. (τ i)



• m sub-problems: update the i-th advice vector 
by fixing the hypothesis

Deriving The i-th Advice Updates

cone constraints still 

ui,t+1 = min
ui,η,ζ

1

2
‖ui − ui,t‖2 +

µ

2

(
‖ηi‖22 + ζ

2
i

)

subject to D′
iu
i + ziw

t+1 + ηi = 0, (βi)

−di
′
ui − 1 + ζi ≥ 0, (γi)
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cone constraints still 

complicating

cannot derive closed 

form solution

• Use projected-gradient approach

• drop constraints to compute 
intermediate closed-form update

• project intermediate update back 
on to cone constraints

−di
′
ui − 1 + ζi ≥ 0, (γi)

ui ≥ 0. (τ i)



The m Advice Updates
For µ > 0, and current hypothesis wt+1, for each advice set, i = 1, ...,m, the
update rule is given by

ui,t+1 = max
(
ui,t +Diβ

i − di γi, 0
)
,

[
βi

γi

]
=




−(D′

iDi +
1

µ
In) D′

id
i

di
′
Di −(di

′
di + 1

µ
)





−1 


D′
iu
i,t + ziw

t+1

−di
′
ui,t − 1
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The m Advice Updates
For µ > 0, and current hypothesis wt+1, for each advice set, i = 1, ...,m, the
update rule is given by

ui,t+1 = max
(
ui,t +Diβ

i − di γi, 0
)
,

[
βi

γi

]
=




−(D′

iDi +
1

µ
In) D′

id
i

di
′
Di −(di

′
di + 1

µ
)





−1 


D′
iu
i,t + ziw

t+1

−di
′
ui,t − 1





projection
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each advice update 

depends on the newly 

updated hypothesis

• hypothesis-estimate of the 

advice; denote 

• The update is the error or 

the amount of violation of 

the constraint by 

an ideal data point,      

si = βi/γi

Dix ≤ d
i

si



Algorithm 1 The Passive-Aggressive Adviceptron Algorithm

1: input: data (xt, yt)
T
t=1, advice sets (Di,d

i, zi)
m
i=1, parameters λ, µ > 0

2: initialize: ui,1 = 0, w1 = 0
3: let: ν = 1/(1 +mµ)

4: for (xt, yt) do
5: predict label ŷt = sign(w

t′xt)
6: receive correct label yt
7: suffer loss

ℓ = max
(
1− νy wt′

x
t − (1− ν)y rt

′

x
t, 0

)

The Adviceptron

ℓt = max
(
1− νytw

t′
x
t − (1− ν)ytr

t′
x
t, 0

)

8: update hypothesis using ui,t

α = ℓt/(
1

λ
+ ν‖xt‖2), w

t+1 = ν (wt + α ytx
t ) + (1− ν) rt

9: update advice variables using wt+1

(βi, γi) = H
−1

i g
i, u

i,t+1 =
(
u
i,t +Diβ

i − diγi
)
+

10: end for
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Diagnosing Diabetes

• Standard data set from UCI repository (768 x 8)

– all patients at least 21 years old of Pima Indian heritage

– features include body mass index, blood glucose level

• Expert advice for diagnosing diabetes from NIH 

website on risks for Type-2 diabeteswebsite on risks for Type-2 diabetes

– a person who is obese (characterized by BMI > 30) and 

has a high blood glucose level (> 126) is at a strong risk 

for diabetes

– a person who is at normal weight (BMI < 25) and has low 

blood glucose level (< 100) is at a low risk for diabetes
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(BMI ≥ 30) ∧ (bloodglucose ≥ 126)⇒ diabetes

(BMI ≤ 25) ∧ (bloodglucose ≤ 100)⇒ ¬diabetes



Diagnosing Diabetes: Results

• 200 examples for training, 

remaining for testing

• Results averaged over 20 

randomized iterations

• Compared to advice-free 
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• Compared to advice-free 

online algorithms: 

• Passive-aggressive 

(Crammer et al, 2006),

• ROMMA 

(Li & Long, 2002), 

• Max margin-perceptron

(Freund & Schapire, 1999)

batch KBSVM, 200 points
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Tuberculosis Isolate Classification
• Task is to classify strains of Mycobacterium 

tuberculosis complex (MTBC) into major 

genetic lineages based on DNA fingerprints

• MTBC is the causative agent for TB

– leading cause of disease and morbidity– leading cause of disease and morbidity

– strains vary in infectivity, transmission, virulence, 

immunogenicity, host associations depending on 

genetic lineage

• Lineage classification is crucial for surveillance, 

tracking and control of TB world-wide
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Tuberculosis Isolate Classification
• Two types of DNA fingerprints for all culture-positive TB strains 

collected in the US by the CDC (44 data features)

• Six (classes) major lineages of TB for classification

– ancestral: M. bovis, M. africanum, Indo-Oceanic

– modern: Euro-American, East-Asian, East-African-Indian

• Problem formulated as six 1-vs-many classification tasks• Problem formulated as six 1-vs-many classification tasks
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#pieces of #pieces of
Class #isolates Positive Advice Negative Advice
East-Asian 4924 1 1
East-African-Indian 1469 2 4
Euro-American 25161 1 2
Indo-Oceanic 5309 5 5
M. africanum 154 1 3
M. bovis 693 1 3



Expert Rules for TB Lineage Classification

East-Asian

Indo-Oceanic

M. bovis

M. africanum

East-African-Indian MIRU24 > 1
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Rules provided by Dr. Lauren Cowan at the Center for 

Disease Control, documented in Shabbeer et al, (2010)

Indo-Oceanic

Euro-American

MIRU24 ≤ 1



TB Results: Might Need Fewer 

Examples To Converge With Advice
Euro-American vs. the Rest M. africanum vs. the Rest
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batch KBSVM
batch KBSVM



TB Results: Can Converge To A Better 

Solution With Advice
East-African-Indian vs. the Rest Indo-Oceanic vs. the Rest
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batch KBSVM
batch KBSVM



TB Results: Possible To Still Learn Well 

With Only Advice
East-Asian vs. the Rest M. bovis vs. the Rest
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batch KBSVM batch KBSVM
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Conclusions

• New online learning algorithm: the adviceptron

• Makes use of prior knowledge in the form of (possibly 
imperfect) polyhedral advice

• Performs simple, closed-form updates via passive-
aggressive framework; scalable

• Good advice can help converge to a better solution • Good advice can help converge to a better solution 
with fewer examples

• Encouraging empirical results on two important 
real-world tasks
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KBSVMs: Deriving The Advice 

Constraints

We assume an expert provides 

polyhedral advice of the form

Dx ≤ d ⇒ w′x ≥ b

We know is equivalent p ⇒ q

Class A, y= +1

We know is equivalent 

to 

If              has a solution then its 

negation has no solution or,

Dx− d τ ≤ 0,
w′x− b τ < 0,

−τ < 0

(x, τ ).has no solution

p ⇒ q
¬p ∨ q Dx ≤ d

Class B, y = -1
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¬p ∨ q



has no solution          , then by

If the following system

(x, τ)

Class A, y= +1

Dx− d τ ≤ 0,
w′x− b τ < 0,

−τ < 0

KBSVMs: Deriving The Advice 
Constraints

has no solution          , then by

Motzkin’s Theorem of the 

Alternative, the following 

system

(x, τ)

D′u+w = 0,
−d′u− b ≥ 0,

u ≥ 0

has a solution u.

Dx ≤ d

Class B, y = -1
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