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Abstract

Gene-expression microarrays, commonly called “gene chips,” make it possible to simultaneously measure the rate at which a cell or tissue is expressing – translating into a protein – each of its thousands of genes.  One can use these comprehensive snapshots of biological activity to infer regulatory pathways in cells, identify novel targets for drug design, and improve the diagnosis, prognosis, and treatment planning for those suffering from disease.  However, the amount of data this new technology produces is more than one can manually analyze.  Hence, the need for automated analysis of microarray data offers an opportunity for machine learning to have a significant impact on biology and medicine.  This article describes microarray technology, the data it produces, and the types of machine-learning tasks that naturally arise with this data.  It also reviews some of the recent prominent applications of machine learning to gene-chip data, points to related tasks where machine learning may have a further impact on biology and medicine, and describes additional types of interesting data that recent advances in biotechnology allow biomedical researchers to collect.

Introduction

Almost every cell in the body of an organism has the same DNA.  Genes are portions of this DNA that code for proteins or (less commonly) other large biomolecules.  As Hunter (2003) covers in his introductory article in this special issue (and, for completeness, we review in the next section of this article), a gene is expressed through a two-step process in which the gene’s DNA is first transcribed into RNA, which is then translated into the corresponding protein. A novel technology of gene-expression microarrays – whose development started in the second half of the 1990’s and is having a revolutionary impact on molecular biology – allows one to monitor the DNA-to-RNA portion of this fundamental biological process.

Why should this new development in biology interest researchers in machine learning and other areas of artificial intelligence?  While the ability to measure transcription of a single gene is not new, the ability to measure at once the transcription of all the genes in an organism is new.  Consequently, the amount of data that biologists need to examine is overwhelming.  Many of the data sets we describe in this article consist of roughly 100 samples, where each sample contains about 10,000 genes measured on a gene-expression microarray.  Suppose 50 of these patients have one disease, and the other 50 have a different disease.  Finding some combination of genes whose expression levels can distinguish these two groups of patients is a daunting task for a human, but a relatively natural one for a machine-learning algorithm.  Of course, this example also illustrates a challenge that microarray data poses for machine-learning algorithms – the dimensionality of the data is high compared to the typical number of data points.
The preceding paragraph gives one natural example of how one can apply machine learning to microarray data.  There are many other tasks that arise in analyzing microarray data and correspondingly many ways in which machine learning is applicable.  We present a number of such tasks, with an effort to describe each task concisely and to give concrete examples of how researchers have addressed such tasks, together with brief summaries of their results.  Before discussing these particular tasks and approaches, we summarize the relevant biology and biotechnology.  This article closes with future research directions, including the analysis of several new types of high-throughput biological data, similar to microarray data, that are becoming available based on other advances in biotechnology.

Some Relevant Introductory Biology

The method by which the genes of an organism are expressed is through the production of proteins, the building blocks of life.  This is true whether the organism is a bacterium, a plant, or a human being.  Each gene encodes a specific protein
, and at each point in the life of a given cell, various proteins are being produced.  It is through turning on and off the production of specific proteins that an organism responds to environmental and biological situations, such as stress, and to different developmental stages, such as cell division.

Genes are contained in the DNA of the organism.  The mechanism by which proteins are produced from their corresponding genes is a two-step process – see Figure 1.  The first step is the transcription of a gene from DNA into a temporary molecule known as RNA.  During the second step – translation - cellular machinery builds a protein using the RNA message as a blueprint.  Although there are exceptions to this process, these steps (along with DNA replication) are known as the central dogma of molecular biology.

One property that DNA and RNA have in common is that each is a chain of chemicals known as bases.
  In the case of DNA these bases are Adenine, Cytosine, Guanine and Thymine, commonly referred to as A, C, G and T, respectively.  RNA has the same set of four bases, except that instead of Thymine, RNA has Uracil – commonly referred to as U.

Another property that DNA and RNA have in common is called complementarity.  Each base only binds well with its complement: A with T (or U) and G with C.  As a result of complementarity, a strand of either DNA or RNA has a strong affinity for what is known as its reverse complement.  This is a strand of either DNA or RNA that has bases exactly complementary to the original strand, as Figure 2 illustrates.  (Just like in English text, there is a directionality for reading a strand of DNA or RNA.  Hence in Figure 2, the DNA would be read from left-to-right, whereas the RNA would be read from right-to-left, which is why reverse is in the phrase reverse complement.)
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Figure 1.  The central dogma of molecular biology.  When a gene is expressed, it is first transcribed into an RNA sequence, and the RNA is then translated into a protein, a sequence of amino acids.  DNA is also replicated when a cell divides, but this article only focuses on the DNA-to-RNA-to-Protein process.
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Figure 2.  Complementary binding between DNA and RNA sequences.

Complementarity is central to the double-stranded structure of DNA and the process of DNA replication.  It is also vital to transcription.  In addition to its role in these natural processes, molecular biologists have, for decades, taken advantage of complementarity to detect specific sequences of bases within strands of DNA and RNA.  One does this by first synthesizing a probe, a piece of DNA
 that is the reverse complement of a sequence one wants to detect, and then introducing this probe to a solution containing the genetic material (DNA or RNA) to be searched.  This solution of genetic material is called the sample.  In theory, the probe will bind to the sample if and only if the probe finds its complement in the sample (but as we later discuss in some detail, this does not always happen in practice and this imperfect process provides an excellent opportunity for machine learning). The act of binding between probe and sample is called hybridization.  Prior to the experiment, one labels the probes using a fluorescent tag.  After the hybridization experiment, one can easily scan to see if the probe has hybridized to its reverse complement in the sample.  In this way, the molecular biologist can determine the presence or absence of the sequence of interest in the sample.

What are Gene Chips?

More recently, DNA probe technology has been adapted for detection of, not just one sequence, but tens of thousands simultaneously.  This is done by synthesizing a large number of different probes and either carefully placing each probe at a specific position on a glass slide (so called spotted arrays) or by attaching the probes to specific positions on some surface.  Figure 3 illustrates the latter case, which has become the predominant approach as the technology has matured.  Such a device is called a microarray or gene chip
.  

Utilization of these chips involves labeling the sample rather than the probe, spreading thousands of copies of this labeled sample across the chip, and washing away any copies of the sample that do not remain bound to some probe.  Since the probes are attached at specific locations on the chip, if labeled sample is detected at any position on the chip, it can be easily determined which probe has hybridized to its complement. 

The most common use of gene chips is to measure the expression level of various genes in an organism, and in this article we will focus on that task (however, the reader should be aware that novel uses of microarrays will be continually devised, offering new opportunities for machine learning).  Eache expression level provides a snapshot of the rate at which a particular protein is being produced within an organism’s cells at a given time.

Ideally, biologists would measure the protein-production rate directly, but doing so is currently very difficult and impractical on a large scale.  So one instead measures the expression level of various genes by estimating the amount of RNA for that gene that is currently present in the cell.  Since the cell degrades RNA very quickly, this level will accurately reflect the rate at which the cell is producing the corresponding protein.  In order to find the expression level of a group of genes, one labels the RNA from a cell or a group of cells and spreads the RNA across a chip that contains probes for the genes of interest.  For an organism like the bacterium E. coli, which has a relatively small genome, a single gene chip can contain enough probes to detect each of the 4000 or so genes in the organism.  For a human, currently a single chip can only contain a subset of the genes present in the genome.
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Figure 3.  Hybridization of sample to probe.  Probes are typically on the order of 25-bases long, whereas samples are usually about 10 times as long, with a large variation due to the process that breaks up long sequences of RNA into small samples (one way this is done by sonication, the use of sound waves).
Data Collection and Preprocessing

When one runs a microarray experiment, an optical scanner records the fluorescence-intensity values – the level of fluorescence at each spot on the gene chip.  In the case of gene-expression arrays, there will typically be many experiments measuring the same set of genes under various circumstances (e.g., under normal conditions, when the cell is heated up or cooled down, or when some drug is added) or at various time points (e.g., 5, 10, and 15 minutes after adding an antibiotic; due the steps one needs to manually perform to produce an RNA sample, sub-minute resolution is not current feasible).

From the perspective of machine learning, one can organize the measured expression values in several ways, as Table 1 illustrates. Tables 1a and 1c show that one can view each gene as an example; here the expression levels measured under various conditions constitute each example’s features.  Alternatively (Table 1b and 1d), one can view each experiment as an example; in this case, the features are the expression values for all the genes on the microarray.  In either case the examples can be unlabeled (Tables 1a and 1b) or labeled (Tables 1c and 1d) according to some category of interest; for example, some sets of measurements might come from normal cells and the others from cancerous cells.  As we will discuss throughout this article, the specific learning task of interest will dictate which among these is the most appropriate perspective on the data.  We describe, for each of the four scenarios shown in Table 1, at least one published project that views microarray data according to that scenario.

So far we have been presenting the process of measuring gene-expression levels as simply creating one probe per gene and then computing how much RNA is being made by measuring the fluorescence level of the probe-sample hybrid.  Not surprisingly, there are complications, and the remainder of this section summarizes the major ones.

