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multiple bonds, numbered here 1-3. Any one of these bonds is dispensible. In both
true compensatory evolution and in pseudocompensation, ancestral alleles allowing
interaction via bond 1 could evolve into descendant alleles functioning via bond 3
(both indicated by the shaded ovals). Bond 2 does not change, but is included to
represent the multipartite nature of macromolecular interactions. Panel (A) In tradi-
tional compensatory evolution, fully functional allele pairs, such as A1B1 or A3B3,
are separated mutationally by nonfunctional mismatch genotypes that have only a sin-
gle bond. With strong selection against mismatched alleles, evolution from A1B1
to A3B3 is possible only under a narrow range of conditions. Panel (B) In pseudo-
compensation, a multifunctional adaptor allele at each interacting locus (A2 or B2) is
posited to exist that has the capacity to interact productively with the products of both
ancestral and derived alleles. Since multiple alleles exist for each gene, arrows are
included here to represent all possible direct mutational events under pseudocompen-
sation. For simplicity, our models only consider the forward arrows (i.e. the arrows
causing allele numbers to ascend rather than descend) . . . . . . . . . . . . . . . . . 101

10.6 An example of allele frequency dynamics in one of the experiments. The total
population size is normalized to 1.0. For simplicity, the A1 and B1 alleles are not
plotted. Their abundance can be inferred from the difference between the other totals
and the 1.0 level on the Y-axis. In this experiment, 3-type alleles can rapidly spread
when even a small population of the other 2-type allele is present. In this case, a very
small proportion of allele B2 has been produced by drift at around generation 14,000.
The subsequent arising of the A3 mutation in this context leads to rapid fixation of
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Chapter 1

Introduction

My research focuses on applying machine learning to problems in genetics. High-throughput

techniques, such as rapid DNA sequencing (Gilbert and Maxam 1973) and gene chips (Schena

et al. 1995), are changing the science of genetics. Hypothesis-driven science is now strongly com-

plemented by these newer data-driven approaches (Cristianini and Hahn 2006, Baldi and Brunak

2001). It is well understood that computer science will play a crucial role in their development

and application (Hanson and Coontz 2001). Machine learning has been of particular value in this

domain (Molla et al. 2004a). The specific challenge that I address in this work is the application

of machine learning to the design and interpretation of gene-expresion microarrays or gene chips.

1.1 Gene-Chip Design

As will be described in the chapters to come, genetic microarrays, commonly known as gene

chips, make it possible to simultaneously infer the rate at which a cell or tissue is expressing - trans-

lating into a protein - each of its thousands of genes. One can use these comprehensive snapshots

of biological activity to infer regulatory pathways in cells, identify novel targets for drug design,

and improve the diagnosis, prognosis, and treatment of patients suffering from disease. However,

the amount of data this new technology produces is more than one can manually analyze. Hence,

the need for automated analysis of gene-chip data offers an opportunity for machine learning to

have a significant impact on biology and medicine.
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Maskless array synthesis (Nuwaysir et al. 2002) is an efficient method for producing a gene

chip from a design. Applying known machine-learning methods to the problem of gene-chip de-

sign (Tobler et al. 2002), we have shown that machine learning can be effectively applied to this

problem. Our findings from this work are still in use today by a local gene-chip manufacturer,

Nimblegen Systems, Inc. The ability to design gene chips is a major bottleneck between today’s

chief high-throughput genetics technologies: the DNA sequencer and the gene chip.

1.2 Genetic Variation

Single Nucleotide Polymorphisms (SNPs) are positions in a genome that contain single-base

variations across the population. They are important in the diagnosis and prediction of many dis-

eases such as Alzheimer’s and certain types of cancer. Copy-number variations are regions of

the genome that appear at different frequencies in different individuals. These are also common

and can also indicate specific types of cancer. In collaboration with Nimblegen Systems, we have

developed algorithmic methods to help identify both by improving the analysis of gene chips de-

signed for this purpose (Molla et al. 2004b; Albert et al. 2005).

1.3 Gene-Expression Analysis

In addition to the vast amount of data being generated through the use of gene chips, the

amount of annotated genomic data available in public databases is also rapidly increasing. Through

collaboration with University of Wisconsin’s E. coli lab, we developed automated methods for

combining these two sources of information to produce insight into the operation of cells under

various conditions. Our approach uses machine-learning techniques to identify words associated

with genes that are up-regulated or down-regulated in a particular microarray experiment. (Molla

et al. 2002; Molla et al. 2004c).
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1.4 Thesis Statement

Over the course of the past decade, DNA microarrays, also known as “gene chips,” have come

into prominence for genetic-level analysis throughout the life sciences. Using these microarrays,

a scientist is able to perform hundreds of thousands of experiments on the surface of a single

one-inch-by-one-inch wafer in the space of a single afternoon, generating more data than an army

of researchers could have a generation ago. This potential flood of data brings many informatic

challenges in both analysis and design. It is my thesis that novel applications of machine learning

can help to solve varied and important problems in this domain.

1.5 Overview

In the next two chapters, I will present some important background information. This includes

some relevant molecular biology and how it relates to the work in this thesis (Chapter 2) and pro-

vide an introduction to machine-learning methodology and the algorithms that I use in this work

(Chapter 3). Chapter 4 will include my work on microarray design. I made use of this work in

helping to develop a new technology called Microarray-Based Genome Enrichment which will be

described in Chapter 5. The following two chapters describe algorithmic solutions to problems of

interpreting chips specifically designed to discover instances of the two most common classes of

genetic differences between individuals: copy-number polymorphisms (Chapter 6) and Single Nu-

cleotide Polymorphisms (SNPs) (Chapter 7). Chapter 8 describes a generalization of the approach

described in Chapter 7 so that it can be applied to other machine-learning problems. Chapter 9

describes my machine-learning approach to gene-expression analysis. Chapter 10 describes two

more computational solutions to biological problems: the problem of efficiently finding unique

probes sequences for use in microarrays and work that I did to model a specific evolutionary pro-

cess to evaluate competing theories that attempt to describe it (Haag and Molla 2005). In Chapter

11, I discuss my overall contributions and possible future directions.
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Chapter 2

Molecular-Biology Background

Here I give brief descriptions of the biological technologies involved in the studies that I have

done. I also describe some of the previous work in these areas that is related to my own work. I

also briefly mention some of my work, though it is described in much more detail in the chapters

to come.

2.1 The Central Dogma of Molecular Biology

At each point in the life of a given cell, various proteins, the building blocks of life, are being

produced. Each protein is encoded by a specific gene or group of genes. It is by turning on and

off the production of specific proteins that an organism responds to environmental and biological

situations, such as stress, and to different developmental stages, such as cell division.

Genes are contained in the DNA of the organism. The mechanism by which proteins are

produced from their corresponding genes is a two-step process. The first step is the transcription

of a gene from DNA into a temporary molecule known as RNA. During the second step - translation

- cellular machinery builds a protein using the RNA message as a blueprint. Although there are

exceptions to this process, these steps (along with DNA replication) are known as the central

dogma of molecular biology.

One property that DNA and RNA have in common is that each is a chain of chemicals known

as bases. In the case of DNA these bases are Adenine, Cytosine, Guanine and Thymine, commonly

referred to as A, C, G and T, respectively. RNA has the same set of four bases, except that instead

of Thymine, RNA has Uracil - commonly referred to as U.
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Figure 2.1 The central dogma of molecular biology. When a gene is expressed, it is first
transcribed into an RNA sequence, and the RNA is then translated into a protein, a sequence of

amino acids. DNA is also replicated when a cell divides, but my work only focuses on the
DNA-to-RNA-to-Protein process.

2.2 Complementarity

Another property that DNA and RNA have in common is called complementarity. Each base

only binds well with its complement: A with T (or U) and G with C. As a result of complementarity,

a strand of either DNA or RNA has a strong affinity for what is known as its reverse complement.

This is a strand of either DNA or RNA that has bases exactly complementary to the original strand,

as Figure 2.2 illustrates.

Complementarity is central to the double-stranded structure of DNA and the process of DNA

replication. It is also vital to transcription. In addition to its role in these natural processes, molec-

ular biologists have, for decades, taken advantage of complementarity to detect specific sequences

of bases within strands of DNA and RNA. One does this by first synthesizing a probe, a piece of

DNA that is the reverse complement of a sequence one wants to detect, and then introducing this

probe to a solution containing the genetic material (DNA or RNA) to be searched. This solution

of genetic material is called the sample. In theory, the probe will bind to the sample if and only

if the probe finds its complement in the sample (but as I later discuss in some detail, this does not

always happen in practice and this imperfect process provides an excellent opportunity for ma-

chine learning). The act of binding between probe and sample is called hybridization. Prior to the
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DNA GTAAGGCCCTCGTTGAGTCGTATT

RNA CAUUCCGGGAGCAACUCAGCAUAA

Figure 2.2 Complementary binding between DNA and RNA sequences

experiment, one labels the probes using a fluorescent tag. After the hybridization experiment, one

can easily scan to see if the probe has hybridized to its reverse complement in the sample. In this

way, the molecular biologist can determine the presence or absence of the sequence of interest in

the sample.

2.3 Gene Chips

More recently, DNA probe technology has been adapted for detection of, not just one sequence,

but hundreds of thousands simultaneously. This is done by synthesizing a large number of different

probes and either carefully placing each probe at a specific position on a glass slide (so-called

spotted arrays (Schena et al. 1995)) or by attaching the probes to specific positions on some

surface (Fodor et al. 1991, Singh-Gasson et al. 1999). Figure 2.3 illustrates the latter case, which

has become the predominant approach as the technology has matured. Such a device is called a

microarray or gene chip.

Figure 2.3 Probes are typically between 25 and 100 bases long, whereas samples are usually
about 10 times as long, with a large variation due to the process that breaks up long sequences of

RNA into small samples.
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Utilization of these chips involves labeling the sample rather than the probe, spreading thou-

sands of copies of this labeled sample across the chip, and washing away any copies of the sample

that do not remain bound to some probe. Since the probes are attached at specific locations on the

chip, if labeled sample is detected at any position on the chip, one can determine which probe has

hybridized to its complement.

