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Abstract. Most metric learning methods are characterized by diverse
loss functions and projection methods, which naturally begs the question:
is there a wider framework that can generalize many of these methods?
In addition, ever persistent issues are those of scalability to large data
sets and the question of kernelizability. We propose a unified approach to
Mahalanobis metric learning: an online regularized metric learning algo-
rithm based on the ideas of composite objective mirror descent (COMID).
The metric learning problem is formulated as a regularized positive semi-
definite matrix learning problem, whose update rules can be derived
using the coMmID framework. This approach aims to be scalable, ker-
nelizable, and admissible to many different types of Bregman and loss
functions, which allows for the tailoring of several different classes of
algorithms. The most novel contribution is the use of the trace norm,
which yields a sparse metric in its eigenspectrum, thus simultaneously
performing feature selection along with metric learning.

1 Introduction

The concept of similarity, or metric, is central to many well-known algorithms
such as k-means clustering [1], k-nearest neighbors [2], multi-dimensional scal-
ing [3] and semi-supervised clustering [4]. While there are many approaches to
metric learning, a large body of work is focussed on learning the Mahalanobis
distance, which amounts to learning a feature-space transformation and com-
puting the distance in the transformed space. Among these approaches are the
work of Xing et al., [5], the large-margin nearest neighbor (LMNN) algorithm [6],
information-theoretic metric learning (ITML) [7] and BoostMetric [8]. In addi-
tion to the batch approaches above, online algorithms such the pseudo-metric on-
line learning algorithm (POLA) [9] have also been developed. These approaches
have been applied successfully to a diverse range of real-world applications such
as face verification [10] and road-lane detection [4].

The goal of a metric learning approach is to learn a distance function,
typically from additional information about the data set. In the supervised and
semi-supervised classification setting, the notion of similarity or dissimilarity
can be inferred from the class information available from the labels. Thus, if
two data points are in the same class, they are assumed to be similar to each
other, while two points in different classes are assumed to be dissimilar. The



learned metric should ensure that distance between dissimilar points is larger
than distance between similar points. Such a metric, can then be used different
semi-supervised and unsupervised learning methods such as k-means clustering.

In this work, we consider the Mahalanobis metric learning problem ap-
plied to k-nearest neighbors classification. The Mahalanobis metric is a distance
function we learn that is of the form d(x,z) = ||Lx — Lzl||2. Thus, we hope to
learn a transformation of the data L that separates dissimilar points and brings
similar points closer, and we measure distance in this transformed space.

For the remainder of this section, we discuss the problem setting and
in Section 2, we introduce composite mirror descent for metric learning. We
derive the general update rules, and discuss their implementation details from the
perspective of efficiency in Sections 3 and 4. The kernel version of this approach
is introduced in Section 5. This method is closely related to several other well-
known metric learning approaches and this aspect is discussed in Section 6. In
Section 7, we compare the mirror descent approach with some well-known metric
learning methods on different data sets, and conclude in Section 8.

1.1 Problem Setting

We wish to learn a Mahalanobis metric d(x, z) over a feature space X C R™. The
metric is a distance function that is used to measure similarity between two in-
stances x and z in feature space and satisfies three conditions: d(x, z) > 0 (non-
negativity), d(x, z) = d(z, x) (symmetry), and d(x, z) > d(x, w) + d(w, z)
(sub-additivity). We formulate the problem in the spirit of Shalev-Shwartz et
al., [9], where the goal is to incrementally learn a metric, given triplets of the
form (x¢,z¢,y:)7-;. The label y; = 1 indicates that training point x; is similar
to z; and y = —1 indicates dissimilarity.

The metric we learn is of the form d(x, z) = ||L(x—2)||2, where L € R™*"
is a linear transformation. Since learning this metric directly is difficult owing
to non-convexity, we consider instead:

dy(x,2)? = (x—2)L'L(x—2) = (x —2z) M(x — z), (1)

with M € S, the cone of positive semi-definite (psd) matrices. Given T' labeled
pairs of points (x;, 2, y:)_,, we learn (M, ;1) such that similar points are trans-
formed to be closer to each other, which dissimilar points are transformed to be
farther from each other. This condition can be formulated via the constraints