Probes on gene chips (see Figure 3) are typically on the order of 25 bases long, since synthesizing longer probes is not practical.  Genes are on the order of a 1000 bases long, and while it may be possible to find a unique 25-base-long probe to represent each gene, most probes do not hybridize to their corresponding sample as well as one would like.  For example, a given probe might partially hybridize to other samples, even if the match is not perfect, or the sample might fold up and hybridize to itself.  For these reasons, microarrays typically use about a dozen or so probes for each gene, and an algorithm combines the measured fluorescence levels for each probe in this set to estimate the expression level for the associated gene.

Due to the nature of these experiments, including the fact that microarrays are still a nascent technology, the raw signal values typically contain a great deal of noise.  Noise can be introduced during the synthesis of probes, the creation and labeling of samples, or the reading of the fluorescent signals.  So ideally the data illustrated by Table 1 will include replicated experiments.  However, each gene-chip experiment can cost several hundred dollars, and so in practice one only replicates each experiment a very small number of times (and, unfortunately, often no replicated experiments are done).

Table 1. Different ways of representing microarray expression data for machine learning.  In Panel (a) each example contains the measured expression levels of a single gene under a variety of conditions.  In Panel (b) each example contains the measured expression levels of thousands of genes under one condition.  Panels (c) and (d) illustrate that one can also associate categories with each example, such as the type of cell from which the genes came (e.g., normal vs. diseased).   Panels (a) and (b) illustrate the structure of datasets for unsupervised learning, while Panels (c) and (d) do so for supervised learning.
	 (a)

	                                Features →


	←Examples
		Experiment 1

	Experiment 2

	…
	Experiment N
	
		Gene 1

	1083        .     

	1464        .
	…
	1115        .
	
		Gene 2

	1585        .
	398        .
	…
	511        .
	
		…

	       …
	       …
	…
	       …
	
		Gene M
	170        .
	302        .
	…
	751        .
	
	(b)

	                                Features →


	←Examples
		Gene 1

	Gene 2

	…
	Gene M
	
		Experiment 1

	1083        . 

	1585        .
	…
	170        .
	
		Experiment 2

	1464        .
	398        .
	…
	302        .
	
		…
	       …
	       …
	…
	       …
	
		Experiment N
	1115        .
	511        .
	…
	751        .
	
	(c)

	                                Features →


	←Examples
		Experiment 1

	Experiment 2

	…
	Experiment N
	Category


		Gene 1

	1083        .
	1464        .
	…
	1115        .
	Y


		Gene 2

	1585        .
	398        .
	…
	511        .
	X


		…
	       …
	       …
	…
	       …
	…


		Gene M
	170        .
	302        .
	…
	751        .
	X

	(d)

	                                Features →


	←Examples
		Gene 1

	Gene 2

	…
	Gene M
	Category


		Experiment 1

	1083        .
	1585        .
	…
	170        .
	B


		Experiment 2

	1464        .
	398        .
	…
	302        .
	A


		…
	       …
	       …
	…
	       …
	…

		Experiment N
	1115        .
	511        .
	…
	751        .
	B



	


Currently it is not possible to accurately estimate the absolute expression level of a given gene.  One work-around is to compute the ratio of fluorescence levels under some experimental condition to those obtained under normal or control conditions.  For example, one might compare gene expression under normal circumstances to that when the cell is heated to a higher than normal temperature (so called heat shock); experimenters may say such things as “when E. coli is heated, gene X is expressed at twice its normal rate.”  When dealing with such ratios the problem of noise is exacerbated, especially when the numerator or denominator are small numbers.  Newton and Kendziorski (2001) have developed a Bayesian method for more reliably estimating these ratios.  So in some studies the numbers in Table 1 are gene-expression ratios, hopefully corrected to minimize the problems that arise from creating ratios of small, noisy numbers.

Another approach is to partner each probe with one or more mismatch probes; these are probes that have different bases from the probe of interest in one or more positions.  Each gene’s expression score is then a function of the fluorescence levels of the dozen or so match and mismatch probes (Li and Wong 2000).

Table 2 contains World-Wide Web URL’s for some freely available, gene-expression data sets, many of which we further discuss in this article.

Table 2.  URL’s for some publicly available microarray data sets. 
	          URL (viable as of 2003)                                 Brief Description

	www.ebi.ac.uk/arrayexpress/


     EBI microarray data repository

www.ncbi.nlm.nih.gov/geo/


     NCBI microarray data  repository

genome-www5.stanford.edu/MicroArray/SMD/
     Stanford microarray database 

rana.lbl.gov/EisenData.htm


     Eisen-lab’s yeast data, (Spellman et al. 1998)

www.genome.wisc.edu/functional/microarray.htm
     University of Wisconsin E. coli Genome Project

llmpp.nih.gov/lymphoma/data.shtml

     Diffuse large B-cell lymphoma 






     (Alizadeh et al. 2000)

llmpp.nih.gov/DLBCL/



     Molecular profiling (Rosenwald et al. 2002)

www.rii.com/publications/2002/vantveer.htm
     Breast cancer prognosis (Van't Veer et al. 2002)

www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi 
     MIT Whitehead Center for Genome







     Research, including data in Golub et al. (1999)

lambertlab.uams.edu/publicdata.htm

     Lambert Laboratory data for multiple myeloma

www.cs.wisc.edu/~dpage/kddcup2001/

     KDD Cup 2001 data; Task 2 includes correlations







     in genes’ expression levels

www.biostat.wisc.edu/~craven/kddcup/

     KDD Cup 2002 data; Task 2 includes







     gene-expression data

clinicalproteomics.steem.com/


     Proteomics data (mass spectrometry of proteins)

snp.cshl.org/




     Single nucleotide polymorphism (SNP) data




Machine Learning to Aid the Design of Microarrays

As described in the previous section, one typically uses a dozen or so probes to represent one gene because the probe-sample binding process is not perfect (Breslauer, Frank, Blocker, and Marky 1986).  If one did a better job of picking good probes, one could not only use fewer probes per gene (and hence test for more genes per microarray), but also get more accurate results.

Tobler, Molla, Nuwaysir, Green, and Shavlik (2002) have used machine learning to address the task of choosing good probes.  It is easy to get training examples for this task; simply place all possible probes for a given set of genes (e. g., every 24-base subsequence of each gene) on a microarray and see which probes produce strong fluorescence levels when the corresponding gene’s RNA is in the sample applied to the gene chip.  Figure 4 shows a portion of the data that Tobler et al. used and Table 3 illustrates how they cast probe selection as a machine-learning task.

[image: image4.png]



Figure 4. The result of an actual microarray experiment where all possible 24-base-long probes from eight bacterial genes are on the chip.  Shown is one quadrant of the chip.  The darker the point, the greater the fluorescence was in the original sample. In the ideal case, all the points would have equally strong fluorescence values; one can use these mappings from probe sequence to fluorescence value as training examples for a machine-learning system. This data was supplied through the courtesy of NimbleGen Systems, Inc.
Table 3.  Probe-quality prediction.

	Given:
A set of probes, each associated with a fluorescence value.

Tobler et al. represent each probe as a vector of 67 feature values: the specific base at each of the 24 positions in the probe sequence; the pair of adjacent bases at each of 23 positions in the probe (e.g., the first two bases in a probe might be AG); the percentage of A’s, C’s, G’s and T’s in the probe; and the percentage of each of the 16 possible pairs of adjacent bases in the probe.

They discretize the fluorescence values into three groups: good, ambiguous, and bad (they discard ambiguous probes during training, but group them with bad during testing).

Do:
Learn to choose the best among the possible probes one could use for a new gene.


Tobler et al. used a microarray supplied by NimbleGen Systems (Nuwaysir et al. 2002), a microarray company, containing all possible probes from eight different bacterial genes.  They exposed that chip to a sample of RNA known to contain all eight of those genes.  They then measured the fluorescence level at each location on the chip.  If the probes all hybridized equally well, then there would be a uniformly high signal across the entire chip.  However, as is clear in Figure 4, this is not the case.  Instead, some probes hybridize well and others do not.  They used 67 features (see Table 4) to represent each probe and used several well-known learning algorithms to learn how to predict whether a candidate probe sequence is likely to be a good one.

Tobler et al. found that of the ten probes predicted by a trained neural network to be the best for each gene, over 95% satisfy their definition for being a good probe.  When randomly selecting probes, only 13% satisfy their good-probe definition.

Machine Learning in Biological Applications of Microarrays

In this section, we provide some examples of the use of microarrays to address questions in molecular biology, focusing on the role played by machine learning.  We cover both supervised and unsupervised learning, as well as discuss some research where microarray data is just one of several types of data given to machine-learning algorithms.

Supervised Learning and Experimental Methodology
Supervised learning methods train on examples whose categories are known in order to produce a model that can classify new examples that have not been seen by the learner.  Evaluation of this type of learner is typically done through the use of a method called N-fold cross-validation, a form of hold-out testing.  In hold-out testing, some (e.g., 90%) of the examples are used as the training data for a learning algorithm, while the remaining (“held aside”) examples are used to estimate the future accuracy of the learned model. In N-fold cross validation, the examples are divided into N subsets, and then each subset is successively used as the held-aside test set, while the other (N-1) subsets are pooled to create the training set.  The results of all N test-set runs are averaged to find the total accuracy.  The typical value for N is 10.  In fact the probe-selection project the previous section describes is an application of supervised learning, and the described results are measured on held-aside data (in that project, there were eight genes and eight times the learning algorithms trained on seven genes and the resulting models are tested on the held-out gene).

