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Abstract. We propose a unified approach to Mahalanobis metric learning: an online, regularized,
positive semi-definite matrix learning problem, whose update rules can be derived using the com-
posite objective mirror descent (COMID) framework. This approach admits different Bregman and
loss functions, which yields several different classes of algorithms. The most novel contribution is
the trace norm regularization, which yields a metric sparse in its eigenspectrum, thus performing
feature selection. The regularized update rules are parallelizable and can be computed efficiently.
The proposed approach is also kernelizable, which allows for metric learning in nonlinear domains.

Formulating the Problem

The goal is to incrementally learn a pseudo-metric, given triplets of the form (xt, zt, yt)
T
t=1. The label

yt = 1 indicates that xt is similar to zt and y = −1 indicates dissimilarity:

dM(x, z)2 = (x − z)′L′L(x − z) = (x − z)′M (x − z),

where L ∈ R
n×n and M ⊆ S

n
+, the space of symmetric, positive semi-definite matrices. To avoid O(k2)

pairwise constraints from k triplets, the margin γ = 2 can be fixed and a bias term µ ∈ R, is introduced:

∀(x1, z1, y1 = +1) ⇒ dM(x, z)2 ≤ µ− 1,

∀(x2, z2, y2 = −1) ⇒ dM (x, z)2 ≥ µ + 1.

}

⇒ yt(µ− dM(xt, zt)
2) ≥ 1.

We can introduce the margin function [4], which allows us to define several loss functions for a sample
(xt, zt, yt); for instance, the hinge loss:

m(xt, zt, yt) = yt(µ− dM (xt, zt)
2) = yt

(

µ− (xt − zt)
′M (xt− zt)

)

.

ℓt(M,µ) = max{ 0, 1 −m(xt, zt) }.
We also add a regularization function r(M ) = 9M9, the trace-norm of M i.e., the sum of the singular
values of M (for some ρ > 0) yields sparsity in the singular value spectrum of M , thus minimizing the
rank of M :

min
M�0,µ≥1

1

T

T
∑

t=1

ℓt(M,µ) + r(M ), (1)

Mirror Descent for Metric Learning

The mirror descent algorithm [1] is an iterative proximal gradient method for minimizing a convex
function, φ : Ω → R. Duchi et al., [3] generalized mirror descent to the case where the functions
φt = ℓt + r are composite, consisting of loss and regularization terms. The subtle difference between the
two is that the loss function ℓt is linearized, while the regularization r is not.

We derive generalized update rules for a general loss function and Bregman divergence:

Mt+1 = arg min
M�0

Bψ(M, Mt) + η 〈∇Mℓt(Mt, µt), M −Mt 〉 + η ρ 9M9, (2)

µt+1 = arg min
µ≥1

Bψ(µ, µt) + η∇µℓt(Mt, µt)
′ (µ− µt), (3)

where η > 0 is the learning rate. This formulation has several advantages:

1. Unifying framework. Different algorithms arise from different Bregman and loss functions. E.g., us-
ing Euclidean distance and relative entropy results in additive and multiplicative updates respectively.

2. Scalable to large data sets. The update of the eigendecomposition of M = V ΛV ′, is required at each
step. This is rank-one and can be implemented very efficiently. The update is also embarrasingly
parallel.

3. Trace-norm regularization produces sparse metric. The trace norm ensures that M = L′L is sparse in
its eigenspectrum. If the solution only has r < n eigenvalues, the reduced eigendecomposition can be
used in calculating the distances: L̃ = VrΛr, performing input-space feature selection.

4. Kernelizable for nonlinear metric learning. Recently, Chatpatanasiri et al., [2] showed various tech-
niques of kernelizing some popular metric learning approaches. Their results are easily applied to this
approach, which can then be applied to learn nonlinear metrics.

Loss Functions

If a loss function is Lipschitz, we obtain algorithms that are characterized by O(
√
T ) regret. In the tables

below, ut = xt − zt.

Loss ℓt(Mt, µt) ∇M ℓt(Mt, µt) ∇µ ℓt(Mt, µt)
Hinge ( 1 −mt)+ ( 1 −mt)⋆ (ytutu

′
t) − ( 1 −mt)⋆ yt

Modified Least Sq. 1
2 (1 −mt)

2
+ (1 −mt)+ (ytutu

′
t) −(1 −mt)+yt

Exponential exp(−mt) exp(−mt) (ytutu
′
t) − exp(−mt)yt

Logistic log (1 + exp(−mt))
exp(−mt)

1+exp(−mt)
(ytutu

′
t) − exp(−mt)

1+exp(−mt)
yt
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(left) When (xt, zt) are labeled similar (yt = 1): as µ ≥ 1 increases, so does the width of the insensitivity of
each loss function so that more and more dissimilar points are not penalized; (center) When (xt, zt) are
labeled dissimilar (yt = −1): a dissimilar pair of points close to each other are heavily penalized; (right)
µ controls the with of sensitivity around the point of interest; shown for the exponential loss function.