V(x,z,y =+1) = dy(x,z)? < p—1,
V(X,Z,y: _1) = dM(X, Z)2 Z /1'+17

(2)

which can be written simply as y¢(u — das(x¢, 2¢)?) > 1. Note that we cannot
have < 1 as it implies via the constraints (2) that the distance is negative. We
define the margin function for a pair of instances x; and z;, given a label y;, as

m(xe,ze,yi) = ye(p — dar(xe, 20)%) =y (0 — (x¢ —20) M(x; — 21)) . (3)



This lets us define several loss functions, for instance, the hinge-loss: ¢ (M, u)
= max{ 0, 1 —m(x¢, 2, y:) }. The behavior of such loss functions can be observed
in the one-dimensional example in Figure 1. When points z near x = —0.5 are
labeled similar (Figure 1, left), and their distance measured through the metric
M is under the threshold p, the loss is zero or small. Similarly labeled points z
that are far away from x = —0.5 are penalized, with the penalty increasing with
the distance. In contrast, dissimilarly labeled points near x = —0.5 suffer a high
loss (Figure 1, right), while those that are sufficiently far away according to the
threshold p are not penalized. It should be noted that p controls the width of
sensitivity around z. Loss functions are discussed further in Section 2.1.

In addition to learning a metric that minimizes this notion of loss, we
also incorporate regularization into the problem so that the resulting metric
has sparsity. It is well-known that ¢;-regularization yields sparse solutions [11];
analogously, minimizing the trace-norm of M i.e., the sum of the singular values
of M yields sparsity in the spectrum of M, thus minimizing the rank of M [12].
Given T samples, the overall problem is one of regularized loss minimization,
which leads to an optimization problem of the form

N
i ; G(M, 1) + pr(M), (4)
where the loss function ¢; : §7 x R — R and the regularization function r :
S% — R are both convex and p € R, is the regularization parameter. Note that
the minimization step in (4) contains a matrix projection into S, which is a
consequence of constraining M > 0, and a scalar projection of ;1 > 1. Before
describing the proposed approach, we introduce some notation.

1.2 Notation and Background

Scalars are denoted in lower-case (u), vectors in bold face (v), and matrices
in upper case (M). The vector e denotes a vector of ones, while I denotes the
identity matrix, with the dimension of either being apparent from the context.

1

= Hinge l = Hinge
Logistic Logistic
Exponential 5- Exponential

= | east sq. = | east sq.

i i i i i i i i i i
-3 -2 -1 0 1 2 -3 2 -1 0 1 2

Fig. 1. Behavior of different loss functions: (left) y = +1; (right) y = —1



For a vector v, the plus function v is defined as the componentwise maximum
with respect to zero i.e., (vj)y = max{0, v;}, for the j-th component of v. The
step function v, is defined componentwise as (v;), = v; if v; > 0 and 0 if v; <O0.
The inner product of matrices X and Y is defined as using the trace: (X, Y) =
tr X'Y. We can also compute matrix gradients; one particularly useful definition
is Vx (X, Y ) =Y. We write the singular value decomposition of X = UXV,
while for symmetric matrices, we can write X = VAV’. Matrix functions f(X)
(e.g., exp X, log X) can be computed via the eigen-decomposition of X, that is,
f(X) = Vf(A)V'. The Frobenius norm of X is denoted || X||r = (X, X );
the trace norm of X is denoted ||| X ||| = €', where o are the singular values of
X. For symmetric matrices, ||| X||| = €’|A|, where X are the eigenvalues of X.

The Bregman divergence [13] with respect to a strictly convex function
is defined as By (x,2) = ¥(x) —¥(z) — Vi(z)'(x — z). For example, the function
¥(x) = 3 ||x[|3 is a Bregman function which induces the squared-Euclidean norm,
By(x,z) = 3 |x — z|3. This definition can naturally be extended to convex
functions defined over matrices i.e., By (X, Z) = ¢(X) —(Z) — (Vy(2), (X —
Z)). A well-known example is the squared-Frobenius norm By (X, Z) = 5[ X —
Z||%., induced by ¢(X) = 1|/ X||%.