Another application of supervised learning (Brown et al. 1999) deals with the functional classifications of genes.  They use a representation of the data similar to the one pictured in Table 1c.  Genes are the examples and functional classifications are the classes.  The features are the gene-expression values under various experimental conditions.  Functional classifications are simply the classes of genes, defined by the genes’ function, that have been described by biologists over the years through various methods.  Given expression profiles, across multiple experiments, of multiple genes whose functional class is known, Brown et al. train a learner to predict the functional classification of genes whose functional class is not known – see Table 4.  In order to do this, they use a machine-learning technique known as a support vector machine, or SVM.

Table 4.  Predicting a gene’s biological function.
	Given:
A set of genes represented similarly to Table 1c.  Each gene is an example, whose features are the numeric expression levels measured under multiple experimental circumstances. These experimental conditions include stresses like temperature shock, change in pH, or the introduction of an antibiotic; other experimental circumstances include different developmental stages of the organism or time points in a series.

The category of each gene is simply that gene’s functional category.  One possible set of functional categories contains these six: TCA cycle, Respiration, Cytoplasmic Ribosome, Proteasome, Histone, and Helix-Turn-Helix (see Brown et al. (1999) for explanations of these classes).

Do:
Learn to predict the functional category of additional genes given a vector of expression levels under the given set of experimental conditions.


In its simplest form, a support vector machine is an algorithm that attempts to find a linear separator between the data points of two classes, as Figure 5 illustrates.  SVM’s seek to maximize the margin, or separation between the two classes, in order to improve the chance of accurate predictions on future data.  Maximizing the margin can be viewed as an optimization task solvable using linear or quadratic programming techniques.  Of course, in practice there may be no good linear separator of the data.  Support vector machines based on kernel functions can efficiently produce separators that are non-linear.  

Often kernel functions improve the accuracy of SVM’s, however Brown et al. empirically found that for their gene-expression data simple linear SVM’s produce more accurate predictions.  Linear SVM’s also generalize better than non-SVM supervised learning methods on their data.  For example, out of the 2,467 genes in the data set, the trained SVM correctly identifies 116 of the 121 Ribosomal proteins and only produces six false positives.  The next best supervised learner correctly identifies the same number, but produces eight false positives.

[image: image5]
Figure 5.  A support vector machine for differentiating genes involved in respiration from those involved in the TCA cycle by maximizing the margin, W.  This is done in the N-dimensional space defined by the expression levels of the genes across N experimental conditions.  In this simple example, there are only two experimental conditions: time 1 and time 2.  So N = 2. Normally, however, N would be much greater.  For example, in the paper by Brown et al. (1999), N = 79.   The number of genes to categorize would also be much higher.  In the Brown et al. paper, the number of genes is 2,467. 

Unsupervised Learning

Unsupervised learning is learning about a set of examples from their features alone; no categories are specified for the examples.  Examples of this type are commonly called unlabeled examples.  In the context of gene chips, this means learning models of biological processes and relationships among genes based entirely on their expression levels without being able to improve models by checking the learners’ answers against some sort of externally provided ground truth.

Clustering methods
Many successful efforts in unsupervised learning involve clustering algorithms, including much of the work in the algorithmic analysis of microarray data.  Due to the nature of evolution, clustering of biological data makes sense, and this task has a long history in computational biology (in the past, individual protein or DNA sequences were most commonly clustered).  Clustering algorithms group, or cluster, examples based on the similarity of their feature values, such as gene-expression values.  

Eisen, Spellman, Brown, and Botstein (1998) describe one such method.  Table 5 presents the problem that they address.

Table 5.  Clustering genes based on their expression levels.
	Given:
A set of genes in an organism represented similarly to Table 1a.  Each gene is an example.  An example’s features are the gene’s numeric expression levels under various experimental circumstances (environmental stresses, development stage, etc.).

Do:
Cluster genes based on the similarity of their expression values.


For example, Eisen et al. clustered the expression patterns across a number of experiments of all of the genes of the yeast Saccharomyces cerevisiae (Spellman et al. 1998).   Some of these experiments measure the genetic response to environmental stresses like cold shock.   Others measure transcription during various stages in the life cycle of the organism, such as cell division.  Each gene is an example, and the measured expression levels of the gene during each of the experiments are the features (i.e., the data is in the format of Table 1a).  They use a standard statistical technique to describe the similarity between any two examples in terms of these features and use that as their distance metric. 

More specifically, Eisen et al. perform hierarchical clustering.  Their algorithm clusters by repeatedly pairing the two most similar examples, removing those two from the data set, and adding their average to the set of examples.  Their method pairs examples and can then later pair these “average” examples, producing a hierarchy of clusters.

Figure 6 shows a hypothetical output of such a hierarchical-clustering algorithm.  The x-axis spans the experimental conditions, whereas the y-axis spans the genes. The measured expression level of the gene during that experiment relative to that of the organism under normal conditions dictates the shading of the graph; the higher the expression level, the lighter the point.  The genes are ordered so that similar genes, with regard to these experimentally derived values, are grouped together visually.  The result is an intuitive visual guide for the researcher to quickly discern the blocks of similar genes with regard to a set of experiments.



[image: image6.png]



Figure 6.  The graphical output of a cluster analysis.  It is similar to the representation in Table 1a, where integers are represented by gray-scale intensity.  However unlike Table 1a, the genes here are sorted by similarity (more similar genes, with respect to their vector of expression values, are grouped together).  For a more realistic diagram made from real data, see Eisen et al. (1998).
Due to their flexibility and intuitive nature, clustering methods have proven popular among biologists.  In many laboratories that conduct microarray experiments, clustering of genes in microarray experiments is now a standard practice.  Clustering of experiments is also a common practice – see Table 6.  For example, Thomas et al. (2001) ran microarrays on RNA from mice subjected to a variety of toxic compounds, with one microarray per compound.  They hierarchically clustered the microarray experiments and found that the clusters correspond closely to the different toxicological classes of the compounds (Thomas et al. also report some supervised learning experiments).
Table 6.  Clustering experimental conditions based on gene-expression levels they produce.
	Given:
A set of microarray experiments represented similarly to Table 1b.  Each experiment is an example.  For instance, in Thomas et al. (2001) each experiment involves subjecting mice to one toxic compound.  An example’s features are the numeric expression levels of the microarray’s genes.

Do:
Cluster experimental conditions based on the similarity of the gene-expression vectors they produce.


Bayes Networks

Another unsupervised learning algorithm used for the analysis of microarray data is known as the Bayesian network, or Bayes net.  A Bayes net is a directed acyclic graph that specifies a joint probability distribution over its variables.   Arcs between nodes specify dependencies among variables, while the absence of arcs can be used to infer conditional independencies; Figure 7 contains a simple example.  By capturing conditional independence where it exists, a Bayes net can provide a much more compact representation of the joint probability distribution than a full joint table.  Every node in a Bayes net has an associated conditional probability table that specifies the probability distribution for that variable (A) given the values of its parents (values of the set of nodes with arcs going to A, denoted by Pa(A)).  The probability distribution specified by a Bayes net over variables X1,…,Xp is defined as:
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Friedman and Halpern (1999) were the first to use this technique in the area of microarray expression data.  Using the same S. cerevisiae data as was used by Eisen et al. for clustering, Friedman et al. show that, using statistical methods, a Bayes network representing the observed relationships between the expression levels of different genes can be learned automatically from the expression levels of the genes across a variety of experiments – see Table 7.

Table 7.  Learning Bayes networks.
	Given:
A set of genes in an organism represented similarly to Table 1a.  Each of these genes is an example.  Each example’s numeric expression levels under various experimental circumstances (environmental stresses, developmental stage, etc.) are its features. 

Do:
Learn a Bayesian network that captures the joint probability distribution over the expression levels of these genes.



Figure 7.  A simple Bayesian network.  This illustrative example of a Bayes network describes the relationships between four hypothetical genes.  Each of the probabilities P(X) refers to the probability that the gene X is expressed.  Note that the conditional probabilities rely only on the parent variables (i.e., other gene’s expression levels).  For simplicity, in this figure we consider genes to be either expressed or not expressed.  In a richer model, the variables could correspond to a numeric expression level.

The application of learning Bayes nets to gene expression microarray data is receiving a great deal of attention because the resulting Bayes nets potentially provide insight into the interaction networks within cells that regulate the expression of genes.  Others have since developed other algorithms to construct Bayes network models from data and have also had substantial success.

One might interpret the graph in Figure 7 to mean that Gene A causes Gene B and Gene C to be expressed, in turn influencing Gene D.  However, caution must be exercised in interpreting arcs as specifying causality in such automatically constructed models.  The presence of an arc merely represents correlation – that one variable is a good predictor of another.  This correlation may arise because the parent node influences the behavior of the child node, but it may also arise because of a reverse influence, or because of an indirect chain of influence involving other features.

One method for addressing causality in Bayes net learning is to use genetic mutants, in which some gene is “knocked out.”  Pe'er, Regev, Elidan, and Friedman (2001) use this approach to model expression in S. cerevisiae (i.e., baker’s yeast).  For almost every gene in S. cerevisiae, biologists have created a “knock-out mutant,” or a genetic mutant lacking that gene.  If the parent of a gene in the Bayes net is knocked out, and the child’s status remains unchanged, then it is unlikely that the arc from parent to child captures causality.  A current limitation of this approach is that no other organism has such an extensive set of knock-out mutants.

