Appears in the Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94).

Incorporating Advice into Agents that Learn from Reinforcements*

Richard Maclin

Jude W. Shavlik

Computer Sciences Dept., University of Wisconsin
1210 West Dayton Street
Madison, WI 53706

Email: {maclin,shavlik}@cs.wisc.edu

Abstract

Learning from reinforcements is a promising approach
for creating intelligent agents. However, reinforcement
learning usually requires a large number of training
episodes. We present an approach that addresses this
shortcoming by allowing a connectionist Q-learner to
accept advice given, at any time and in a natural
manner, by an external observer. In our approach,
the advice-giver watches the learner and occasionally
makes suggestions, expressed as instructions in a sim-
ple programming language. Based on techniques from
knowledge-based neural networks, these programs are
inserted directly into the agent’s utility function. Sub-
sequent reinforcement learning further integrates and
refines the advice. We present empirical evidence that
shows our approach leads to statistically-significant
gains in expected reward. Importantly, the advice im-
proves the expected reward regardless of the stage of
training at which it is given.

Introduction

A successful and increasingly popular method for cre-
ating intelligent agents is to have them learn from rein-
forcements (Barto, Sutton, & Watkins 1990; Lin 1992;
Mahadevan & Connell 1992). However, these ap-
proaches suffer from their need for large numbers of
training episodes. While several approaches for speed-
ing up reinforcement learning have been proposed, a
largely unexplored approach is to design a learner that
can also accept advice from an external observer. We
present and evaluate an approach for creating advice-
taking learners.

To illustrate the general idea of advice-taking, imag-
ine that you are watching an agent learning to play
some video game. Assume you notice that frequently
the agent loses because it goes into a “box canyon”
in search of food and then gets trapped by its oppo-
nents. One would like to give the learner advice such
as “do not go into box canyons when opponents are in
sight.” Importantly, the external observer should be
able to provide its advice in some quasi-natural lan-
guage, using terms about the specific task domain. In

*This research was partially supported by ONR Grant
N00014-93-1-0998 and NSF Grant [RI-9002413.

addition, the advice-giver should be oblivious to the
details of whichever internal representation and learn-
ing algorithm the agent is using.

Recognition of the value of advice-taking has a long
history in Al. The general idea of an agent accept-
ing advice was first proposed about 35 years ago by
McCarthy (1958). Over a decade ago, Mostow (1982)
developed a program that accepted and “operational-
ized” high-level advice about how to better play the
card game Hearts. More recently Gordon and Sub-
ramanian (1994) created a system that deductively
compiles high-level advice into concrete actions, which
are then refined using genetic algorithms. However,
the problem of making use of general advice has been
largely neglected.

In the next section, we present a framework for using
advice with reinforcement learners. The subsequent
section presents experiments that investigate the value
of our approach. Finally, we list possible extensions to
our work, further describe its relation to other research,
and present some conclusions.

The General Framework

In this section we describe our approach for creating a
reinforcement learner that can accept advice. We use
connectionist (Q-learning (Sutton 1988; Watkins 1989)
as our form of reinforcement learning (RL).

Figure 1 shows the general structure of a reinforce-
ment learner, augmented (in bold) with our advice-
taking extensions. In RL, the learner senses the cur-
rent world state, chooses an action to execute, and
occasionally receives rewards and punishments. Based
on these reinforcements from the environment, the task
of the learner is to improve its action-choosing module
such that it increases the amount of rewards it receives.
In our augmentation, an observer watches the learner

. Observer .
advice -~ ~.. behavior
- ~

2z~ State

Learner

Figure 1: RL with an external advisor.

and periodically provides advice, which is then incor-
porated into the action-choosing module (the advice is
refined based on subsequent experience).

In Q-learning (Watkins 1989) the action-choosing
module is a utility function that maps states and ac-
tions to a numeric value. The utility value of a particu-
lar state and action is the predicted future (discounted)
reward that will be achieved if that action is taken by
the agent in that state. Given a perfect version of this
function, the optimal plan is to simply choose, in each
state that is reached, the action with the largest utility.

To learn a utility function, a Q-learner starts out
with a randomly chosen utility function and explores
its environment. As the agent explores, it continually
makes predictions about the reward it expects and then
updates its utility function by comparing the reward it
actually receives to its prediction. In connectionist Q-
learning, the utility function is implemented as a neural
network, whose inputs describe the current state and
whose outputs are the utility of each action.

