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Microarray expression data is being generated by the gigabyte all over the world with 
undoubted exponential increases to come. Annotated genomic data is also rapidly pouring into 
public databases. Our goal is to develop automated ways of combining these two sources of 
information to produce insight into the operation of cells under various conditions. Our 
approach is to use machine-learning techniques to identify characteristics of genes that are up-
regulated or down-regulated in a particular microarray experiment. We seek models that are 
both accurate and easy to interpret. This paper explores the effectiveness of two algorithms for 
this task: PFOIL (a standard machine-learning rule-building algorithm) and GORB (a new rule-
building algorithm devised by us). We use a permutation test to evaluate the statistical 
significance of the learned models. The paper reports on experiments using actual E. coli 
microarray data, discussing the strengths and weaknesses of the two algorithms and 
demonstrating the trade-offs between accuracy and comprehensibility. 

1. Introduction 

RNA is the medium by which an organism’s genes produce specific proteins, which 
are the building blocks of life. An understanding of how an organism regulates the 
production of specific RNA sequences is crucial to an understanding of the 
mechanism by which that organism functions. The expression level of a gene is a 
measure of the amount of RNA being produced by that gene at a particular time. 
Microarrays are a way to quickly and inexpensively measure the expression levels 
of thousands of genes simultaneously. Microarrays employ fluorescently labeled 
fragments of RNA that bind to known locations on the microarray’s surface. A 
scanning laser measures the intensity of fluorescence at each point on that surface. 
The levels of expression of specific RNAs can be inferred from the intensity values 
measured by the laser. Microarrays are often used to measure expression levels 
before and after a specific physical event to see which genes changed their 
expression levels in response to that event. Genes whose expression levels increased 
are said to be up-regulated, while those whose levels decreased are said to be down-
regulated. 
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The development of microarrays and their associated large collections of 
experimental data have led to the need for automated methods that assist in the 
interpretation of microarray-based biomedical experiments. We present a method for 
creating partial interpretations of microarray experiments that combine the 
expression-level data with textual information about individual genes. These 
interpretations consist of models that characterize the genes whose expression levels 
were up- (or down-) regulated. The goal of the models is to assist a human scientist 
in understanding the results of an experiment. Our approach is to use machine 
learning to create models that are both accurate and comprehensible. 

In order to make them comprehensible, our models are expressed in terms of 
English words from text descriptions of individual genes. We currently get these 
descriptions from the curated SwissProt protein database (Bairoch & Apweiler, 
2000). It contains annotations of proteins; we use the text associated with the protein 
generated by a gene as the description of that gene. Our models consist of sets of 
words from these descriptions that characterize the up-regulated or down-regulated 
genes. Note that we can use the same text descriptions of the genes to generate 
interpretations of many different microarray experiments—in each experiment, 
different genes will be up-regulated or down-regulated, even though the text 
description associated with each gene is the same across all experiments. 

The basic task can be described as follows:  
Given:  (a) The (numeric) RNA-expression levels of each gene on a gene array under two 

conditions, before and after a particular event (e.g., antibiotic treatment), and 
(b) For each gene on the microarray, the SwissProt text describing the protein 

produced by that gene. 
Produce:  A model that accurately characterizes the genes that were up-regulated 

or down-regulated in response to the event.  

In this article, our models are sets of disjunctive IF-THEN rules of the form: 
IF Word1 and Word2 appear in the gene's annotation and Word3 and Word4 are not present 

THEN this gene is up-regulated. 
For shorthand, in the remainder of this paper we will only present the IF part of the 
rules and we always focus on the up-regulated group (an arbitrary choice). We 
would list the above rule as: 

Word1 and Word2 and NOT Word3 and NOT Word4 
Since our rules are disjunctive, if any of the rules match a gene’s annotation, 

our model characterizes that gene as up-regulated. If no rule matches, then our 
model characterizes that gene as down-regulated. 

Our work is related to several recent attempts to use machine learning to predict 
gene-regulation levels (e.g., Brown et al, 2000, DuDoit et al., 2000; Xing et al., 
2001), but our focus is different in that our goal is not to predict gene-regulation 
levels, but to automatically generate human-readable characterizations of the up- or 
down-regulated genes to help scientists generate hypotheses to explain experiments.  
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We investigate herein a new rule-building algorithm of our own design against a 
standard successful algorithm from the machine-learning literature, evaluating how 
well each satisfies our desiderata of accuracy and comprehensibility. The standard 
approach to which we compare is PFOIL, a rule learner based on propositional logic. 