Another method for addressing the issue of causality ─ explored by Ong, Glasner and Page (2002) ─ is through the use of time-series data.  Time-series data is simply data from the same organism at various time points.  Ong et al. use time-series data from the tryptophan regulon of E. coli (Khodursky et al. 2000).  A regulon is a set of genes that are co-regulated.  The tryptophan regulon regulates metabolism of the amino acid tryptophan in the cell.  Ong et al. use this data to infer a temporal direction for gene interactions, thereby suggesting possible causal relations.  In order to model this temporal directionality, they employ a representation known as a dynamic Bayesian Network.  In a dynamic Bayesian network, genes are each represented, not by only one node, but by T nodes, where T is the number of time points.  Each of these T nodes represents the gene’s expression level at a different time point.  This way the algorithm can learn relationships between genes at time t and at time t+1.  This also makes it possible for the network to identify feedback loops, cases where a gene either directly or through some chain of influence, actually influences its own regulation. Feedback loops are common in gene regulation.

Using Additional Source of Data

A recent trend in computational biology is to use more than just microarray data as the source of input to a learning algorithm.  In this section we briefly describe a few such investigations.

Some recent approaches to clustering genes rely not only on the expression data, but also on background knowledge about the problem domain.  Hanisch, Zien, Zimmer, and Lengauer (2002) present one such approach.  They add a term to their distance metric that represents the distance between two genes in a known biological-reaction network. A biological-reaction network is a set of proteins, various intermediates, and reactions among them; together these chemicals carry out some cooperative function such as cell respiration or metabolism.  They can function like assembly lines where one protein turns chemical X into chemical Y by adding or removing atoms or changing its conformation; the next protein turns chemical Y into chemical Z in a similar fashion, and so on.  One often depicts the entities in such biological networks as edges in a graph and the reactions among them as vertices.  Biologists have discovered many of these networks through other experimental means and some of these networks are now well understood.  Genes that are nearer to one another in such a biological network can be considered, for the purposes of clustering, more similar than genes that are farther apart.

The BIOLINGUA system of Shrager, Langley, and Pohorille (2002) also uses a network graph describing a known biological pathway and updates it using the results of microarray experiments.  Their algorithm adds and removes links in the biological pathway based on each link’s experimental support in the microarray data, which is a form of theory revision, a small subtopic within machine learning (see Chapter 12 of Mitchell, 1997).  The network structures in BIOLINGUA are similar to a dynamic Bayes network in that the links imply causality – not just correlation – between the expression of one particular gene and another.  Shrager et al. achieve this perspective through a combination of domain knowledge and their use of time-series data; if there is a causal connection between two events, they require that it can only go in the forward temporal direction.  One way that their representation differs from Bayesian approaches is that BIOLINGUA’s links are qualitative rather than quantitative.  Instead of a joint statistical distribution on probabilities between linked nodes, their algorithm uses a qualitative representation that simply specifies influences as either positive or negative.  Along with the causal links, their representation mirrors the type of network description that biologists are familiar with, thereby making the resulting model more useful.

Another source of data is the DNA sequence itself.  Many organisms, including E. coli, fruit fly, yeast, mouse, and humans, have already been (nearly) completely sequenced; in other words, the sequence of the entire string of the millions to billions of bases constituting their genomes is known.  Many others, though not complete, are in progress and have large amounts of data available.  The DNA sequence surrounding a gene can have an impact on its regulation and, through this regulation, its function.  Craven, Page, Shavlik, Bockhorst, and Glasner (2000) use machine learning to integrate E. coli DNA sequence data, including geometric properties such as the spacing between adjacent genes and the predicted DNA binding sites of important regulatory proteins, with microarray expression data in order to predict operons.  An operon is a set of genes that are transcribed together.  Operons provide important clues to gene function because functionally related genes often appear together in the same operon.

DNA sequence information is also used in a method that Segal, Taskar, Gasch, Friedman, and Koller (2001) developed.  Their goal is to jointly model both gene-expression data and transcription factor binding sites.  Transcription factors are proteins that bind to a subsequence of the DNA before a gene and encourage the start of transcription.  The subsequence to which a transcription factor binds is called the “transcription factor binding site.”  If two genes have similar expression profiles, it is likely that they are controlled by the same transcription factor and therefore have similar transcription factor binding sites in the sequence preceding them. In order to model both gene expression information and sequence information jointly, Segal et al. use what are known as Probabilistic Relational Models (PRM’s).  A PRM can be thought of as Bayesian network whose variables are fields in a relational database.  The strength of this representation is that PRM’s can be learned from a relational database with multiple relational tables, whereas learning algorithms for ordinary Bayes nets require the data to be in a single table.  The different tables may be used to represent different types of data, for example sequence data and expression data.  The approach of Segal et al. uses an EM (expectation-maximization) algorithm to learn a PRM that models both clusters of genes and, for each such cluster, the likely transcription factor binding sites in front of those genes in the DNA.

Another excellent source of supplementary material is the large amount of human-produced text about the genes on a microarray (and their associated proteins) that is contained in biomedical digital libraries and in the expert-produced annotations in biomedical databases.  Molla, Andrae, Glasner, Blattner, and Shavlik (2002) investigate using the text in the curated SwissProt protein database (Bairoch and Apweiler 2000) as the features characterizing each gene on an E. coli microarray.  Using these text-based features, they employ a machine-learning algorithm to produce rules that “explain” which genes’ expression levels increase when E. coli is treated with an antibiotic.

There is a wealth of data – known reaction pathways, DNA sequences, genomic structure, information gleaned from protein-DNA and protein-protein binding experiments, carefully annotated databases and the scientific literature, etc. – that one can use to supplement Table 1’s meager representation of microarray experimental data.  Exploiting such richness offers an exciting opportunity for machine learning.

Machine Learning in Medical Applications of Microarrays

Having seen how both supervised and unsupervised learning methods have proven useful in the interpretation of microarray data in the context of basic molecular biology, we next turn to the application of microarrays in medicine.  Microarrays are improving the diagnosis of disease, facilitating more accurate prognosis for particular patients, and guiding our understanding of the response of a disease to drugs in ways that already improve the process of drug design.  It is quite possible that these technologies could someday even lead to medicines personalized at the genetic level (Mancinelli, Cronin, and Sadee 2000), and in this section we attempt to provide a sense of the large number of future opportunities for machine learning as the medical applications of microarray technology expand.

Disease Diagnosis

A common issue in medicine is to distinguish accurately between similar diseases in order to make an accurate diagnosis of a patient.  Molecular-level classification using gene microarrays has already proven useful for this task.  This technique has been used in two tasks that we will discuss in the context of cancer diagnosis: class discovery and class prediction.  Class discovery – Table 8 – is the task of identifying new classes of cancer; class prediction –Table 9 – is the task of assigning a new tumor to a known class.  Accurate diagnosis is crucial for obtaining an accurate prognosis, as well as for assigning appropriate treatment for the disease.

Table 8.  Discovering new disease classes.

	Given:
A set of microarray experiments, each done with cells from a different patient.  This data is represented similarly to Table 1d.  The patients have a group of closely related diseases.  Each patient’s numeric expression levels from the microarray experiment constitute the features of an example.  The corresponding disease classification for each patient is that patient’s category. 
Do:
Using clustering (ignoring the disease category), find those cells that do not fit well in their current disease classification.  Assume these cells belong to new disease classifications.


Table 9.  Predicting existing disease classes.

	Given:
The same data as in Table 8.
Do:
Learn a model that can accurately classify a new cell into its appropriate disease classification.


Golub et al. (1999) use microarray technology for class discovery and class prediction on two types of closely related cancers: Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML).  The distinction between these two cancers has long been well established, but no single test is sufficient to accurately diagnose between them.  Current medical practice is to use a series of separate, highly specialized tests.  When combined, the results of these tests are fairly accurate, but misdiagnoses do occur.

The Golub group used microarrays to address this diagnostic issue by analyzing samples from patients' tumors.  Up to this time, microarrays had been primarily used only on highly purified cell lines grown in laboratories.  When using microarrays to analyze samples taken directly from patients, the “noise” due to the genetic variation between the patients can obscure the results.  For this reason, when working with samples from patients, it is very important to have a large number of patients from which to sample, so that the genetic variation unrelated to the disease does not obscure the results.

One can use any of the many supervised-learning techniques to induce a diagnosis model from the gene-expression data of a number of patients and the associated disease.  Once an accurate predictive model is obtained, new patients – and those who were previously undiagnosable – can be classified.  Using an ensemble of 50 weighted voters (see Figure 8b) on this AML/ALL diagnosis task, Golub et al. are able to correctly classify 29 of the 34 samples in their test set.  Their ensemble rejects the other 5 samples in the test set as “too close to call.”  

This same type of gene microarray data can also be used in a class-discovery task.  Commonly, one discovers classes by using an unsupervised learning technique to cluster the examples.  One then matches the clusters produced with known disease types and considers any remaining clusters as new, unstudied disease classes.  The primary challenge in class discovery is ensuring that the clustering is biologically meaningful.  Because unsupervised learning is done without considering the current disease classification of the example, it is very possible that the clustering will be based on the wrong variations among patients.  For example, when performing unsupervised learning on a group of patients with similar cancers, obtaining a clustering based on the ethnicity of the patients could result.  Although this grouping may be optimal according to the algorithm used, it offers no insight into the diseases being studied.  A second important challenge when doing unsupervised learning, which can also significantly affect the usefulness of the results obtained, is the granularity at which the examples are clustered.  Since one can find an optimal clustering for any specified number of clusters, it is important to find a clustering that accurately captures the level of differentiation sought – in this case, the distinction among diseases.