2 Mirror Descent for Metric Learning

The mirror descent algorithm [14] is an iterative proximal-gradient method for
minimizing a convex function, ¢ : 2 — R. Based on this approach, an update in
the online setting, with function ¢, is

Wi, = arg n(llin By (w, wi) + V' (wy)(w — wy). (5)
we

Recently, Duchi et al., [15] generalized mirror descent to the case where the
functions ¢, = ¢; + r are composite, consisting of loss and regularization terms:

Wiy = arg rgin By(w, wi) + n V' li(we)(w — wi) +nr(w). (6)
we

The subtle, yet significant difference between (5) and (6) is that the entire com-
posite function ¢, is not linearized. Rather, only /¢; is linearized; this leads to the
composite mirror descent algorithm (coMiD). The reason for partial lineariza-
tion is because general mirror descent applied to ¢;-regularization does not lead
to sparse updates, whereas the coMID update does.

We utilize the framework of Duchi et al., to formulate metric learning
as an online problem. However, we compute matrix update rules directly rather
than derive passive-aggressive-like online updates of [9]. The goal is to optimize
the objective (4) in an online manner i.e., at each iteration ¢t = 1,...,T, the
algorithm receives a labeled pair of points (x¢,z:, y+), which has an associated
loss function ¢4 (M, ), and the estimates M1 and p41 are calculated using a
composite mirror descent update rule. Since we are interested in sparse updates
as well, we use the trace norm, |[|M]||, the effect of which is controlled via a



regularization parameter p > 0. We derive generalized update rules for a general
loss function and Bregman divergence. At each step, we compute updates given
a learning rate n > 0, and regularization parameter p > 0 according to

My = ar]%ir(l)in By (M, M) + n{(Varly(Mg, pue), M — M) + np || M|, (7)
fir1 = argglin By (i, pi) + 0V by (M, pe)" (1o — pae)- (8)
>

This metric learning formulation' has several advantages:

1. General framework. Different classes of algorithms can be designed based
on different Bregman and loss functions. For example, using the Euclidean
distance as the Bregman function produces additive updates, while using
relative entropy produces multiplicative updates.

2. Scalable to large data sets. As we show below, the matrix updates involve
the computation of a rank-1 update to the current eigendecomposition of
M, which is highly efficient. Furthermore, the rank-one eigen-update scheme
discussed here is embarrassingly parallelizable.

3. Trace-norm regularization produces sparse metric. The trace-norm
regularization ensures that at each step, the updated M = L’L is sparse
in its spectrum of singular/eigenvalues. The trace-norm, like the ¢; norm,
introduces sparsity into the eigenvalues of M. The solution typically has
r < m non-zero eigenvalues: L= V. A, V! and the approach performs input-
space feature selection.

4. Theoretical regret guarantees. In the online optimization setting, for a
strongly-convex Bregman function By and a Lipschitz continuous loss func-
tion £;, COMID has O(v/T) regret [15]. Furthermore, strong convexity of the
composite function ensures O(logT') regret.

5. Kernelizable for nonlinear metric learning. Many existing distance
learning methods are not intuitively kernelizable. Recently, Chatpatanasiri
et al., [16] showed various techniques of kernelizing some popular metric
learning approaches. Their results are easily extended to this approach in
order to learn nonlinear metrics.

2.1 Loss Functions

Recall that the margin for a labeled pair of points (x¢,z:,y:) is defined as
me(ug, yr) = ye(u — tr Mugu}), with uy = x;—2;. When a pair (x¢, z;) are similar
with y; = 1, any loss function should produce zero (or small loss) if the distance
according to the learned metric is less than a threshold i.e., tr Muzu) < p. For
dissimilar points (y; = —1), when tr Muzu, < p, the loss suffered is higher.
Many such loss functions can be used with the update rules (7-8). Table 1 and
Figure 1 show some common loss functions. It is interesting to note that all the
loss functions in Table 1 have gradients of the form cuu’. As we show in Section
4, we can exploit this fact to implement update rules more efficiently.

1 As the trace-norm allows us to learn a low-rank matrix M, this problem is an instance
of pseudo-metric learning; directions in the null space of M cannot be differentiated.
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Table 1. Examples of some loss functions, and their gradients with respect to M and
. For a pair of instances, u; = x¢ — z¢, and my(ug; M, p) = ye(p — tr Muguy).

