Appears in the Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92).

Using Knowledge-Based Neural Networks to
Improve Algorithms: Refining the
Chou-Fasman Algorithm for Protein Folding
Richard Maclin and Jude W. Shavlik

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706

email: maclin@cs.wisc.edu

Abstract

We describe a method for using machine learning to
refine algorithms represented as generalized finite-state
automata. The knowledge in an automaton is trans-
lated into an artificial neural network, and then refined
with backpropagation on a set of examples. Our tech-
nique for translating an automaton into a network ex-
tends KBANN, a system that translates a set of propo-
sitional rules into a corresponding neural network. The
extended system, FSKBANN, allows one to refine the
large class of algorithms that can be represented as
state-based processes. As a test, we use FSKBANN
to refine the Chou-Fasman algorithm, a method for
predicting how globular proteins fold. Empirical evi-
dence shows the refined algorithm FSKBANN produces
is statistically significantly more accurate than both the
original Chou-Fasman algorithm and a neural network
trained using the standard approach.

Introduction

As machine learning has been increasingly applied to
complex real-world problems, many researchers have
found themselves turning to systems that refine existing
theories rather than building theories from scratch. Ig-
noring existing knowledge is dangerous, since the result-
ing learned concept may not contain important factors
already identified in earlier work. Our research extends
the KBANN system (Towell et al., 1990). KBANN uses
knowledge represented as simple, propositional rules
(a domain theory) to create an initial neural network
containing the knowledge from the rules. Work in
the domain of gene recognition (Towell, 1991) shows
knowledge-based neural networks are more effective
than randomly configured networks — even when the
original domain theory is not good at solving the prob-
lem. This paper describes an addition to KBANN that
extends it for domain theories that employ state infor-
mation.

State is important because researchers outside ma-

chine learning generally publish algorithms, rather than
the sets of rules which machine learning researchers call
domain theories. Many algorithms maintain some sense
of state, so our extension makes it easier to use machine
learning to refine existing “real-world” knowledge. We
test our extended system by refining the Chou-Fasman
(1978) algorithm for predicting (an aspect of ) how glob-
ular proteins fold, an important and particularly diffi-
cult problem in molecular biology.

State in a domain theory represents the context of
the problem. For example, if the problem is to find
a path across a room, the state variables may include
whether the light is on. The rules introduced to solve
this problem take into account the state of the prob-
lem — rules to turn on the light would only be consid-
ered when the state indicates the light is off. In this
style of problem solving, the problem is not solved in
one step, but as a series of actions, each leading to a
new state, leading to a goal state (turning on the light,
navigating to the couch, etc.). The extended KBANN
system, called Finite-State KBANN (FSKBANN), trans-
lates domain theories that use state information, repre-
sented as generalized finite-state automata (FSAs). As
in KBANN, FSKBANN translates the state-based domain
theory into a neural network, and refines the network
using backpropagation (Rumelhart et al., 1986).

The protein-folding problem is an open problem that
is increasingly critical as the Human Genome Project
(Watson, 1990) proceeds. The Chou-Fasman algorithm
is a well-known and widely-used solution. The protein-
folding problem is also interesting because many ma-
chine learning techniques have been applied to it,
including neural networks (Holley & Karplus, 1989;
Qian & Sejnowski, 1988), inductive logic program-
ming (Muggleton & King, 1991), case-based reasoning
(Cost & Salzberg, in press), and multistrategy learning
(Zhang, 1990). Our work combines the Chou-Fasman
algorithm with a neural network to achieve a more ac-
curate result than either method separately.



@ (b) A

A-B, C. /O\

B:- D, E. B C
B:- E, not F.
C-F,G.
D E F G

Figure 1: Sample of KBANN: (a) set of rules, (b) dependen-
cies among the rules, (c) corresponding network, and (d)
network with near-zero weights added.

This paper presents and empirically analyzes the
FSKBANN approach for problem solving in domains
where prior state-based knowledge exists. The next sec-
tion presents the KBANN algorithm and discusses how
we extended it to handle state information. The third
section defines the protein-folding problem and reviews
previous approaches taken. Following that are experi-
ments we performed to test the utility of FSKBANN.

Finite-State KBANN

Before describing FSKBANN, we review the KBANN
(for Knowledge-Based Artificial Neural Networks) al-
gorithm (Towell et al., 1990). KBANN translates a do-
main theory represented as simple rules into a promis-
ing initial neural network. This technique allows neural
networks to take advantage of pre-existing knowledge.