Whenever gene-microarray technology is used on patient samples, instead of on highly purified laboratory samples, one must exercise caution to ensure that the genes chosen as predictors are biologically relevant to the process being studied.  This is especially relevant in solid-tumor analysis.  Due to the method in which they are obtained, tumor-biopsy specimens can have large variations in the amount of the surrounding connective tissue that is obtained along with the tumor cells
.  Applying class discoveries or predictions made on the data from these cells, without first analyzing the learned predictive model, may result in making decisions using the wrong basis – such as the skill of the person who performed the biopsy – instead of the desired basis – the underlying tumor biology.  For this reason, those learning techniques that create directly comprehensible models (such as decision trees – Figure 8a;  ensembles of voters – Figure 8b; and Bayesian networks) are, in these types of applications, preferred to those whose induced models cannot be as easily comprehended by humans (such as neural networks and support vector machines).

Although primarily used for diagnosis, molecular-level classification is not limited simply to distinguishing among diseases.  The methods of class prediction and class discovery can also be used to predict a tumor's site of origin, stage, or grade.
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Figure 8.  Comprehensible models for disease diagnosis.  (a) A two-level decision tree for discriminating between Myeloma cells and normal cells, based on the gene-expression levels from those cells.  (b) An ensemble of voting decision “stumps” (one-level decision trees) for the same task.  In the case of unweighted voting, each decision stump is given a single vote and a simple majority vote is taken to distinguish Myeloma cells from normal cells.  In the case of weighted voting, some decision stumps have their votes counted more than others.  One can choose from a variety of methods to determine how to weight the votes.

Disease Prognosis

As we saw when discussing molecular-level classification, one can use supervised learning to more accurately diagnose a patient who may have one of a set of similar diseases.  These same types of techniques can also be used to predict the future course and outcome, or prognosis, of a disease.  Making an accurate prognosis can be a complicated task for physicians, since it depends upon a very large number of factors, some of which may not be known by the physician at the time of diagnosis.  By more accurately diagnosing the disorder and, as we will see later, predicting the response that the disorder will have to particular drugs, we can make a more accurate prognosis for a patient.  

Microarray analysis is already being used to predict the prognosis of patients with certain types of cancer.  Investigators have chosen cancer as a model disease for a variety of reasons.  First, the prognosis for a patient with cancer is highly dependant upon whether or not the cancer has metastasized.  Second, it has been shown that important components of the biology of a malignant cell are inherited from the type of cell that initially gave rise to the cancer and the life-cycle stage at which that cell was in during at the time of its transformation; Figure 9 illustrates this process.  Finally, providing an accurate prognosis to a patient is crucial in deciding how aggressive of a treatment should be used.  Because of these reasons, researchers typically employ supervised learning techniques to address this problem – see Table 10.
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Figure 9.  Transformation: the development of cancerous cells from normal cells.  In the first step of this transformation, DNA damage causes normal cells to keep multiplying uncontrollably – forming a benign tumor.  If further DNA damage occurs, these cells convert from benign to cancerous.  The final stage of this progression is the cells’ metastasis.  This is the process whereby the cancer gains the ability to spread to other locations within the body.

One group to use this supervised learning approach for prognosis prediction is Van’t Veer et al. (2002).  They employ an ensemble of voters to classify breast cancer patients into two groups: good prognosis (no metastasis within five years after initial diagnosis), and poor prognosis (distant metastases found within five years).  To begin, they select those 231 genes from the 25,000 genes on the microarray with the highest degree of association with the disease outcome (calculated by correlation coefficient over the full set of 78 examples).  They then rank these genes by their correlation coefficients.  They repeat “leave-one-out” cross-validation over all 78 examples using various ensemble sizes.  They found that an ensemble size of 70 genes gives the best cross-validated accuracy (83%).  

Table 10.  Predicting the prognosis for cancer patients.

	Given: 
A set of microarray experiments, each done with cells from a different patient.  This data is represented similarly to Table 1d.  All of these patients have the same type of cancer, but are in different stages of progression.  Each patient is an example and the numeric expression levels for all the genes on the microarray are the features.  The true prognosis of that patient
 is that patient’s category.

Possible categories include (a) whether or not a cancer is likely to metastasize and (b) the prognosis of that patient (for example, will the patient survive for at least five years.  One could also formulate this as a real-valued prediction task, such as years until recurrence of the cancer.

Do: 
Learn a model that accurately predicts to which category new patients belong.  


Their methodology contains two errors from the perspective of current machine-learning practice.  First, they chose the 231 features using the entire set of 78 examples.  This constitutes “information leakage” because all 78 of the examples – including those that will later appear in test sets during the cross validation – are used to guide the selection of these 231 features.  Second, they report the best ensemble size by seeing which size works best in a cross-validation experiment.  This again constitutes “information leakage” because they optimized one of the parameters of the learning system – namely the size of the ensemble – using examples that will appear in the test sets.  These two errors mean that their estimated accuracy is likely to be an overestimation, since they “overfit” their test data.  A better methodology is to separately select parameters for each fold during their N-fold cross-validation experiments.  Recognizing these issues after publication, Van’t Veer et al. reported a modified version of their algorithm in the online supplement to their article in order to address these two concerns; their changes reduced the cross-validated accuracy from 83% to 73% (and one might still question whether their revised approach leads to an overestimate of future accuracy).

Although prognosis prediction is commonly thought of as a supervised learning task, valuable information about a disease can also be gained through unsupervised learning.  Alizadeh et al. (2000) utilized unsupervised learning techniques to cluster patients with diffuse large B-cell lymphoma into two clusters.  They discovered that the average five-year survival for the patients in one cluster was 76%, compared to 16% in the other cluster (average five-year survival for all patients was 52%).  These results illustrate that the clusters found through unsupervised learning can be biologically and medically relevant ones.  However, before (solely) employing clustering algorithms, users of machine learning should consider whether their task can be cast in the form of the more directed supervised learning, where training examples are labeled with respect to an important property of interest.

Response to Drugs
Drugs are typically small molecules that bind to a particular protein in the body and act to inhibit or activate its activity; Figure 10 contains an example.  Currently, pharmaceutical companies are limited to designing drugs that have a high level of success and a low level of side effects when given to the "average" person.  However, the way that an individual responds to a particular drug is very complex and is influenced by their unique genetic makeup, as Figure 11 summarizes. Because of this, there are millions of cases annually of adverse reactions to drugs
, and far more cases where drugs are ineffective.  The field of pharmacogenomics addresses this tight interrelation between an individual's genetic makeup and their response to a particular drug – see Table 11 to see how microarrays can play a role.

An area related to pharmacogenomics is molecular-level profiling.  The main difference between these two fields is that, while pharmacogenomics deals with finding genetic variations among individual people that predict an individual person's response to a particular drug, the goal of molecular-level profiling is to find genetic variations among individual diseased cells that predict that cell's response to a particular drug.  Analyzing specific cells is important for predicting drug response, since – due to the highly variable nature of cancer – significant variation exists among tumors of the same type of cancer, just as significant variation exists between organisms of the same species.
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Figure 10.  A drug binding to a protein.  Inhibitor Drug U-89360E (shown as a stick model in dark gray) bound to protein HIV-1 Protease mutant G48H (shown as a space-filling model in lighter gray).

Molecular-level profiling has been found to be effective in treating certain types of cancers.  A recent example of this is Rosenwald et al.’s (2002) lymphoma/leukemia project.  This study investigates large-B-cell lymphoma – a type of cancer curable by chemotherapy in only 35-40% of patients.  It is thought that large-B-cell lymphoma is not a single disease, but actually a class that contains several different diseases that, although morphologically the same, differ in response to certain types of therapy.
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Figure 11.  The major factors that affect a person’s response to a drug.

Table 11.  Predicting the drug response of different patients with a given disease.
	Given:
A set of microarray experiments, each done with cells from a patient infected with a given disease.  This data is represented similarly to Table 1d.  Each microarray experiment is an example, with each gene’s numeric expression level during that experiment serving as a feature.  (One might want to augment the gene-expression features with additional features such as the age, gender, and race of each patient.)

The drug-response classification of each patient is that example’s category.  Typical categories are good response (i.e., improved health), bad response (i.e., bad side effects), and no response.
Do:
Build a model that accurately predicts the drug response of new patients.


By analyzing gene-expression profiles of cells from different large-B-cell lymphoma tumors, Rosenwald et al. developed a method to predict the survival rates of diffuse large-B-cell lymphoma based on this microarray data.  Using training data from 160 patents whose outcomes on anthracycline-based chemotherapy are known, they predict which of 80 held-out test-set patients would respond well to this type of chemotherapy.  The actual five-year survival rate among those who were predicted to respond was 60%.  Those who were predicted not to respond had an actual five-year survival rate of only 39%.

Currently, this investigation into large-B-cell lymphoma has yielded prognosis information only.  However, this type of insight into how the genetic variations between cells can affect their response to particular drugs will eventually suggest new drugs to treat the types of cells that currently do not respond to chemotherapy and can also lead to the deeper understanding of a disease’s mechanism. 