In our current set of experiments, we consider a gene up-regulated if its ratio of 
RNAafter to RNAbefore (the gene’s expression ratio) is greater than 2; if this ratio is 
less than ½ we consider it down-regulated. As is commonly done, we currently 
discard as ambiguous all genes whose expression ratio is between ½ and 2.  We train 
the learners only using the data set of up-regulated and down-regulated genes and do 
not attempt to model the ambiguous genes. 

In a previous paper (Molla et al., 2002) we described experiments that pitted 
two successful, standard, machine-learning algorithms against each other at the same 
task of interpreting gene chip expression data using text annotating the genes. The 
two algorithms were PFOIL (Mooney 1995) and Naïve Bayes (Mitchell 1997). In 
this paper we introduce a new algorithm, GORB. We also propose a new evaluation 
method for machine learning algorithms. In our previous paper, we used cross-
validation, the dominant technique for machine-learning evaluation. In this paper we 
argue that a statistical method called the permutation test is actually a more 
appropriate metric for characterization tasks and that, though cross-validation is still 
a good measure for predictive accuracy, the permutation test could be applied to 
other learning tasks where a model or characterization of the data, rather than an 
accurate predictor, is the desired output. 

We use this method to measure our first desired property, accuracy.  We record 
the accuracy of the model in classifying the examples in the entire data set. This is in 
contrast to our previous work, which recorded the accuracy of models on a held-out 
test set to ensure that the accuracy measurement was statistically valid. Instead of 
using a test set.  In this paper, we repeatedly randomly permute the labels of the 
examples, train the learner and then record the accuracy of the resulting model each 
time. We only consider the model from the real data to be significant if the accuracy 
of the model is significantly better than the accuracy of the models from the 
permuted data sets. Section 2.3 further explains the permutation test. 

Our second desired property is human comprehensibility. As mentioned before, 
comprehensibility is the reason we express the rules in terms of English words. The 
actual comprehensibility of a particular model, however, is very difficult to measure. 
We use a crude approximation by counting the number of distinct SwissProt words 
appearing in a given model.  

The next section presents the machine-learning algorithms we investigate in our 
experiments. Section 3 further explains our experimental methodology and Section 4 
presents and discusses experimental results obtained using data from the Blattner E. 
coli Laboratory at the University of Wisconsin. Section 5 describes some related 
work. The final section describes some of our planned follow-up research and 
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summarizes the lessons learned so far in our work to create a tool that uses English-
text protein annotations to assist in the interpretation of microarray experiments. 

2. Algorithm Descriptions 

This section describes the two algorithms—PFOIL (Mooney, 1995)—and GORB 
(General-purpose One-step-look-ahead Rule Builder). Both algorithms take as input 
a collection of training instances (in our case, genes), labeled as belonging to one of 
two classes (which we will call up and down), and described by a vector of Boolean-
valued features. Each feature corresponds to a word being present or absent from the 
text description of the gene. Both algorithms produce a model that can be used to 
categorize a gene on the basis of its feature values (i.e., the words describing it). 

2.1  PFoil 

PFOIL (Mooney, 1995) is a propositional version of FOIL (Quinlan 1990), a rule-
building algorithm that incrementally builds rules that characterize the instances of a 
class in a data set. FOIL builds rules for a first-order logic language, so that the rules 
are conjunctions of features (in this case English words, or their negation) that may 
contain logical variables (and may even be recursive) and must be interpreted by a 
first-order reasoning engine such as Prolog. PFOIL uses a simpler propositional 
language, and builds rules that are conjunctions of features. PFOIL rules can be 
interpreted straightforwardly—a rule covers an instance if each feature in the rule is 
true of the instance. In our domain, a rule specifies words that must or must not be 
present in a gene’s annotation. 