KBANN takes as input a set of propositional, non-
recursive rules, such as those shown in Figure la.
Figure 1b shows dependencies among the rules. A de-
pendency is a link between two propositions — arcs show
conjunctive dependencies. From the set of dependen-
cies, it is easy to map to a network by replacing each
proposition with a unit (and adding units where con-
junctions are combined into disjunctions). Figure lc
displays the resulting network. This network has the
same behavior as the rules for every input vector. After
setting the weights and biases of the units in the net-
work, KBANN connects each unit to any unconnected
units at the next lower level in the network using a
small-weight link (the resulting network appears in Fig-
ure 1d). KBANN adds these connections so that it can
learn new dependencies during backpropagation learn-
ing. For further details see Towell (1991).

To handle a wider class of problems, we extended
KBANN to domain theories represented as generalized
FSAs!. The main extension is the type of network onto

'The notion of FSA in FSKBANN is generalized in that
rather than taking a single input value at each step, the
FSA may take a set of input values.

Table 1: Type of problem solving addressed by FSKBANN.

Given: a state-dependent domain theory and
a goal description
Repeat
Set input = externally-provided information
_|_
current internal representation of
the problem-solving state
Produce, using the domain theory and goal description,
output = result specific to this problem solving step
_|_
next internal representation of
the problem-solving state
Until a Termination Criterion is met.

!
I

" next state

? current output
hidden unit topology

determined by domain theory

Nprapay

current state current input
.-"'.
" system boundary

I

Figure 2: A schematic view of an FSKBANN network.

which the domain theory is mapped. FSKBANN maps
domain theories onto a variant of simple recurrent net-
works (Elman, 1990), where a subset of the network
output is copied back as input of the network in the
next step. The copied output represents the previous
state calculated by the network and can be used in cal-
culating the next succeeding state.

Table 1 describes the class of problem solvers to which
FSKBANN is applicable. Consider a problem solver that
determines the next state from externally-provided in-
put and its internal representation of the current state.
The externally-provided input may involve a descrip-
tion of the initial state or the measurements of sensors
(e.g., as in a reactive planner). The task of the prob-
lem solver is to produce the appropriate output for this
step in the problem solution (e.g., the operator to ap-
ply), as well as choose its internal representation of the
next state. This process repeats until a termination
condition is met (e.g., a goal state is reached).

The description in Table 1 is a definition of state-
based problem solving. The contribution of FSKBANN
is a mechanism for using neural networks to improve
an existing state-dependent domain theory. The inputs
and outputs in Table 1 directly map to input and output
units in a neural network, and the basic KBANN algo-
rithm uses the domain theory to determine the number
and connectivity of the hidden units. Figure 2 shows a



Table 2: Sample primary and secondary structures.

Table 3: Results of non-learning prediction algorithms.

SVFLFPPKPK ..

Primary (20 possible amino acids)

Method Accuracy Comments |

Secondary (three possible structures)|C ﬁ ﬁ 6 ﬁ cccCcaoauoa ..

diagram of the type of network produced by FSKBANN.

FSKBANN requires the user to provide sample in-
put/output pairs which are used to train the network.
It also requires inputs and outputs to be of bounded
size, which means the domain theory can only store a
finite amount of state. Finally, FSKBANN requires the
domain theory be propositional, since no good mecha-
nism exists for dealing with predicate calculus variables
in neural networks. While these are currently limita-
tions, we posit that many “real-world” algorithms can
be represented in this finite-state framework.

The Protein-Folding Problem

This section introduces the protein-folding problem, de-
scribes an algorithm from the biological community to
solve this problem, and shows how the algorithm is
mapped into the above framework. Proteins are long
strings of amino acids, several hundred elements long
on average. There are 20 amino acids in all (repre-
sented by different capital letters). The string of amino
acids making up a protein is the primary structure of
the protein. Once a protein forms, it folds into a three-
dimensional shape, known as its tertiary structure. Ter-
tiary structure is important because the form of the
protein strongly influences its function.

At present, determining the tertiary structure of a
protein is costly and time consuming. An alternative
approach is to predict the secondary structure of a pro-
tein as an approximation. Secondary structure in a pro-
tein is a description of the local structure surrounding
each amino acid. One prevalent system of determining
secondary structure divides a protein into three types
of structures: (1) a-helix regions, (2) f-strand regions,
and (3) random coils (all other regions). For our pur-
poses, we can think of the secondary structure of a pro-
tein as simply a sequence corresponding to the primary
sequence. Table 2 shows a sample mapping between a
protein’s primary and secondary structures.