As we gain a deeper insight into the diseases that we study, the lines among molecular-level classification, pharmacogenomics, and molecular-level profiling will blur.  More accurate sub-typing of a single disease may ultimately lead to it being considered as two separate diseases.  A deeper understanding of the underlying mechanisms of diseases may lead to the discovery that two previously distinct diseases are different manifestations of the same underlying disease.  Personalized medicine could eventually lead not just to classifying patients based upon the drug that will work best for them, but to designing a drug specifically tailored to a patient’s exact disorder and genetic makeup.

New Data Types from High-Throughput Biotechnology Tools

In this section we briefly discuss three other novel types of high-throughput, molecular-level biological data to which machine learning is applicable.  (High-throughput techniques are those that permit scientists to make thousands of measurements from a biological sample in about the time and effort it traditionally took to make at most a handful of measurements.)  Data sets arising from these additional techniques are similar to gene microarrays in that they have a similar tabular representation and high dimensionality.

Single Nucleotide Polymorphisms (SNP’s)

Genome researchers have learned that much of the variation between individuals is the result of a number of discrete, single-base changes in the human genome.  Since that discovery, there has been intense effort to catalog as many of these discrete genetic differences as possible.  These single positions of variation in DNA are called single nucleotide polymorphisms, or SNP’s, and are illustrated in Figure 12.  While it is presently infeasible to obtain the sequence of all the DNA of a patient, it is feasible to quickly measure that patient’s SNP pattern, the particular DNA bases at a large number of these SNP positions.

Machine learning can be applied to SNP data in a manner similar to its application to microarray data.  For example, given a SNP data file as in Table 12, one can employ supervised learning to identify differences in SNP patterns between people who respond well to a particular drug versus those who respond poorly.  Or if the data points are classified instead by disease versus healthy, one can use supervised learning to identify SNP patterns predictive of disease.  If the highly predictive SNP’s appear within genes, these genes may be important for conferring disease resistance or susceptibility, or the proteins they encode may be potential drug targets.  
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Figure 12.  Single nucleotide polymorphism.  The differences between the genomes of two individuals are generally discrete, single-base changes.  Shown is a simplified example of what the corresponding genomes of two people might look like.  The differences are highlighted – all other DNA bases are identical between the twos sequences.

One challenge of SNP data is that it is collected in unphased form.  For example, suppose that, instead of coming from two different people, the two DNA strands in Figure 12 refer to the two copies of chromosome 1 in a single person (humans has two copies of each chromosome).  Current SNP technology would return the first row of Table 12 – it would not provide any information about which SNP variants are on which chromosome.  Should this “phase” information be necessary for the particular prediction task, the machine-learning algorithm will be unsuccessful.

Table 12.  A sample single nucleotide polymorphism data file.  Since humans have paired chromosomes, one needs to record the base on each chromosome at a SNP position (notice that each of the two chromosomes contains a pair of DNA strands – the famous double-helix - but due to the complementarity of these paired strands there is no need to record all four bases at a given SNP position).  While biologists have already identified over a million SNP positions in the human genome, currently a typical SNP data file will contain only thousands of SNP’s, because of the cost of data gathering.

	
	SNP 1
	SNP 2
	…
	SNP M
	Response

	Person 1
	C      T.
	A     G.
	…
	T      T.
	positive

	Person 2
	C      C.
	A     A.
	…
	C      T.
	negative

	…
	…
	…
	…
	…
	…

	Person N
	T      T.
	A     G.
	…
	C      C.
	positive


Proteomics

Gene microarrays measure the degree to which every gene is being transcribed.  This measure is a useful surrogate for gene expression (i.e. the complete process of transcription followed by translation), particularly because protein levels are more difficult to measure than RNA levels.  Nevertheless, increased transcription does not always mean increased protein production.  Therefore it is desirable to instead measure protein directly, and this is called proteomics in contrast to genomics, which is the rubric under which gene microarrays falls.  An organism’s proteome is its full complement of proteins.
Mass spectrometry makes it possible to detect the presence of various proteins in a sample.  The details of mass spectrometry are beyond the scope of this article; however, Figure 13 provides a sense of this type of data.  To convert such an example into a feature vector, it is necessary to perform some type of “peak picking.”  The result of picking peaks in mass-spectrometry data is a feature vector of x-y pairs, where each entry corresponds to a mass-to-charge ratio (the x-axis) and the associated peak height (the y-axis).
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Figure 13.  Sample mass-spectrometry output.  Different protein fragments appear at different mass/charge values on the horizontal axis.  The vertical axis reflects the amount of the protein fragment in the sample.  The plotted peak heights are typically normalized relative to the highest intensity.  

Mass-spectrometry data presents at least three major challenges.  First, in raw form the peaks typically correspond to pieces of proteins – peptides – rather than to entire proteins.  One can either work with these features or preprocess the data by attempting to map from a set of peaks to a (smaller) set of proteins.  Second, currently mass spectrometry is extremely poor at giving quantitative values; peak heights are not calibrated from one sample to another.  Hence while the normalized peak height at a particular mass-to-charge ratio may be much greater in example 1 than example 2, the amount of protein at that ratio actually may be greater in example 2.  Therefore, often it is desirable to use binary features instead of continuous ones – at a particular mass-to-charge ratio, either there is a peak or there is not one.  The third major challenge of mass spectrometry data is that peaks from lower-concentration proteins cannot be distinguished from the background noise.  

While this discussion has focused on mass-spectrometry data, because of its similarities to gene-microarray data, the phrase proteomics actually refers to a broader range of data types.  Most significantly, it also includes data on protein-protein interactions.  Such data also poses interesting opportunities and challenges for machine learning.  KDD Cup 2001 (Cheng et al. 2002) contained one challenging task involving protein-protein interaction data.

Metabolomics

It is tempting to believe that, with data about DNA (SNP’s), RNA (microarrays), and proteins (mass spectrometry), one has access to all the important aspects of cell behavior.  But in fact many other aspects remain unmeasured with these high-throughput techniques.  These aspects include post-translational modifications to proteins (e.g., phosphorylation), cell structure, and signaling among cells.  For most such aspects there exist no high-throughput measurement techniques at present.  Nevertheless, some insight into these other aspects of cell behavior can be obtained by examining the various small molecules (i.e., those with low molecular weight) in the cell.  Such molecules often are important inputs and outputs of metabolic pathways in the cell.  High-throughput techniques for measuring these molecules exist.  The area of studying data on these molecules is called metabolomics (Oliver, Winson, Kell, and Baganz 1998).  High-throughput metabolomics data can be represented naturally in feature vectors in a manner similar to gene-microarray data and mass-spectrometry data.  In metabolomics data the features correspond to small molecules, and each feature takes a value that expresses the quantity of that molecule in a given type of cell.

Systems Biology

Additional forms of high-throughput biological data are likely to become available in the future.  Much of the motivation for these developments is a shift within biology towards a systems approach, commonly referred to as systems biology.  As Hood and Galas (2003) note, whereas in the past biologists could study a “complex system only one gene or one protein at a time,” the “systems approach permits the study of all elements in a system in response to genetic (digital) or environmental perturbations.”  They go on to state:

The study of cellular and organismal biology using the systems approach is at its very beginning.  It will require integrated teams of scientists from across disciplines – biologists, chemists, computer scientists, engineers, mathematicians and physicists.  New methods for acquiring and analyzing high-throughput biological data are needed (Hood and Galas 2003). 

Constructing models of biological pathways or even an entire cell – an in silico cell – is a goal of systems biology.  Perhaps the preeminent example to date of the systems approach is a gene-regulatory model Davidson et al. (2002) developed for embryonic development in the sea urchin.  Nevertheless, this model was developed over years using data collected without the benefit of high-throughput techniques.  Machine learning has the potential to be a major player in systems biology, because learning algorithms can be used to construct or modify models based on the vast amounts of data generated by high-throughput techniques.

Conclusion

Machine learning has much to offer to the revolutionary new technology of gene microarrays.  From microarray design itself to basic biology to medicine, researchers have employed machine learning to make gene chips more practical and useful.

Gene chips have already changed the field of biology.  Data that might have taken years to collect, now takes a week.  Biologist are aided greatly by the supervised and unsupervised learning methods that many are using to make sense of the large amount of data now available to them, and additional challenging learning tasks will continue to arise as the field further matures.  As a result, we have seen a rapid increase in the rate at which biologists are able to understand the molecular processes that underlie and govern the function of biological systems.

Although their impact will progress more slowly in medicine than in molecular biology, microarray technology coupled with machine learning is also being used for a variety of important medical applications: diagnosis, prognosis, and drug response.  These applications are similar in that they all deal with predicting some aspect of a disease by differentiating at the molecular level among individuals in a population – either patients or cells.  The difference among these applications concerns what is being predicted.  In disease classification, one focuses on distinguishing among cells with different, but possibly related, diseases.  In disease prognosis, one is predicting long-range results.  In pharmacogenomics and molecular profiling, one uses molecular-level measurements to differentiate among patients or cells with the same disease based on their reaction to particular drugs.

As our vast amount of genomic and similar types of data continues to grow, the role of computational techniques, especially machine learning, will grow with it.  These algorithms will enable us to handle the task of analyzing this data to yield valuable insight into the biological systems that surround us and the diseases that affect us. 