2.4 Gene-Expression Analysis

One common use of gene chips is to measure the expression level of various genes in an or-

ganism. An expression level measures the rate at which a particular gene is being transcribed.

This is used as a proxy measure for the amount of corresponding protein being produced within an

organism’s cells at a given time.

Ideally, biologists would measure the protein-production rate directly, but doing so is currently

very difficult and impractical on a large scale. So one instead measures the expression level of

various genes by estimating the amount of RNA for that gene that is currently present in the cell.

Since the cell degrades RNA very quickly, this level will accurately reflect the rate at which the cell

is producing the corresponding protein. In order to find the expression level of a group of genes,

one labels the RNA from a cell or a group of cells and spreads the RNA across a chip that contains

probes for the genes of interest. A single gene chip can hold enough probes to monitor tens of

thousands of genes.

Typically, the use of microarrays specifically designed to measure gene expression, known as

gene-expression arrays, involves many experiments measuring the same set of genes under various

circumstances (e.g., under normal conditions, when the cells are heated up or cooled down, or when

some drug is added), at various time points (e.g., 5, 10, and 15 minutes after adding an antibiotic;

due to the steps one needs to manually perform to produce an RNA sample, sub-minute resolution

is not currently feasible) or in different cell types, individuals or developmental stages.

In order to make use of such an experiment, one must use the data derived from microarray

experiments to build a hypothetical description of the processes underlying the observed pattern of

expression. The development of microarrays and their associated large collections of experimental
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data have led to the need for automated methods that assist in the interpretation of microarray-based

biomedical experiments.

One class of methods for interpreting these experiments is known as clustering. This is the

partitioning of genes into groups based on a distance metric. The distance metric can vary from

task to task. It defines the similarity between two genes based on information about the genes.

This allows the partitioning to produce groups of similar genes.

Some recent approaches to clustering genes rely not only on the expression data, but also on

background knowledge about the problem domain. Hanisch et al. (2002) present one such ap-

proach. They add a term to their distance metric that represents the distance between two genes

in a known biological-reaction network. The BIOLINGUA system of Shrager et al. (2002) also

uses a network graph describing a known biological pathway and updates it using the results of

microarray experiments. Another source of data is the DNA sequence itself. Craven et al. (2000)

use machine learning to integrate E. coli DNA sequence data, including geometric properties such

as the spacing between adjacent genes and the predicted DNA binding sites of important regulatory

proteins, with microarray expression data in order to predict operons. An operon is a set of genes

that are transcribed together. Operons provide important clues to gene function because function-

ally related genes often appear together in the same operon. DNA sequence information is also

used in a method that Segal et al. (2001) developed.

Another excellent source of supplementary material is the large amount of human-produced

text about the genes on a microarray (and their associated proteins) that is contained in biomedical

digital libraries and in the expert-produced annotations in biomedical databases. In a previous

paper (Molla et al. 2002), we investigate using the text in the curated SwissProt protein database

(Bairoch and Apweiler 2000) as the features characterizing each gene on an E. coli microarray.

Using these text-based features, we employ a machine-learning algorithm to produce rules that

“explain” which genes’ expression levels increase when E. coli is treated with an antibiotic. See

chapter 9 for more additional details.

A great deal of research has been done in text mining, much of which involves biomedical

tasks. Hearst’s LINDI system (1999) searches medical literature for text relating to a particular
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subject or problem and tries to make logical connections to form a hypothesis. One of the benefits

of my approach is that researchers do not need to know what they are looking for in advance.

Given expression data and textual descriptions of the genes represented in the expression data,

this system makes an automated “first pass” at discovering what is interesting. The PubGene tool

(Jenssen et al. 2001) also interprets gene-expression data based on textual data. One big difference

is that PubGene compiles clusters of text ahead of time and tries to match the expression data to an

already-made cluster. My tool is designed to allow the expression data itself to define its models.

Masys et al. (2001) also use text associated with genes to explain experiments. However, they

cluster expression values across experiments and then use the text to explain the clusters, whereas

I can use the text directly during the learning process and can explain single experiments.

Since the publication of my work (Molla et al. 2002), others have attempted to use the scien-

tific literature in order to help to automatically interpret gene expression data. One such experiment

(Hvidsten et al. 2003) uses a similar rule-based approach using gene-ontology information (Ash-

burner et al. 2000), rather than free-form text, as features. Another (Glenisson et al. 2003) uses a

technique called meta-clustering to combine free-form text data and expression data. Yet another

(Raychaudhuri and Altman 2003) develops and tests a method called neighbor divergence per gene

which uses natural language processing (NLP) of scientific literature to decide whether or not there

is a functional relationship between genes in a microarray-expression experiment.

2.5 Microarray Design

So far I have been presenting the process of measuring gene-expression levels as simply cre-

ating one probe per gene and then computing how much RNA is being made by measuring the

fluorescence level of the probe-sample hybrid. Not surprisingly, there are complications, and the

remainder of this section summarizes the major ones.

Probes on gene chips (see Figure 2.3) are typically between 25 and 100 bases long, since

synthesizing substantially longer probes is not generally practical. The protein-coding portions of

genes are on the order of a 1000 bases long, and while it may be possible to find a unique 25-base-

long probe to represent each gene, most probes do not hybridize to their corresponding sample as
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well as one would like. For example, a given probe might partially hybridize to other samples, even

if the match is not perfect, or the sample might fold up and hybridize to itself. For these reasons,

microarrays typically use about a dozen or so probes for each gene, and an algorithm combines

the measured fluorescence levels for each probe in this set to estimate the expression level for the

associated gene (Li and Stormo 2001, Nuwaysir et al. 2002).

Due to the nature of these experiments, including the fact that microarrays are still a nascent

technology, the raw signal values typically contain a great deal of noise (Saiki et al. 1989, Wang

et al. 1998, Nuwaysir et al. 2002). Noise can be introduced during the synthesis of probes, the

creation and labeling of samples, or the reading of the fluorescent signals. So ideally the data will

include replicated experiments. However, each gene-chip experiment can cost several hundred

dollars, and so in practice one only replicates each experiment a very small number of times (and,

unfortunately, often no replicated experiments are done).

Currently it is not possible to accurately estimate the absolute expression level of a given gene.

One work-around is to compute the ratio of fluorescence levels under some experimental condition

to those obtained under normal or control conditions. For example, one might compare gene

expression under normal circumstances to that when the cell is heated to a higher than normal

temperature (so called heat shock); experimenters may say such things as when E. coli is heated,

gene X is expressed at twice its normal rate. When dealing with such ratios the problem of noise is

exacerbated, especially when the numerator or denominator are small numbers. Michael Newton’s

group, (Newton et al. 2001) have developed a Bayesian method for more reliably estimating these

ratios. Another approach is to partner each probe with one or more mismatch probes; these are

probes that have different bases from the probe of interest in one or more positions. Each gene’s

expression score is then a function of the fluorescence levels of the dozen or so match and mismatch

probes (Li and Wong 2001).

As previously described, one typically uses a dozen or so probes to represent one gene because

the probe-sample binding process is not perfect (Breslauer et al. 1986). If one did a better job of

picking good probes, one could not only use fewer probes per gene (and hence test for more genes

per microarray), but also get more accurate results.



11

In a published paper we use machine learning to address the task of choosing good probes

(Tobler et al. 2002). The results are encouraging. However, as I will describe in detail in Chapter

9, our experiments were only a partial solution to the important problem of choosing good probes.

Heuristics have been developed to discard probes based on based on knowledge about hy-

bridization characteristics (Lockhart et al. 1996) such as self-hybridization and degenerate repeats.

Others have attempted to use melting point (Tm) equations derived from genetic material in so-

lution (Kutara and Suyama 1999; Li and Wong 2001). Kutara and Suyama (1999) also investi-

gate the use of predictions of stable secondary structures and probe uniqueness to create criteria

for selecting good probes. Our contribution is a successful empirical evaluation of three standard

machine-learning methods applied to the task of learning to predict good probes. Others have since

used machine-learning methodology to evaluate oligonucleotide probes (Antipova et al. 2002).

2.6 Identifying Common Forms of Genetic Variation

To date, the genomes of hundreds of organisms have been sequenced. For each of these organ-

isms, a consensus or reference sequence has been deposited into a public database. Though this

sequence matches the particular individual whose genome was sequenced, other individuals of this

species will differ slightly from this reference sequence. One way to identify these differences is

to completely sequence, from scratch, the genomes of other individuals of this species and then do

a comparison. However, this is costly and generally impractical. A much more cost-effective ap-

proach is to use the reference sequence as scaffolding and identify variations from this sequence in

various individuals. In addition to their value in gene-expression analysis, gene-chip-based meth-

ods have also proven effective in this process of genome analysis. Here we describe the state of

the art in using gene chips to identify two of the most common types of genomic variation: Single

Nucleotide Polymorphisms (SNPs) and Copy-Number Polymorphisms.
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2.6.1 SNP Identification

Most of the genetic variation between individuals is in the form of Single Nucleotide Polymor-

phisms (SNPs; Altshuler et al., 2000). The process of identifying SNPs through comparison with

a known reference sequence is known as resequencing (Saiki et al. 1989).

One method of resequencing that has shown significant results utilizes oligonucleotide microar-

ray technology (Hacia 1999). In particular, this type of resequencing chip consists of a complete

tiling of the reference sequence - that is, a chip containing one probe corresponding exactly to each

29-mer in the reference sequence - plus, for each base in this sequence, three mismatch probes: one

representing each possible SNP at this position (see Chapter 7 for a more detailed description of

this method). In theory, any time a SNP is present, the mismatch probe representing this SNP will

have a higher intensity signal than the corresponding probe that matches the reference sequence.

However, due to unpredictability in signal strength, varying hybridization efficiency, and various

other sources of noise, this method typically results in many base positions whose identities are

incorrectly predicted. For this reason, among all the cases where a mismatch probe has more signal

intensity than that of the reference sequence’s probe, I would like to accurately separate the true

SNPs from the noisy, false positives.

Several approaches to this noise-reduction problem have been previously tried (Wang et al.