Table 3 contains results of some standard algorithms
for solving the secondary-structure problem from the
biological literature (Chou & Fasman, 1978; Garnier &
Robson, 1989; Lim, 1974). Figure 3 shows the general
structure of this type of network. In the data sets used
to test the algorithms, 54-55% of the amino acids are
part of coil structures, so 54% accuracy can be achieved
trivially by predicting coil. Note, many biological re-
searchers believe algorithms which use only local infor-
mation can achieve at best 80-90% accuracy (Cohen &
Presnell, personal communication, 1991).

Chou & Fasman 58% data from Qian & Sejnowski (1988)
Garnier & Robson 58% data from Qian & Sejnowski (1988)
Lim 50% from Nishkawa (1983)

Structure

Predicted Secondary

Output
Units

Hidden
Units

Input
Units

Gj R L ... Primary
Structure

Inpm-i./\.l.i.ndow
Figure 3: Neural network used by Qian & Sejnowski.

Table 4: Neural network results for structure prediction.

Method Accuracy Hidden Units Window Size
Holley & Karplus 63.2% 2 17
Qian & Sejnowski 62.7% 40 13

A second approach to the secondary-structure prob-
lem is to use a neural network (Qian & Sejnowski, 1988;
Holley & Karplus, 1989). The neural networks in these
efforts have as input a window of amino acids consisting
of the central amino acid being predicted, plus several
amino acids before and after it in the sequence (similar
to NETTALK networks, Sejnowski & Rosenberg, 1987).
The output of the network is the secondary structure
for the central amino acid. Table 4 presents results from
these studies, which used different data sets.

Our approach is to combine the knowledge from
biological methods into a neural learning method to
achieve a better solution. We chose as our biological
method the Chou-Fasman algorithm, since this algo-
rithm is widely used. The Chou-Fasman approach finds
amino acids that are likely part of a-helix and 3-strand
regions, and extends these predictions to neighboring
amino acids. This algorithm cannot be easily repre-
sented using propositional rules, since the prediction
for an amino acid may depend on the predictions for
its neighbors, but the algorithm can be represented as
a generalized FSA (see Maclin & Shavlik, to appear).
The resulting network is similar to the network shown
in Figure 3 with two major differences. One, the input
to the network includes three extra units that contain
the past output of the network — the state of the net-
work. Two, the topology of the hidden units is deter-
mined by FSKBANN, analogously to Figure 1, using the
Chou-Fasman algorithm as the domain theory. Table 5
shows how the Chou-Fasman algorithm maps into the
FSKBANN framework of Table 1.



Table 5: Mapping the Chou-Fasman algorithm into
FSKBANN (2° = secondary structure, A.A. = amino acid).

domain theory = the Chou-Fasman algorithm
goal = assign a 2° to each A.A.
external input = a sliding window of A.A.s
current state = the predicted 2° for the previous A.A.
results = the predicted 2° for the current A.A.
next state ditto

Experimental Study

We performed several experiments on the protein
problem to evaluate FSKBANN. They demonstrate
FSKBANN has a small but statistically-significant gain
in accuracy over both standard artificial neural net-
works (ANNs) and over the non-learning Chou-Fasman
algorithm. We also show in-depth empirical analyses of
the strengths of the different methods.

Experimental Details

We performed our experiments using the data from
Qian and Sejnowski (1988). Their data set consists of
128 segments from 106 proteins with a total of 21,623
amino acids. 54.5% of the amino acids are part of coil
structures, 25.2% part of a-helix structures, and 20.3%
part of B-strand structures. Ten times we divided the
proteins randomly into training and test sets containing
two-thirds (85 proteins) and one-third (43 proteins) of
the original proteins, respectively.

We used backpropagation to train the neural net-
works in the two network approaches (FSKBANN and
standard ANNs).  Training was terminated using
patience? as a stopping criterion. During training, we
divided the proteins used for training into two portions
— a training set and a tuning set. We use the training
set to train the network and the tuning set to estimate
the generalization of the network. For each epoch, the
system trains the network on each of the amino acids
in the training set; it then assesses accuracy on the
tuning set. We retain the set of weights achieving the
highest accuracy for the tuning set and use this set of
weights to measure test set accuracy. The system ran-
domly chooses a “representative” tuning set; a tuning
set is representative if the percentages of each type of
structure (a, 3, and coil) in the tuning set approximate
the percentages for the training proteins. Note the sys-
tem does not consider the testing set when comparing
the percentages. Through empirical testing, we found a
tuning set size of five proteins achieved the best results
for both FSKBANN and ANNs. Note that this style
of training is different from that reported by Qian and

2The patience criterion (Fahlman & Lebiere, 1990) states
that training continues until the error rate has not decreased
for several training cycles. In this study we set the criterion
to be four epochs.