PFoil builds a set of rules by constructing one rule at a time. It constructs each 
rule by adding one feature (or its negation) at a time to the current rule. At each step, 
it chooses the feature that maximizes the performance of the rule according to the 
FoilGain measure. It stops adding to a rule when either the rule covers only positive 
instances, or none of the remaining features have a positive FoilGain. When a rule is 
complete, the algorithm removes all of the positive instances covered by that rule 
from the data set, and then builds a new rule if there are any positive examples not 
yet covered by at least one learned rule. 

FoilGain is a measure of the improvement that would be obtained by adding a 
new feature to a rule. It is a trade-off between the coverage of the new rule—the 
number of positive instances of the class that are covered by the rule—and the 
increase in precision of the rule—the fraction of the instances covered by the rule 
that are positive: 

FoilGain(rule, f ) = p�[log(p/(p+n)) – log(P/(P+N))] 
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where P and N are the number of positive and negative instances covered by rule, 
and p and n are the number of positive and negative instances that are covered when 
feature f  is added to rule. 

As originally described by Mooney (1995), PFoil does not prune its rule-set. 
Because PFoil keeps constructing rules until it has covered all the positive instances, 
a data set with noise is likely to result in a large set of rules, many of which may be 
very specific to particular instances. 

To address this problem, we have extended PFoil to include a rule-pruning 
stage, along the lines of the pruning in Foil. In the pruning stage, the algorithm 
repeatedly removes a single feature from one of the rules, choosing the feature 
whose removal results in the highest accuracy of the remaining rule set. When all the 
features are removed from a rule, the rule is removed from the rule set. Rather than 
halting the pruning when the accuracy peaks, in our experiments we continue the 
pruning until the rule set is empty in order to explore the trade-off between 
comprehensibility and accuracy. 

2.2  GORB 

The GORB algorithm (Table 1.) is very similar to that of PFOIL in terms of its input 
and output. It searches the identical hypothesis space of possible rules, but differs in 
how it searches this space. 
Like PFOIL, GORB explores the hypothesis space by adding one feature at a time to 
an ever-expanding disjunction of conjunctive rules. One difference, however, is that 
instead of building the rules sequentially, one rule at a time, GORB considers adding 
a feature to any existing rule or starting a new rule. This is illustrated in Table 2 with 
each letter representing one feature. At each step, the current rule set is illustrated. 

The other difference is that, instead of using an information-gain-based heuristic 
to decide which feature to add, GORB computes the accuracy that will result from 
the addition of this feature. Though time-consuming, this method directly seeks to 
improve accuracy, which is our desired property. 

As with our version of PFOIL, we have included a pruning phase. It works 
identically to our PFOIL pruning stage, repeatedly removing a single feature from 
one of the rules, choosing the feature whose removal results in the highest accuracy 
of the remaining rule set. It is worth noting that this phase, in both PFOIL and 
GORB, is essentially GORB’s hypothesis space search in reverse. Instead of 
searching the space of possible features for the one whose addition results in the 
best accuracy, the pruning algorithm searches the space of features included in the 
model for the one whose removal results in the best accuracy. 
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Table 1.  Rule construction with GORB 
Start with rule-set = {}, prevAccuracy = 0, curAccuracy = 1 
While curAccuracy > prevAccuracy 
  prevAccuracy = curAccuracy 

curAccuracy = 0 
 For each feature 

Measure the accuracy of the rule-set on the data with a new rule added consisting 
only of the current feature: eg. “If feature then up-regulated” 
If this accuracy > curAccuracy, set curAccuracy to this value 

  For each rule in rule-set 
Measure the accuracy of the rule set on the data with the current 
feature added to the current rule, eg:  

If the rule was:  “If P and Q then up-regulated”, 
                try the rule:  “If P and Q and feature then up-regulated” 

If this accuracy > curAccuracy, Set curAccuracy to this value 
  Repeat the above process for the negation of the current feature 

If curAccuracy > prevAccuracy  
Add the feature that generated curAccuracy to the rule in rule-set (either new or 
existing) where curAccuracy 
was measured  

Return rule-set 

 

2.3  The Permutation Test 

A property of both PFOIL and GORB is that they are guaranteed to find a model for 
any data set1, regardless of whether there is any relationship between the 
descriptions and the labels, because the space of disjunctions of conjunctive rules is 
large enough to describe any set of instances with any labels. In the worst case, the 
algorithms could generate a distinct rule for each instance. In most data sets, 

                                                           
1 Except for the pathological case where two genes have the identical annotation, but one is up-regulated 
and the other is down-regulated. 