1998; Hirschhorn et al. 2000; Cutler et al. 2001). Originators of the overall process, the Wang

and Hirshhorn groups, focused their attention on the development of the biological methods. In

order to interpret the arrays, the Wang group simply took the difference between the two highest-

intensity probes as an indication of the likelihood of a SNP at a given position. The Hirshhorn

group used the ratio of these values.

In terms of chip interpretation, the most successful method to date has been that of the Cutler

group in conjunction with Affymetrix Corporation. They use parametric statistical techniques that

take into account the distribution of pixel intensities within each probe’s scanned signal pattern.

However, this approach presents a number of limitations. Principal among them is the fact that this

method is very sensitive to changes in chemistry, scanner type, and chip layout. In order to over-

come some of these problems, extensive parameter tuning is required. This involves the analysis
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of large amounts of data and needs to be re-run any time chemistry, light-gathering technology, or

virtually any other experimental condition is changed. Another limitation is that, in order to have a

single probe represented by a sufficient number of pixels, a high-resolution scanner must be used.

2.6.2 Copy-Number Variation

Another common form of genetic variation between individuals is know as copy-number vari-

ation. Copy-number variations are specific sequences that that appear at different frequencies in

the genomes of different individuals. Comparative Genomic Hybridization (CGH) is a method

for finding copy-number differences between two samples of genomic DNA. These differences, or

copy-number polymorphisms, can be either amplifications or deletions and, in humans, are often

indicative of specific diseases, including cancer. CGH involves the use of oligoneucleotide mi-

croarrays. Specifically, the arrays contain tilings of either specific regions of interest, entire chro-

mosomes, or entire genomes. Identical microarrays are exposed to different samples of genomic

DNA and the resulting variations in signal intensity between the two chips can be interpreted as

copy-number differences.

The process of interpreting such a chip, i.e. finding the sections of the genome whose copy

numbers vary between samples, is called segmentation. Unfortunately, due to nonuniformity in

hybridization efficiency and other anomalies, the amount of noise accompanying the signal in

a typical chip is far from negligible. As a result, the process of segmenting such a chip is not

straightforward. In fact, many approaches to this problem are already in use.

Unfortunately, many were designed to work on far fewer datapoints and are, as a result, are

much too slow to be run on data such as that produced by Nimblegen microarrays, which typically

incorporate hundreds of thousands of features. Two popular algorithms that can be run on such data

are DNACopy (Olshen et al. 2004) and StepGram (Lipson et al. 2006). One way that our method

differs from DNACopy and StepGram is that, rather than greedily taking the best segment and

potentially only reaching a local optimum, we use a dynamic-programming algorithm to efficiently

arrive at a globally optimal solution in terms of squared error relative to the segment means, a

standard statistical measure of segmentation quality (Lipson et al. 2006). However, unlike other
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dynamic-programming approaches, we start by using the t-test statistic to identify a set of candidate

breakpoints, which dramatically increases the efficiency of the algorithm.

Other dynamic-programming algorithms have tried to limit the search space. Specifically, Hu-

ber et al. (2006) limit the search space by restricting the maximum segment length. However, since

no such limitation on segment length exists in nature, it would be better not to have to make such

a limitation.

In Chapter 6 I will describe our algorithm and show empirically that it outperforms both DNA-

Copy and StepGram on synthetic and biological data.
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Chapter 3

Machine-Learning Background

Here I give brief descriptions of the machine-learning problem formulations and techniques

used in this work.

3.1 Machine-Learning Problem Formulations

Machine-learning methods fall into three main categories which will be described here: super-

vised learning, unsupervised learning, and semi-supervised learning.

3.1.1 Supervised Learning

Nearly all of the studies in my work employ what is know as supervised learning (Mitchell

1997). Supervised learning methods train on examples whose categories are known in order to

produce a model that can classify new examples that have not been seen by the learner.

Evaluation of this type of learner is typically done through the use of a method called N-fold

cross-validation (Mitchell 1997), a form of hold-out testing. In hold-out testing, some (e.g., 90%)

of the examples are used as the training data for a learning algorithm, while the remaining (held

aside) examples are used to estimate the future accuracy of the learned model. In N -fold cross

validation, the examples are divided into N subsets, and then each subset is successively used as

the held-aside test set, while the other (N − 1) subsets are pooled to create the training set. The

results of all N test-set runs are averaged to find the total accuracy. The typical value for N is 10.
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3.1.2 Unsupervised Learning

Unsupervised learning is learning about a set of examples from their features alone; no cat-

egories are specified for the examples. Examples of this type are commonly called unlabeled

examples. In the context of gene chips, for example, this could mean mean learning models of bi-

ological processes and relationships among genes based entirely on their expression levels without

being able to improve models by checking the learners’ answers against some sort of externally

provided ground truth.

3.1.3 Semi-Supervised Learning

Until recently, nearly all machine-learning methods could be divided into the aforementioned

two categories: unsupervised learning and supervised learning. In order to simultaneously make

use of both labeled and unlabeled examples one can use a relatively new class of algorithms: semi-

supervised learning (Chapelle et al. 2006). This class of learning is particularly useful in domains

where unlabeled data are abundant and labeled data are scarce. Evaluation of this type of method

usually also involves cross validation.

3.2 Naive Bayes

Naive Bayes (Mitchell 1997) is a practical, successful machine-learning algorithm that assumes

independence among the features for a given example conditioned on the class variable. Using this

independence assumption, a simple ratio can be used to compute the relative likelihood that a test

example with features f1, f2, . . . , fN and feature values v1, v2, . . . , vN should be labeled positive

or negative:

NBratio =
P (positive)

∏
P (fi = vi|positive)

P (negative)
∏

P (fi = vi|negative)

where P (positive) and P (negative) are the fraction of training examples labeled positive and neg-

ative, respectively. P (fi = vi|positive) is estimated by simply counting the number of examples

in the training dataset with output labeled positive (or negative for the terms in the denominator)

and feature fi equal to value vi.
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3.3 Decision Trees

Another algorithm used in this work is know as the decision tree. The algorithm most often

used to generate decision trees is ID3 (Quinlan 1986) or it successor C4.5 (Quinlan 1996). This

algorithm selects the next node to place in the tree by computing the information gain for all

candidate features and then choosing the feature that gains the most information about the output

category of the current example. Information gain is a measure of how well the given feature

separates the remaining training examples, and is based on Shannon’s (1948) information theory.

Information gain is calculated as described in the following equations.

Entropy(S) = −P (negative)log2P (negative)− P (positive)log2P (positive)

where S is a set of examples, and P (negative) and P (positive) are estimated by computing

the fractions of negative and positive labeled examples in S.

InfoGain(S, F ) = Entropy(S)−
∑

v∈V alues(F )

|Sv|
|S|

Entropy(Sv)

where V alues(F ) is the set of all possible values for feature F and Sv is the subset of S for which

feature F has value v (Mitchell 1997).

3.4 Artificial Neural Networks (ANNs)

Another approach that I employ is the multi-layered artificial neural network (ANN) (Figure

3.1). The ANN is an algorithm inspired by the organization of the human brain. Feature values

are fed into the input nodes as activation levels and conveyed to the hidden nodes via weighted

connections. Likewise, the activation is conveyed from the hidden nodes to the output nodes

through another set of weighted connections. For two-category classification, there can be two

output nodes: one for the positive category and one for the negative category. Whichever output

node has the higher activation as the result of a given example’s input feature values defines the

example’s predicted category.

I train the ANN using backpropagation (Rumelhart and Williams 1986), the standard algorithm

used for training neural networks. This algorithm attempts to minimize the squared error between
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Figure 3.1 An Artificial Neural Network (ANN), with 3 layers, 4 input units, 2 hidden units and
2 output units.

the network output values and the target value for these outputs. The algorithm searches a weight

space (defined by all possible weight values for each arc in the network) for an error minimum.

Because a non-linear, multi-layered network is used, the algorithm is not guaranteed to find the

globally minimal error, but rather it may find a local minimum (Mitchell 1997).

3.5 K-Nearest Neighbors Algorithm

In this method one plots examples in an N-dimensional space, where the dimensions are fea-

tures of the examples. In order to interpret an example in this feature space, one looks at the K

examples nearest to it in this space and uses their categories to predict the class of the example in

question. The choice of K typically depends on the task at hand and one can select a good value

for k by using a third set of data, called a tuning set.



19

Chapter 4

Improving Microarray Design via Machine Learning

Here we apply three well-established, machine-learning techniques to the problem of microar-

ray probe selection, in order to judge how well probe quality can be predicted and which learning

algorithm performs best on this important task. Specifically, we compare the performance of ar-

tificial neural network (ANN) training, the nave Bayes algorithm, and a decision-tree learner (see

Chapter 3). The computational experiments reported here were done jointly by John Tobler and

myself.

In order to do this, we frame the problem of probe selection as a category-prediction task.

Each 24-base-pair-long (24bp) probe is called an example. An example’s features are derived (as

described below) from the sequence of 24 bases that make up the probe. The goal is to predict

the quality of the probe strictly from these features. Our set of probes is the set of all possible

24-bp probes from each of eight genes in the E. coli and B. subtilis genomes (four genes from

each genome), also known as a tiling of the genes. As a measure of probe quality, we use the

measured fluorescence levels of our probes after they have been exposed to a sample in which all

eight of these genes are highly expressed. To summarize, our task is to algorithmically learn how

to perform the following:

Given: a 24-bp probe from a gene not used during training

Do: predict if this probe’s fluorescence level will rank in the top third of all the pos-

sible probes for this gene when exposed to a sample where this gene is highly

expressed
If accurately predicted, this information (when combined with other constraints) can prove

highly beneficial when deciding which probes to use to represent a given gene when designing a
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microarray. If we can increase the probability that a chosen probe will bind strongly when the

probe’s gene is expressed in the current sample, then fewer probes will be needed per gene that

one wishes to detect by the microarray and, hence, more genes can be measured by a gene chip of

a given physical size. This process is also described in Tobler et al. (2002).