Bregman Functions

The squared Euclidean distance produces an additive update rule; the KL divergence produces a multi-
plicative update rule; and the Burg divergence produces an inversive update rule.

Divergence Bψ(µ, µt) ∇µBψ(µ, µt) Bψ(M,Mt) ∇MBψ(M,Mt)

Euclidean/Frobenius 1
2(µ− µt)

2 (µ− µt)
1
2 ‖M −Mt‖2

F (M −Mt)

KL/von Neumann µ log µ
µt
− µ log µ

µt
tr (M logM −M logMt −M ) logM − logMt

Itakura-Saito/Burg µ
µt
− log µ

µt
1
µt
− 1
µ trMM−1

t − log detMM−1
t M−1

t −M−1

Generalized Update Rules

The update rules can be derived in closed-form using the eigenvalue thresholding/shrinkage operator.
For a symmetric matrix X , with eigenvalue decomposition X = V diag(λ)V ′, the eigenvalue shrinkage
operator is Sτ (X) = V diag(λτ )V

′, where (λτ )i = sign(λi) max{|λi|− τ, }. The closed-form solutions are:

von Neumann Mt+1 = exp
(

Sηρ(logMt − η∇Mℓt(Mt, µt)
)

,

Burg Mt+1 = −Sηρ
(

−M−1
t − η∇Mℓt(Mt, µt)

)−1
,

Frobenius Mt+1 = Sηρ (Mt − η∇Mℓt(Mt, µt) ) .

A Generalized Metric Learning Algorithm with Trace-Norm Regularization:

1: input: data (xt, zt, yt)
T
t=1, parameters ρ, η > 0

2: choose: Bregman functions ψ(M ); ψ(µ), loss function ℓ(M,µ;x, z, y)
3: initialize: M0 = In diag(0n) In, µ0 = 0
4: for (xt, zt yt) do
5: let ut = xt − zt
6: compute gradients of loss ∇Mℓt = αtutu

′
t and ∇µℓt = −αt

7: write ∇ψ(Mt) = Vt∇ψ(Λt)V
′
t

8: gradient step ∇ψ(Mt+1

2

) = Vt∇ψ(Λt)V
′
t − αutu

′
t

9: compute evd ∇ψ(Mt+1

2

) = Vt+1 Λt+1 V
′
t+1

10: evd shrinkage Mt+1 = Vt+1 ∇ψ−1
(

Sηρ(Λt+1)
)

V ′
t+1

11: project on to S
n
+ for Frobenius, Burg divergences

12: margin update µt+1 = max
{

∇ψ−1
(

∇ψ(µt) − η∇µℓt
)

, 1
}

13: end for

Computing the Eigen-Decomposition Efficiently

Steps 8 and 9 above are implemented together, where a symmetric rank-one update M = V diag(λ)V ′ +
αuu = Wdiag(µ)W ′ is computed. Assume λ1 = · · · = λk = λ̄ < λk+1 < . . . < λn and α > 0. By the

eigenvalue interleaving theorem, we have {µi = λi}k−1
i=1 . We only have to update n− k + 1 eigenvalues.

1: input: t = V ′u,

2: pre-process: compute t̃ =
[

t̃′1:k, t′k+1:n

]′
, and Ṽ =

[

Ṽ1:k Vk+1:n

]

where

t̃1:k =

(

Ik − 2
ss′

s′s

)

t1:k, Ṽ1:k = V1:k

(

Ik − 2
ss′

s′s

)

,

and s = t1:k + ‖t1:k‖2 e1 is a Householder reflector such that t̃1:k = [−‖t1:k‖2, 0 . . . , 0]′. This does not
change the problem since M = Ṽ diag(λ)Ṽ ′ and u = Ṽ ′t̃

3: compute eigenvalues: solve the secular equation for µi between [λi, λi+1], for i = k, . . . , n

f (µ) := 1 − αt̃′(µIn − diag(λ))−1t̃ = 0,

4: compute eigenvectors: wi = V (µiIn − diag(λ))−1t̃ and normalize
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(left) The secular equation, with interleaving eigenvalues λi of a matrix M ∈ S
6 with the eigenvalues

µi of a rank-one perturbation M̃ = M + αuu′; (right) Comparing eigenvalue algorithms: EVDs are
computed for 10 random matrices in S

500, over increasing sparsity in the spectrum. The rank-one
perturbation approach outperforms standard EVD approaches as it exploits structure and eigenvalue
interleaving. Also, its computational cost sharply drops with increasing sparsity.

A Simple Example

A 4-class 2d data set; 8 spurious dimensions are added to create a 10d training set (top left); Data
projected on to the top two eigenvectors of the learned M , and on the far right, data projected onto the
largest eigenvector of the learned M , for (top right) Frobenius + hinge loss; (bottom left) von Neumann
+ logistic loss; (bottom right) Burg + logistic loss.
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