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ABSTRACT

We describe a method for using machine learning to refine algorithms represented
as generalized finite-state automata. The knowledge in an automaton is translated into a
corresponding artificial neural network, and then refined by applying backpropagation to
a set of examples. Our technique for translating an automaton into a network extends the
KBANN algorithm, a system that translates a set of propositional, non-recursive rules into
a corresponding neural network. The topology and weights of the neural network are set
by KBANN so that the network represents the knowledge in the rules. We present the
extended system, FSKBANN, which augments the KBANN algorithm to handle finite-state
automata. We employ FSKBANN to refine the Chou-Fasman algorithm, a method for
predicting how globular proteins fold. The Chou-Fasman algorithm cannot be elegantly
formalized using non-recursive rules, but can be concisely described as a finite-state
automaton. Empirical evidence shows that the refined algorithm FSKBANN produces is
statistically significantly more accurate than both the original Chou-Fasman algorithm
and a neural network trained using the standard approach. We also provide extensive
statistics on the type of errors each of the three approaches makes and discuss the need
for better definitions of solution quality for the protein-folding problem.

1. INTRODUCTION
When addressing an unsolved problem, a normal approach is to start by researching the

problem and seeing which approaches have been taken. The direction one takes often builds on
earlier work. This strategy is generally ignored by most computerized empirical learning
systems — systems that try to learn new concepts. Empirical learning systems often try to
acquire a concept from scratch, ignoring knowledge that already exists about a problem.
Ignoring this existing knowledge is dangerous, since the resulting learned concept may not
contain important factors already identified in earlier work. The learning system may even be
unable to solve the problem without the headstart prior knowledge would give it. The approach
we present allows an empirical learning system to take advantage of prior knowledge about a
�����������������������������������������������������������������������

* A version of this report will appear as a chapter in Computational Learning Theory and Natural Learning Systems,
S. Hanson, G. Drastal, and R. Rivest, editors, MIT Press, 1992.
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problem in a systematic way. Our learning system takes the initial knowledge, and rather than
attempting to learn the whole concept from scratch, refines the initial knowledge to better
address the problem.

Our work extends the KBANN system (for Knowledge-Based Artificial Neural Networks)
[Towell90]. We use the extended system to refine the Chou-Fasman algorithm [Chou78] for
predicting the folded structure of globular proteins, a particularly difficult problem in molecular
biology. KBANN uses knowledge represented as simple, propositional-calculus rules (referred to
as a domain theory) to create an initial neural network that represents the knowledge contained
in the rules. This network will hopefully be a better starting point for learning than a randomly-
configured initial network. This technique has proven effective for complex problems such as
gene recognition [Noordewier91, Towell90], even when the original domain theory is not
particularly good at solving the problem. The main limitation of the KBANN technique is that it
can only translate rules that are propositional (i.e. have no variables) and are non-recursive. This
paper describes an addition to KBANN that extends it for a simple type of recursion.

We extend KBANN to include a simple form of recursion by representing state information
in the neural network. State in the network represents the context of the problem. For example,
if the problem is how to cross a room, the state variables may represent (among other things),
whether or not the light is on in the room. The rules introduced to solve this problem can
therefore take into account the state of the problem — rules to turn on the light would only be
considered when the state of the problem indicated that the light is off. In this style of problem
solving, the problem is not solved in one step, but instead as a series of actions, each leading to a
new state, that hopefully leads to the goal state (turning on the light, navigating to the couch,
moving Cindy’s toy fire engine out of the way, etc.). The network similarly attempts to
determine the resulting next state given the current state and input. This approach is recursive
because the state calculated is used in the next step as the previous state for the network. The
extended KBANN system, called Finite-State KBANN (FSKBANN), translates domain theories that
use state information, usually represented as generalized finite-state automata [Hopcroft79]. As
in KBANN, FSKBANN first translates the domain theory into a neural network, and then refines
the network using backpropagation [Rumelhart86] with a set of examples.

The choice of neural networks as the empirical learning system on which to build was made
for a couple of reasons. One basic reason is that networks provide a very general mechanism for
representing concepts. A neural network, given the proper number of hidden units and hidden
layers, can learn almost any type of concept [Hornik89]. A second reason for using neural
networks is that they generally deal very well with noisy and incorrect data [Shavlik91]. As for
limitations of neural networks, one basic problem is how to go about selecting the topology of
the network. Determining the best topology for a neural network is problem dependent and is
often done by experimentation [Weiss89], which can be a long and costly process. Another
problem is deciding what to input to the network. This choice can greatly affect a neural
network, since if not enough features are provided, the network may be unable to learn the
concept, but if too many are provided the network may be unable to determine which features
are critical. Both of these problems are handled to some extent by the KBANN approach. The
rules in the domain theory not only determine the initial topology for the network, but are also
used to tell the network which variables to focus on initially.

We chose the problem of protein secondary-structure prediction (defined in section 3) for a
number of reasons. The secondary-structure prediction problem is an open problem which will
become increasingly critical as the Human Genome Project [Watson90] continues to produce

2



more data. The problem is attractive because there exist a number of algorithms, proposed by
biological researchers, which attempt to solve this problem, but with only limited success. The
Chou-Fasman algorithm [Chou78] is the focus of our work because it is one of the best-known
and widely-used algorithms in the field. This algorithm cannot be represented using the original
KBANN system, but can be represented for FSKBANN. The secondary-structure problem is also
of interest because a number of researchers have applied standard neural networks to this
problem [Holley89, Qian88]. Our work combines these two approaches to achieve a more
accurate result than either neural networks or the Chou-Fasman algorithm does alone; Table 1
illustrates a broad overview of our task.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Table 1. An overview of our approach to the protein-folding problem.

Given: An algorithm for predicting secondary structure
(e.g., the Chou-Fasman algorithm [Chou78]).

and

Sample proteins with known secondary structure from the
Brookhaven X-ray Crystallography Database [Bernstein77].

Do: Refine the initial algorithm using sample proteins.

Predict: The secondary structure of new proteins.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

This paper presents and empirically analyzes the FSKBANN algorithm for problem solving
in domains where prior knowledge exists. The next section presents the basic KBANN algorithm
and discusses how we extended the algorithm to handle state information. Section 3 contains a
description of the protein-folding problem, including a discussion of a number of approaches
that have been taken. Following that are a number of experiments we performed to test the
utility of the FSKBANN approach for this problem. The fourth section describes some
enhancements to our approach which we are currently exploring. We conclude with a review of
work in related fields, specifically other work that attempts to solve the protein-structure
problem, network methods that use state information, and other algorithms that refine domain
theories.
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2. THE KBANN ALGORITHM
The KBANN algorithm [Towell90] translates a domain theory represented as simple rules

into a promising initial neural network; it uses the rules to define a network topology and also to
initialize the weights of the network. This section outlines standard KBANN and gives a simple
example of how the algorithm works. This is followed by a description of an extension to the
standard algorithm for domain theories represented as finite-state automata (FSAs).

2.1. Standard KBANN
KBANN translates domain theories represented as propositional, non-recursive rules. An

overview of the algorithm appears in Table 2. The algorithm takes as input a set of rules along
with a specification of which propositions are to be used as input and output units. KBANN
produces a network where each proposition has a corresponding unit that is highly active when
the proposition is true and inactive when the proposition is false. The process of assigning
propositions to units is described below in Step 1. After it creates the initial network, KBANN
adds extra links with low weights to the network, as described in Step 2. In Step 3, KBANN trains
the network using backpropagation, thereby refining the original domain theory.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Table 2. Overview of the KBANN algorithm.