Table 2.  Hypothesis space search: PFOIL vs. GORB 
 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 
PFOIL Rule1:A Rule1:AB Rule1:AB Rule1:AB Rule1:AB Rule1:AB 

   Rule2:C Rule2:CD Rule2:CDE Rule2:CDE 

      Rule3:F 
GORB Rule1:A Rule1:A Rule1:AC Rule1:AC Rule1:ACE Rule1:ACE 

  Rule2:B Rule2:B Rule2:B Rule2:B Rule2:BF 
    Rule3:D Rule3:D Rule3:D 
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especially if the instances have many features, the algorithms will be able to find 
more compact models that exploit possibly random associations between instances 
and labels. Therefore, the fact that a model is produced by one of the algorithms is 
not evidence that the model represents a meaningful relationship between the 
descriptions and the labels. To show that a model is significant, one must show that 
the algorithm is very unlikely to have produced a model of the same quality as a 
result of random associations. 

A standard way of showing the significance of a model in a classification or 
prediction task is to test its accuracy on a held-out test set, since a model that is 
merely the result of chance associations in the training set will perform poorly on the 
test set. This approach is very appropriate for prediction tasks, since the accuracy of 
the model on the test set is also a good estimate of the accuracy on future instances 
which is important in a prediction task. In a characterization task, there are no future 
instances to predict, and the training data is the complete data set. Therefore 
measuring accuracy on a test set is not a useful measure. Furthermore, the limited 
size of the data set means that holding any data out of the training set will likely 
reduce the quality of any models that are learned. A permutation test is a better way 
of measuring the significance for a characterization task since it does not require 
holding out any data and is unrelated to prediction. 

A permutation test (Good 2001) is a statistical test to determine significance by 
comparing the results of an algorithm on a real data set to the results of the 
algorithm on permutations of the real data set in which the meaningful relationships 
have been lost. If the model from the real data set is no better than the models from 
the permuted data sets, then it is not considered significant. If the model from the 
real data set is much better than models from the permuted data sets, then the model 
must be taking advantage of semantically meaningful relationships in the data set 
and is considered significant.  

In our application, the quality of a model is its accuracy on the data set given 
the size of the model. Our permutation test compares the accuracy of a model on the 
real data set to the accuracy of the models of the same size produced on data sets 
obtaining by randomly permuting the labels (ie, whether the gene is up- or down-
regulated) of the real data set. The model from the real data set is considered 
significant if its accuracy is clearly higher than the accuracies of all the models from 
the permuted data sets.. It is important in any permutation test that enough 
permutations are considered to obtain a statistically valid result. The number of 
permutations required depends on the data. We have found that 30 permutations are 
adequate for our particular application2. 

                                                           
2 One can also obtain a measure of the significance by determining the probability that a random, 
permuted data set will result in a model as good as the real model.  Obtaining an accurate measure would 
require many more permutations than we have used, and we have not yet pursued this approach. 
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3. Experimental Methodology 

The data we are using are from microarray experiments performed by the Blattner E. 
coli Sequencing Laboratory at the University of Wisconsin. In our current 
computational experiments, we used our methods on 43 different experiments that 
measure expression of approximately forty-two hundred genes in E. coli under 
various conditions. These conditions include heat and cold shock and various 
antibiotics for various periods of time. In order to measure the change in expression 
due to each condition, we compare these expression levels to mean of those 
measured in six replicate microarrays measured under standard conditions3. By this 
definition, each experiment includes, on average, 717 up-regulated genes, 352 
down-regulated genes and 3221 unregulated genes.  

To construct the text description for the genes, we use all words of all the text 
fields in the SwissProt database. These include the comment (CC) fields (with the 
exception of the database (CDB) and mass spectrometry (CMS) topics), the 
description (DE) field, the Organism Classification (OC) field, the keyword (KW) 
field, and the reference title (RT) fields (with the exception of titles containing: The 
Complete Sequence of the E. coli K12 Genome).  

We implemented the algorithms ourselves in the C programming language. 
 