Table 6: Test set accuracies for prediction methods.

Method Total Helix  Strand Coil
Chou-Fasman 57.3% 31.7% 36.9% 76.1%
ANN 61.8% 43.6% 18.6%  86.3%

- w/ state  61.7% 39.2% 24.2%  86.0%
FSKBANN 63.4% 45.9% 35.1% 81.9%

- w/ostate  62.2% 42.4% 26.3%  84.6%

Table 7: Correlation coefficients from prediction methods.

Method Helix Strand Colil
Chou-Fasman 0.24 0.23 0.26
ANN 0.35 0.25 0.31

- W/ state 0.32 0.28 0.31
FSKBANN 0.37 0.33 0.35

- w/o state  0.35 0.28 0.32

Sejnowski. They tested their network periodically, re-
taining the network that achieved the highest accuracy
for the test set.

FSKBANN uses 28 hidden units to represent the
Chou-Fasman domain theory. Qian and Sejnowski re-
port that their networks generalized best when they had
40 hidden units. Using the method outlined above, we
compared standard ANNs containing 28 and 40 hid-
den units. We found that networks with 28 hidden
units generalized slightly better; hence, for this paper’s
experiments we use 28 hidden units in our standard
ANNs. This also has the advantage that the FSKBANN
and ANNs use the same number of hidden units.

Results and Analysis

Tables 6 and 7 contains results averaged over the 10
test sets. The statistics reported are percent accuracy
overall, percent accuracy by secondary structure, and
correlation coefficients for each structure. The correla-
tion coefficient is good for evaluating the effectiveness
of the prediction for each of the three classes separately.
The resulting gain in overall accuracy for FSKBANN
over both ANNs and the non-learning Chou-Fasman
method is statistically significant at the 0.5% level (i.e.
with 99.5% confidence) using a ¢ -test.

The apparent gain in accuracy for FSKBANN over
ANN networks appears small (only 1.6 percentage
points), but this number is somewhat misleading. The
correlation coefficients give a more accurate picture.
They show that the FSKBANN does better on both a-
helix and coil prediction, and much better on 8-strand
prediction. The reason that the ANN solution does well
in overall accuracy is it predicts many coil structures
(the largest class) and does well on these predictions.

The gain in accuracy for FSKBANN over the Chou-
Fasman algorithm is fairly large and exhibits a corre-
sponding gain in all three correlation coefficients. It
is interesting to note that the FSKBANN and Chou-
Fasman solutions produce almost the same accuracy for



Table 8: Region-oriented prediction statistics.

Occurrence Description FSKBANN ANN Chou

Average length of pre-

dicted helix regions (num- 8.52 779 8.00
(1774)  (2067) (1491)

ber of regions).
Percentage actual helix re-

gions overlap predicted he- 67% 70% 56%
lix regions (length of over-  (6.99) (6.34) (5.76)
laps).
other Percentage predicted helix
- regions do not overlap ac- 34% 39% 36%
a-helix | tyal helix regions.
Average length of

3.80 2.83 6.02

predicted strand regions (2545)

(number of regions). (1673) (2339)

Percentage actual strand
G-strand| regions overlap predicted 54% 35% 46%
B.strand| strand regions (length of  (3.23) (2.65) (4.01)

overlaps).

Percentage predicted
strand regions do not over- 37% 37% 44%
lap actual strand regions.

other

B-strand

[J-strands, but the correlation coefficients demonstrate
that the Chou-Fasman algorithm achieves this accuracy
by predicting more -strands.

Also shown in Tables 6 and 7 are results for ANNs
that included state information — networks similar to
Qian and Sejnowski’s but where the previous output
forms part of the current input vector. These results
show that state information alone is not enough to in-
crease the accuracy of the network prediction.