Step 1. Translate the domain theory into a neural network.

Step 2. Add extra links and input units to the network.

Step 3. Train the network using backpropagation.

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Step 1. Setting the Initial Topology and Weights
The rules in the domain theory determine the topology of the network. KBANN represents

each rule by a separate unit. For each antecedent of a rule, KBANN adds a connection in the
network from the unit representing the antecedent to the unit representing the rule’s consequent.
The weight of the connection is equal to a constant, ω (generally 4.0), for positive antecedents
and −ω for negated antecedents. The bias of the new unit is (n − 1⁄2 )ω where n is the number of
positive antecedents in the rule being translated. The resulting unit is active only when all of the
positive antecedents are on and all of the negative antecedents are off.

As an example, consider translating rule 3 in Figure 1a. KBANN creates the unit marked 3
in Figure 1b, which has connections from the input units V and W with weights of ω. The bias
of this unit is set to

2
3

����� ω. Each of the units corresponding to one of Figure 1a’s rules is marked

with the rule number in Figure 1b. Links with weight ω appear as solid lines and links with
weight −ω are dashed.
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(1) A ← U ∧ ¬ V

(2) B ← W ∧ ¬ Y

(3) C ← V ∧ W

(4) C ← X ∧ Y

(a)

U V W X Y Z

A B C

1 2

3 4

(b)

U V W X Y Z

A B C

(c)

Figure 1. Example of the KBANN process: (a) a set of sample rules, (b) the neural network
representing the rules, and (c) the network after adding extra links.
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The units in Figure 1b representing rules 1 and 2 from Figure 1a are the units that represent
the propositions A and B, respectively. However, C is represented by a unit that does not
correspond to a rule. When a proposition is the consequent of only one rule (as A and B are),
then the unit representing that rule directly corresponds to that proposition; but when more than
one rule imply a proposition (as with C), that proposition must be handled slightly differently.
In this latter case (an implicit disjunction), KBANN generates a unit for each rule. It then
generates a new unit to represent their disjunction. Each of the units representing rules are
connected to the unit representing the consequent with connections of weight ω. The bias of the
unit representing the consequent is set to 1⁄2 ω. Thus, in the example in Figure 1, the unit
representing C is active when either of the units representing rules 3 and 4 are active.

Step 2. Adding Extra Connections
Once the initial topology and initial weights are set, KBANN adds lowly-weighted

connections to the network. These connections allow the network to add antecedents to rules
during the learning phase. The basic algorithm for connecting units is to connect every unit at
level n to every unit at level n-1 (unless there is a connection already). KBANN determines the
level of a unit recursively: a unit’s level is one higher than the level of the highest unit
connected to it. In Figure 1b, assuming the input units are all at level zero, the units labeled 1-4
are at level one, and the unit corresponding to proposition C is at level two. KBANN then
connects each of the level-one units to the level-zero units, and the level-two units to the level-
one units (an exception is made for output units; output units are never connected to other output
units). The resulting network appears in Figure 1c, with the low-weight connections shown as
thin solid lines.

Step 3. Refining the Domain Theory
After setting up the network, KBANN trains the network on a set of examples using

backpropagation [Rumelhart86], though any neural network learning algorithm could be used.
The domain theory serves as a bias giving the network a (hopefully) good starting point for
backpropagation search through weight space.

Evaluation of KBANN
KBANN has proven to be very effective in the promoter problem [Towell90] and the

splice-junction problem [Noordewier91], two tasks from molecular biology. KBANN achieves
for the promoter problem an error rate of only 3.8% as compared to an error rate of 7.6% for
neural networks alone, and 11.3% for a non-learning solution. For the splice-junction problem,
KBANN and standard neural networks have about the same error rate for large numbers of
examples, but for small numbers of training examples, KBANN makes less than half the number
of errors standard neural networks do.

2.2. Finite-State KBANN
One limitation of KBANN is that its domain theories must be expressed as propositional,

non-recursive rules. This makes it impossible to easily represent domain theories such as the
Chou-Fasman algorithm, which predicts protein secondary structure. We address this limitation
by extending KBANN to represent finite-state automata. The difficulties in representing an FSA
in a neural network are (1) representing the state of the automaton, and (2) capturing the notion
of "scanning" an input string. FSKBANN addresses both of these issues.
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Maintaining Past State
FSKBANN uses a neural-network structure similar to the networks introduced in both

[Elman90, Jordan86] to represent state. The network takes as input the previous state and the
input values, and determines the next state. It uses this new state as the previous-state input in
the next step. This "copying-back" process acts as if there were recurrent links, with fixed
weights, from the output units representing the current state to the input units representing the
previous state. We chose this representation over a fully-recurrent neural network
implementation because of its simplicity. The major difference between our networks and
fully-recurrent networks is that no weight adjustment occurs in our network for the links from
the output units to the inputs.

Scanning the Input
FSKBANN captures the notion of scanning a series of input values and successively

determining the current state by activating the network once for each input value (as in
[Sejnowski87]). Each input value is combined with the previously-determined state as input to
the network, and the network determines the resulting state. The concept of input value is
generalized for our networks. An FSA generally examines a single input value at a time.
Instead of requiring a single input value, FSKBANN takes a vector of values representing the
current input (i.e. an input value may be represented by many input propositions; for example,
the input could contain an amino acid and its 12 neighbors in a protein).

Mapping FSAs to Neural Networks
The final addition needed to the standard KBANN algorithm to handle FSAs is a step that

transforms an FSA into a set of rules involving state. FSKBANN translates each of the transition
arcs in the FSA into a rule where the antecedents of the rule are the original state plus the
predicate with which the arc is labeled, and the consequent of the rule is the resulting state. As
an example, consider the arc labeled U ∧ ¬ V from state C to state A in the FSA in Figure 2a.
FSKBANN translates this arc into rule 1 in Figure 2b. Figure 2b displays the rules derived from
the FSA in Figure 2a.

FSKBANN maps these rules into a network where the input units are the input propositions
and the previous state; the output of the network represents the resulting state. The network
resulting from Figure 2b’s rules is shown in Figure 2c. FSKBANN concludes by adding extra
links to the network and then training the network.

Algorithmic Details
An important consideration in training neural networks with state information is which

output to use as the previous state. There are two possibilities: the teacher’s (correct) output or
the actual output produced by the network? Each approach has its advantages and drawbacks. If
the network’s output is used, and that output is incorrect, then in the next training step the
network will be trying to learn the wrong transition. Using the teacher’s output avoids this
problem, but it is possible that the network will become dependent on receiving the correct last
output as input. This can be a problem in domains where the trained network will not achieve
very high accuracy. In this case, using the actual output is an advantage because the network
can still learn to use the state information, but will not place too much faith in the correctness of
the information. Our experiments for the protein-folding problem (see Section 4) used the
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W Y X Y

(a)

(1) A
i

← C
i-1

∧ U ∧ ¬ V

(2) B
i

← C
i-1

∧ W ∧ ¬ Y

(3) C
i

← A
i-1

∧ V ∧ W

(4) C
i

← B
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∧ X ∧ Y

(b)

U V W X Y Z

A B C

A B C ii ii−1 i ii−1 ii−1

i i i

(c)

Figure 2. Example of the FSKBANN process: (a) a sample finite-state automaton, (b) the rules
derived from the FSA, and (c) the initial FSKBANN translation of the FSA.
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approach of training with the actual output value because we did not expect to achieve perfect
accuracy for our predictions. In preliminary testing, using the teacher’s output led to
substantially worse results.