4.1 Datasets

Our experimental data are tilings of four genes from each of E. coli and B. subtilis, measured

on maskless microarrays (Singh-Gasson et al. 1999) produced by NimbleGen, Inc. In order to

standardize the data across the eight genes, the measured fluorescence intensity for each probe

is normalized such that the top and bottom 2.5% of the measured intensities are labeled 0 and 1

respectively, and all other values are linearly interpolated between 0 and 1. Mapping the top and

bottom 2.5% to 0 and 1 reduces the impact of outliers.

Supervised machine-learning algorithms like naive Bayes, decision trees, and ANNs typically

require training on a set of data with labeled (i.e., categorized) examples; this set of data is called

the training set. The classifier produced by the learning algorithm after training is then tested using

another dataset, the test set. The predicted classifications of the trained machine-learning classifier

are compared to the correct outputs in the test set in order to estimate the accuracy of the classifier.

We used the microarray data for our eight genes to generate eight training-set and test-set pairs

using the commonly applied leave-one-out method. In this method, each training set consists of

the probes from the tilings of seven genes and the corresponding test set contains the remaining

gene’s probes.

We use only simple features to describe the 24-bp probes (also called 24-mers) in each data set.

Certainly much more expressive data descriptions are possible, but using these features allows us

to determine how much useful information is contained in the basic 24-mer structure.

Using the normalized intensity, we chose to label each probe example with a discrete output

of low, medium, or high. We sought to roughly evenly distribute the lows, mediums, and highs.

The normalized intensity to discrete-output mappings we chose are: the interval [0.00-0.05] maps
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to low (45% of the examples), (0.05-0.15] (23% of the data) to medium, and (0.15-1.00] (32%) to

high.

In all of our experiments, during training we discard all of the probes labeled medium, since

those are arguably ambiguous. Of course it would not be fair to ignore the medium probes during

the testing phase (and we do not do so), since the objective during testing is to predict the output

value for probes not seen during training.

However, we did remove some probes from the test sets, namely those that had less than three

mismatches with at least one other 24-bp region in the full genome containing the probe’s gene.

Such probes are not useful, since they are insufficiently indicative of a single gene. We did leave

such insufficiently unique probes in the training sets since that may still provide useful information

to the learning algorithms. In any case, the number of discarded (from the test sets) genes is very

small, only a very small fraction of the probes had at least one close match in their genome.

4.2 Methods

As mentioned above, we evaluate the well-established machine learning algorithms of naive

Bayes, decision trees, and artificial neural networks (ANNs) on our task. All of these algorithms

are described in detail in the previous chapter. Here I focus on aspects specific to the task of probe

selection.

4.2.1 Naive Bayes

As described in Chapter 3, Naive Bayes is a practical, successful machine-learning algo-

rithm that assumes independence among the features for a given example. Recall that, where

P (high) and P (low) are the number of training examples labeled high and low, respectively,

P (fi = vi|high) is estimated by simply counting the number of examples in the training dataset

with output labeled high (or low for the terms in the denominator) and feature fi equal to value vi.

To avoid bias toward underestimating the probability of a given output when an occurrence of

the feature value is not seen in the training data, we used the m-estimate of probability (Mitchell

1997). We use the following to actually estimate probabilities:
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P (fi = vi|c = {high, low}) =
nc + mp

n + m

where c is either low or high, nc is the number of occurrence that have feature value equal to vi

and have output c, n is the number of examples with output c. I choose m to equal n (I did not

experiment with other settings), and p = 1
k

for features with k discrete feature values.

We discretized the non-discrete features by binning them into five equally distributed bins. The

naive Bayes algorithm is a fast algorithm for training and classification. Training and classification

of a given train/test fold take on average less than 10 minutes on a standard desktop PC.

4.2.2 Decision Trees

The second classifier we evaluate for use in probe selection is a decision tree. The algorithm

most often used to generate decision trees is ID3 (Quinlan 1986) or it successor C4.5 (Quinlan

1996).

We use the University of Waikato’s Weka 3 Machine Learning Algorithms in Java package

(http://www.cs.waikato.ac.nz/ml/weka/index.html) to run the decision-tree experiments. The Weka

algorithm for decision-tree learning is named J48, but it uses the same algorithm as Quinlan’s

C4.5. We used Quinlan’s reduced-error-pruning algorithm to avoid overfitting of the training data

(Quinlan 1996); this procedure removes those portions of the initially induced decision tree that

seem to be overfitting the data. At each leaf in the pruned tree, the fraction of the training set

reaching that node that was high and low is recorded. We slightly modified the Weka code to

report these fractions when classifying each test example; this provides a crude estimate of the

probability that the current test-set example should be called high. Using the WEKA software

package, training and classification of a decision tree for a given train-test pair takes under 5

minutes on the standard PC used in all of our experiments.
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4.2.3 Neural Networks

The third approach we evaluate is to use a multi-layered ANN trained using backpropagation,

which is the standard algorithm used for training neural networks.

The networks we train consist of 485 input units, produced by using one input unit for each real-

valued feature and a 1-of-N encoding for each discrete-valued feature (e.g., n1). A 1-of-N encoding

requires one Boolean-valued input unit for each possible feature value. When an example is input

into the network, only the input unit representing that value for a given discrete-valued feature

is set to 1 with the other inputs set to 0 (e.g., n1 = A would be represented by 1, 0, 0, and 0

as the values for the four input units associated with n1). We also use a single layer of hidden

units. In general, too many hidden units leads to overfitting the training data, while using too few

hidden units can lead to underfitting the data. Hidden units free an ANN from the constraints of

the feature set, and they allow for the network to discover intermediate, non-linear representations

of the data (Mitchell 1997). Sarle (1995) and others assert that using large numbers of hidden units

is necessary to avoid finding bad local minima. Thus we decided to use 161 hidden units (1
3
× the

number of input units), each employing the standard sigmoidal activation function. Finally, we use

two output units with sigmoid activation functions. The two output units represent the estimated

probability that the output is high and low respectively. The network is fully connected with each

input unit connected to each of the hidden units, and each hidden unit connected to each of the

output units. Each arc in the network is initialized with a random weight between -0.3 and 0.3,

following standard practice.

Training consists of a maximum of 100 cycles through the training set. We use early stopping

(?)searle.1995) to avoid overfitting the training data by training too long. To decide when to “stop”

training, we first create a tuning set of data by randomly removing 10% of the training data, and

after each cycle we measure the current accuracy of the ANN’s predictions on the tuning set. The

ANN’s weight settings for the cycle that performs the best on the tuning set are the weight settings

that we use to classify the test set. Each training and classification run takes over an order of

magnitude longer than those for naive Bayes and decision trees.
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4.3 Results

After each algorithm is run on training set j, we sort the predicted scores for each probe in

test set j. For the naive Bayes and ANN classifiers, the sorting is done from the highest to lowest

according to the ratio:

prob(label = high for testset example x)

prob(label = low for testset example x)

The decision-tree sorting is solely based on prob(label = high for test-set example x), which,

as mentioned above, is estimated from the distribution of high and low examples in the leaf of the

pruned decision tree that is reached by test-set example x. By sorting in this manner, we produce an

ordering of the best test-set examples as predicted by the machine-learning classifier. The question

we would like to answer is the following: Assume we want to get at least N good probes for a

gene, how far down my sorted list do we need to go? This question is similar to that asked of

information-retrieval systems (e. g., search engines): in order to get N relevant articles, how many

of the highest-scoring articles should be returned? We consider various definitions of a good probe

in Figure 4.1. In Panel (a), we define good as measuring at or higher than 0.5 on my normalized

[0-1] scale; about 13.5% of my probes have normalized measured intensities at or above 0.5. For

example, when we look at the test-set probes with the 10 highest predicted scores, it turns out that

for ANN and naive Bayes nearly all of them had normalized measured intensities at or above 0.5.

The ideal curve is a 45-degree line: if all of the probes in the top N are considered good, then

the results would fall on the ideal curve. Panels (c) through (d) report the same information for

increasingly strict definitions of good (6.3% of the probes have normalized intensities at or above

0.75, 3.7% at or above 0.9, and, by construction, 2.5% normalize to 1.0). In all cases, the decision-

tree learner performs very poorly. Neural networks and naive Bayes perform well, with the neural

networks doing slightly better.

Included in Figure 4.1 is the curve that presents results from ordering probes simply by their

predicted melting point. We calculated the melting points using the formula presented by Aboul-

ela et al. (1985). As one can clearly see, predictors based on neural networks and naive Bayes
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(a) (b)

(c) (d)

Figure 4.1 Number of test-set probes in the N highest-scoring predictions that exceed a given
threshold for their normalized measured intensity (per learning algorithm and averaged over

the eight test sets)
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Actual Probe Values (normalized probe intensity)

Neural Network (log normalized P (High)

P (Low)4
)

Decision Tree ( P (High)

P (Low)11
)

Naive Bayes (log normalized P (High)

P (Low)4
)

Figure 4.2 Probe intensity and classifier output v. starting nucleotide for a typical DNA
segment

are substantially more accurate than simply using predicted melting point, at least according to our

metric.

Figure 4.2 presents a visualization of the predicted intensities by the learning algorithms for

a typical gene region. We generated these curves by manipulating the ratios used to determine

the best probes reported in Figure 4.1. It is important to note that this figure is for visualization

purposes only. The functions used to generate Figure 4.2’s curves are partially fitted to the testing

data, which invalidates their use in quantitative evaluation. These curves are generated as described

below. However, to better visualize the predictions, we have found it useful to manipulate the

predictions.

For naive Bayes and ANNs, we use the log of the ratio prob(label=high)
prob(label=low)

to create a predicted

output for each probe for a given gene. Similarly, decision trees simply use prob(label = high).

We then compute the squared error between these predicted values and the normalized measured

intensities, across all the probes in a given gene. For visualization purposes, we next consider

raising the predicted values to increasing powers from 1 to 20, and the power with the minimum

squared error is chosen for use in these visualization graphs; the selected power used to generate
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the curves is shown in the figure legend. In our quantitative experiments we are only interested in

relative predicted values for the various probes (e.g., Figure 4.1).

The naive Bayes and ANN predicted curves closely fit the measured probe intensities over high

and low intensity values. The decision-tree curve does not fit the actual probe curve nearly as well

as the other two algorithms over all intensity ranges. While Figure 4.2 only shows a short, 50-bp

region of probes, the results are typical of what is produced over all of our eight genes.