The final row in Tables 6 and 7 shows results for
ANNs that use the non-state knowledge from the do-
main theory. These networks are simple feedforward
networks where the topology of the network is deter-
mined by the knowledge from the domain theory that
does not involve state. These results show state infor-
mation is integral to the domain theory since networks
without could only do as well as standard ANNs.

Finally, to analyze the detailed performance of the
various approaches, we gathered additional statistics
about the FSKBANN, ANN, and Chou-Fasman solu-
tions. These statistics analyze the results by regions.
A region is a consecutive sequence of amino acids with
the same secondary structure. We consider regions be-
cause the measure of accuracy obtained by comparing
the prediction for each amino acid does not adequately
capture the notion of secondary structure as biologists
view it (Cohen et al., 1991). For biologists, knowing
the number of regions and the approximate order of
the regions is nearly as important as knowing the ex-
act structure for each amino acid. The statistics assess
how well each solution does on predicting a-helix re-
gions and S-strand regions (see Table 8).

Table 8 gives a picture of the strengths and weakness
of each approach. It shows that the FSKBANN solu-
tion overlaps slightly fewer actual a-helix regions than
the ANNs, but that these overlaps tend to be some-
what longer. On the other hand, the FSKBANN net-

works overpredict fewer regions than ANNs (i.e. pre-
dict fewer a-helix regions that do not intersect actual
a-helix regions). Table 8 also indicates FSKBANN and
ANNSs more accurately predict the occurrence of regions
than Chou-Fasman approach does.

Table 8 demonstrates that FSKBANN’s predictions
overlap a much higher percentage of actual g-strand re-
gions than the Chou-Fasman algorithm or ANNs. The
ANNs do extremely poorly at predicting overlapping
actual f-strand regions. The FSKBANN networks do as
well as the ANNs at not overpredicting [-strands, and
both do better than the Chou-Fasman method. Taken
together, these results indicate that the FSKBANN solu-
tion does significantly better than the ANN solution on
predicting F-strand regions without having to sacrifice
much accuracy in predicting a-helix regions.

Overall, the results suggest more work needs to be
done on developing methods of evaluating solution qual-
ity. Solutions that find approximate locations of a-helix
and (-strand regions and those that accurately predict
all three classes should be favored over solutions that
only do well at predicting the largest class. Most impor-
tantly, the results show that for difficult problems, such
as the protein-folding problem, the FSKBANN approach
can be worthwhile.

Future Work

FSKBANN uses a domain theory to give a network a
“good” set of initial weights, since search starts from
that location in weight space. Therefore augmenting
the Chou-Fasman domain theory with other informa-
tion may increase the solution’s accuracy. Informa-
tion in Table 8 indicates current weaknesses. With this
knowledge, domain theory extensions addressing these
weaknesses can be developed by studying the biological
literature.

An interesting property of the networks is that the
magnitude of predictions is correlated with their accu-
racy. This information could be used in a more complex
prediction method: instead of predicting all of the pro-
tein’s structure in one scan, predict only the strongest
activated areas first, then feed these predictions back
into the network for the next scan.

Finally, a problem with the KBANN approach is ex-
tracting information in a human-readable form from the
trained network (Towell & Shavlik, 1992). We need to
address rule extraction for the augmented networks of
FSKBANN to extract learned FSAs.

Related Research

As has been mentioned, the architecture used by
FSKBANN, simple recurrent networks, is discussed by
Elman (1990). The idea of using this type of network
to represent an FSA has been explored by Cleeremans



et al. (1989) and Giles et al. (in press). Cleeremans
et al. showed that this type of network can perfectly
learn to recognize a grammar derived from an FSA. The
major difference between FSKBANN and other research
on learning FSAs is we focus on using an initial FSA
domain theory, rather than learning it from scratch.

Zhang (1990) also applies machine learning to the
secondary-structure problem. His method combines in-
formation from a statistical technique, a memory-based
reasoning algorithm, and a neural network. The best
results he reports are 66.4% for a training set size of 96
proteins (Zhang, personal communication, 1991). An-
other learning technique applied to this problem is the
nearest-neighbor algorithm PEBLS (Cost & Salzberg, in
press). They report approximately 64% accuracy for a
training set similar in size to the one we used.

Conclusions

We present and evaluate FSKBANN, a system that
broadens the KBANN approach to a richer, more ex-
pressive vocabulary. FSKBANN provides a mechanism
for translating domain theories represented as general-
ized finite-state automata into neural networks. The
extension of KBANN to domain theories that include
knowledge about state significantly enhances the power
of KBANN; rules expressed in the domain theory can
take into account the current problem-solving context
(i.e. the state of the solution).