Our additions to KBANN extend it to a larger class of problems, by enriching the vocabulary
with which the user can express domain theories. In the next section we describe how FSKBANN
can represent and refine the Chou-Fasman algorithm for predicting protein secondary structure.

3. THE PROTEIN-FOLDING PROBLEM
Globular proteins are long strings of amino acids, several hundred elements long on

average. There are 20 amino acids in all (represented by different capital letters). The string of
amino acids making up a given protein constitutes the primary structure of the protein. Once a
protein forms, it folds into a three-dimensional shape; the spatial location of each of the amino
acids in this structure is known as the tertiary structure of the protein. Tertiary structure is
important because the form of the protein strongly influences its function.

3.1. Predicting Protein Secondary Structure
At present, few means exist to determine the tertiary structure of a protein. These include

X-ray crystallography and magnetic resonance processes: both of which are costly and time
consuming. An alternative solution is to predict the secondary structure of a protein as an
approximation to the tertiary structure. The secondary structure of a protein is a description of
the local structure for each amino acid. One prevalent system of determining secondary
structure divides a protein into three different types of structures: (1) α-helix regions, (2) β-sheet
regions, and (3) random coils (all other regions). Figure 3 is a diagram of the tertiary structure
of a protein and how the shape is divided into regions of secondary structure.

Table 3 shows a sample mapping between a protein’s primary and secondary structures.
The basic task is usually defined as follows: given the primary structure of the protein, produce
a secondary-structure assignment for each of the amino acids in the protein. In Section 4’s

Figure from [Richardson89, pg. 35].

Figure 3. Ribbon drawing of the three-dimensional structure of a protein (from
[Richardson89, pg. 35]). The areas resembling springs are αα-helix structures, the flat
arrows represent ββ-sheets, and the remaining regions are random coils.
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experiments, we focus on learning how to perform this task.

Table 3. Primary and secondary structures of a sample protein.

� �������������������������������������������������������������������������������������������������������������������������������������

Primary

(20 possible amino acids)
P S V F L F P P K P ...

� �������������������������������������������������������������������������������������������������������������������������������������

Secondary

(three possible local structures)
c c β β β β c c c α ...

� �������������������������������������������������������������������������������������������������������������������������������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Predicting the secondary structure from the primary structure is only one part of the
protein-folding problem. Other methods attempt to predict super-secondary structures, which
are descriptions of combinations of secondary structures [Chothia84]. Another problem is how
to combine the information about secondary structure and primary structure (and possibly
super-secondary structure) to determine the tertiary structure [Cohen89]. For a more complete
review of the protein-folding problem see [Fasman89].

3.2. Approaches to Predicting Secondary Structure Based on Biological
Information

A number of different algorithms have been proposed in the biological literature for
predicting protein secondary structure. Generally these algorithms focus on predicting the
secondary structure for an amino acid using only local information (i.e., information about the
string of amino acids immediately before and after it in the protein). The algorithm we focus on
is that of Chou and Fasman [Chou78]. Their algorithm is similar for both α-helix and β-sheet
prediction, so we will only discuss α-helix prediction. Figure 4 provides an overview of the
algorithm. The first step of the process is to find α-helix nucleation sites. Nucleation sites are
amino acids that are very likely to be part of α-helix structures, according to the conformation
probabilities and rules reported by Chou and Fasman. From these sites, their algorithm extends
the structure both forward and backward along the protein, as long as the probability of being
part of a α-helix structure remains high enough. After both α-helix and β-sheet regions have
been predicted, the Chou-Fasman algorithm compares the relative probabilities of regions to
resolve predictions that overlap.

Table 4 contains results from the Chou-Fasman and some related non-learning algorithms.
Note that in the data sets used to test the algorithms, 54-55% of the amino acids in the proteins
are part of coil structures, so 54% accuracy can be achieved trivially by always predicting coil.
Another important point is that many biological researchers believe that algorithms which only
take into account local information can only achieve limited accuracy [Wilson85] (generally
believed to be at most 80% accuracy). Accuracy is limited because the structure can be affected
by a portion of the protein that is far away along the protein, but due to three-dimensional
folding has come back into proximity. The relatively limited success of these results has led
other researchers to try different means of creating prediction algorithms, including neural-
network approaches.
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Primary Structure

Predict
Nucleation
Sites

Step 1. 

Step 2. Extend
Regions

Step 3. Resolve
Overlaps

α α α

β β β

α α α

β β β

α β α β α

Figure 4. Steps of the Chou-Fasman algorithm.

Table 4. Accuracies of various (non-learning) structure-prediction algorithms.
� �����������������������������������������������������������������������������������������������

Method Accuracy Comments
� �����������������������������������������������������������������������������������������������

Chou-Fasman original algorithm,

[Chou78]
48%

data from [Qian88]
� �����������������������������������������������������������������������������������������������

Chou-Fasman reworked version,

[Chou78]
58%

from [Nishikawa83]
� �����������������������������������������������������������������������������������������������

Chou-Fasman reworked version,

[Chou78]
58%

data from [Qian88]
� �����������������������������������������������������������������������������������������������

Lim

[Lim74]
50% from [Nishikawa83]

� �����������������������������������������������������������������������������������������������

Robson et al.

[Robson76]
50% from [Nishikawa83]

� �����������������������������������������������������������������������������������������������

Garnier and Robson

[Garnier89]
58% data from [Qian88]

� �����������������������������������������������������������������������������������������������
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3.3. Neural-Network Approaches
Several researchers have attempted to use neural networks to solve the protein-folding

problem [Holley89, Qian88]. The neural networks in these efforts have as input a window of
amino acids consisting of the central amino acid being predicted, plus some number of the
amino acids before and after it in the sequence. The amino acid for each window position is
represented by 21 input units (one for each of the amino acids, plus one for "off the end"). The
network output, which predicts the structure of the central amino acid, includes a unit for each
type of secondary structure, though Holley and Karplus use only two output units for α-helix and
β-sheet, predicting coil if neither of these is active. The networks also include some number of
hidden units in a single layer between the input and output units (the number was varied in both
studies); Figure 5 is a diagram of this type of network. The networks are trained on a set of
proteins with known secondary structure and then tested on a separate set of proteins. Table 5
presents results from two studies using this approach. One reason for the differences in the
results is that these studies use different sets of proteins for testing. Since the results are still
somewhat disappointing, a possible strategy is to combine the neural network approach with the
knowledge from the Chou-Fasman algorithm to produce a better network solution. This is our
approach.

I L G D Q F L K Q Q Y V V F D R N G I RD L A P V A..... .....