4.4 Discussion

Machine learning appears to do a good job on this task. Our results strongly suggest that off

the shelf machine-learning methods can greatly aid the important task of probe selection for gene-

expression arrays. One limitation of this work that I have tried to address with follow-up studies is

whether or not we can predict, in addition to which probes will bind their target, which probes will

remain vacant when their target is not present. This follow-up work is inconclusive to this point.
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Chapter 5

Direct Genomic Selection Using Custom Gene Chips

The ability to efficiently design high-quality custom gene chips has presented us with myr-

iad technological opportunities. Here I present one such technology that I helped to explore and

develop which allows the gene chip, typically considered a sample-assay tool, to be used as a

sample-preparation tool as well.

5.1 Motivation

The ability to discover novel variation in a genome is a key challenge in genomics, especially

in the human. Screening for known variations can be done inexpensively through a number of

existing techniques. These include genotyping approaches utilizing hybridization and single base

extension (Steemers et al. 2006), padlock probes (Antson et al. 2000) and mass spectrophotometry

(Tai et al. 2006).

However, discovering, in a particular individual, in a specific genomic region, previously un-

known variations from a given genomic sequence is an expensive and labor-intensive process. A

process known as amplicon sequencing (Deffernez et al. 2005) is a typical strategy used for tar-

geted sequencing. This method uses polymerase chain reaction (PCR) to isolate and amplify a

single DNA region and then uses low-cost, high-throughput sequencing to find the exact sequence

and, therefore, any variations from the reference genomic sequence. Unfortuunately, the process

used to isolate and amplify the single DNA region is expensive and does not scale well to multiple

regions.
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Another process, known as direct genomic selection (Bashiardes et al. 2005), utilizes either

cDNA clones, or, more recently, bacterial artificial chromosome (BAC) clones, to select genomic

regions for further analysis. Two rounds of hybridization, elution and amplification of fragmented

genomic DNA to a biotinylated BAC clone, enrich the region targeted by the BAC 10,000-fold.

Approximately 50% of sequenced clones from the enriched fraction correspond to the targeted

region.

Sequencing the enriched fraction is a cost-effective method to discover new mutations in a tar-

geted genomic region from many samples. This strategy, however, cannot be sufficiently targeted

to functional elements since it relies on large genomic clones, at least 100kb, as the affinity matrix

to enrich for homologous DNA. One cannot easily target specific genomic regions at a resolution

level below the BAC cloning range. The method is also labor intensive to scale to large numbers

of broadly dispersed loci across the entire genome.

An alternate strategy, capable of selecting all or nearly all human exons and known regula-

tory regions, coupled with current high-throughput sequencing technology, could revolutionize

our ability to quickly discover mutations associated with cancer and other diseases.

5.2 Our Technique

To this end, we have developed a flexible and scalable method that uses NimbleGen high-

density oligonucleotide microarrays to target and capture genomic elements that can then be read-

ily sequenced using high-throughput sequencing. As described in the previous chapter, I have

worked to improve the process of microarray design. In conjunction with NimbleGen Systems,

using the lessons learned from my previous work, I have designed microarrays that can be used

to substantially simplify the discovery of new genomic variations at a cost that is approximately

1/100th that of amplicon sequencing and 1,000 times the resolution of standard direct genomic

selection.

Using much longer probes than in a typical microarray – approximately 100 bases long –

chosen using the neural network described in the previous chapter and efficient uniqueness testing

which will be described in Chapter 10, I have created arrays that can capture genomic sequences
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with such high efficiency that the microarray is no longer simply a sensor. Very dense tilings

of such probes are able to actually capture a significant amount of the genomic sequence in the

sample; making it available for subsequent sequencing by existing methods.

See Figure 5.1 for a high-level illustration of this process.

Figure 5.1 Direct sequence capture using microarrays

5.3 Experiments

I have designed various microarrays for this purpose. Of the six that I report on here, five

of them are each designed to capture a different portion – from 200KB to 5MB in length – of

the region surrounding a well-known genomic region known as the BRCA1 locus. The other one

is designed to capture 6,726 genomic regions (minimum length 500 base pairs (pb), 5Mb of total

sequence) that are spread widely across the genome and encompass the NHGRI Tumor Sequencing

Program exon set (Collins and Barker 2007).

As described in the previous section, these microarray designs use long oligonucleotide probes

to densely tile targeted genomic regions with a probe every 10pb on average. Genomic target
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regions were repeat masked, and individual probes were checked to be unique in the genome. To

test the reproducibility of the capture system, TSP exons were captured from a Burkett Lymphoma

cell line using three different microarrays. The BRCA1 locus was also captured from the same

sample. Genomic DNA was whole-genome amplified, sonicated, linkers were ligated to the ends

of DNA fragments, and fragments were then hybridized to capture arrays.

All of the fragments not attached to probes were then washed off of the array, leaving only the

hybridized or captured sequences behind. Once this step is complete, these hybridized sequences

are eluted from the array as well, and sequenced by a new high-throughput massively-parallel

sequencing machine: 454 Life Sciences’ GS FLX Instrument.

5.4 Results

Following in-silico removal of the linker sequence, I use BLAST (Altshul et al. 1990) to

compare each of the sequencing reads to the entire hg17 version of the Human Genome. I use

a cutoff score of e = 10−48, tuned to maximize the number of unique hits. The reads that do

not uniquely map back to the genome (between 10 and 20% of them) are discarded. The rest are

considered captured sequences. The captured sequences that, according to the original BLAST

comparison, map uniquely back to regions within the target regions are considered sequencing

hits. The sequencing hits are reported as the sequence coverage of the target regions.

DNA sequencing of each of the three replicate exonic capture products on the 454 FLX instru-

ment generated 63 Mb, 115 Mb, and 93 Mb of total sequence. BLAST analysis showed that 91%,

89%, and 91% of reads, respectively, mapped back uniquely to the genome, 75%, 65%, and 77%

were from targeted regions and 96%, 93%, and 95% of target sequences contained at least one se-

quence read (Table 5.1). This represents an average enrichment of 432-fold. Figure 5.4 illustrates

a detail of the read mapping for chromosome 12 from the three samples. The median per-base

coverage for each sample was 5, 7 and 7-fold coverage, respectively.

There is considerable interest in the analysis of large contiguous genomic regions. Using the

same DNA sample, NimbleGen tested capture microarrays targeting segments from 200kb - 5Mb

surrounding the the human BRCA1 gene. As shown in Table 5.2 all capture targets performed
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Table 5.1 Series of 3 replicated capture chips, employed for direct selection of DNA, from
human genomic DNA 6,726 ’Exonic’ regions totaling 5Mb of genomic sequence

Fold En-

richment

FLX -Yield

(Mb)

Percentage of

Reads Mapped

Uniquely to the

Genome

Percentage of

Total Reads That

Mapped to

Selection Targets

Median Fold

Coverage for

Target Regions

318 63 91% 75% 5

399 115 89% 65% 7

418 93 91% 76% 7

well, with up to 140 Mb of raw sequence generated in a single sequencing machine run, generating

approximately 18-fold coverage, from a 5 Mb capture region. It is interesting to note that the

percentage of reads that map to the target sequence increased with the size of the target region.

This efficiency is captured visually in Figure 5.2 with a closeup view in Figure 5.3.

5.5 Discussion and Current Work

These data illustrate the power of microarray-based, direct-selection methods for enrichment

of targeted sequences. In addition to the specificity of the assay, the high yields of the downstream

DNA sequencing steps are consistently superior to the routine average performance using non-

captured DNA sources. This is attributed to the capture-enrichment process providing a useful

purification of unique sequences away from repeats and other impurities that can confound the

first emulsion PCR step of the 454 sequencing process. The ease and scalability of the approach

show that the method can be adapted for larger fractions of the genome and for analysis of many

samples. Current efforts aim to produce a whole human exon capture array and sequence assay.

Though the probes were made using information gained from my study of probe quality from

the previous chapter, I am in the process of performing a similar experiment in the context of

sequence capture. The longer probes and different goal of this process could have a strong influence

on the type of probe that is effective at this job.
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Target

Length

Base Position on Chromosome 17

5 Megabases

2 Megabases

1 Megabase

500 Kilobases

200 Kilobases

Figure 5.2 BRCA1 capture results. Black = Target, Gray = Captured sequence coverage depth.
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Figure 5.3 One megabase BRCA1 region magnified to 76 kilobases

Figure 5.4 Chromosome 12 with targets and coverage depth
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Table 5.2 Regions of increasing size containing the human BRCA1 locus. See text for more
details. The individual DNA fragments were captured and sequenced with one run of the 454

FLX instrument.
Tiling

Size (kb)

Average

Selection

Probe

Tiling

Density

FLX -Yield

(Mb)

Percentage of

Reads Mapped

Uniquely to the

Genome

Percentage of

Total Reads

That Mapped to

Selection

Targets

Median

Fold

Coverage

for Target

Regions

200 1bp 102 55% 14% 79

500 1bp 85 61% 36% 93

1,000 2bp 96 56% 35% 38

2,000 3bp 112 81% 60% 37

5,000 7bp 140 81% 64% 18



36

Chapter 6

Comparative Genomic Hybridization (CGH) Segmentation

Comparative Genomic Hybridization (CGH) is a method for finding copy-number differences

between two samples of genomic DNA. These differences, or copy-number polymorphisms, can be

either amplifications or deletions and, in humans, are often indicative of specific diseases including

cancer.

6.1 Related Work

CGH involves the use of oligonucleotide microarrays. Specifically, the arrays contain tilings of

either specific regions of interest, entire chromosomes, or entire genomes. Identical microarrays

are exposed to different samples of genomic DNA and the resulting variations in signal inten-

sity between the two chips can be interpreted as copy-number differences. Typically the unit of

measurement is the log2 ratio of the intensities of a given probe between the two chips.

