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Introduction . The concepts of similarity, distance or metric are centralto a many well-known and
popular algorithms such as k-means clustering [13], the nearest neighbor algorithm [6], locally-
linear embedding [14], multi-dimensional scaling [7] and semi-supervised clustering [18]. While
there are many approaches to metric learning, a large body ofwork is focussed on learning the Ma-
halanobis distance, which amounts to learning a transformation and computing the distance in the
transformed space. Among these approaches are the work of Xing et al., [20], relevant components
analysis [17], the large-margin nearest neighbor (LMNN) algorithm [19], Globerson and Roweis’
method of collapsing classes [10], information-theoretic metric learning (ITML) [8] and Boost-
Metric [16]. Aside from the batch approaches above, online algorithmssuch as the online ITML
algorithm [8] and the pseudo-metric online learning algorithm (POLA) [15] have proven successful.

All these approaches are characterized by diverse loss functions and projection methods,
which naturally begs the question: is there a wider framework that can generalize many of these
existing methods? In addition, ever persistent issues are those of scalability to large data sets
and the question of kernelizability. Thus, we propose a unified approach to Mahalanobis metric
learning: an onlineregularized metric learningalgorithm based on the ideas ofcomposite objective
mirror descent(COMID) [9]. We propose to formulate the metric learning problem as a regularized
positive semi-definite matrix learningproblem, whose update rules can be derived using the COMID
framework. This approach aims to be scalable, kernelizable, and admissible to many different
types of Bregman and loss functions which allows for the tailoring of several different classes of
algorithms. The most novel contribution is the use of thetrace norm, which yields a sparse metric
in its eigenspectrum, thussimultaneously performing feature selection along with metric learning.

Unifying Framework . The goal is to incrementally learn a squared Mahalanobis metric d(x, z)2 =
(xt−zt)

′M(xt−zt), given training data of the form(xt, zt, yt)Tt=1, where labelsyt = ±1 indicate
similarity (+1) or dissimilarity (-1). We formulate the problem by defining ametric function(as in
[15]) that measures the fidelity of the training data with respect to metric and bias pair (M � 0,
µ ≥ 1): m(M,µ; xt, zt, yt) = yt (µ− (xt − zt)

′M(xt − zt)). This now allows us to define
several symmetric loss functions on the metric; for instance, the hinge-lossℓt(M,µ) = max{ 0, 1−
m(xt, zt, yt) }, or the logistic lossℓt(M,µ) = log (1 + e−m(xt,zt,yt)). Several classes of algorithms
arise from an appropriate choice of Bregman function [4], which is used to compute the updates
using the composite objective mirror descent rule:

Mt+1 = arg min
M�0

Bψ(M, Mt) + η 〈∇M ℓt(Mt, µt), M −Mt 〉 + η ρ 9M9, (1)

µt+1 = arg min
µ≥1

Bψ(µ, µt) + η∇µℓt(Mt, µt)
′ (µ− µt), (2)

Bregman functions (ψ) can be generalized to symmetric psd matrices, which enables us to define dif-
ferent types of Bregman divergencesBψ(·, ·) over matrices. The Euclidean norm,ψ(x) = 1

2‖x‖2
2,

induces the squared-Frobenius divergence,Bψ(X,Y ) = 1
2‖X−Y ‖2

F ; this leads to additive updates.
The convex functionψ(x) =

∑

i xi log xi − xi induces the matrix generalization of KL divergence
called the von Neumann divergence,Bψ(A, Y ) = tr (X logX − X logY − X + Y ); this leads
to multiplicative updates. The functionψ(x) = −∑

i log xi induces the matrix generalization of
Itakura-Saito divergence called the Burg divergenceBψ(X,Y ) = trXY −1 − log detXY −1 − n;
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this leads to inversive updates.