Input Units

Input WindowPrimary Structure

Output Units

Hidden Units

α−helix β−sheet coil

Predicted Secondary Structure

c

Figure 5. General neural network architecture used by Holley & Karplus and Qian & Sejnowski.
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Table 5. Neural network results for the secondary-structure prediction task.
� �������������������������������������������������������������������������������������������������������������

Number of
Method Accuracy

Hidden Units
Window Size

� �������������������������������������������������������������������������������������������������������������

Holley & Karplus

[Holley89]
63.2% 2 17

� �������������������������������������������������������������������������������������������������������������

Qian & Sejnowski

[Qian88]
62.7 40 13

� �������������������������������������������������������������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

3.4. Representing the Chou-Fasman Algorithm as a Finite-State Automaton
The primary problem in representing the Chou-Fasman algorithm as a set of rules is

capturing the notion of extending a region. In a neural network without state information, to
know if an α-helix region can be extended to the current window position, the network would
have to determine if a nucleation site is predicted just to the left of the window, two steps to the
left of the window, three steps to the left of the window, etc. Not only does this require a lot of
replication of rules (since the rules to recognize a nucleation site would have to be copied for
each window position), but the nucleation site might actually be outside the window. We solved
this problem by representing the Chou-Fasman algorithm as an FSA (see Figure 6); once the
algorithm goes into state helix, it will remain there until break-helix is true.

The notion of transition in Figure 6’s automata is complex. Each transition is actually a set
of rules dependent on the input window and the current state. Table 6 displays some samples of
different types of rules derived from the FSA (the full set of rules appear in the Appendix). Not
all of the rules involve state information; some of the rules are used to prove propositions that
are used in other rules. Rule 1 is an example that does not involve state. It is used to prove the
proposition break-helix, which is used in rule 3. Break-helix is defined in terms of
the propositions helix-break@0† and helix-break@1; these propositions are then
defined by other propositions (see Appendix). Rule 2 is an example that results in a new state,
but does not refer to the previous state. This type of rule occurs when a transition to a state
should occur not matter what the previous state. Rule 2 says that no matter what the previous
state is, if init-helix is true, the resulting state should be helix. Rule 3 is an example
where a transition is made from one state to another. It says that the automaton should transition
from state helix to state coil if break-helix is true.

�����������������������������������������������������������������������
†The "@" in these propositions refers to a window position. For example, Helix-break@0 means that the proposition

helix-break is true about the amino acid at window position 0 (the central amino acid).
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Figure 6. The finite-state automaton used to represent the Chou-Fasman algorithm.
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Table 6. Sample rules from the Chou-Fasman finite-state automaton.

(1) break-helix ← helix-break@0 ∧ helix-break@1

(2) helix
i ← init-helix

(3) coil
i ← helix

i-1 ∧ break-helix

�����������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 7 is a diagram of the type of network we used to represent the Chou-Fasman domain
theory. One important aspect to consider about our approach is that the FSA only extends the
structure in a single direction as it scans the primary structure. To extend the structure in both
directions, our network actually scans the primary structure in both directions and averages the
predictions.

4. EXPERIMENTAL STUDY
We performed a number of experiments on the protein structure-prediction problem to

evaluate FSKBANN. Our study demonstrates that FSKBANN has a small but statistically-
significant gain in accuracy over both standard artificial neural networks (ANNs) and over a
non-learning version of the Chou-Fasman algorithm.
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Figure 7. General neural-network architecture used to represent the Chou-Fasman algorithm.

This section describes the data used in our experiments and our training method. Following
that, we present and analyze a number of experiments. The experiments evaluate: (1) the
effectiveness of the FSKBANN approach versus standard ANNs and the Chou-Fasman algorithm,
(2) the value of using state information in ANNs, and (3) performance on test-set proteins as a
function of the number of training examples. We conclude with an in-depth empirical analysis
of the strengths and weaknesses of the three different methods.

4.1. Experimental Details
We performed our experiments using the data set from Qian and Sejnowski [Qian88].

Their data set consists of 128 proteins with a total of 21,623 amino acids, for an average length
of 169 amino acids per protein. Of these amino acids, 54.5% are part of coil structures, 25.2%
part of α-helix structures, and 20.3% part of β-sheet structures. We divided the proteins
randomly into training and test sets containing two-thirds (85 proteins) and one-third (43
proteins) of the original proteins, respectively.

We used backpropagation [Rumelhart86] to train the neural networks in the two network
approaches (FSKBANN and standard ANNs). Patience [Fahlman90] was our criterion for
stopping learning on the training set. The patience criterion states that training should continue
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until the error rate has not decreased for some number of training cycles. For this study we set
the number of epochs to be four. We use patience rather that some minimum accuracy on the
training set because the noisiness of the data set prevents anything close to perfect learning on
the training set.

During training, we divided the proteins into two portions — a training set and a tuning set
[Lang90, pg. 41-42]. We employ the training set to train the network and the tuning set to
estimate the generalization of the network. For each epoch, the system trains the network on
each of the amino acids in the training set; it then assesses accuracy on the tuning set. We retain
the set of weights achieving the highest accuracy for the tuning set and use this set of weights to
measure test set accuracy. The system randomly chooses a "representative" tuning set; it
considers a tuning set representative if the percentages of each type of structure in the tuning set
roughly approximate the percentages of all the training proteins (i.e. the percentages of α-helix,
β-sheet and random coil structures in the tuning set should be close to the percentages present in
the training proteins). The system does not consider the testing set when comparing the
percentages. It chooses the tuning set by randomly picking a set of proteins and then evaluating
their "representativeness" and repeating the process until a tuning set is chosen that meets the
criterion. Through empirical testing (not reported here), we found that a tuning set size of five
proteins achieved the best results for both FSKBANN and ANNs. It is important to consider that
this style of training is different than that reported by Qian and Sejnowski. They tested their
network periodically and retained the network that achieved the highest accuracy for the test set.

Our experiment-running system trains the FSKBANN networks twice for each protein —
scanning forward and then in reverse over the protein. It then averages the two predictions for
each amino acid. This simulates extending secondary structure in both directions. The system
trained the ANNs both ways — scanning both directions, and scanning only one direction (as in
[Qian88]). We report results for ANNs of scanning only one direction, because these results are
slightly superior to the results for scanning both directions. Our ANNs use the same number of
hidden units that we used in the FSKBANN networks (28) to represent the domain theory. We
use 28 hidden units rather than the 40 suggested by Qian and Sejnowski for two reasons. One,
we wished to hold the network size constant when comparing FSKBANN and standard ANNs.
Two, Qian and Sejnowski found only minor differences in accuracy when the number of hidden
units ranged from zero to 40.

A final item to note is that our system does some post-processing of the network output (as
suggested in [Holley89]). For each amino acid the system predicts the secondary structure by
choosing the output unit with the highest activation. The system then eliminates any "short"
sequences. Short sequences are sequences of α-helix or β-sheet predictions that are less than
four or two amino acids in length, respectively. Since such short sequences do not in general
occur in real proteins [Kabsch83], the prediction for these sequences is replaced with coil.

4.2. Results and Analysis
Table 7 contains results averaged over the 10 test sets. The statistics reported are the

percent accuracy overall, the percent accuracy by secondary structure, and the correlation
coefficients for each secondary structure. The correlation coefficient [Mathews75] is defined by
the formula:
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Cs =
√
�������������������������������������������������������������������
(TPs + FPs)(TPs + FNs)(TNs + FPs)(TNs + FNs)

TPsTNs − FPsFNs�����������������������������������������������������������������������������������

In this formula, s is the secondary structure whose coefficient is being calculated, and TPs, TNs,
FPs, and FNs are the number of true positives, true negatives, false positives, and false negatives
for that structure, respectively. The correlation coefficient is good for evaluating the
effectiveness of the prediction for each of the classes of secondary structure separately. The
resulting gain in overall accuracy for FSKBANN over both ANNs and the non-learning Chou-
Fasman method is statistically significant at the 0.5% level (i.e. with 99.5% confidence) using a
t-test.