4. Experimental Results and Discussion 

Table 3 shows the rulesets of PFOIL and GORB on a typical run on one of our 
antibiotic testbeds after the all features have been added and the rule sets have been 
pruned to 10 features each. As it shows, the format of the models is similar, but the 
content is not always so. In this case, the models generated by the two algorithms 
share only one word, which might seem surprising given that they are characterizing 
the same experiment. That word, “biosynthesis,” likely reflects an 
underrepresentation of basic biosynthetic genes among those up-regulated. Ec2.7.7” 
and “symport” are interesting rules which each comprise a rule predicting up-
regulation in the GORB model.  “Ec2.7.7”, is a coded designation by the Enzyme 
Commission, an organization that classifies enzymes by their function. “Ec2.7.7” is 
the code for nucleotidyltransferases, or enzymes that help to move nucleotides. 
“Symport” is mechanism of molecular transport. Their up-regulation may provide a 
hint at what types of processes are involved in the E. coli antibiotic shock response. 

Figures 1 and 2 show the results of the permutation tests on the two algorithms 
on one of the experimental data sets and the results of each step of pruning on the 
two algorithms on the same data set. All data points are plotted. The baseline 

                                                           
3 See http://www.genome.wisc.edu for more details about these experiments and the data itself. 
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accuracy for this experiment is 60%. This is the accuracy that would be achieved if 
the learner always chose the most frequent category (i.e., up-regulated). 

On both the real data and the permuted data, PFOIL tends to make much larger 
models. Though the accuracy of PFOIL’s complete model on real data is comparable 
to the accuracy of GORB’s, when models of similar size are compared, GORB is 
substantially more accurate. For example, GORB’s complete rule set contains only 
31 words and is 87% accurate at describing the data set. By the time PFOIL’s rule 
set is pruned down to 31 rules, its accuracy has dropped to 68%. 

Also striking is the fact that, though both algorithms perform much better on the 
real data than on permuted data, GORB’s margin is much wider and remains so well 
into the range of comprehensibility (around 10 words). This is of crucial importance 
because, as explained earlier, this means that GORB is making models that rely on 
real patterns in the data since, when those patterns are removed, GORB performs 
much worse.  
Figure 3 shows the average amount by which the performance on learning the real 
data beats the performance on permuted data for all rule sizes between 1 and 20. 
The values in Figure 3 represent the gaps between the Permuted Data Labels line 
and the Real Data Labels line in Figures 1 and 2 averaged across the different 43 
experimental conditions. These numbers are important because they measure the 
extent to which the learner’s performance depends on real regularities in the data as 
opposed to absolute accuracy which can come from other sources such as 
overfitting. GORB seems to do much better than PFOIL in this respect. In fact, for 
models whose size is smaller than 5, PFOIL tends to perform better on the permuted 
data than on the real data. We do not presently have an explanation for this behavior 
except that it has occurred by random chance. 

Table 3.  Sample Small Rule-Sets 
Built From the Experimental Cold Shock Data 

PFOIL 
Disjunctive Rules for up 

 Rule 1: an 
 Rule 2: NOT transport AND 
           membrane 
 Rule 3: hypothetical AND 
            in 
 Rule 3: hypothetical AND 
            gene 
 Rule 4:  oxidoreductase AND 
            NOT ec 
  

GORB 
Disjunctive Rules for up  

Rule 1: ribosomal 
Rule 2: factor 
            NOT control AND 
            NOT activation 
Rule 3: similarity AND 
            NOT structural 
Rule 4: mutation AND 
            NOT at  
Rule 5: sos 
Rule 6: RNAbinding 

    Rule 7: similar  
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Figure 1a.  PFOIL Heat Shock
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Figure 2a.  GORB Heat Shock
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Figure 1b. PFOIL Acid Shock
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Figure 2b. GORB Acid Shock
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Figure  1c. PFOIL Cold Shock
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Figure  1d. PFOIL Antibiotic Shock
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Figure  2d. GORB Antibiotic Shock
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Figure 2c. GORB Cold Shock
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Discussion 

The structure of the GORB rule set in Table 3 is typical of those generated by 
GORB. That is, the first rule starts with a high frequency word (in this case 
“protein”) that would give high coverage but low accuracy. The rest of the rule 
contains further features, usually negations of less frequently occurring words that 
specialize the rule to improve accuracy. The other rules are more specialized rules 
consisting of only one or two words that each cover a much smaller number of the 
instances that are not covered by the first rule. The features in these rules are 
generally low frequency words and the rules have high accuracy. 