Loss Lo(My, pie) Vs by (M, ) Vo by (M, pie)

Hinge (1 —my), (T=me), (yeuewy)  —(1—me), ue
Modified Least Sq. 1(1- mt)i (1 —my)+ (yeuguy) —(1—my) 1y
Exponential exp(—my) exp(—my) (yruru}) —exp(—me)ys
Logistic log (1 + exp(—my)) % (yeueur) _%yt

2.2 Bregman Divergences

Bregman divergences have been extensively studied in literature; see, for in-
stance, Censor and Zenios [17]. The strong convexity of Schatten and entropic
matrix functions, which we use here, was recently established by Kakade et al.,
[18]. Slightly abusing notation, we use By (-, -) for both scalars and matrices.
The squared p-norms 1(x) = #[/x||2 are strongly convex and induce
Bregman divergences. For a matrix X, the definition can be extended to Schatten
p-norms [19], a family of unitary norms defined by applying the p-norm to its
singular values: (X ) = &|o(X)||2. With p = 2, we obtain the squared- Euclidean
distance By(x,z) = §||x — z||3 for scalars, and the squared-Frobenius distance

i.e., By(X,Z) = 1| X — Z||% for matrices.

The function ¥(x) = Y, x;log x; —x; induces the Kullback-Liebler (KL)
divergence, By(x,z) = ), x;log Zt — x; + z;. For a matrix X, if A\; is the
i-th eigenvalue, the Bregman function can be analogously extended: Y(X) =
Yo AilogAhi — A\ = trXlog X — X giving us the von Neumann divergence,
By(X,Y)=tr(XlogX — XlogY — X +Y).

3 Deriving Update Rules for M;,; and p;14

The update rule (7) can be broken down into two separate updates:

Mt+% = arngin By (M, M) + n{(Varle(My, i), M — M, ), 9)
My = ar]%f(l)in By(M, My, 1) + np (| M| (10)

The gradient condition of (9): 0 € V(M 1) — V(M) + nVarle(My, pe),
gives us the intermediate solution: M, 1 = Voo~ (V) (My) — 0 Varle(My, 1) ),
which can be used to solve (10). The latter is closely related to the trace-norm
minimization problem, which was solved by Cai et al., [20]:

mini}gnize By(X,Y)+ 7| X||. (11)

Cai et al., showed that when ¥(X) = 1| X||%, the optimal solution to (11)

is X (Y), where X, is the singular-value thresholding/shrinkage operator. For
X € Rm*" with SVD X = U diag(o) V’, the singular-value shrinkage operator



is defined as X' (X) = U diag(o;) V', where (0;); = (0; — 7)4+. Thus, X shrinks
all singular values by 7 > 0, and cuts off those below the specified threshold to
zero i.e., those o; < 7. This problem (10) differs from (11) in two key ways:

— The solution is derived for X,Y € R™*" and assumes unitarily invariant
Bregman functions ¢ (X). It relies on an elegant result by Lewis [21] that
shows that for a unitarily invariant matrix function ¢(X) (i.e., Y(PXQ) =
Y(X), for any P, @ unitary), the subdifferential can be calculated as Vi)(X) =
U diag(Vi (o)) V. However, all Bregman functions are not unitarily invari-
ant?, and consequently, it is not possible to characterize the subgradients in
our general case. Fortunately, we are interested in symmetric X € S", and
in these cases, an analogous result by Lewis [22] characterizes subgradients
of spectral functions ¥(X) as Vi(X) = V diag(Vy(A)) V', given the eigen-
decomposition X = Vdiag(A)V’. The symmetry of X ensures that ¢/(X) are
orthogonally invariant (i.e., Y(QX Q') = ¥ (X), for any orthogonal Q).

— No positivity constraints X = 0 are imposed in (11). In our case, since X is a
pseudo-metric, we need to ensure that it is positive semidefinite. As we show
below, we can derive a closed-form solution, taking into account that X > 0,
using the modified eigenvalue thresholding operator, S, (X) =V diag(A;) V’,
where (A\;); = (A\; — 7)4, ensuring that all eigenvalues below the threshold T
are cut off, including all negative eigenvalues.

Proposition 1. The optimal solution to (10) is given by
My = V6 (S,,(VO (M) = V VU (diag(S,p(N)) V!, (12)
where VU)(MH%) = V(M) = nVarle(My, ) =V diag(A) V'

Note here that the computation of Vi (M, 1 ) involves a symmetric rank-one
update because the gradient of the loss function V¢, is a rank-one matrix (see
Table 1). The update essentially consists of computing a symmetric rank-one
update to the current eigendecomposition of the pseudo-metric and then cutting
off all eigenvalues < np. We discuss this step further in Section 4. Finally, a
closed-form update can be derived for ;41 as well, from the formulation (8). In
this case, the intermediate solution p, 1 is projected onto p > 1.