Table 7. Comparison of FSKBANN, ANN, and the non-learning Chou-Fasman algorithm.
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Accuracy Correlation Coefficients

Method Total Helix Sheet Coil Helix Sheet Coil
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Chou-Fasman 57.3% 31.7% 36.9% 76.1% 0.24 0.23 0.26

ANN 61.8 43.6 18.6 86.3 0.35 0.25 0.31

FSKBANN 63.4 45.9 35.1 81.9 0.37 0.33 0.35
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The apparent gain in accuracy for FSKBANN over ANN networks appears fairly small (only
1.6 percentage points), but this number is somewhat misleading. The correlation coefficients
give a more accurate picture. They show that the FSKBANN does better on both α-helix and coil
prediction, and much better on β-sheet prediction. The reason that the ANN solution still does
fairly well in overall accuracy is that it predicts a large number of coil structures (the largest
class) and does very well on these predictions.

The gain in accuracy for FSKBANN over the Chou-Fasman algorithm is fairly large and
exhibits a corresponding gain in all three correlation coefficients. It is interesting to note that the
FSKBANN and Chou-Fasman solutions produce approximately the same accuracy for β-sheets,
but the correlation coefficient demonstrate that the Chou-Fasman algorithm achieves this
accuracy by predicting a much larger number of β-sheets.

To evaluate the usefulness of the domain theory as the number of training instances
decreases and also to estimate the value of collecting more proteins, we performed a second
series of tests. We divided each of the training sets into four subsets: the first contained the first
10 of the 85 proteins; the second contained the first 25; the third contained the first 50; and the
fourth had all 85 training proteins. This process produced 40 training sets. Each of these
training sets was then used to train both the FSKBANN and ANN networks. Figure 8 contains the
results of these tests. FSKBANN shows a gain in accuracy for each training set size (statistically
significant at the 5% level, i.e. 95% confidence).

The results in Figure 8 demonstrate a couple of interesting trends. One, the FSKBANN
networks do better no matter how large the training set, and two, the shape of the curve indicates
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Figure 8. Percent correctness on test proteins as a function of training-set size.

that accuracy might continue to increase if more proteins were used for training. The one
anomaly for this curve is that the gain in accuracy for the 10 training proteins is not very large.
One would expect that when the number of training instances is very small, the domain
knowledge would be a big advantage. The problem here is that for a small training set it is
possible to obtain random sets of proteins that are not very indicative of the overall population.
Individual proteins generally do not reflect the overall distribution of secondary structures for the
whole population; many proteins have large numbers of α-helix regions and almost no β-sheets,
and others have large numbers of β-sheet regions and almost no α-helices. Thus in trying to
learn to predict a very skewed population, the network may produce a poor solution. This is
mitigated as more proteins are introduced, causing the training population to more closely match
the overall population.

FSKBANN networks are different from standard ANNs in two ways: (1) their topology is
determined by the domain theory, and (2) they copy the output of the network back as the state
of the network in the next step. To evaluate the utility of the second feature alone, we trained
ANNs similar to those in Qian and Sejnowski’s work, but added to these networks state
information (i.e. the output was copied back as part of the input for each step). Table 8
compares results from these tests with results from using standard ANNs alone. These results
show that state information alone is not enough to increase the accuracy of the network
prediction.
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Table 8. Effect of state variables on the standard neural-network approach.
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Accuracy Correlation Coefficients

Method Total Helix Sheet Coil Helix Sheet Coil
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ANN 61.8% 43.6% 18.6% 86.3% 0.35 0.25 0.31

ANN (with state) 61.7 39.2 24.2 86.0 0.32 0.28 0.31
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Finally, to analyze the detailed performance of the various approaches, we gathered a
number of additional statistics concerning the FSKBANN, ANN, and Chou-Fasman solutions.
These statistics analyze the results in terms of regions. A region is a consecutive sequence of
amino acids with the same secondary structure. We consider regions because the measure of
accuracy obtained by comparing the prediction for each amino acid does not adequately capture
the notion of secondary structure as biologists view it [Cohen91]. For biologists, knowing the
number of regions and the approximate order of the regions is nearly as important as knowing
exactly the structure within which each amino acid lies. Consider the two predictions in
Figure 9. The first prediction misses completely the third α-helix region, so it has four errors.
The second prediction is slightly skewed for each α-helix region and ends up having six errors,
even though it appears to be a better answer. The statistics we have gathered try to assess how
well each solution does on predicting α-helix regions (see Table 9) and β-sheet regions (see
Table 10).

The results of Table 9 and Table 10 give a picture of the strengths and weakness of each
approach. Table 9 shows that the FSKBANN solution overlaps slightly fewer actual α-helix
regions than the ANNs, but that these overlaps tend to be somewhat longer. On the other hand,
the FSKBANN networks overpredict fewer regions than ANNs (i.e. predict fewer α-helix regions

Primary Structure

α

α α

α α

α

αα

Secondary Structure

Prediction 1

Prediction 2

Figure 9. Two possible predictions for secondary structure.
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Table 9. Region-oriented statistics for αα-helix prediction.

Occurrence Description Chou−Fasman

Actual

α−helixPredicted

other
36%a predicted helix region

does  not overlap  an
actual helix region.

Percentage of time

α−helixActual
10.17

(1825)

Average length of an
actual  helix region
(number of regions).

α−helixPredicted
Average length of a
predicted helix region
(number of regions).

8.00
(1491)

Predicted α−helix

Actual α−helix an actual helix region
is overlapped by a
predicted helix region
(length of overlap).

Percentage of time

FS KBANN

34%

10.17
(1825)

8.52
(1774)

67%
(6.99)

ANN

39%

10.17
(1825)

7.79
(2067)

70%
(6.34)

56%
(5.76)

that do not correspond to an actual α-helix region). Table 9 also indicates that the FSKBANN and
ANN networks more accurately predict the occurrence of regions than the Chou-Fasman
algorithm does.

Table 10 demonstrates that FSKBANN’s predictions overlap a much higher percentage of
actual β-sheet regions than either the Chou-Fasman algorithm or ANNs alone. The overall
accuracy for β-sheet predictions is approximately the same for FSKBANN and the Chou-Fasman
method, because the length of overlap for the Chou-Fasman method is much longer than for
FSKBANN (at the cost of predicting much longer regions). The ANN networks do extremely
poorly at predicting overlapping actual β-sheet regions. The FSKBANN networks do as well as
the ANNs at not overpredicting β-sheets, and both do better than the Chou-Fasman method.
Taken together, these results indicate that the FSKBANN solution does significantly better than
the ANN solution on predicting β-sheet regions without having to sacrifice much accuracy in
predicting α-helix regions.

Finally, the results indicate that the FSKBANN solution does a much better job of avoiding
the problem of overpredicting coil regions than the ANN solution. The results also suggest that
more work needs to be done on developing methods of evaluating solution quality, so that
solutions that accurately predict all three classes are favored over solutions that only do well at
predicting the largest class.
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Table 10. Region-oriented statistics for ββ-sheet prediction.