During its pruning process, PFOIL can also generate rules consisting of just a 
few features. However, these rules typically have low accuracy, because they are 
created by pruning out the “specializing” features from rules. A consequence is that 
the PFOIL pruning process results in a very bumpy accuracy curve, with large dips 
in accuracy when a rule is pruned to a single feature, followed by a rise in accuracy 
when the rule is removed. On the other hand, the GORB pruning curves are much 
smoother, since GORB constructs the small rules in a different way.  We believe this 
smoothness is desirable since it makes a smoother tradeoff between accuracy and 
comprehensibility, a practical benefit of a tool based on this approach. 

Though the GORB rule sets are more accurate and more significant than the 
PFOIL rule sets across the whole range of rule set sizes, the difference in the very 
heavily pruned models is most striking. GORB appears to be much better at 
characterizing the data when only allowed to use a few words in its models. This 
suggests that it is doing a better job than PFOIL at identifying the real regularities in 
the data. 

Though more accurate, the GORB strategy does suffer from having a large 
number of rules that are only relevant in the context of the greater rule set. This is 
because they only specify a single infrequently occurring word that may or may not 
be descriptive on its own; that is on the whole set of genes, not just those not 
covered by other rules. One remedy for this may be an algorithm that is biased 
toward rules of similar length, or individual rules that have high precision even if 
they have only moderate coverage 

By our measure, the comprehensibility of both methods is good. Short models 
tend to be almost as good as longer ones. It is, however, also clear that, as 
mentioned earlier, length is a crude measure. Though we probably are not ready for 
it yet, attainment of the final answer on comprehensibility will probably have to 
involve human testers.  

5. Related Work 
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A great deal of research has been done in text mining, much of which involves 
biomedical tasks. Hearst’s LINDI system (1999) searches medical literature for text 
relating to a particular subject or problem and tries to make logical connections to 
form a hypothesis. One of the benefits of our approach is that researchers do not 
need to know what they are looking for in advance. Given expression data and 
textual descriptions of the genes represented in the expression data, this system 
makes an automated “first pass” at discovering what is interesting. The PubGene 
tool (Jennssen et al., 2001) also interprets gene-expression data based on textual 
data. One big difference is that PubGene compiles clusters of text ahead of time and 
tries to match the expression data to an already-made cluster. Our tool is designed to 
allow the expression data itself to define its models. Masys et al. (2001) also use text 
associated with genes to explain experiments. However, they cluster expression 
values across experiments and then use the text to explain the clusters, whereas we 
use the text directly during the learning process and can explain single experiments.  

6. Future Directions and Conclusions 

We have presented an approach for aiding in the interpretation of microarray 
experiments that is based on machine learning and uses SwissProt text as its 
representation of the microarray’s genes. We argue that two important properties for 
such a computational tool are that it should produce models that are (1) accurate and 
(2) readable. We empirically compared an algorithm of our own design to a widely 
successful algorithm—PFOIL—on an E. coli microarray experiment, evaluating 
these two approaches with respect to our desiderata. We also evaluated the 
significance of the models using a permutation test. We have shown that, though 
both algorithms are able to find characterizations of the data with reasonable 
accuracy, our new algorithm does a better job on this data set. Also, our new 
algorithm produces models that have greater significance than the PFOIL models. 

One current limitation to this approach is that it relies only on text, though the 
sequence data are almost always also available. We plan to explore methods that 
make use of both the sequence data and the text annotating the genes. Another 
enhancement would be to increase the textual data we use. Abstracts from 
appropriate journal articles would be a logical next step. Also, we could consider 
sequences of words or common phrases instead of only individual words. 

Another criterion we consider important is stability. Learned models should not 
change very much if the experiment were repeated under slightly different 
conditions. We plan to apply a method that takes advantage of replicate data.  We 
previously devised a method for measuring stability without it (Molla et al.,2002). 

Another future direction is to move beyond out method of simply using as a 
two-fold change in expression as our definition of up- and down-regulation.  We 
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intend to apply the method for gauging fold-change described in (Newton et 
al.,2001) and redo the experiments presented here.  
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