Proposition 2. The optimal solution to (8) is given by
pre1 = max (Vo (Vp(pe) — 0 Vule(My, ), 1) (13)

4 Implementing Update Rules for M;,

At the ¢-th iteration, with M; = V; V) (A;)V/, we have:
(Intermediate gradient) Vip(Myy 1) = ViV (A)VY — oy
(EVD of intermediate gradient) V)(M, 1) = Vig1 Aepa Vi
(Matrix update/thresholding) M1 = Vi1 V=1 (S, (A1) Vi

2 An example is the entropy function that induces the von Neumann divergence: ro-
tations applied by arbitrary matrices P, () could change the sign of the eigenvalues.
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From Table 1, we observe that the gradient of the loss function is generally
of the form ¢, = ausu}, where u; = x; — z;. The first two steps constitute
a rank-one update of the eigendecomposition at the current iteration, which is
the most expensive step. While there are several well-known approaches (power
iteration, Lanczos, QR 4+ Householder; see [23]), we discuss a different approach
that exploits the the eigenvalue interlacing property [23, Chapter 8] (Figure 2,
left) to significantly improve efficiency.

If M, = Vdiag(A) V', with eigenvalues A\; < ... < )\, then a symmet-
ric rank-one update is My11 = My + auu’, with My, = Wdiag(pu) W/, and
eigenvalues p1 < ... < u,. The eigenvalues are related by the secular equation

f(p) :== 1 —ou'(ul, —diag(A)) " tu = 0,

and the eigenvalues interlace i.e., if @ > 0, A1 < g < Ao < pg... < Ay < pp;
and if @« <0, pp <A <o < Ao < ... <y < Ay The eigenvectors can also be
easily updated as
w; = vi(pul, — diag()) " 'u,

where w; and v; are the i-th columns of W and V respectively. Now, since
we know that the i-th eigenvalue of M1, u; € (N\iy Ait1), for @ > 0 (and
wi € (Ni—1, A\i), for @ < 0) any root-finding method such as Newton-Raphson
safeguarded with bisection search can be used to find p;. Another consequence

of interlacing is that if \; = A\j41 = ... = A\jyx = A, i.e., there are k repeated
eigenvalues, then we can avoid the computation of k — 1 eigenvalues (and eigen-
vectors) in the update since p; = piy1 = ... = piyr—1 = A as well. This

is particularly suitable for our purposes since we seek to introduce more zero
eigenvalues into the spectrum of the metric. We discuss some specific details of
our implementation:

— Numerical stability. General root-finding approaches introduce numerical
instability, which propagates into the computation of the eigenvectors leading



to non-orthogonality. This issue is addressed by the rational interpolation
approach of Gu and Eisenstat [24], which we implement. The approach is
based on the observation that while Newton’s method uses a local linear
approximation of the secular equation, since the secular equation is rational,
better stability can be obtained through a local rational approximation.

— Learning rate. We use an adaptive learning rate, n; = n/v/t, which gives
O(V/T) regret. The approach requires the user to select the learning rate n
and the parameter p, which controls the sparsity of the learned metric.

— Low Rank Learning. As, the von Neumann divergence is undefined for
low-rank matrices, we compute updates using the reduced eigendecomposi-
tion, M; = f/t/Itf/;' , where f/t and /It correspond only to the r non-zero
eigenvalues. This is similar to the approach of Kulis et al., [25] for low-rank
kernel learning. As a result of applying V¢~! = exp (-) to the updated eigen-
values in (12), the smallest eigenvalues in the updated matrix will all be 1,
resulting in a full-rank matrix. However, we are still able to perform feature
selection in this case by selecting the r largest eigenvalues, similar to feature
selection in principal components analysis (PCA).

The complete algorithm is described below.