We now return to the task of advice-taking. Hayes-
Roth, Klahr, and Mostow (1981) (also see pg. 345-
349 of Cohen & Feigenbaum 1982) described the steps
involved in taking advice. In the following subsections,
we state their steps and discuss how we propose each
should be achieved in the context of RL.

Step 1. Request the advice. Instead of having
the learner request advice, we allow the external ob-
server to provide advice whenever the observer feels it
is appropriate. There are two reasons for this: (i) it
places less of a burden on the observer; and (ii) it is an
open question how to create the best mechanism for
having an RL agent recognize (and express) its need
for advice. Other approaches to providing advice to
RL agents are discussed later.

Step 2. Convert the advice to an internal rep-
resentation. Due to the complexities of natural lan-
guage processing, we require that the external observer
express its advice using a simple programming lan-
guage and a list of acceptable task-specific terms. We
then parse the advice, using traditional methods from
programming-language compilers.

Step 3. Convert the advice into a usable
form. Using techniques from knowledge compilation,
a learner can convert (“operationalize”) high-level ad-
vice into a (usually larger) collection of directly inter-
pretable statements (see Gordon & Subramanian 1994;
Mostow 1982). In many task domains, the advice-giver
may wish to use natural, but imprecise, terms such as
“near” and “many.” A compiler for such terms will
be needed for each general environment. Our com-
piler is based on the methods proposed by Berenji and
Khedkar (1992) for representing fuzzy-logic terms in
neural networks. Note that during training the initial
definitions of these terms can be refined, possibly in
context-dependent ways.

Table 1: Samples of advice in our advice language.

Advice Pictorial Version
IF An Enemy IS (Near A West) A
An Obstacle IS (Near A North) D ‘,\
THEN Q
MULTIACTION o »
MoveEast MoveNorth
END;

WHEN Surrounded A
OKtoPushEast A

An Enemy IS Near - ="

REPEAT l
PushEast Ll
MoveEast

UNTIL - OKtoPushEast v
= Surrounded .

Step 4. Integrate the reformulated advice into
the agent’s current knowledge base. We use
ideas from knowledge-based neural networks to directly
install the operationalized advice into the connectionist
representation of the utility function. In one such ap-
proach, KBANN (Towell, Shavlik, & Noordewier 1990),
a set of propositional rules are re-represented as a neu-
ral network. KBANN converts a ruleset into a network
by mapping the “target concepts” of the ruleset to out-
put units and creating hidden units that represent the
intermediate conclusions. It connects units with highly
weighted links and sets unit biases (thresholds) in such
a manner that the (non-input) units emulate AND or
OR gates, as appropriate.

We extend the KBANN approach to the mapping of
(simple) programs, as explained below. Unlike previ-
ous applications of knowledge-based neural networks,
we allow rules to be installed incrementally into net-
works. That is, previous approaches first reformulated
a ruleset then refined it using backpropagation. We
allow new rules (i.e., advice) to be inserted into the
network at any time during learning.

Table 1 shows some sample advice one might provide
to an agent learning to play a video game. We will use
it to illustrate the process of integrating advice into
a neural network. The left column contains advice in
our programming language, and the right shows the ef-
fects of the advice. A grammar for our advice language
appears elsewhere (Maclin & Shavlik 1994).

We have made three extensions to the standard
KBANN algorithm: (i), we allow advice that contains
multi-step plans; (ii), advice can contain loops; (iii),
advice can refer to previously defined terms. In all
three cases incorporating advice involves adding hid-
den units representing the advice to the existing neural
network, as shown in Figure 2. Note that the inputs
and outputs to the network remain unchanged; the ad-
vice only changes how the function from states to the
utility of actions is calculated.

As an example of a multi-step plan, consider the first
entry in Table 1. Figure 3 shows the network additions
that represent this advice. We first create a hidden unit
(labeled A) that represents the conjunction of (i) an

Actions Hidden Units
For Advice

AN

Current Hidden Units

Sensor Inputs

Figure 2: Advice is added to the neural network by
adding hidden units that correspond to the advice.