Occurrence Description Chou−Fasman

44%a predicted sheet  region
does  not overlap  an
actual sheet  region.

Percentage of time
Actual

Predicted

other
β−sheet

an actual sheet  region
is overlapped by a
predicted sheet  region
(length of overlap).

Percentage of time

Predicted

Actual 46%
(4.01)

Average length of a
predicted sheet region
(number of regions).

Predicted

β−sheet

β−sheet

6.02
(2339)

Average length of an
actual  sheet region
(number of regions).

Actual β−sheet
5.00

(3015)

ANN

37%

35%
(2.65)

2.83
(1673)

5.00
(3015)

FS KBANN

37%

54%
(3.23)

3.80
(2545)

5.00
(3015)

β−sheet

5. FUTURE WORK
We are considering a number of extensions to FSKBANN in the hopes of increasing the gain

in predictive accuracy. The extensions for the structure-prediction problem can be broken down
into two classes: changes to the architecture and training style of the neural network; and
additions to the domain theory. Beyond producing a better structure-prediction network, we are
also studying the problem of translating the trained network back into a human-readable form.
Finally, we are interested in applying FSKBANN to other problems including biological (e.g.
recognizing splice-junctions, finding reading frames) and other problems (such as natural
language understanding).

5.1. Different Neural Network Architectures
Our studies and other work in the field ([Holley89, Qian88]) suggest a number of changes

to the method of training the networks. One such observation noted by Holley and Karplus
[Holley89] is that the activity of the units corresponding to helix and sheet prediction seem to
correlate with how likely the prediction is correct. Table 11 indicates that this trend is even
more apparent in our networks. This table reports the accuracy of those predictions when only
one of the three output units (helix, sheet, coil) is above the threshold and the others are below
(1 - threshold). So for example, 32% of the time one of the units activation was above 0.8, the
others below 0.2, and the accuracy of these predictions was 80%.



Table 11. Predictive accuracy and coverage as a function of output-unit activation.
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0.6 69% 70%

0.7 75 49

0.8 80 32

0.9 86 16
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This observation suggests a possible change to the prediction method: instead of predicting
all of the protein’s structure in one scan, predict only the strongest activated areas first, then feed
these predictions back into the network for the next scan. This might be an advantage since
helix and sheet regions consist of multiple amino acids, so predicting one indicates others might
be adjacent. Figure 10 outlines how this process of structure prediction might work. The
question then becomes how should the information be fed back into the network and which
predictions should be chosen? Figure 11 illustrates the general structure of the type of network
we plan to use to feed the information back in. There is only one difference between this and the
networks in earlier figures. The input for each window position not only represents the amino
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Initial Prediction ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ...

Step 1 ⋅ ⋅ ⋅ ⋅ β ⋅ ⋅ c ⋅ ⋅ ...

Step 2 c ⋅ ⋅ ⋅ β β ⋅ c ⋅ ⋅ ...

Step 3 c c ⋅ β β β ⋅ c α α ...

.
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.

Final Prediction c c β β β β c c α α ...

Figure 10. Predicting structure by filling in the most likely structures and using that information
for subsequent predictions.
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acid in the primary sequence, but also the current estimate of the probability of each of the three
types of secondary structure (initially these values would be the a priori probabilities for each
category). The network then predicts a set of probabilities for each of the positions on the
protein. The algorithm would next evaluate this vector of probabilities for the best predictions
and threshold the best predictions before the next scan. This type of network would allow the
system to take advantage of information about predictions that have already been made. The
network would be trained similar to FSKBANN networks — scanning a protein and making a
prediction for each amino acid, or it would be trained using a recurrent technique.

A second idea, originally suggested in Qian and Sejnowski’s work [Qian88] is to use two
neural networks instead of one (which they call cascaded networks). This idea is appropriate for
translating the Chou-Fasman algorithm, since this algorithm has two largely separate parts:
finding nucleation sites and extending sequences. Figure 12 sketches a scheme for using two
networks. For FSKBANN, the first network would be constructed using a domain theory about
nucleation sites and would try to predict just the probability for each position being part of a
particular structure. The second neural network would use these probabilities, along with
primary-structure information and knowledge about extending structures. It would incorporate
knowledge about the past predictions as it was scanning along the protein (since this information
is needed for the rules to extend structures). This second network might exhibit the effects
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Figure 11. Network that includes current prediction probabilities as part of the input.
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Figure 12. Networks for cascaded prediction: (a) first network that calculates the probability for
each structure for each amino acid, and (b) second network that combines predictions
from first network with primary structure to predict secondary structure.

24



discussed by Qian and Sejnowski of connecting areas of secondary structure separated by one
anomalous prediction and leaving out single, anomalous predictions.

A final idea is to redefine the task of learning an FSA somewhat. Instead of focusing on
predicting the state at each step, one can view the problem as predicting locations where state
transitions occur. That is, rather than predicting the structure for a particular amino acid, the
goal would be to find places between amino acids where the structure changes from one type to
another. Figure 13 contains a sample network for this approach. The transition that the network
predicts is between the middle two amino acids. The network has output units representing
transitions from one type of structure to a different type of structure. In the cases where the
structure does not change between amino acids, the network would predict no transition. An
open problem with this approach is deciding how to combine the predicted transitions into a
consistent secondary structure.

5.2. Additions to the Structure-Prediction Domain Theory
Besides altering the network architecture, we are considering a number of changes to the

domain theory and problem representation. KBANN uses a domain theory to give the network a
"good" set of initial weights, since search starts from that location in weight space. Therefore

....

Predicted Transition

α/β β/αα/c β/c c/αc/β

Transition Point
Input Window

........

Hidden Units

Figure 13. Network to predict finite-state transitions.
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augmenting the Chou-Fasman domain theory with other information might increase the accuracy
of the solution, since training will start from a "better" location.

A basic way of augmenting the domain theory is to include information from other domain
theories such as the GorII and GorIII algorithms [Garnier89] and Lim’s method [Lim74]. The
advantage of adding these other approaches is that they may have strengths in prediction where
Chou-Fasman is weak. Another advantage is that we can add these domain theories without
having to consider how they interact with the others, since backpropagation training can
incorporate the different pieces of information together [Jacobs91].

Hunter [Hunter91] suggests using an input representation of the amino acids that is more
meaningful. As with other neural network approaches to this problem, our input encoding uses
one bit for each of the possible amino acids (so for each amino acid one bit is on and the others
are off). Hunter instead suggests a 37-bit representation where the bits encode properties of the
amino acid that are meaningful to biologists and which are shared with other amino acids. The
encoding is still unique for each of the amino acids, so no information is lost, but the network
might be able to find a better solution since it can focus not only on different amino acids, but on
different properties of the amino acids.

5.3. Translation of Trained Networks into Symbolic Terms
A basic problem of the KBANN approach is extracting information in a human-readable

form from the trained network. Towell and Shavlik have approached this problem in the KBANN
system [Towell91] and the problem has also been examined by other researchers [Fu91]. We
need to address rule extraction for the augmented networks of FSKBANN which include state
information, so as to extract learned FSAs.