Algorithm 1 Mirror Descent for Metric Learning

1: input: data (x, 2, y: )11, parameters p, 7 > 0

2: choose: Bregman functions (M ); ¥(u), loss function ¢(M, u; x, z, y)

3: initialize: Mo = 1I,,, po =1

4: for (x', z¢+, y+) do

5: let uy = x¢ — 24, nt:n/\/f

6: compute gradients of loss Varfy = azuguy and Vbl = —ay (see Table 1)
7o write V(M) = ViV (A)V/

8: compute symmetric rank-one update Vii1 Aip1 Vi1 = ViVp(A) V! — aupul
9: shrink the eigenvalues M;y1 = Viyq Vap~! (Snp(At41)) Vi

10: margin update ;41 = max ( Vo= (Vi (ue) — n VL ( My, ), 1)

11: end for

5 Kernel MDML

There are two primary approaches to kernelizing metric learning algorithms: one
based on the direct application of the kernel trick, and the other based on the
application of the Kernel Principal Components Analysis (KPCA) framework
[16]. We use the first approach here. Consider the (possibly infinite-dimensional)
nonlinear mapping ¢ : X — F, that maps all data x in the input space X to a
high-dimensional feature space F. Associated with this map is a kernel function
k(-, ) that can compute inner-products in F without explicit transformation.
Let X € R®*™ denote the matrix of all examples and ¢ denote the matrix of
corresponding high-dimensional vectors obtained from applying the mapping ¢
to the data. In feature space, the squared Mahalanobis distance is computed as
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P((x), d(2) = [IL(6(x) — d(@) [; = (6(x) = $(2)) L'L((x) — ¢(z)). If we

parameterize L' = ®G’, we have that

d*(¢(x), ¢(z)) = (d(x) — ¢(2))' PC'GD(¢(x) — ¥(2)).

This allows us to kernelize the equation above which leads to a metric in the
feature space, d,, expressed in terms of input-space vectors as:

d?(x,2z) = (k(X,x) — k(X,2)) M (k(X,x) — (X,2)), (14)

where k(X,x) is the column of the kernel matrix corresponding to x, and where,
with a slight abuse of notation, we have set M = G’ G. Now, the margin in feature
space can be redefined as,

M (%t 20,90) = ye (b — (K(X, %) — K(X,2))" M (5(X,%) — £(X,2))). (15)

As before, we can define u; = k(X,x) — (X, z). Finally, once the matrix M is
learned, the Mahalanobis distance of some test point X with respect to a data
point x can easily be computed as:

d?(%, x) = k(X,%) — k(X,x)) M (k(X,%) — k(X,x). (16)

6 Related Work

Prior approaches to learning the Mahalanobis metric include work by Xing et
al., [5], the SVM-based approach of Schultz and Joachims [26] and large-margin
nearest neighbors (LMNN) [6]. Davis et al., formulate the metric learning prob-
lem as minimizing the Burg divergence subject to similarity constraints, an ap-
proach called information theoretic metric learning (ITML) [7]. The BoostMetric
approach developed by Shen et al., generalizes the well known AdaBoost algo-
rithm to use a metric as a weak learner rather than a classifier [8]. This results in
the optimization of the exponential loss of the margin function, which is solved
via coordinate descent. Recently, Guillaumin et al., [27] proposed a metric learn-
ing approach that uses logistic regression loss. Many of these algorithms can be
viewed as cases of the MDML approach presented here. The MDML approach
is also closely related to low rank kernel learning, which was studied by Kulis et
al., [25], where the nearness of kernels is measured using the von Neumann and
Burg divergences.

There also exist several metric learning approaches such as discriminant
adaptive nearest neighbor classification (DANN) [28], neighborhood components
analysis (NCA) [29] and relevant components analysis (RCA) [30] that can per-
form feature selection, in addition to learning a metric. Other online algorithms
for supervised learning of the Mahalanobis metric include the work of Shalev-
Shwartz et al., [9] and Jain et al, [31].
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Table 2. UCI data sets

Data set #train #test #dim #trn pairs # classes

iris 105 45 4 630 3
wine 123 55 13 738 3
scale 436 189 4 2616 3
segment 147 63 19 882 7
breast 397 172 30 2382 2
ionosphere 245 106 34 1470 2
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Fig. 3. Comparing test error (left) and run times (right) on six UCI data sets.

7 Experiments

In this section, we compare the MDML approach with some current metric
learning approaches on various data sets. We consider two classes of algorithms:
an additive algorithm that arises from using the hinge loss with the Frobenius
divergence (MDML H+F) and a multiplicative algorithm that arises from using
the logistic loss with the von Neumann divergence (MDML L+V).

