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Introduction . The concepts of similarity, distance or metric are ceritr@ many well-known and
popular algorithms such as k-means clusterihg,[the nearest neighbor algorithri] locally-
linear embeddingl[4], multi-dimensional scaling7] and semi-supervised clusteringd. While
there are many approaches to metric learning, a large bodgidfis focussed on learning the Ma-
halanobis distance, which amounts to learning a transfdemand computing the distance in the
transformed space. Among these approaches are the workgfeXil., P(], relevant components
analysis 7], the large-margin nearest neighbor (LMNN) algorithir®]} Globerson and Roweis’
method of collapsing classe&(], information-theoretic metric learning (ITML)3] and Boost-
Metric [16]. Aside from the batch approaches above, online algorithuth as the online ITML
algorithm [B] and the pseudo-metric online learning algorithm (POLLg] [have proven successful.

All these approaches are characterized by diverse lossidmscand projection methods,
which naturally begs the question: is there a wider framé&wbat can generalize many of these
existing methods? In addition, ever persistent issues tarset of scalability to large data sets
and the question of kernelizability. Thus, we propose a eaifipproach to Mahalanobis metric
learning: an onlineegularized metric learninglgorithm based on the ideas@imposite objective
mirror descen{COMID) [9]. We propose to formulate the metric learning problem agalegized
positive semi-definite matrix learniqpgoblem, whose update rules can be derived using the COMID
framework. This approach aims to be scalable, kernelizadsie admissible to many different
types of Bregman and loss functions which allows for theotaig of several different classes of
algorithms. The most novel contribution is the use oftilaee norm which yields a sparse metric
in its eigenspectrum, thismultaneously performing feature selection along withriméearning.

Unifying Framework . The goal is to incrementally learn a squared Mahalanobisen&x, z)? =

(x¢ —z¢)' M (x; — z;), given training data of the forrfx,, z;, y:)._,, where labelg, = +1 indicate
similarity (+1) or dissimilarity (-1). We formulate the gotem by defining anetric function(as in
[15]) that measures the fidelity of the training data with respeanetric and bias paird/ = 0,

w > 1) m(M,u; xe,2e,y:) = ye (b — (x¢ — z:) M(x: —2¢)). This now allows us to define
several symmetric loss functions on the metric; for instatiee hinge-losé; (M, 1) = max{ 0, 1—
m(x,2t,y:) }, orthe logistic losg, (M, i) = log (1 + e~™xt:2:91)) . Several classes of algorithms
arise from an appropriate choice of Bregman functidf \vhich is used to compute the updates
using the composite objective mirror descent rule:

My = arj%inin By (M, My) + n(Varle(My, pg), M — M) +np || M, (1)
>0
[l = arggﬂn By (pty ) + 0V le(My, pe)" (p— 1), 2)
n>

Bregman functionsyf) can be generalized to symmetric psd matrices, which esalsleo define dif-
ferent types of Bregman divergencBs (-, -) over matrices. The Euclidean nor(x) = 3|3,
induces the squared-Frobenius divergegX, Y) = 1| X — Y%, this leads to additive updates.
The convex function)(x) = >, z; log z; — z; induces the matrix generalization of KL divergence
called the von Neumann divergend®, (A,Y) = tr (Xlog X — XlogY — X +Y); this leads
to multiplicative updates. The function(x) = — )", log «; induces the matrix generalization of
Itakura-Saito divergence called the Burg divergeBgg X, Y) = tr XY ! — logdet XY ! — n;
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this leads to inversive updates.

Feature Selection If the SVD of A = Udiag(o)V, the trace norm ofd is the matrix analogue
of the ¢;-norm for vectors and is defined as the sum of singular valfié@seomatrix i.e.,|||Al|| =
€'o. For symmetric\/, minimizing ||| M ||| attempts to produce a sparse eigenspectruid of his
essentially amounts tshrinkingthe eigenvalues based on a thresh@ld3], which in this case is
the regularization constant on the nuclear norm term|f the eigenvalue decomposition (EVD) of
M, =V, A,V (with A, = diagA;)), the optimal solution to) can be computed as follows:

(update eigendecompositiony; 1 Ayy1 Vi 1= ViV (A) V) — gV arle(My, pie)
(shrink eigenvalues and project) M1 =Viger VO (Spp(Aig1) ) Vi

where theshrinkage operatoiS,,(z) = sign(z) max{(|z| — np), 0}. The finalM (= L'L) is
sparse in its spectrum, and we have that V+/A. If M hasr < n non-zero eigenvalues, we can

consider just the reduced eigendecomposition in calmgatie distancest = V. A,.. Finally, the
optimal solution to ) gives: 441 = max { Vo' (Vb (py) — 0V, le(My, p1e)), 1}

Efficient Computation and Scalability. While it may appear, at first glance, that a full eigen-
decomposition is constructed at every step, this is not #s®.c For many loss functions, the
gradientV¢; = a(x: — z:)(x: — z¢)’, i.e., we only have to computerank-one update to an
existing eigendecompositiofihis is a well-studied problem, whose solution can be caegbuery
efficiently [1, 12] by exploiting the Eigenvalue Interleaving Theorefrd]. In fact, if there are a
large number of repeated eigenvalues then, owing to irerlg, all but one of those eigenvalues
and eigenvectors in the update have to be computed. Thuse &site-norm shrinkage introduces
more zeros into the problem, it becomes progressively mifi@est. Finally, the non-repeating
eigenvalues and their corresponding eigenvectors can inputed independently of each other
making this approach is highly parallelizable. This latspect is currently under investigation.

Kernel Metric Learning . The framework of Chatpatanasiri et ab] fan be used to kernelize this
approach. Consider the (possibly nonlinear) mappirtgat maps all data in the input space to
a high-dimensional feature space, with an associated kiemetion (-, -). In feature space, the
squared-Mahalanobis distance is computed(@$x), ¢(z))? = (¢(x)—é(z))' L' L(p(x) — ¢(z)).
Let A and® be the training data in input space and feature space résggcNow, we parameterize
L' = ®G’, and we have(¢p(x), ¢(z))? = (4(x) —d(z)) G’ GP'(p(x) — ¢(z)). The vectod’x

is just the column of the kernel matrix correspondingtand thus we have:

d,.;(X, Z)Q = (H(A,X) - K’(Aa Z))/ M (H(A,X) - K’(Aa Z))v (3)
where M = G'G. Finally, once the matrix\/ is learnt, the Mahalanobis distance of some
test pointx with respect to a data point can easily be computed a8 (x, x) = k(4,%) —

w(A, %)) M (r(A,%) — K(A, x).

Figure 1:A simple proof-of-concept (left) A 4-class 2d data se$; spurious dimensions are added to create
a 10d training set for learning. Frobenius divergence and hiogs are chosen, with = 5 andp = 15;
(right) Data projected on to the top two eigenvectors of the leafvfednd on the far right, data projected onto
the largest eigenvector of the learnkfi showing that the approach is able to perform feature setecthile
learning an effective metric. AlsgA|lo = 2, meaning that there are only two non-zero eigenvalues ifiriake
M, and the algorithm was able to drop the spurious features.
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