Other Outputs MoveEast MoveNorth

Enemy Obstacle
Near,West Near,North

Other Inputs MoveEast_ 4 MoveN orth_ , Statel ;

Figure 3: Translation of the first piece of advice.
The ellipse at left represents the original hidden
units. Arcs show units and weights set to make
a conjunctive unit. We also add, as is typical
in knowledge-based networks, zero-weighted links
(not shown) to other parts of the current network.
These links support subsequent refinement.

enemy being near and west! and (ii) an obstacle being
adjacent and north. We then connect this unit to the
action MoveFEast, which is an existing output unit (re-
call that the utility function maps states to values of
actions); this constitutes the first step of the two-step
plan. We also connect unit A to a newly-added hid-
den unit called Statel that records when unit A was
active in the previous state. We next connect Statel
to a new input unit called Statel_;. This recurrent
unit becomes active (“true”) when Statel was active
for the previous input (we need a recurrent unit to im-
plement multi-step plans). Finally, we construct a unit
(labeled B) that is active when Statel_; is true and
the previous action was a eastward move (the input
includes the previous action taken in addition to the
current sensor values). When active, unit B suggests
moving north — the second step of the plan.

We assign high weights to the arcs coming out of
units A and B. This means that when either unit is
active, the total weighted input to the corresponding
output unit will be increased, thereby increasing the
utility value for that action. Notice that during sub-
sequent training the weight (and the definition) of a
piece of advice may be substantially altered.

The second piece of advice in Table 1 also contains
a multi-step plan, but this time it is embedded in a
REPEAT. Figure 4 shows the resulting additions to the
network for this advice. The key to translating this
construct is that there are two ways to invoke the two-
step plan. The plan executes when the WHEN condition

YA unit recognizing this concept, “enemy near and
west,” is creating using a technique similar that in Berenji
and Khedkar (1992); for more details see Maclin and Shav-
lik (1994).

PushEast MoveEast

Surrounded OKtoPushEast Enemy
ear

Other Inputs PushEast , MoveEest ; SL

Figure 4: Translation of the second piece of ad-
vice. Dotted lines show negative weights. As with
all translations, the units shown are added to the
existing network.

Old Definition MoveEast

MoveEast —_
/ﬁ\ New Definition
(
/N 7 .

Figure 5: Incorporating the definition of a term
that already exists.

is true (unit C) and also when the plan was just run
and the UNTIL condition is false. Unit D is active when
the UNTIL condition is met, while unit F is active when
the UNTIL is unsatisfied and the agent’s two previous
actions were pushing and then moving east.

A final issue for our algorithm is dealing with advice
that involves previously defined terms. This frequently
occurs, since advice generally indicates new situations
in which to perform existing actions. Figure 5 shows
how we address this issue. We add a new definition of
an existing term by first creating the representation of
the added definition and making a copy of the unit rep-
resenting the existing definition. We create a new unit,
which becomes the term’s new definition, representing
the disjunction of the old and new definitions.? This
process 1s analogous to how KBANN processes multiple
rules with the same consequent.

Once we insert the advice into the RL agent, it re-
turns to exploring its environment, thereby integrating
and refining the advice. This is a key step because we
cannot determine the optimal weights to use for the
new piece of advice; instead we use RL to fine tune it.

Step 5. Judge the value of the advice. We cur-
rently rely on Q-learning to “wash out” poor advice.
One can also envision that in some circumstances —
such as a game-learner that can play against itself
(Tesauro 1992) or when an agent builds an internal
world model (Sutton 1991) — it would be straightfor-
ward to empirically evaluate the new advice. It would
also be possible to allow the observer to retract or
counteract bad advice.

2The process in Figure 5 would be used when adding the
network fragments shown in Figures 3 and 4, assuming the
advice came after the learner began exploring and learning.

@ ® Key
A Agent
() o © Reward
. > | . Enemy
(+]
. B ‘ 1 D Obstacle
‘ Empty
(b) /@ (© T]
. —
St | O
ACTIONS
(d) No Action MoveEast PushEast MoveNorth

Hidden

SENSOR INPUTS

Figure 6: Our test environment: (a) sample con-
figuration; (b) sample division of the environment
into sectors; (c) distances measured by the agent’s
sensors; (d) a neural network that computes the
utility of actions.

Experimental Study

We next empirically judge the value of our approach
for providing advice to an RL agent.

Testbed

Figure 6a illustrates our test environment. Our task is
similar to those explored by Agre and Chapman (1987)
and Lin (1992). The agent can perform nine actions:
moving and pushingin the directions East, North, West
and South; and doing nothing. Pushing moves the ob-
stacles in the environment — when the agent is next to
an obstacle and pushes it, the obstacle slides until it
encounters another obstacle or the board edge.