7.1 Benchmark Data Sets

We consider four well-known batch and online metric learning approaches: LMNN?,
ITML*, BoostMetric® and POLA [9]. The latter, as well as the MDML ap-
proaches were implemented in MATLAB.

The performance of these methods on six data sets from the UCI reposi-
tory®. The statistics of these data sets are described in Table 2. All data sets were
normalized to zero mean and unit standard deviation. The experimental results
are averaged over 10 runs; for each run, the data was split uniformly randomly
into training and test sets: 70% was used for training and the remaining 30%
was used for testing. The various parameters in ITML, LMNN, MDML H+F
and MDML L+V were selected through 10-fold cross validation.

For each data set, we generate triplets and similar/dissimilar pairs for
the methods here based on the approach described by Weinberger et al., [6]. To

3 http://www.cse.wustl.edu/~kilian/code/code.html
4 http://www.cs.utexas.edu/~pjain/itml/

® http://code.google.com/p/boosting/

S http://archive.ics.uci.edu/ml/
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summarize, for each data point x;, k similarly labeled nearest neighbors (targets)
and k differently labeled nearest neighbors (impostors) are selected, and triplets
are constructed appropriately. We chose k& = 3 for the generation of triplets
and labeled pairs. Once the models were learned, test data were classified using
3-nearest neighbors classification as well.

Figure 3 shows the performance of these approaches with respect to
test error and running time.The generalization performance of the MDML ap-
proaches is consistently comparable to that of other metric learning approaches.
However, the significance of the MDML approaches becomes apparent when con-
sidering the running times. BoostMetric is the most expensive approach here,
even among the batch approaches, which is not surprising considering it is an en-
semble approach. The generalization performance of BoostMetric is good overall,
but the performance comes at a significantly higher computational cost. While
the MDML approaches outperform the batch methods computationally, they are
also faster than POLA, which is an online approach.

We also studied the feature selection performance of the MDML ap-
proaches on these benchmark datasets. These results are shown in Figure 4.
While it is clear that increasing values of p force more features to zero, it is
interesting to note that, in many cases, with an appropriate choice of the learn-
ing rate 7, it is possible to learn a highly sparse metric whose generalization
performance does not degrade significantly. As hoped, the algorithm performs
input-space feature selection while learning a pseudo-metric, which can be help-
ful to practitioners when trying to learn interpretable models. A similar trend is
observed when counting the number of eigenvalues that account for 90% of the
cumulative energy of the metric. Again, the MDML approaches are able to ac-
cumulate more information into a smaller subset of features. While Boostmetric
and LMNN are able to perform well by this measure, it should be noted again,
that this comes at a higher computational expense.

7.2 Digit Recognition

We use the Optical Recognition of Handwritten Digits (optdigits) data set
from the UCI repository for these experiments. This 64-dimensional, 10 class
data set consists of 3823 training points and 1797 test points. Generating triplets
using the approach by Weinberger et al., as described above, results in 34,407
triplets for training. For the metric learning methods that take labeled pairs,
this approach resulted in the generation of 11,469 similar pairs of data and
11,469 dissimilar pairs of data. As before, we set k = 3 for both training and
testing. Parameters were selected using 5-fold cross validation. The results are
summarized in Table 3.

We compare the different approaches on test error, run time and feature
selection. As with the previous benchmark results, LMNN and BoostMetric are
able to produce the best models, but again, this comes at the expense of a
large computational cost, particularly in the case of BoostMetric. The MDML
approaches are able to generalize well overall, but the overall run time for both
methods is several orders of magnitude smaller. We also compare the ability
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Fig. 4. (top) MDML H+F: (left) Average number of zero eigenvalues of the learned met-
ric, with fixed learning rate 7, and different regularization parameters p; (right) the
corresponding test error. (bottom) MDML L+V: number of features dropped i.e., whose
eigenvalues do not contribute to the top 90% of the cumulative energy. This experiment
could not be performed for scale as it was extremely sensitive to parameters.

to perform feature selection across all the data sets using two measures. Given
L = Vdiag(A)V’, the first measure is simply the number of non-zero eigenvalues
of L ie., ||Allo- The second measure is the number of eigenvalues required to
account for 90% of the cumulative energy of the metric. The cumulative energy
of the i-th largest eigenvalue is e; = Z;Zl Aj. The last column shows the number
of features r such that e, > 0.9 Z?:l Ai; this is used to pick a reduced subset
of features during PCA. Both MDML methods are able to perform input space
feature selection effectively; for von Neumann, even though a full-rank matrix is
learned, we are able to pick a reduced subset because the cumulative energy is
concentrated in a few eigenvalues.

