
MIRROR DESCENT FOR METRIC LEARNING
Gautam Kunapuli Jude W. Shavlik

University of Wisconsin–Madison University of Wisconsin–Madison
The authors gratefully acknowledge DARPA AFRL prime contract FA8750-09-C-0181, and NIH grant NLM R01-LM008796. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the view of the

DARPA, AFRL, or the US government.

Formulating the Problem

We incrementally learn a pseudo-metric, dM(x, z)2 = (x−z)′M (x−z) given triplets
of the form (xt, zt, yt)

T
t=1. The label yt = ±1 indicates that xt is similar/dissimilar to

zt. where M ⊆ S
n
+. We can introduce the margin function [4]:

m(xt, zt, yt) = yt
(

µ− (xt − zt)
′M (xt − zt)

)

,

which allows us to define loss for a sample (xt, zt, yt); for instance, the hinge loss:
ℓt(M,µ) = max{ 0, 1 − m(xt, zt) }. We also add a regularization function r(M ) =
9M9, the trace-norm of M i.e., the sum of the singular values of M (for some ρ > 0)
yields sparsity in the singular value spectrum of M , thus minimizing the rank of M :

min
M�0,µ≥1

1

T

T
∑

t=1

ℓt(M,µ) + r(M ),

Mirror Descent for Metric Learning

Duchi et al., [2] generalized mirror descent to the case where the functions φt =
ℓt+ r are composite, consisting of loss and regularization terms. In composite mirror
descent (COMID), the ℓt is linearized, while r is not. We derive generalized update
rules for a general loss function and Bregman divergence:

Mt+1 = arg min
M�0

Bψ(M, Mt) + η 〈∇Mℓt(Mt, µt), M −Mt 〉 + η ρ 9M9,

µt+1 = arg min
µ≥1

Bψ(µ, µt) + η∇µℓt(Mt, µt)
′ (µ− µt).

1. Unifying framework. Different algorithms arise from various Bregman and loss
functions. E.g., using Euclidean distance and relative entropy results in additive
and multiplicative updates respectively.

2. Scalability. Update rules require rank-one modification of the EVD ofM = V ΛV ′;
this can be implemented efficiently and is embarrassingly parallel.

3. Sparse metric. The trace norm is 9X9 = e
′|λ|, where λ are the EVs of X . Min-

imizing the trace norm ensures that M is sparse in its eigenspectrum i.e., only
r < n eigenvalues are used in calculating distances: L̃ = Vr

√
Λr.

4. Kernelizable. The techniques of Chatpatanasiri et al., [1] can be applied here to
kernelize it and learn nonlinear metrics.

Bregman Functions and Loss Functions

We consider the following Bregman functions. The squared p-norms
ψ(x) = 1

2‖x‖2p are strongly convex and induce the squared-Frobenius distance

i.e., Bψ(X,Z) =
1
2‖X − Z‖2F . The function ψ(x) =

∑

i xi log xi − xi induces the von
Neumann divergence, Bψ(X,Y ) = tr (X logX −X log Y −X + Y ).

The formulation admits several loss functions. If a loss function is Lipschitz, we
obtain algorithms that are characterized by O(

√
T ) regret. In the tables below, ut =

xt − zt.

Loss ℓt(Mt, µt) ∇M ℓt(Mt, µt)
Hinge ( 1−mt)+ ( 1−mt)⋆ (ytutu

′
t)

Modified Least Sq. 1
2 (1−mt)

2
+ (1−mt)+ (ytutu

′
t)

Logistic log (1 + exp(−mt))
exp(−mt)

1+exp(−mt)
(ytutu

′
t)
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Different loss functions around x = −0.5; (left) when (xt, zt) are similar (yt = 1);
(right) when (xt, zt) are dissimilar (yt = −1).

Update rules can be derived in closed-form using the eigenvalue thresh-
olding/shrinkage operator: Sτ (X) = V diag(λτ )V

′, where (λτ )i =
sign(λi) max{|λi| − τ, }. The closed-form solutions are:

vonNeumann Mt+1 = exp
(

Sηρ(logMt − η∇Mℓt(Mt, µt)
)

,

Frobenius Mt+1 = Sηρ (Mt − η∇Mℓt(Mt, µt) ) .
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1: input: data (xt, zt, yt)
T
t=1, parameters ρ, η > 0

2: choose: Bregman functions ψ(M ); ψ(µ), loss ℓ(M,µ)
3: initialize: M0 = In, µ0 = 1
4: for (xt, zt, yt) do
5: let ut = xt − zt, ηt = η/

√
t

6: compute gradients of loss ∇Mℓt = αtutu
′
t and ∇µℓt = −αt

7: write ∇ψ(Mt) = Vt∇ψ(Λt)V ′
t

8: rank-one update Vt+1Λt+1 V
′
t+1 = Vt∇ψ(Λt)V ′

t − αutu
′
t

9: shrink the eigenvalues Mt+1 = Vt+1∇ψ−1
(

Sηρ(Λt+1)
)

V ′
t+1

10: margin update µt+1 = max
(

∇ψ−1 (∇ψ(µt)− η∇ℓt(Mt, µt)) , 1
)

11: end for

Computing EVD Efficiently

We have Mt+1 = Vt∇ψ(Λt)V ′
t − αutu

′
t, a rank-one update of the EVD at iteration t.

• Eigenvalue Interlacing. The EVs of Mt, Mt+1 interlace; each EV can be computed
independently from the secular equation. General root-finding techniques such as
Newton may result in non-orthogonal eigenvectors; we adopt the rational inter-
polation approach of Gu and Eisenstat [3].

• Learning rate. An adaptive rate, ηt = η/
√
t gives O(

√
T ) regret.

• Low Rank Learning with von Neumann divergence. This is undefined for low-
rank matrices; we update with the reduced eigendecomposition, Mt = ṼtΛ̃tṼ

′
t . Also,

in this case, Mt’s smallest EVs are all 1, resulting in full rank; we still perform
feature selection by selecting the r largest EVs, similar to PCA.
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(left) Interlacing eigenvalues of a matrix and its rank-one perturbation; (right) EVD
algorithms for randomly generated 500d matrices, over increasing spectrum sparsity.

Experiments: Benchmark Data Sets

We consider two algorithms: an additive algorithm with hinge loss and Frobe-
nius (MDML H+F), and a multiplicative algorithm with logistic loss and von
Neumann (MDML L+V). They are compared to four metric learning approaches:
LMNN, ITML, BoostMetric and POLA [4].
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