Feature Selection. If the SVD ofA = Udiag(σ)V , the trace norm ofA is the matrix analogue
of the ℓ1-norm for vectors and is defined as the sum of singular values of the matrix i.e.,9A9 =
e
′
σ. For symmetricM , minimizing9M9 attempts to produce a sparse eigenspectrum ofM . This

essentially amounts toshrinkingthe eigenvalues based on a threshold [2, 3], which in this case is
the regularization constant on the nuclear norm term,ηρ. If the eigenvalue decomposition (EVD) of
Mt = VtΛtV

′
t (with Λt = diag(λt)), the optimal solution to (1) can be computed as follows:

(update eigendecomposition)Vt+1 Λt+1 V
′
t+1=Vt∇ψ(Λt)V

′
t − η∇M ℓt(Mt, µt)

(shrink eigenvalues and project) Mt+1 =Vt+1 ∇ψ−1 (Sηρ(Λt+1) ) V ′
t+1

where theshrinkage operatorSηρ(x) = sign(x) max{(|x| − ηρ), 0}. The finalM(= L′L) is
sparse in its spectrum, and we have thatL = V

√
Λ. If M hasr < n non-zero eigenvalues, we can

consider just the reduced eigendecomposition in calculating the distances:̃L = VrΛr. Finally, the
optimal solution to (2) gives:µt+1 = max

{

∇ψ−1 (∇ψ(µt) − η∇µℓt(Mt, µt)) , 1
}

.

Efficient Computation and Scalability. While it may appear, at first glance, that a full eigen-
decomposition is constructed at every step, this is not the case. For many loss functions, the
gradient∇Mℓt = α(xt − zt)(xt − zt)

′, i.e., we only have to compute arank-one update to an
existing eigendecomposition. This is a well-studied problem, whose solution can be computed very
efficiently [1, 12] by exploiting the Eigenvalue Interleaving Theorem [11]. In fact, if there are a
large number of repeated eigenvalues then, owing to interleaving, all but one of those eigenvalues
and eigenvectors in the update have to be computed. Thus, as the trace-norm shrinkage introduces
more zeros into the problem, it becomes progressively more efficient. Finally, the non-repeating
eigenvalues and their corresponding eigenvectors can be computed independently of each other
making this approach is highly parallelizable. This latteraspect is currently under investigation.

Kernel Metric Learning . The framework of Chatpatanasiri et al., [5] can be used to kernelize this
approach. Consider the (possibly nonlinear) mappingφ that maps all datax in the input space to
a high-dimensional feature space, with an associated kernel function κ(·, ·). In feature space, the
squared-Mahalanobis distance is computed asd(φ(x), φ(z))2 = (φ(x)−φ(z))′L′L(φ(x)−φ(z)).
LetA andΦ be the training data in input space and feature space respectively. Now, we parameterize
L′ = ΦG′, and we haved(φ(x), φ(z))2 = (φ(x)−φ(z))′ΦG′GΦ′(φ(x)−φ(z)). The vectorΦ′

x

is just the column of the kernel matrix corresponding tox and thus we have:

dκ(x, z)
2 = (κ(A,x) − κ(A, z))′M (κ(A,x) − κ(A, z)), (3)

whereM = G′G. Finally, once the matrixM is learnt, the Mahalanobis distance of some
test pointx̃ with respect to a data pointx can easily be computed asd2

κ(x̃, x) = κ(A, x̃) −
κ(A,x))′M (κ(A, x̃) − κ(A,x).

Figure 1:A simple proof-of-concept; (left) A 4-class 2d data set;8 spurious dimensions are added to create
a 10d training set for learning. Frobenius divergence and hingeloss are chosen, withη = 5 andρ = 15;
(right ) Data projected on to the top two eigenvectors of the learnedM , and on the far right, data projected onto
the largest eigenvector of the learnedM , showing that the approach is able to perform feature selection while
learning an effective metric. Also,‖λ‖0 = 2, meaning that there are only two non-zero eigenvalues in thefinal
M , and the algorithm was able to drop the spurious features.
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