8 Conclusions and Future Work

We have presented an incremental metric learning approach (MDML) which not
only optimizes the notion of loss at every step, but is also regularized. Specifi-
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Table 3. Performance of the different approaches on the optdigits data set.

Data set Test Error  Run Time  Non-zero Num. feats.
(%) (seconds)  features  for 90% energy

LMNN 1.669 54.213 30 20
ITML 5.509 25.745 62 43
POLA 2.282 14.607 53 40
BoostMetric 1.758 2072.427 62 19
MDML H+F 1.892 15.232 26 22
MDML L+V 1.948 13.768 62 29

cally, we are interested in learning metrics that are sparse in the eigenspectrum,
and to this end, the metric learning problem was regularized with the trace
norm. This formulation is solved using composite mirror descent and results in
a very general framework. Several different types of algorithms can be derived
by choosing different loss functions and Bregman functions. Furthermore, the
updates result in a symmetric rank-one update at the current step; this can be
implemented very efficiently making the approach scalable to large data sets.
Preliminary experimental results suggest that the approach performs compara-
bly with current approaches with regard to generalization. However, the ability
to learn a metric along with feature selection makes this approach attractive to
machine learning practitioners.

These proof-of-concept results suggests several exciting directions for
future research, some of which are currently under consideration. Given that the
updates are embarrassingly parallelizable, an immediate target is the massive
data setting, where we need to learn with millions of data points. In addition,
the approach is also amenable to the addition of local geometry constraints in
order to learn low-dimensional geometry-aware metrics that lead to representable
models. Finally, the kernel-MDML approach is a very powerful extension to
linear metric learning, with applications in colored dimensionality reduction and
manifold alignment.

Proof of Proposition 1
Let A € S% be a positive semidefinite Lagrange multiplier for the constraint M > 0. The
matrix Lagrangian for the convex optimization problem (10) is L(M) = By (M, Mt+%) +
np || M||| — (M, A). The optimal primal solution V(M) and the optimal dual solution
A should satisfy the first-order necessary conditions:

V(M) — Vz/)(MH%) + np 0| M||| = A (gradient condition),

> _ 17
0=<Vyp(M) L A>=0 (complementarity), a7

where 9||| M ||| denotes the set of all subgradients of ||| M]|| and X 1 Y denotes ( X, Y ) =
0. For an m x n matrix M, with SVD M = UXV’, the subgradients are given by [32]:

oI M| ={UV' + W |W eR™", UW =0, WV =0, [W|2<1}. (18)



15

We wish to show that the solution V(M) = S, (Vz/)(MH%)) is optimal. To this
end, decompose VQ/}(Mt+%) =V AV’ further, based on its eigenvalues \;

V’l/)(Mt+;) = V1/11V1/ + VQAQ‘/ZI + V3A3V3/ . (19)
2 —— —— ——
Ai>np [Xil<np —Xi<np

By directly thresholding the eigenvalues, we can write the optimal solution as V(M) =
Vi(A1 — npI1)VY. Then, 8 ||| M||| at the optimal M is

ol M| = {ViVi + W |[W eS", VW =0, WVi =0, |[W|2<1}. (20)

If we choose W = # V2AsVy € S™, we immediately have ViW = 0 and WV; = 0.
Also, ||W]2 = #HVQAQVQIHQ = # | A2]]2 < 1. Thus, 9 || M||| = VAV{ + n—lp Vo A2 Vs . By
this construction, we first have primal feasibility; in fact, V(M) is positive definite
since A1 = np I1. From (17), it is easy to see that A = —V3 A3V, which is dual feasible;
in fact, it is also positive definite since Az < —np Is. We also have complementarity
slackness since ( Vi)(M), A) = 0, owing to eigenvector orthogonality. Thus, Vi) (M) =

Sup (wp(MH%)) is optimal to (10), giving us M = Ve~ (S,,p (vw(MH%)) ) O
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