The agent receives reinforcement signals when:
(1) an enemy eliminates the agent by touching the agent
(-1.0); (ii) the agent collects one of the reward ob-
jects (40.7); and (iii) the agent destroys an enemy by
pushing an obstacle into it (+0.9). Each enemy moves
randomly unless the agent is in sight, in which case it
moves toward the agent.

We do not assume a global view of the environment,
but instead use an agent-centered sensor model. It is

based on partitioning the world into a set of sectors
around the agent (see Figure 6b). The agent calcu-
lates the percentage of each sector that is occupied
by each type of object — reward, enemy, obstacle, or
wall. These percentages constitute the input to the
neural network (Figure 6d). To calculate the sector
occupancy, we assume the agent is able to measure the
distance to the nearest occluding object along a fixed
set of angles around the agent (Figure 6¢). This means
that the agent is only able to represent the objects in
direct line-of-sight from the agent. Further details of
our world model appear in Maclin and Shavlik (1994).

Methodology

We train the agents for a fixed number of episodes for
each experiment. An episode consists of placing the
agent into a randomly generated, initial environment,
and then allowing it to explore until it is captured
or a threshold of 500 steps is reached. Each of our
environments contains a 7x7 grid with approximately
15 obstacles, 3 enemy agents, and 10 rewards. We use
three randomly-generated sequences of initial environ-
ments as a basis for the training episodes. We train
10 randomly initialized networks on each of the three
sequences of environments; hence, we report the aver-
aged results of 30 neural networks. We estimate the
average total reinforcement (the average sum of the
reinforcements received by the agent)® by freezing the
network and measuring the average reinforcement on
a testset of 100 randomly-generated environments.

We chose parameters for our Q-learning algorithm
that are similar to those investigated by Lin (1992).
The learning rate for the network is 0.15, with a dis-
count factor of 0.9. To establish a baseline system, we
experimented with various numbers of hidden units,
settling on 15 since that number resulted in the best
average reinforcement for the baseline system.

After choosing an initial network topology, we then
spent time acting as a advisor to our system, observing
the behavior of the agent at various times. Based on
these observations, we wrote several collections of ad-
vice. For use in our experiments, we chose four sets of
advice (see Appendix), two that use multi-step plans
(referred to as ElimEnemies and Surrounded), and two
that do not (SimpleMoves and NonLocalMoves).

Results and Discussion

For our first experiment, we evaluate the hypothesis
that our system can in fact take advantage of advice.
After 1000 episodes of initial learning, we measure the
value of (independently) providing each of the four sets
of advice. We train the system for 2000 episodes af-
ter adding the advice and then measure testset rein-

3We report the average total reinforcement rather than
the average discounted reinforcement because this is the
standard for the RL community. Graphs of the average
discounted reward are qualitatively similar to those shown
in the next section.

Table 2: Testset results for the baseline and the
four different types of advice; each of the gains
(over the baseline) in average total reinforcement
for the four sets of advice is statistically significant
at the p < 0.01 level (i.e., with 99% confidence).

Advice Added Average Total Reinforcement
None (baseline) 1.32
SimpleMoves 1.92
NonLocalMoves 2.01
ElimEnemies 1.87
Surrounded 1.72

(@ 2.00—
1.50
1.00
0.50,

0.00-

Average testset
reinforcement

-0.50-

-1.00

0 1o|00 20|00 30|00 40|oo
(b) 2.00—
1.50
1.00

0.50—

No advice

0004 4 ~ """ Advice after 0 episodes

"""""" Advice after 1000 episodes
Advice after 2000 episodes

Average testset
reinforcement

-0.50-

-1.00 T

T T 1
0 1000 2000 3000 4000
Number of training episodes

Figure 7: Testset results of (a) SimpleMoves and
(b) ElimEnemies advice.

forcement. (The baseline is trained for 3000 episodes).
Table 2 reports the average testset reinforcement; all
gains over the baseline system are significant.

In our second experiment we investigate the hypoth-
esis that the observer can beneficially provide advice
at any time during training. To test this, we insert the
four sets of advice at different points in training (after
0, 1000, and 2000 episodes). for the SimpleMoves and
ElimEnemies advice respectively. These graphs indi-
cate the learner does indeed converge to approximately
the same expected reinforcement no matter when the
advice is presented. It is also important to note that
the effect of the advice may not be immediate — the
agent may have to refine the advice over a number of
training episodes. Results for the other pieces of advice
are qualitatively similar to those shown in Figure 7.