The process of interpreting such a chip, i.e. finding the sections of the genome whose copy

numbers vary between samples, is called segmentation. See Figure 6.1 for an example segmen-

tation. Unfortunately, due to nonuniformity in hybridization efficiency and other anomalies, the

amount of noise accompanying the signal in a typical chip is far from negligible. As a result, the

process of segmenting such a chip is not straightforward. In fact, many approaches to this problem

are already in use. Unfortunately, most of these algorithms were designed to work on far fewer

datapoints and are, as a result, much too slow to be run on data such as that produced by Nimblegen

microarrays which typically incorporate hundreds of thousands of features. Because of an inability
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to handle such a large number of databpoints methods such as aCGH (Pollack et al. 1999), and

other dynamic-programming approaches (Picard et al. 2005; Huber et al. 2006) are not tested here.

Two popular algorithms that can be run on such data are DNACopy (Olshen et al. 2004) and

StepGram (Lipson et al. 2006). One way that our method differs from DNACopy and StepGram is

that, rather than greedily taking the best segment and potentially only reaching a local optimum, we

use a dynamic-programming algorithm to efficiently arrive at a globally optimal solution in terms

of squared error relative to the segment means, a standard statistical measure of segmentation

quality (Lipson et al. 2006). However, unlike other dynamic programming approaches, we start by

using the t-test statistic to identify a set of candidate breakpoints which dramatically increases the

efficiency of the algorithm.

Other dynamic-programming algorithms have tried to limit the search space. Specifically, Hu-

ber et al. limit the search space by restricting the maximum segment length. However, since no

such limitation on segment length exists in nature, it would be better not to have to make such a

limitation.

In this chapter, I will describe our algorithm and show empirically that it outperforms both

DNACopy and StepGram on synthetic and biological data.

6.2 Our Segmentation Algorithm

Our algorithm has three steps. I will describe all three parts in detail here. I will begin with a

dynamic program that, given the set of log2 intensity ratios between the probes of the two chips, the

desired number of segments N , produces a segmentation: a set of N − 1 positions in the genome

which define the extents of regions of constant copy number ratio between the samples. I will

also prove that this segmentation will have the globally-maximal score with respect to the standard

score function, the number of segments, N , and, if used, the list of candidate breakpoints. Next, I

will describe our permutation-test-based method for choosing N . Finally I will describe the t-test-

based method for determining candidate breakpoints and how these candidate breakpoints are used

to cut the time bound from O(n2k) to O(b2k), where b is the number of candidate breakpoints and

k is the maximum number of breakpoints I am willing to consider.
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6.2.1 Definitions

Before I describe the algorithm, I will define some notation that I will use throughout the

chapter:

1. probei = The log2 intensity ratio between the two chips for the ith probe. In

the text, I will also refer to this as the probe value.

2. A vector is a set of n probes numbered from 0 to n− 1

3. A segmentp,q is the contiguous set of probes from the pth probe to the qth

probe

4. A segmentation is contiguous set of segments.

5. segmentationj is the jth segment of segmentation

6. A k-length segmentation is a segmentation with k breaks.

7. segendk,t is the probe number of the last probe in the kth segment in seg-

mentation t

8.

scorek,t =


(k = 0) :

(∑segendk,t
i=0 probei

)2

segendk,t

(k > 0) :

(∑segendk,t
segendk−1,t+1

probei

)2

segendk,t−segendk−1,t



9. |segmentation| = the number of segments in segmentation

10. ||segmentation|| = the score of segmentation =∑|segmentation|
k=0 scorek,segmentation

11. optimalp,q,k is a segmentation with k preakpoints were the first segment

starts at p and the last segment ends at q where ||optimalp,q,k|| ≥ ||t|| for

any other such segmentation t.
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Figure 6.1 A sample 4-length segmentation

6.2.2 Our Task

In precise terms, our goal is as follows:

Given: a vector of n probes and the number of segments: k

Do: Produce an array called paths where, for i = {0, 1, 2, 3, ..., n} and j = {0, 1, 2, 3, ..., k}

pathsi,j = segendj−1,optimal0,i,j

Once this is achieved, it is a simple matter to decode this array to get either optimalo,n,k or

optimalo,n,j for any j ≤ k by using the segend values as indices into descending (j-labeled) rows

of our paths array as is done in Table 6.1. Each entry in this paths array can be considered a pointer

to the endpoint of the previous segment in the optimal j-length path from probe zero to probe i.

As will be described in the following subsection, we fill the paths array by the following re-

currence relation on it and the scores array which eventually holds ||optimal0,i,j|| for all i =

{0, 1, 2, 3, ..., n} and j = {0, 1, 2, 3, ..., k}:

pathsi,j = arg max
p

(scoresp,j−1 + score(i−p),i)

scoresi,j = scores(pathsi,j),j−1 + score(i−pathsi,j),i
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exhaustively trying all values for p at each step. In Subsection 6.1.5 I describe a method to greatly

reduce the number of values for p that need to be tried.

6.2.3 The Dynamic Program

To fill the paths array for our vector of n probes, we first compute the scores of all n of the

zero-length (one-segment) segmentations that start at probe0. These represent the scores of the

segmentations in the j = 0 row of our paths array: pathsi,0 for i = 0 to n. These are ||optimal0,i,0||

for i = 0 to n. We use these to compute the j = 1 row. For each m from 1 to n, we find, by

exhaustive search, the p that maximizes:

||optimal0,p,1||+

(∑m
i=p probei

)2

m− p

This p will be the final break in optimal0,m,1, otherwise known as segend1,optimal0,m,1 . So we can

set pathsm,1 to p for each m from 1 to n. In a similar manner, we can now compute the scores of

all of the optimal j-length segmentations that start at probe 0 where j = 1,2,3, ..., k. Each j-length

segmentation is computed from the scores of the (j − 1)-length segmentations by exhaustively

finding the p that maximizes:

||optimalj−1,p,j||+

(∑m
i=p probei

)2

m− p

This p will be the final break in optimal0,m,j and will be placed into the paths array as pathsm,j .

This is illustrated in Table 6.2.

6.2.3.1 Derivation of the Scoring Function

SV R is meant to define the fraction of the total variance in the sample that is within segments

as opposed to the variance among segments. It is defined in standard terms from the Analysis of

Variance (ANOVA) (Lindman 1974):

SV R = SSw/SSt

Where SSt = the total sum of squares of the differences between each of the probe values and the

mean probe value in the entire vector; k = the number of segments; nj is the number of probes in
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Table 6.1 Pseudocode for decoding the paths array�

�

�

�

Algorithm 6.2.1: DECODESEGMENTATION(numSegments, paths)

Decode and return the resulting segmentation.

nextPath← numSegments− 1

for segmentNum← numSegments− 1 downto 0

curSegmentEnd← nextPath

nextPath← pathsnextPath, segmentNum

if (segmentNum = 0)

then curSegmentStart← 0

else curSegmentStart← nextPath + 1

segmentationsegmentNum ← segmentcurSegmentStart,curSegmentEnd

return (segmentation)
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Table 6.2 Pseudocode for the dynamic program without candidate breakpoints, where n is
the total number of probes and k is the maximum number of segments we are willing to consider�

�

�

�

Algorithm 6.2.2: SEGMNT-ALLBREAKPOINTS(n, probeV ector, k)

First, compute the scores of all of the 0-length segmentations that start at probe 0

curTotal← 0

for m← 0 to ncurTotal← curTotal + probeV ectorm

scoresm,0 ← curTotal2

m

Now, compute the scores of all of the optimal j-length segmentations that start at probe 0 where j = 1,2,3, ..., k and put

them into the paths array.

for j ← 1 to k

Each j-length segmentation is computed from the scores of the (j-1)-length segmentations.

for m← (n− 1) downto j

curTotal← 0; bestScore← scoresm,j−1

Find the p that maximizes:

scoresp,j−1 +
(
∑

probei)
2

m − p

. This p will be the final break in scoresi,j

for p← m downto j

curTotal← curTotal + probeV ectorp

curScore← scoresp,j−1 + curTotal2

m−p

if (curScore < bestScore)

bestScore← curScore

bestIndex← p

pathsm,j ← bestIndex; optimalo,m,j ← bestScore

return (paths)
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the jth segment; probej,i is the ith probe of the jth segment; probej,∗ is the average probe value in

the jth segment; and probe∗,∗ is the average probe value over all probes:

SSt =
k∑

j=1

nj∑
i=1

(probej,i − probe∗,∗)
2

and SSw = the total sum of squares of the differences between each of the probe values and the

mean probe value within that probe’s segment:

SSw =
k∑

j=1

nj∑
i=1

(probej,i − probej,∗)
2

Since SSt is constant with respect to a given vector, minimizing SSw also minimizes SV R.

SSw =
∑k

j=1

∑nj

i=1

(
probej,i − probej

)2

=
∑k

j=1

∑nj

i=1

(
probe2

j,i

)
+
∑k

j=1

∑nj

i=1

(
probe2

j,i − 2probej,∗probej,i

)
=
∑k

j=1

∑nj

i=1

(
probe2

j,i

)
+
∑k

j=1 probej,∗
((∑nj

i=1

(
probej,∗

))
− 2njprobej,∗

)
=
∑k

j=1

∑nj

i=1

(
probe2

j,i

)
+
∑k

j=1

(
−njprobej,∗

2
)

=
∑k

j=1

∑nj

i=1

(
probe2

j,i

)
−∑k

j=1

(
(
∑nj

i=1 probej,i)
2

nj

)

Note that
∑k

j=1

∑nj

i=1

(
probe2

j,i

)
is the total sum of squares. This value remains constant for a

given vector. So maximizing the quantity
∑k

j=1

(
(
∑nj

i=1 probej,i)
2

nj

)
with respect to the vector will

minimize SSw and, therefore, SVR.

6.2.3.2 Proof by Induction That Our Algorithm Produces an Optimal Segmen-
tation

Specifically, I intend to prove that by recursively finding the p that maximizes ||scoresp,k−1||+(∑m
i=p probei

)2
our algorithm produces scoresn,k.

For k = 0

We know that, for any m = n, the best segmentation from probe0 to probem with zero breaks,

optimal0,m,0, is the 1-segment path segment0,m since this is the only way to get from probe0 to

probem with zero breaks.