Acknowledgements

The writing of this article was partially supported by grants NIH 2 R44 HG02193-02, NIH 2 P30 CA14520-29, NIH 5 T32 GM08349, NLM 1T15LM007359-01, NSF 9987841, and NLM 1 R01 LM07050-01.

References

Alizadeh, A.; Eisen, M.; Davis, R.; Ma, C.; Lossos, I. , Rosenwald, A.; Boldrick, J.; Hajeer, S.;Tran, T.; Yu, X.; Powell, J.; Yang, L.; Marti, G.; Moore, T.; Hudson, J. Jr; Lu, L.; Lewis, D.; Tibshirani, R.; Sherlock, G; Chan, W.; Greiner, T.; Weisenburger, D.; Armitage, J.; Warnke, R.; Levy, R.; Wyndham Wilson, W.; Grever, M.; Byrd, J.; Botstein, D.; Brown, P.; and Staudt, L.  2000.  Distinct Types of Diffuse Large B-cell Lymphoma Identified by Gene Expression Profiling.  Nature 403:503-511.

Bairoch, A. and Apweiler, R.  2000.  The SWISS-PROT Protein Sequence Database and its Supplement TrEMBL in 2000.  Nucleic Acids Research 28:45-48.

Breslauer, K.; Frank, R.; Blocker, H.; and Marky, L.  1986.  Predicting DNA Duplex Stability from the Base Sequence.  Proceedings of the National Academy of Science USA 83:3746-3750.

Brown, M.; Grundy, W.; Lin, D.; Cristianini, N.; Sugnet, C.; Furey, T.; Ares M. Jr.; and Haussler, D.  2000.  Knowledge-based Analysis of Microarray Gene Expression Data by using Support Vector Machines.  Proceedings of the National Academy of Science USA 97(1):262-267.

Cheng, J.; Hatzis, C.; Hayashi, H.; Krogel, M.; Morishita, S.; Page, D. and Sese, J.  2002.  Report on KDD Cup 2001.  SIGKDD Explorations 3(2):47-64.

Craven, M.; Page, D.; Shavlik, J.; Bockhorst J.; and Glasner J.  2000.  Using Multiple Levels of Learning and Diverse Evidence Sources to Uncover Coordinately Controlled Genes.  Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann, Palo Alto, CA.
Davidson, E.; Rast, J.; Oliveri, P.; Ransik, A.; Calestani, C.; Yuh, C.; Amore, G.; Minokawa, T.; Hynman, V.,; Arenas-Mena, C.; Otim, O.; Brown, C.; Livi, C.; Lee, P.; Revilla, R.; Alistair R.; Pan Z.; Schilstra M.; Clarke, P.; Arnone, M.; Rowen, L.; Cameron, R.; McClay, D.; Hood, L. and Bolouri, H.  2002.  A Genomic Regulatory Network for Development.  Science 295:1669-1678.

Eisen M.; Spellman P.; Brown P.; and Botstein D.  1998.  Cluster Analysis and Display of Genome-Wide Expression Patterns.  Proceedings of the National Academy of Science USA 95:14863-14868.

Friedman, N. and Halpern J.  1999.  Modeling Beliefs in Dynamic Systems. Part II: Revision and Update.  Journal of AI Research 10:117-167.

Golub T.; Slonim D.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.; Coller, H.; Loh, M.; Downing, J.; Caligiuri, M.; Bloomfield, C; and Lander, E.  1999.  Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring.  Science 286:531-537.

Hanisch, D.; Zien, A.; Zimmer, R.; and Lengauer, T.  2002.  Co-Clustering of Biological Networks and Gene Expression Data.  Bioinformatics 18:S145-S1554.

Hood, L. and Galas, D.  2003.  The Digital Code of DNA.  Nature 421:444-448.

Hunter, L.  2003.  An Introduction to Molecular Biology for Computer Scientists.  AI Magazine, this issue.

Khodursky, A.; Peter, B.; Cozzarelli, N.; Botstein, D.; Brown, P. and Yanofsky, C.  2000.  DNA Microarray Analysis of Gene Expression in Response to Physiological and Genetic Changes that Affect Tryptophan in Escheria Coli.  Proceedings of the National Academy of Science USA 97:12170-12175. 

Lazarou, J.; Pomeranz, B. and Corey, P.  1998.  Incidence of Adverse Drug Reactions in Hospitalized Patients.  Journal of the American Medical Association 279(15):1200-1205.

Li, C. and Wong, W.  2001.  Model-based Analysis of Oligonucleotide Arrays: Expression Index Computation and Outlier Detection.  Proceedings of the National Academy of Science USA 98(1):31-36.

Mancinelli, L.; Cronin, M. and Sadee W.  2000.  Pharmacogenomics: The Promise of Personalized Medicine.  AAPS PharmSci 2(1): article 4.

Molla, M; Andrae, P; Glasner, J; Blattner, F. and Shavlik, J.  2002.  Interpreting Microarray Expression Data Using Text Annotating the Genes.  Information Sciences 146:75-88.

Mitchell, T.  1997.  Machine Learning.  McGraw-Hill, Boston, MA.

Oliver, S.; Winson, M.; Kell, D. and Baganz, F.  1998.  Systematic Functional Analysis of the Yeast Genome.  Trends in Biotechnology 16(9):373-378.

Ong, I.; Glassner, J. and Page, D.  2002.  Modelling Regulatory Pathways in E.coli from Time Series Expression Profiles.  Bioinformatics 18:241S-248S. 

Newton, M.; Kendziorski C.; Richmond, C.; Blattner, F. and Tsui, K.  2001.  On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data.  Journal of Computational Biology 8:37-52. 

Nuwaysir, E. F.;Huang, W.; Albert, T.; Singh, J.; Nuwaysir, K.; Pitas, A.; Richmond, T.; Gorski, T.; Berg, J.; Ballin, J.; McCormick, M.; Norton, J.; Pollock, T.; Sumwalt, T.; Butcher, L.;  Porter, D.; Molla, M.; Hall, C.; Blattner, F.; Sussman, M.; Wallace, R.; Cerrina, F. and Green, R.  2002.  Gene Expression Analysis Using Oligonucleotide Arrays Produced by Maskless Lithography.  Genome Research 12(11):1749-1755.

Pe'er, D.; Regev, A.; Elidan, G. and Friedman, N.  2001.  Inferring Subnetworks from Perturbed Expression Profiles.  Bioinformatics 17:S215-S224

Rosenwald, A.; Wright, G.; Chan, W.; Connors, J.; Campo, E.; Fisher, R.; Gascoyne, R.; Muller-Hermelink, H.; Smeland, E. and Staudt, L.  2002.  The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma.  New England Journal of Medicine 346(25):1937-1947.

Segal, E.; Taskar, B.; Gasch, A.; Friedman, N. and Koller, D.  2001.  Rich Probabilistic Models for Gene Expression.  Bioinformatics 1(1):1-10.

Shrager, J.; Langley, P.; and Pohorille, A.  2002.  Guiding Revision of Regulatory Models with Expression Data.  Proceedings of the Pacific Symposium on Biocomputing, 486-497, World Scientific, Lihue, Hawaii. 

Spellman, P.; Sherlock, G.; Zhang, M.; Iyer, V.; Anders, K.; Eisen, M.; Brown, P.; Botstein, D. and Futcher. B.  1998.  Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.  Molecular Biology of the Cell 9:3273-3297.

Thomas, R.; Rank, D.; Penn, S.; Zastrow, G.; Hayes, K.; Pande, K.; Glover, E.; Silander, T.; Craven, M.; Reddy, J.; Jovanovich, S. and Bradfield, C.  2001.  Identification of Toxicologically Predictive Gene Sets using cDNA Microarrays.  Molecular Pharmacology 60:1189-1194.

Tobler J.; Molla M.; Nuwaysir, E.; Green R. and Shavlik J.  2002.  Evaluating Machine Learning Approaches for Aiding Probe Selection for Gene-Expression Arrays.  Bioinformatics, 18:S164-S171.

Van ‘t Veer, L.; Dai, H.; van de Vijver, M.; He, Y.; Hart, A.; Mao, M.; Peterse, H.; van der Kooy, K.; Marton, M.; Witteveen, A.; Schreiber, G.; Kerkhoven, R.; Roberts, C.; Linsley, P.; Bernards, R. and Friend, S.  2002.  Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer.  Nature 415:530-536.

TRANSCRIPTION





REPLICATION





DNA





Protein








TRANSLATION





RNA





Gene Chip Surface





Probes (DNA)





Hybridization





Labeled Sample (RNA)





Respiration Genes








TCA Cycle Genes





W





EXPERIMENTS





Gene Hierarchy





G


E


N


E


S





Gene B





Gene A





Gene C





Gene D





0.2





P(A)





0.1





F





0.8





T





P(C)





A





0.1





F





0.9





T





P(B)





A





0.1





F   F





0.3





F   T





0.2





T   F





0.9





T   T





P(D)





B   C





Normal





Myeloma





Absent





Absent





(a) 





Gene L19779





Present





Gene


AF088219





Myeloma





Present 





(b) 





Absent





Absent





Absent





 Present





Myeloma





Gene 


AI885852





 Present





 Normal





Gene 


AF088219





 Present





Myeloma





Gene L19779





Myeloma





Normal





Normal





Genetic Variation





Age





Nutrition





Health Status





Environmental Exposures





Concurrent Therapy





Drug Response





Person 1


Person 2





G





T





C





T





T





A








� This is not strictly true.  Due to a process in higher organisms called alternate splicing, a single gene can encode multiple proteins.  However, for the purposes of gene detection by microarrays, each part of such genes (called exons) can be detected separately.  We do not discuss the detection of splice variants in this article.