5.4. Other Problems
Finally, there is the question of using FSKBANN in other domains. A couple of biological

problems that seem natural for this type of approach are the splice-junction problem
[Noordewier91] where the states are intron and exon, and the reading-frame problem [Staden90]
where the states are reading frames 1, 2, and 3. Also of interest is evaluating this approach for
problems in other fields such as natural language (as in [Elman90]). The task could involve
learning to recognize simple sentences involving a simple (regular) grammar where some
information about the grammar is known, but some is missing or incorrect.

6. RELATED RESEARCH
Our work shares similarities with research in three areas: algorithms for predicting protein

structure; neural networks that use state information; and systems that refine domain theories.

6.1. Methods of Predicting Protein Secondary Structure
There have been a number of different algorithms proposed for predicting protein

secondary structure. These can loosely be divided into ones that use biological knowledge (and
are non-learning methods) and those that use a learning mechanism.

Non-Learning Methods
The three most widely used approaches in the biological literature [Fasman89] for

predicting protein secondary structure are the Chou-Fasman [Chou78, Prevelige89], Robson
[Garnier89, Robson76], and Lim [Lim74] algorithms. Chou-Fasman relies on information
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concerning the likelihood for each type of amino acid to be part of a particular secondary
structure. This information is summed over local areas of the protein to determine the likelihood
for that area to be part of a particular structure. The Robson et al. [Robson76] and the later
GorII and GorIII [Garnier89] solutions are based on information theory. These approaches, like
neural networks, base prediction on a window of information around a central amino acid (from
position -8 to +8 around the central amino acid). For every window position, the Robson
algorithm determines the relevance of the amino acid for predicting each type of secondary
structure. Computerized versions of the Chou-Fasman and Robson techniques that we
implemented and tested on the Qian and Sejnowski test data exhibit 58% accuracy (see Table 4).
The Lim method [Lim74] is the only one that tries to account for long-range interactions; it uses
a stereochemical theory of globular proteins’ secondary structure. Later solutions [Garnier89,
Prevelige89] include theories of a fourth type of secondary structure, β-turns, which usually are
classified as coils. The main advantage of FSKBANN over these algorithms is that while
FSKBANN contains some of the biological information, it also has a mechanism for learning.

Learning Methods
A number of investigators use learning algorithms and sample folded proteins to try to

predict secondary structure of new proteins. Holley & Karplus [Holley89] and Qian &
Sejnowski [Qian88] use simple one hidden-layer neural networks to try to predict secondary
structure. Both studies focus on varying the hidden unit size and window size, achieving very
different results (as shown in Table 5) for these parameters, though both report test set
accuracies around 63%. Qian and Sejnowski also use a cascaded architecture which produces a
1.6 percentage point improvement in accuracy over their single network results. Stolorz et al.
[Stolorz91] use a perceptron architecture to evaluate a different error function, mutual
information, which produces a one percentage point gain in accuracy over a standard perceptron.
The interesting thing about the Stolorz measure is that it improves helix and sheet prediction at
the expense of coil prediction, a desirable effect since coil (making up 54% of the training data),
tends to be overpredicted in many other neural-network techniques.

Zhang et al. also use machine learning [Zhang90]. Their method combines information
from a statistical technique, a memory-based reasoning algorithm, and a neural network. They
divide the training set into halves, where each of the three components is trained on one half of
the training set. Further training is done using the other half of the training set to learn to
combine results from the three different components, using a second neural network. The best
results they report are 66.4% for a training set size of 96 proteins [Zhang91].

The major difference between these learning approaches and FSKBANN is that only
FSKBANN incorporates domain knowledge. FSKBANN also differs in that the neural networks
used in our studies uses state information, unlike the above approaches.

6.2. Methods of Representing State Information in Neural Networks
Several researchers have proposed neural-network architectures for incorporating

information about state. The idea of retaining a state or context across training patterns occurs in
work aimed at solving natural language problems [Cleeremans89, Elman90, Mozer91, Porat91,
Servan-Schreiber91, St. John90]. Each of these approaches provides a mechanism for
preserving one or more of the past activations of some units for the next input sequence.

Jordan [Jordan86] and Elman [Elman90] introduced the particular recurrent network
topology we use in FSKBANN. Their networks have a set of hidden units called context units
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which preserve the state of the network. At each time step the previous value of the context
units are copied back as input to the system. These networks allow for the possibility of keeping
multiple past contexts as input to the system. One difference between our networks and those of
Elman and Jordan is that our context units are output units instead of hidden units, since the
output of our network is the state.

The idea of using the type of network introduced by Jordan to represent a finite-state
automaton was first discussed by Cleeremans et al. [Cleeremans89]. They state that this type of
network can perfectly learn to recognize a grammar derived from a finite-state automaton. The
major difference between our research and that of Cleeremans et al. is we focus on using an
initial domain theory expressed as a finite-state automaton, rather than attempting to learn it
from scratch.

6.3. Methods of Refining Domain Theories
There have been a number of efforts aimed at refining approximate domain theories.

Ourston and Mooney’s EITHER system [Ourston90] uses a domain theory to focus the
corrections that an inductive learning system performs. This system constructs an explanation (a
proof), possibly incomplete, of instances of a concept. The inductive learner examines the
missing portions or errors in the concept’s explanation to suggest changes to the domain theory
that would make the explanations correct.

Flann and Dietterich [Flann89] examine a method that could fix a domain theory that is too
general. Their system takes several examples of the concept being refined and produced
explanations for each using the domain theory. These explanations are passed to an inductive
learning system which finds the maximally-specific shared explanation structure. Our research
differs with these efforts in that FSKBANN refines domain theories with recursive rules, and does
not assume the domain theory is overly general.

VanLehn’s SIERRA system [VanLehn87] extends a domain theory expressed as a
grammar. This system constructs the maximal partial parse of a set of training examples to
determine where there are gaps (or "holes") in the parse for the examples. SIERRA uses an
inductive learning algorithm to fill the gap in the grammar so that these examples can be
correctly parsed. SIERRA depends on receiving a good sequence of training examples because
it assumes that each set of training examples presented shares the same gaps and that each set
presented will not have too many gaps. Since FSKBANN uses a neural network methodology to
refine the domain theory it is less vulnerable to poor sequences of data.

7. CONCLUSIONS
We present and evaluate FSKBANN, a system that broadens the KBANN approach to a

richer, more expressive vocabulary. FSKBANN provides a mechanism for translating domain
theories represented as generalized finite-state automata into neural networks. These networks
can be further trained, using techniques such as backpropagation, to refine the initial domain
knowledge. The extension of KBANN to domain theories that include knowledge about state
significantly enhances the power of KBANN; rules expressed in the domain theory can take into
account the current problem-solving context (i.e. the state of the solution).

We tested FSKBANN by refining the Chou-Fasman algorithm for predicting protein
secondary structure. The FSKBANN-refined algorithm proved to be more accurate than both
standard neural network approaches to the problem and a non-learning version of the Chou-
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Fasman algorithm. The FSKBANN solution proved even more effective when considered in
terms of how well it does for each class of secondary structure; FSKBANN shows gains in
predictive power for all three classes over both ANNs and the non-learning Chou-Fasman
algorithm.

Finally, our work demonstrates the need for better criteria for evaluating solutions to the
protein-structure problem, since a direct, straightforward measure of how predicted structures
match the actual structures is often misleading. A better definition of solution quality, possibly
based on edit distance [Cohen91], might favor solutions that do well at predicting all three
classes of secondary structure.