We tested FSKBANN by refining the non-learning
Chou-Fasman algorithm for predicting protein sec-
ondary structure. The FSKBANN-refined algorithm
proved to be more accurate than both standard neural
network approaches to the problem and a non-learning
version of the Chou-Fasman algorithm.

The success of FSKBANN on the secondary-structure
problem indicates it may be a useful tool for addressing
other tasks including state information. However, work
must be done both in improving the neural-network re-
finement process and the extraction of symbolic knowl-
edge from the trained network.

Acknowledgments

This research was partially supported by NSF Grant IRI-
9002413 and ONR Grant N00014-90-J-1941.

References
Chou, P. & Fasman, G. (1978). Prediction of the secondary
structure of proteins from their amino acid sequence. Ad-
vanced Enzymology, 47:45-148.
Cleeremans, A., Servan-Schreiber, D., & McClelland, J.

(1989). Finite state automata and simple recurrent net-
works. Neural Computation, 1:372-381.

Cohen, B., Presnell, S., Cohen, F., & Langridge, R. (1991).
A proposal for feature-based scoring of protein secondary
structure predictions. In Proc. of the AAAI-91 Workshop

on AI Approaches to Classification and Pattern Recognition
in Molecular Biology, (pp. 5-20).

Cost, S. & Salzberg, S. (in press). A weighted nearest neigh-
bor algorithm for learning with symbolic features. Machine
Learning.

Elman, J. (1990). Finding structure in time. Cognitive Sci-
ence, 14:179-211.

Fahlman, S. & Lebiere, C. (1990). The cascade-correlation
learning architecture. In Advances in Neural Information
Processing Systems (volume 2), (pp. 524-532).

Garnier, J. & Robson, B. (1989). The GOR method for
predicting secondary structures in proteins. In Fasman, G.,
editor, Prediction of Protein Structure and the Principles of
Protein Conformation. Plenum Press, New York.

Giles, C., Miller, C., Chen, D., Chen, H., Sun, G., & Lee,
Y. (in press). Learning and extracting finite state automata
with second-order recurrent neural networks. Neural Com-
putation.

Holley, L. & Karplus, M. (1989). Protein structure predic-
tion with a neural network. Proc. of the National Academy
of Sciences (USA), 86:152-156.

Lim, V. (1974). Algorithms for prediction of a-helical and -
structural regions in globular proteins. Journal of Molecular
Biology, 88:873-894.

Maclin, R. & Shavlik, J. (to appear). Using knowledge-based
neural networks to improve algorithms: Refining the Chou-
Fasman algorithm for protein folding. Machine Learning.

Muggleton, S. & King, R. (1991). Predicting protein
secondary-structure using inductive logic programming.
Technical report, Turing Institute, Glasgow, Scotland.

Nishikawa, K. (1983). Assessment of secondary-structure
prediction of proteins: Comparison of computerized Chou-
Fasman method with others. Biochimica et Biophysica Acta,
748:285-299.

Qian, N. & Sejnowski, T. (1988). Predicting the secondary
structure of globular proteins using neural network models.
Journal of Molecular Biology, 202:865-884.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learn-
ing internal representations by error propagation. In Rumel-
hart, D. & McClelland, J., editors, Parallel Distributed Pro-
cessing, Volume 1. MIT Press.

Sejnowski, T. & Rosenberg, C. (1987). Parallel networks
that learn to pronounce English text. Complex Systems,
1:145-168.

Towell, G. (1991). Symbolic knowledge and neural networks:
Insertion, refinement and extraction. PhD thesis, Dept. of
Computer Sciences, Univ. of Wisconsin, Madison, WI.

Towell, G. & Shavlik, J. (1992). Interpretation of artifi-
cial neural networks: Mapping knowledge-based neural net-
works into rules. In Advances in Neural Information Pro-
cessing Systems (volume 4).

Towell, G., Shavlik, J., & Noordewier, M. (1990). Refine-
ment of approximate domain theories by knowledge-based
neural networks. In Proc. of the Eighth National Conference
on Artificial Intelligence, (pp. 861-866).

Watson, J. (1990). The Human Genome Project: Past,
present, and future. Science, 248:44-48.
Zhang, X. (1990). Ezploration on protein structures: Rep-

resentation and prediction. PhD thesis, Dept. of Computer
Sciences, Brandeis Univ., Waltham, MA.