� Though it is often useful to think of DNA and RNA as chains of bases, technically, they are chains of sugars.  In the case of DNA, the sugar is Deoxyribose; in the case of RNA it is Ribose.  Hence the full names: Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA).  The bases are actually attached to the sugars.


� One could also make probes out of RNA, but they tend to degrade much faster.


� The word chip might be confusing to those familiar with integrated circuits.  Microarrays can be about the size of a computer chip, and some approaches for creating them do use the masking technology used for etching integrated circuits.  However, a single gene chip is typically only used once, unlike a computer chip.  It might be better to conceptually view a gene chip as holding thousands of miniature test tubes.  (One should also not confuse gene chips with DNA computing, where one uses DNA to solve computational tasks such as the traveling-salesman problem.  In this article we address using computer science to solve biomedical tasks, rather than using molecular-biology processes to solve computational tasks.)


� This problem is specific to the collection of specimens from solid tumors and is not the case when dealing with cancers of the blood.  For this reason, higher accuracies are generally found when using machine learning on cancers of the blood than on solid tumor cancers.


� Since the true prognosis of a patient may not be known for years, collecting labeled training examples can be a challenging task.  The fact that the gene-expression measurement technology is rapidly changing also complicates the creation of good training sets for prognosis tasks.


� In 1994 there were over 2.2 million serious cases of adverse drug reactions and over 100,000 deaths in the United States (Lazarou et al. 1998).





PAGE  
25

_1106753293.xls
Chart1

		19.3692475491

		7.689398903

		1.8131662536

		11.3323163199

		18.9051176249

		11.386733879

		13.3399652266

		16.0250304913

		6.0509946121

		11.0446253951

		13.492545388

		14.514795711

		14.0352174951

		4.0975598637

		6.3619612773

		5.0482441759

		3.0325913197

		50

		7.3058911444

		15.3834688957

		5.2745644107

		5.723617776

		15.8767176509

		9.4705899541

		14.890479589

		3.6265835058

		0.9031505708

		14.0682955919

		8.9575481985

		16.3073971532

		19.1739817669

		11.9014727744

		8.590657733

		60

		13.0761358516

		4.9567380919

		4.3513406206

		18.742774824

		17.0180862115

		18.8512235161

		2.0926917106

		16.5518300387

		19.7493502047

		2.5949000715

		8.7401420285

		1.1614023032

		10.3585594351

		15.6387519457

		12.4093987853

		16.9320108301

		80

		13.5049023532

		15.8725509275

		8.5491986053

		30

		5.90604219

		7.4668882783

		16.5363213259

		7.438281713

		80

		15.5912429007

		80

		5.8230679279

		12.5766598237

		19.6026687301

		2.0361382028

		100

		1.1398298592

		18.4955875078

		9.3914543215

		17.6994309994

		10.3383852017

		5

		4

		3

		2

		4

		5

		6

		7

		8

		9

		8

		7

		76

		80

		68

		30

		30

		25

		30

		40

		17.5076057114

		6.422231317

		16.9603043911

		11.3759653403

		7.5821474721

		8.4968636357

		11.9243061777

		12.837511541

		1.4273841314

		2.5660947308

		5.8428911187

		7.2602169724

		6.8174261979

		18.1692297475

		4.2318900337

		5.6185614468

		4.1185086834

		12.1003193118

		1.4625009541

		7.4484104478

		15.0655477333

		2.9708291153

		0.7392808827

		4.7040892218

		30

		40

		30

		3.0867869745

		19.5614166423

		16.8993845133

		13.0818450189

		1.0264703889

		5.1922296948

		17.1143726029

		4.4798727572

		1.0568883083

		3.9266157843

		7.5201572495

		19.690887737

		8.4350047551

		4.4082399207

		17.5508008053

		10.6412484588

		11.9276540236

		5.7167062076

		7.9982052931

		14.6007234904

		17.9319389885

		13.7993455687

		7.5993697274

		17.6366330592

		13.599814444

		8.0041949414

		13.4250591539

		11.732490465

		9.0153964746

		4.4353168517

		3.4733407954

		15.9064919236

		1.8837220097

		4.2603970107

		5.585582426

		0.2315459723

		18.2395342782

		14.692686305

		1.0987416288

		14.9680769302

		5.7100714748

		2.8384939799

		1.0759164099

		10.8016015141

		6.7550096172

		5.1759908378

		17.6325576148

		13.574875352

		3.0773715774

		7.0928014678

		2.6297553976

		11.0542997541

		8.504424831

		6.1828055816

		5.5601569769

		10.5282096735

		1.7737438696

		4.1650831847

		9.5084971041

		7.1765995595

		5.6108141186

		8.0319990602

		6.4893106667

		15.7465974346

		50

		60

		50

		35

		25

		11.5599451495

		14.447853582

		16.5965689862

		19.1305538386

		5.3957891659

		16.2719379668

		10.9293115994

		0.9957574086

		3.560050301

		7.4805460305

		10.6691058256

		5.5148531997

		5.5998138315

		19.9981795896

		6.3482894063

		10.7767997049

		3.1764417384

		0.0608532069

		1.8658846268

		9.0794598512

		13.6017382775

		6.8981633454

		11.0887547345

		6.8867877719



Mass / Charge

Relative Intensity



Sheet1

		13.9152052221

		9.6067196594

		11.8203148615

		11.5387944517

		6.7268502631

		8.6229742771

		10.4569156047

		1.5946938921

		5.7152539314

		13.7354004539

		19.5943975917

		0.8052876793

		12.9568387896

		13.3402926767

		19.2409175964

		9.2782540008

		5.9590820216

		50

		8.3710744386

		16.5486013763

		8.0406564358

		11.5133963581

		17.292173027

		10.6578382087

		14.8555879818

		0.9561089343

		14.1723839347

		11.2091623383

		9.4098648389

		18.5091230791

		2.3242998919

		11.1757787176

		1.5493251275

		60

		0.1486167929

		3.7920634816

		6.0819928538

		15.4783567087

		17.1677762777

		8.957363214

		14.4906644776

		17.0423746331

		17.3878117549

		9.9257851462

		5.3624604692

		8.9508084203

		10.1160353741

		13.8099493049

		11.7386638668

		9.6443758699

		80

		1.6419580117

		9.8961731919

		14.5434575906

		30

		15.523537199

		0.8853714805

		19.4598504638

		19.4179453062

		80

		7.8673923944

		80

		9.8872455843

		6.8654232415

		9.5481948643

		17.0483027634

		100

		15.6079790879

		10.18916217

		11.9882116271

		0.4529302059

		12.4540921104

		5

		4

		3

		2

		4

		5

		6

		7

		8

		9

		8

		7

		76

		80

		68

		30

		30

		25

		30

		40

		15.8651562386

		15.9259595937

		13.0757094709

		0.7692533763

		19.0639489511

		11.2691882853

		18.9246903638

		3.6106026748

		3.9554089993

		10.2983219337

		4.0462511937

		2.4595129188

		19.1029156196

		13.9608403576

		13.639691842

		19.6401199085

		9.8441614014

		3.7356631235

		12.1740754056

		5.821098233

		13.2322858731

		18.5060992898

		12.6276653569

		0.5280097763

		30

		40

		30

		9.8105528251

		13.6658349236

		16.391324443

		3.4238945385

		10.2948028567

		9.4853953716

		0.2944846698

		16.3604818303

		0.5185956337

		17.3542588704

		0.4029058799

		1.1651862661

		7.5208592466

		6.5852006756

		17.4823754685

		18.6360161694

		8.5413398875

		8.7255750632

		18.0992356315

		16.8196771793

		10.2761179044

		5.9804794866

		18.5155779305

		5.7173953644

		14.7664132919

		5.1714793407

		13.3251451642

		10.4771973021

		0.7812435178

		16.8191281062

		4.8836706331

		6.7558280751

		13.214065094

		19.5598283396

		1.300662845

		18.0363408233

		19.1297657343

		17.6558166734

		2.0020897426

		6.7499016528

		15.0106724031

		4.0402105454

		3.1343060565

		6.2463211412

		9.3464680221

		15.8889850384

		9.9486016352

		9.4431997851

		5.8916293485

		5.918371582

		8.5538472424

		11.5603072883

		18.0044183962

		5.6196086443

		14.403035386

		16.4370657513

		12.649283785

		12.8425920433

		11.3229975147

		7.3851318501

		13.6064397692

		13.0715137892

		19.5634638161

		17.0046780141

		50

		60

		50

		35

		25

		7.1693163852

		14.0827585766

		10.9985209606

		0.700894258

		7.7090482537

		14.7894396196

		11.3130443863

		9.6354576339

		14.0559623117

		7.8324035415

		6.2617210116

		0.5885948174

		4.8162415718

		4.535016824

		2.6267685748

		1.7207127493

		3.3464509525

		9.7213444344

		17.5502307156

		5.0423979133

		5.616446365

		3.3462904615

		8.145162432

		17.8667843056





Sheet2

		





Sheet3

		