The success of FSKBANN for the secondary-structure problem indicates that it may prove to
be a useful tool for addressing other problems that include state information. However, more
work must be done both in improving the neural-network refinement process and the extraction
of symbolic knowledge from the trained network.
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Appendix. The Chou-Fasman domain theory.
The Chou-Fasman algorithm [Chou78] involves three activities: (1) recognizing nucleation

sites, (2) extending sites, and (3) resolving overlapping predictions. In this appendix, we provide
more details of these three steps and describe our representation of their algorithm as a collection
of rules.

To recognize nucleation sites, Chou and Fasman assign two conformation values to each of
the 20 amino acids. The conformation values represent how likely an amino acid is to be part of
either a helix or sheet structure, with higher values being more likely. They also group the
amino acids into classes of similar conformation value. The classes for helix are formers, high-
indifferent, indifferent, and breakers. Those for sheet are formers, indifferent, and breakers.
Table 12 defines the values for the various types of breakers and formers.

Table 13 contains the rules we use to represent the Chou-Fasman algorithm; x@N is true if
x is the amino acid N positions from the one whose secondary structure the algorithm is
predicting. It predicts an α-helix nucleation site if for some consecutive set of six amino acids,
at least four are helix formers and less than two are helix breakers. (Two helix high-indifferent
amino acids count as a helix former.) A rule to determine if a location is a nucleation site simply
adds the helix-former and helix-breaker values for a window of amino acids six wide, and if the
totals are greater than four and less than two respectively, predicts a helix nucleation site
(proposition init-helix in our rules). Nucleation of β-sheets is similar to α-helix
nucleation, except that the window is only five amino acids wide and a sheet nucleation site is
predicted if there at least three sheet formers and less than two sheet breakers.

The third step of the algorithm — resolving overlaps — is the reason we use the numbers in
Table 12 rather than making the formers and breakers Boolean properties. Chou and Fasman
suggest that the conformation values of regions be compared to resolve overlaps. This is done in
our networks by weighting the links from various amino acids according to the numbers in
Table 12. For example, a combination of four alanines (A’s) will produce a higher activation of
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the init-helix unit than a combination of four phenylalanines (F’s).

The Chou-Fasman algorithm continues to predict α-helix as long as the predicate cont-
helix is true. The rules define cont-helix mostly in terms of helix-breaking rules — a
helix continues as long as a break region is not encountered. An α-helix break region occurs
when an helix-breaker amino acid is immediately followed by either another helix-breaker or a
helix-indifferent amino acid. A helix is also broken when encountering the amino acid proline
(P). The process of extending β-sheet structures works similarly. The algorithm predicts coil as
the default.

Table 12. Former and breaker values‡ for the amino acids.

helix-former(E) � �� � 1.37 helix-former(A) � �� � 1.29 helix-former(L) � �� � 1.20
helix-former(H) � �� � 1.11 helix-former(M) � �� � 1.07 helix-former(Q) � �� � 1.04
helix-former(W) � �� � 1.02 helix-former(V) � �� � 1.02 helix-former(F) � �� � 1.00
helix-former(K) � �� � 0.54 helix-former(I) � �� � 0.50
helix-former(others) � �� � 0.00

helix-breaker(N) � �� � 1.00 helix-breaker(Y) � �� � 1.20 helix-breaker(P) � �� � 1.24
helix-breaker(G) � �� � 1.38
helix-breaker(others) � �� � 0.00

sheet-former(M) � �� � 1.40 sheet-former(V) � �� � 1.39 sheet-former(I) � �� � 1.34
sheet-former(C) � �� � 1.09 sheet-former(Y) � �� � 1.08 sheet-former(F) � �� � 1.07
sheet-former(Q) � �� � 1.03 sheet-former(L) � �� � 1.02 sheet-former(T) � �� � 1.01
sheet-former(W) � �� � 1.00
sheet-former(others) � �� � 0.00

sheet-breaker(K) � �� � 1.00 sheet-breaker(S) � �� � 1.03 sheet-breaker(H) � �� � 1.04
sheet-breaker(N) � �� � 1.14 sheet-breaker(P) � �� � 1.19 sheet-breaker(E) � �� � 2.00
sheet-breaker(others) � �� � 0.00

�����������������������������������������������������������������������

‡ We produced these values using the tables reported by Chou and Fasman [Chou78, pg. 51]. We normalized the values
for formers by dividing the conformation value of the given former by the conformation value of the weakest former. So for
example, the helix former value of alanine (A) is 1.29 since the helix conformation value of alanine is 1.45 and the conformation
value of the weakest helix former phenylalanine (F) is 1.12. Breaker values work similarly except that the value used to calculate
the breaker value is the multiplicative inverse of the conformation value.

We did not directly use the values of Chou and Fasman for two reasons. One, we wanted smaller values, to decrease the
number of times three very strong helix-formers would add up to more than 4 (and similarly for sheets). Two, breaker
conformation values tend to be numbers between 0 and 1 with the stronger breakers being close to 0. We wanted the breaker
value to be larger the stronger the breaker, so we used the inverse of the breaker’s conformation value (restricting the result to not
exceed 2).
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Table 13. The Chou-Fasman algorithm expressed as inference rules.

Rules for recognizing nucleation sites.

init-helix ←

��
�

position =0
Σ
5

helix −former (amino −acid@position )

���
� > 4

∧

��
�
position =0

Σ
5

helix −breaker (amino −acid@position )

���
� < 2

init-sheet ←

��
�

position =0
Σ
4

sheet −former (amino −acid@position )

���
� > 3

∧

��
�
position =0

Σ
4

sheet −breaker (amino −acid@position )

���
� < 2

Rules for pairs of amino acids that terminate helix structures.

helix-break@0 ← N@0 ∨ Y@0 ∨ P@0 ∨ G@0
helix-break@1 ← N@1 ∨ Y@1 ∨ P@1 ∨ G@1
helix-indiff@1 ← K@1 ∨ I@1 ∨ D@1 ∨ T@1 ∨ S@1 ∨ R@1 ∨ C@1

break-helix ← helix-break@0 ∧ helix-break@1
break-helix ← helix-break@0 ∧ helix-indiff@1

Rules for pairs of amino acids that terminate sheet structures.

sheet-break@0 ← K@0 ∨ S@0 ∨ H@0 ∨ N@0 ∨ P@0 ∨ E@0
sheet-break@1 ← K@1 ∨ S@1 ∨ H@1 ∨ N@1 ∨ P@1 ∨ E@1
sheet-indiff@1 ← A@1 ∨ R@1 ∨ G@1 ∨ D@1

break-sheet ← sheet-break@0 ∧ sheet-break@1
break-sheet ← sheet-break@0 ∧ sheet-indiff@1

Rules for continuing structures.

cont-helix ← ¬ P@0 ∧ ¬ break-helix
cont-sheet ← ¬ P@0 ∧ ¬ E@0 ∧ ¬ break-sheet

Rules for predicting helix: either by nucleation or propagating from the last state.

helix
i ← init-helix

helix
i ← helix

i-1
∧ cont-helix

Rules for predicting sheet: either by nucleation or propagating from the last state.

sheet
i ← init-sheet

sheet
i ← sheet

i-1
∧ cont-sheet

Rules for predicting coil (the default).

coil
i ← helix

i ∧ break-helix

coil
i ← sheet

i ∧ break-sheet

coil
i ← coil

i-1
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