Each of our pieces of advice addresses specific sub-
tasks: collecting rewards (SimpleMoves and NonLo-
calMoves); eliminating enemies (ElimEnemies); and
avoiding enemies, thus surviving longer (Simple Moves,
NonLocalMoves, and Surrounded). Hence, it is natural
to ask how well each piece of advice meets its intent.
Table 3 reports statistics on the components of the re-
inforcement. These statistics show that the pieces of
advice do indeed lead to the expected improvements.

Table 3: Mean number of enemies captured, re-
wards collected, and number of actions taken for
the experiments summarized in Table 2.

Advice Added Enemies | Rewards | Survival Time
None (baseline) 0.15 3.09 32.7
SimpleMoves 0.28 3.79 39.6
NonLocalMoves 0.26 3.95 39.1
ElimEnemies 0.44 3.50 38.3
Surrounded 0.30 3.48 46.2

Future and Related Work

There are two tasks we intend to address in the near
term. Our current experiments only demonstrate the
value of giving a single piece of advice. We plan to em-
pirically study the effect of providing multiple pieces
of advice at different times during training. We also
intend to evaluate the use of “replay” (i.e., periodic re-
training on remembered pairs of states and reinforce-
ments), a method that has been shown to greatly re-
duce the number of training examples needed to learn
a policy function (Lin 1992).

There are a number of research efforts that are re-
lated to our work. Clouse and Utgoff (1992), Lin
(1992), and Whitehead (1991) developed methods in
which an advisor provides feedback to the learner — the
advisor evaluates the chosen action or suggests an ap-
propriate action. Lin (1993) also investigated a teach-
ing method where the input to the RL system includes
some of the previous input values. Thrun and Mitchell
(1993) investigated RL agents that can make use of
prior knowledge in the form of neural networks trained
to predict the results of actions. These methods ad-
dress the issue of reducing the number of training ex-
amples needed in RL; but, unlike our approach, they
do not allow an observer to provide general advice.

Our work, which extends knowledge-based neural
networks to a new task and shows that “domain theo-
ries” can be supplied piecemeal, is similar to our ear-
lier work with the FSKBANN system (Maclin & Shavlik
1993). FsSKBANN extended KBANN to deal with state
units, but it does not create new state units.

Gordon and Subramanian (1994) developed a system
similar to ours. Their agent accepts high-level advice
of the form I1F conditions THEN ACHIEVE goal. It oper-
ationalizes these rules using its background knowledge
about goal achievement. The resulting rules are then
incrementally refined using genetic algorithms, an al-
ternate method for learning from the reinforcements
an environment provides.

Finally, some additional research closely relates to
our approach for instructing an agent. Nilsson (1994)
developed a simple language for instructing robots,
while Siegelman (1994) proposed, but has not yet eval-
uated, alternate techniques for converting programs
expressed in a general-purpose, high-level language
into recurrent neural networks.

Conclusions

We present an approach that allows an reinforcement
learning agent to take advantage of suggestions pro-
vided by an external observer. The observer commu-
nicates advice using a simple programming language,
one that does not require the observer to have any
knowledge of the agent’s internal workings. The ad-
vice 1s directly installed into a neural network that
represents the agent’s utility function, and then re-
fined. Our experiments demonstrate the validity of
this advice-taking approach.

Acknowledgements
We wish to thank C. Allex, M. Craven, D. Gordon, and

S. Thrun for helpful comments on this paper.

Appendix — Four Sample Pieces of Advice

The four pieces of advice used in our experiments appear
below. To make it easier to specify advice that applies
in any direction, we defined the special term dir. During
parsing, diris expanded by replacing each rule containing it
with four rules, one for each direction. Similarly we defined
a set of four terms {ahead, back, sidel, side2}. Any rule
using these terms leads to eight rules — two for each case
where ahead is East, North, West and South and back is
appropriately set. There are two for each case of ahead and
back because side! and side2 can have two sets of values for
a given value of ahead (e.g. if aheadis North, sidel could
be East and side2 West, or vice-versa).
SimpleMoves

If An Obstacle is (NextTo A dir) Then OkPushdir,

If No Obstacle is (NextTo A dir) A No Wall is (NextTo A dir)
Then OkMovedir;

If An Enemy is (Near A = dir) A OkMovedir Then Movedir;

If A Reward is (Near A dir) A No Enemy is (Near A dir) A
OkMovedir Then Movedir;

If An Enemy is (Near A dir) A OkPushdir Then Pushdir;

NonLocalMoves

If No Obstacle is (NextTo A dir) A No Wall is (NextTo A dir)
Then OkMovedir;