For k > 0
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Recall, from the above derivation, that, where k = number of segments; nj is the number of probes

in the jth segment; probeij is the ith probe of the jth segment, the score of segmentation0,n,k is:

k∑
j=1


(∑nj

i=1 probej,i

)2

nj


Note that the contribution of each segment to this final score is(∑nj

i=1 probej,i

)2

nj

In terms of some segment segmentp,m, this contribution is:(∑m
i=p probei

)2

m− p

Given optimal0,p,(k−1) for some p where k−1 = p = n, we know that the best k-length segmentation

from probe0 to probem where m > p and the last segment of the segmentation is segmentp,m will

be:

optimal0,p,(k−1) ∪ segmentp,m.

Since, by definition, there is no higher scoring length-(k-1) segmentation from probe0 to probep

and I specified above that the last segment is segmentp,m. Note that this is not necessarily the best

k-length segmentation from probe0 to probem, just the best k-length segmentation from probe0 to

probem that concludes with segmentp,m.

Given optimal0,p,(k−1) for all p where k − 1 = p = n, our algorithm explicitly (by brute force)

finds the p that maximizes

||optimal0,p,(k−1)||+

(∑m
i=p probei

)2

m− p

for each m from k to n. Call this p′. We know that p′ must be the last breakpoint in optimal0,m,k.

Therefore, for any given m and k,

optimal0,m,k = optimal0,p′,(k−1) ∪ segmentp′,m

including the case where n = m. So,

optimal0,n,k = optimal0,p′,(k−1) ∪ segmentp′,n
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6.2.3.3 Time Complexity

The time complexity of the dynamic-programming algorithm described above is O(n2k) where

n is the total number of probes and k is the number of segments. This is because, for each m, of

which there are n, there are n−m possible candidate values for p which are found by enumeration.

This happens k times.

In section 6.1.5, I will describe our method for decreasing this time bound substantially by

narrowing the list of candidate breakpoint positions.

6.2.4 Choosing the Number of Segments

In choosing the correct number of segments, we take advantage of the fact that, along with

optimal0,n,k, the paths array contains optimal0,n,j , for all j < k. So, we are able to set k to an

arbitrarily high number representing the maximum number of segments we are willing to consider

and evaluate all segmentations with no more than k segments. In the case of experiments in this

chapter, k is set to 50, but using a higher number is completely feasible since the time and space

complexity of the algorithm both grow linearly with regard to this parameter.

In order to evaluate each of these segmentations, we use what is known as a permutation test.

This non-parametric statistical test is performed by randomly reordering the probes in the vector

and trying to segment the resulting data. No matter what the order, our algorithm will return some

segmentation and a score. If real segments exist in the original (nonreordered) data, the score for

its segmentation should be much better than the scores for the permuted data. We perform 30

permutations per segmentation and segment all 30. The highest j for which the score of the non-

reordered data is much better than that of the 30 permutations is returned as the real segmentation.

The way we define much better is by assuming that the scores of the permuted data are drawn from

a Gaussian distribution and estimating the mean and standard deviation of that distribution based

on the results of the permutation test. We have a parameter (set to 95% for the experiments in

this chapter) that defines how much of the resulting distribution needs to be lower-scoring than the

segmentation of the nonreordered data in order for this score to be considered much better. This

score is similarly compared to the scores for each h-length segmentation of the permutations where
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h < j. The segmentation score from the nonreordered data needs to be much better than the scores

for all of these permutations as well in order to be considered much better than permuted data. The

maximum j for which the j-length segmentation of the nonreordered data is much better then the

permuted data is chosen as the number of segments to return and the corresponding optimal0,n,j is

returned as the resulting segmentation.

6.2.5 Identification of Candidate Breakpoints

In order to increase efficiency, a set of candidate breakpoints is be used. The probe values

on either side of an actual breakpoint should come from measurably different distributions. So,

we evaluate a genome position as to whether or not it is a candidate breakpoint by running a

statistical t-test comparing the probe values of the p probes directly before the position to the

p probes directly after the position. We run 24 t-tests for each position in the vector with p=2,

p=3, p=4, p=5, through p=25. The minimum score (i.e. the minimum expectation that the two

p-length sets of probe values would have been drawn from the same distribution) is returned as

the candidate score. These scores are sorted and the lowest probability positions are returned as

candidate breakpoints. For the experiments in this chapter, our default value of 1,000 candidate

breakpoints are used. As shown in Table 6.3, The change to the dynamic program is that, instead

of incrementing the score totals for each probe, the regions between candidate breakpoints are each

summed once and the individual probe values are replaced by these sums in all further calculations.

This can dramatically increase the speed of the algorithm because the O(n2k) time bound

becomes O(b2k), where b is the number of candidate breakpoints. Additionally, it does not sub-

stantially change the result. In order to test this, we ran our t-test-based method on a set of 900

randomly-generated synthetic chips. The synthetic data were generated to simulate actual chip

data. Each has 10,000 probe values. They have between 2 and 10 underlying segments each with

mean intensities ranging from -1 to 1 with a minimum difference of 0.2. Gaussian noise was added

with variance between 1.0 and 10.0, but held constant for a given chip.

We measure the average distance between a real breakpoint and the nearest candidate break-

point. The result is plotted in Figure 6.2. This distance is plotted as a function of the number of
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Table 6.3 Pseudocode for the dynamic program with candidate breakpoints, where n is the
total number of probes and k is the maximum number of segments we are willing to consider�

�

�

�

Algorithm 6.2.3: SEGMNT-CANDIDATEBREAKPOINTS(n, probeV ector,

k, numCandidates, candidateV ector)

First, as before, compute the scores of all of the 0-length segmentations that start at probe 0. While doing this, also

compute the totals array containing the total probe intensity between any two consecutive candidates.

curTotal← 0; curCandidateIndex← 0

for m← 0 to k

if (n = candidatescurCandidateIndex)


scoresm,0 ← curTotal2

candidatescurCandidateIndex

curCandidateIndex + +

totalscurCandidateIndex ← 0

totalscurCandidateIndex ← totalscurCandidateIndex + probeV ectorm

curTotal← curTotal + probeV ectorm

Now, compute the scores of all of the optimal j-length segmentations that start at probe 0 where j = 1,2,3, ..., k and put

them into the paths array.

for j ← 1 to k

Each j-length segmentation is computed from the scores of the (j-1)-length segmentations.

for m← (n− 1) downto j

curLength← 0; curTotal← 0; bestScore← scoresm,j−1

Find the p that maximizes: scoresp,j−1 +
(
∑

probei)
2

m−p
. This p will be the final break in scoresi,j

for p← m downto j

curCandidate← candidatesp; curScore← scoresp,j−1 + curTotal2

curLength

curLength← curLength + candidatesp+1 − candidatesp

curTotal← curTotal + totalsp

if (curScore < bestScore)

bestScore← curScore

bestIndex← p

pathsm,j ← bestIndex; optimalo,curCandidate,j ← bestScore

return (paths)
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candidate breakpoints. At approximately 500 candidate breakpoints, virtually every real break-

point is included in the set of candidate breakpoints.

Figure 6.2 Sufficient candidate breakpoints eliminate the need for an exhaustive search

6.2.6 Adding Constraints

In order to further filter noise and to incorporate background information, if available, it is

often useful to restrict the space of allowable segmentations in terms of either minimum segment

length, minimum difference between the average probe values of two adjacent segments, or both.

Other algorithms tend to approach this problem via a post-processing, or pruning, step where the

resulting segmentation is modified through a series of heuristics that successively join or remove

segments or breakpoints. In our view it makes more sense to optimize around these constraints in

the original algorithm. This is done by constraining the choice of p when minimizing:

In other words, simply skip over any p that would produce a final segment the violates the

constraint. In order to enforce a minimum segment length, p is constrained such that (m− p) is the

desired minimum segment length. In order to enforce a minimum average probe value difference,

p is constrained such that the difference between the average probe value of segmentm,p and that

of the last segment of optimal0,p,k−1 is the desired minimum probe value difference.
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It is important to note, however, that, a k-length segmentation conforming to an arbitrary set

of constraints may not exist. In this case, we substitute the optimal k-1 length segmentation.

Note also that, though constraining the minimum segment length does not invalidate our proof of

optimality, constraining the minimum segment intensity difference does. This is because we can

no longer assert that the best k-length segmentation from probe0 to probem where m > p and the

last segment of the segmentation is segmentp,m will be

optimal0,p,(k−1) + segmentp,m.

This is because optimal0,p,(k−1) + segmentp,m may not be a legal segmentation with regard

to the minimum segment intensity difference. There may be some segmentaton0,p,(k−1) to which

adding segmentp,m would have produced the real optimal0,p,k. More generally, it violates dynamic

programming’s optimal substructure assumption (Cormen et al. 2001). In practice, however, when

reasonable values are used, both constraints tend to produce good results.

6.3 Results

We empirically evaluate this algorithm against two well-known and algorithms known to have

good performance: DNACopy (Olshen et al. 2004) and StepGram (Lipson et al. 2006). We

use 900 chips of synthetic data whose exact underlying segments are known and 96 chips of real

experimental data whose underlying segments have been verified by other biological methods.

The synthetic data were generated to simulate actual chip data. They were randomly generated

and each have 10,000 probe values. They have between 2 and 10 segments each at intensities

ranging from -1 to 1 with a minimum difference of 0.2. Gaussian noise was added with variance

between 1.0 and 10.0, but held constant for a given chip. We segment each of these chips with

segMNT, DNACopy and StepGram and measure the average error as defined by the average dif-

ference between the mean of the called segment containing a given probe and the mean of the

underlying segment containing that probe before the introduction of the Gaussian noise. Figure

6.3 plots this average error for each of the algorithms as a function of the magnitude of the noise.

Each point represents 90 segmentations whose average error has been averaged together. Though
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performance degrades as the noise level increase, segMNT consistently outperforms the other two

algorithms.

Figure 6.3 SegMNT, StepGram and DNAcopy average error on synthetic data

The biological data that we used were 96 chips representing 6 samples of human DNA, each

measured by an 8-chip set representing the entire human genome. Each of these chips has 380,000

probes. Because the exact underlying correct segmentation is not known we used the Database of

Genomic Variants (DGV) (Iafrate et al. 2004) as our source of ground truth. Unfortunately, this

is not a straightforward task since any individual’s DNA will only have a fraction of the possible

genomic variants. Furthermore the DGV probably only contains a fraction of the possible sites of

human genetic variation.