If Many Enemy are (= dir) A No Enemy is (Near A dir) A
OkMovedir Then Movedir;

If An Enemy is (dir A {Medium Vv Far}) A No Enemy is (dir A Near)
A A Reward is (dir A Near) A OkMovedir Then Movedir;

ElimEnemies

If No Obstacle is (NextTo A dir) A No Wall is (NextTo A dir)
Then OkMovedir;

If An Enemy is (Near A back) A An Obstacle is (NextTo A sidel) A
OkMoveahead Then MultiAction Moveahead Moveside 1
Movesidel Moveback Pushside2 End;

Surrounded
If An Obstacle is (NextTo A dir) Then OkPushdir;
If An Enemy is (Near A dir) V A Wall is (NextTo A dir) V
An Obstacle is (NextTo A dir) Then Blockeddir;
If BlockedEast A BlockedNorth A BlockedSouth A BlockedWest
Then Surrounded,;
When Surrounded A OkPushdir A An Enemy is Near
Repeat Pushdir Movedir Until = OkPushdir;

References

Agre, P., & Chapman, D. 1987. Pengi: An implementation
of a theory of activity. AAAI-87, 268-272.

Barto, A., Sutton, R., & Watkins, C. 1990. Learning
and sequential decision making. In Gabriel, M., & Moore,
J., eds., Learning and Computational Neuroscience. MIT
Press.

Berenji, H., & Khedkar, P. 1992. Learning and tuning fuzzy
logic controllers through reinforcements. TEFE Trans. on
Neural Networks 3:724-740.

Clouse, J., & Utgoff, P. 1992. A teaching method for
reinforcement learning. Proc. 9th Intl. ML Conf., 92-101.

Cohen, P., & Feigenbaum, E. 1982. The Handbook of Ar-
tificeal Intelligence, Vol. 8. William Kaufmann.

Gordon, D., & Subramanian, D. 1994. A multistrategy
learning scheme for agent knowledge acquisition. Infor-
matica 17:331-346.

Hayes-Roth, F., Klahr, P., & Mostow, D. J. 1981. Advice-
taking and knowledge refinement: An iterative view of skill
acquisition. In Anderson, J., ed., Cognitive Skills and their
Acquisition. Lawrence Erlbaum.

Lin, L. 1992. Self-improving reactive agents based on
reinforcement learning, planning, and teaching. Machine
Learning 8:293-321.

Lin, L. 1993. Scaling up reinforcement learning for robot
control. Proc. 10th Intl. ML Conf., 182-189.

Maclin, R., & Shavlik, J. 1993. Using knowledge-based
neural networks to improve algorithms. Machine Learning
11:195-215.

Maclin, R., & Shavlik, J. 1994. Incorporating advice into
agents that learn from reinforcements. Technical Report
1227, CS Dept., Univ. of Wisconsin-Madison.

Mahadevan, S., & Connell, J. 1992. Automatic program-
ming of behavior-based robots using reinforcement learn-
ing. Artificial Intelligence 55:311-365.

McCarthy, J. 1958. Programs with common sense. Proc.
Symp. on the Mech. of Thought Processes, Vol. 1, 77-84.
Mostow, D. J. 1982. Transforming declarative advice into
effective procedures: A heuristic search example. In Michal-
ski, R., Carbonell, J., & Mitchell, T., eds., Machine Learn-
ing: An AI Approach, Vol. 1. Tioga Press.

Nilsson, N. 1994. Teleo-reactive programs for agent control.
J. of Artificial Intelligence Research 1:139-158.
Siegelmann, H. 1994.
AAAI-94, this volume.
Sutton, R. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9-44.

Neural programming language.

Sutton, R. 1991. Reinforcement learning architectures for
animats. In Meyer, J., & Wilson, S., eds., From Animals
to Animats. MIT Press.

Tesauro, G. 1992. Practical issues in temporal difference
learning. Machine Learning 8:257-277.

Thrun, S., & Mitchell, T. 1993. Integrating inductive
neural network learning and explanation-based learning.
1JCAI-93, 930-936.

Towell, G., Shavlik, J., & Noordewier, M. 1990. Refinement
of approximate domain theories by knowledge-based neural
networks. AAAI-90, 861-866.

Watkins, C. 1989. Learning from Delayed Rewards. Ph.D.
Dissertation, King’s College, Cambridge.

Whitehead, S. 1991. A complexity analysis of cooperative
mechanisms in reinforcement learning. AAAI-91, 607-613.