However, we still expect there to be some overlap between the variations in a given sample’s

DNA and the variations listed in the GDV. So, we use a concept from information retrieval, the f-

measure (Mitchell 1997), to express the agreement breakpoints found by a particular segmentation

and the set of known human breakpoints. We segmented all 96 chips with all three algorithms and

calculated the f-measure of identified breakpoints compared to known breakpoints in the DGV.

Figure 6.4(a) is a scatter plot of the f-measure on the 96 biological chips between segMNT and

StepGram. Each point represents one of the 96 chips. If the two algorithms were identical, all of the

points would appear on the diagonal line. Points above the line represent chips on which segMNT
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does a better job than StepGram. Points below the line represent chips on which StepGram does a

better job than segMNT. 75% of the points are above the line.

Likewise Figure 6.4(b) is a scatter plot of the f-measure on the 96 biological chips between

segMNT and DNACopy. Points above the line represent chips on which segMNT does a better job

than DNACopy. Points below the line represent chips on which DNACopy does a better job than

segMNT. In this case, 80% of the points are above the line.

(a) (b)

Figure 6.4 F-measure comparison of segmentations with the Database of Genomic Variation

6.4 Discussion

By using dynamic programming along with the t-test to confine the search space, we have

created an algorithm that is efficient enough to run on very large datasets. I have shown empirically

that this method is a very good method for the interpretation of CGH experiments. Our experiments

also show that the default value of 1,000 candidate breakpoints does a good job of segmenting the

very large real data sets to which we have access as well as the smaller synthetic data sets that we

have used. The reason for this is probably that 1,000 is still orders of magnitude greater than the

number of real breakpoints in a typical sample.
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Furthermore, it can be tuned, by adjusting the number of candidate breakpoints, to produce

results arbitrarily close to the globally optimal segmentation with regard to total variance from the

segment means for a given number of segments. I have also shown that our permutation-test-based

strategy can do a good job of determining the correct number of segments.
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Chapter 7

SNP Identification

The task I address in this chapter is to identify SNPs (Single Nucleotide Polymorphisms) in

the context of oligonucleotide-microarray-based DNA resequencing (Nuwaysir et al. 2002; Singh-

Gasson et al. 1999). This type of resequencing consists of fully tiling (making probes correspond-

ing to every 29-mer in) the reference sequence of an organism’s DNA over a region of interest. For

each of these probes, another three mismatch probes are generated. Each of these has a different

base in its center position. For example, if the organism’s reference DNA includes the sequence:

3’-CTGACATGCAGCTATGCATGCATGAA-5’

the corresponding reference probe will be its reverse complement and, therefore, be the sequence:

5’-GACTGTACGTCGATACGTACGTACTT-3’

and the corresponding mismatch probes will be the sequences:
5’-GACTGTACGTCGAAACGTACGTACTT-3’
5’-GACTGTACGTCGACACGTACGTACTT-3’
5’-GACTGTACGTCGAGACGTACGTACTT-3’

I call a group of probes such as this that represent all possible SNPs at a given position a

position-group or, for short, a p-group. One can summarize the task of interpreting such a rese-

quencing chip as follows:

Given: The data from a single resequencing chip, representing either the complete

genome of an organism, or some region or regions of interest in such a genome.

Do: Identify, from among the positions at which the sample sequence seems to differ

from the reference sequence, which of these positions are likely to be real SNPs

rather than noise and return these positions along with a confidence measure for

each.
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7.1 Approach

After the chip has been exposed to the sample, each of the probes will have a resulting intensity.

I also call each p-group’s set of four such intensities an example (I use this term taken from machine

learning because my solution is built upon a technique from machine learning). For most of these

examples, the highest of the four intensities will be the reference probe, i.e., the probe with no

mismatch base. I call examples for which this is the case conformers (Table 7.2, provides an

illustration) since they conform with what I expect, given the reference sequence. When one of the

mismatch probes has the highest intensity, I call the p-group a non-conformer.

Some of these non-conformers reflect actual SNPs in the DNA of the organism. However,

most of them are the results of hybridization failures or other types of noise and do not represent

an actual SNP in the sample. Note that, though the task of separating conformers from non-

conformers is a trivial data-processing step, separation of the non-conformers that truly are SNPs

from the non-conformers that arise from noise in the data is not.

I posit that one can perform the task of accurately separating the non-conformers that truly

are SNPs from the noisy non-conformers by applying what is called the nearest-neighbor method

(Mitchell 1997). In this method one plots examples in an N-dimensional space, where the dimen-

sions are features of the examples. In order to interpret an example in this feature space, one looks

at the K examples nearest to it in this space and uses their classifications to interpret the example

in question.

In the traditional manner for applying the nearest-neighbors method (which I do not follow in

this work), one would manually label a ”training set” of p-groups as being either true SNPs - non-

conformers that arise from a one-base difference between the sample sequence and the reference

sequence - or false SNPs, non-conformers that arise from noise in the microarray experiment. The

nearest-neighbors algorithm would then use these labeled examples when it needed to categorize

future non-conformers.

In this case, however, this approach would not be feasible. It would require that someone

laboriously collect each of these training examples. Worse still, whenever the chip chemistry or
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any other laboratory condition changed, one would need to collect an entirely new set of training

examples. This is because the underlying process that generated the noise would probably have

changed.

Instead I apply the nearest-neighbor approach without needing human-labeled examples. The

key idea is that examples involving bad microarray hybridizations will tend to group together in

different portions of feature space than examples from good hybridizations. Once I have separated

“noisy” examples from good examples, I can identify SNPs by simply finding examples where

the highest-scoring base is not the base in the reference sequence. This is possible because of the

nature of my particular task. Specifically, I rely on the following three assumptions, which have

held true in all of the data I have looked at so far, including the data used in the experimental

section of this chapter:

1) Examples resulting from proper probe-target hybridizations will be much nearer

to each other in feature space than to examples resulting from hybridization fail-

ures.

2) The majority of non-conformers are due to noise in the data rather than SNPs.

Hence, I can safely ignore, when looking for SNPs, those areas in feature space

dense with non-conformers.

3) SNPs are relatively rare. Hence SNPs involved in successful hybrizations will

fall in regions of feature space that are surrounded by conformers.
Given these assumptions it follows that, as illustrated in Figure 7.1, an area of feature space

dense with conforming examples is unlikely to contain probes that are hybridization failures. In

fact, the likelihood that any given example in an area is a hybridization error can be roughly

estimated by the density of non-conformers in that area. By performing this estimation for each

of the non-conformers, I find an approximate likelihood that it is the result of a hybridization

error. Those non-conformers with low likelihood of being hybridization errors, and conversely

high likelihood of being a correct reflection of the underlying sequence, I can predict to be SNPs.

Note that, though my approach makes use of labeled examples, my approach does not require

a human to label any examples as being SNPs or not. Instead, my possible labels are conformer
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FEATURE SPACE

Figure 7.1 Interpreting conformers by looking at their neighbors in feature space

and non-conformer, a distinction easily computed automatically. If a non-conformer is mainly

surrounded by conformers in feature space, I classify it as a SNP since it looks like a successful

hybridization and the non-conforming values are likely to have arisen due to a nucleotide change

from the reference sequence (i.e., a SNP).

7.2 My Algorithm for Finding SNPs

Table 7.1 contains my algorithm for SNP-detection in microarrays. This K-nearest-neighbor

algorithm involves plotting each example in feature space and then, for each of these examples,

finding the K other examples nearest to it in this feature space. The categories of these K neighbors

determine the prediction. If greater than some threshold of these neighbors are conformers, I infer

that the example is not the result of a failed hybridization. I thus classify a non-conformer as a SNP.

Should an insufficient number of neighbors be conformers, I view the example as being noisy. The

fraction of conformers among the K neighbors can further be used as a measure of confidence

in the prediction. (One could use different settings for K and threshold for conformers than for

non-conformers, but I have not done so.)
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Table 7.1 My algorithm for identifying SNPs�

�

�

�

Algorithm 7.2.1: SNPFINDER(K, threshold, dataset)

In my experiments, except where otherwise noted, K = 100, threshold = 0.97

for each example ∈ dataset

Find the K other members of dataset closest to example in feature space

These are example’s K nearest neighbors

P ← 0

for each otherExample ∈ these K nearest neighborsif otherExample is a conformer

then P + +

if P
K

> threshold
if the category of example is a conformer

then classify example as a non-SNP

else classify example as a candidate SNP

else classify example as a non-call (i.e. possibly bad data)

return (classifications)
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The appropriate value for K and threshold and appropriate definitions of nearness and feature

space vary between learning tasks. In this case, my feature space - see Table 7.2 - is the five-

dimensional space of examples, where four of the dimensions correspond to the intensities of the

four probes in the example and the fifth dimension is the identity of the base in the reference

sequence. I define nearness between two probes to be infinite in cases where the two examples

differ in the fifth dimension. Otherwise, it is defined as:

nearness(examplej, examplek) =
4∑

i=1

|featurei(examplej)− featurei(examplek)|

where examplej and examplek are two p-groups, and featurei(example) is the intensity of the

ith most intense probe in example.

For purposes of evaluation, I compare my algorithm to a simple alternative, which I call my

baseline algorithm. Table 7.3 contains this baseline algorithm, which simply compares the highest

intensity probe to the second highest. If the ratio is above a threshold value, the algorithm assumes

that the base represented by the highest intensity probe is the base in the sequence. If this p-group

is a non-conformer, my baseline algorithm calls it a candidate SNP.

7.3 Evaluation

In order to evaluate my algorithm, I chose a useful, realistic task. One strain of the SARS

virus (Ruan et al. 2003) has been completely sequenced via standard capillary sequencing. I was

supplied with a different sample strain. This sample differed from the reference sequence to an

unknown degree. My task was to identify candidate SNPs in this strain. My predictions would

subsequently be evaluated using further capillary sequencing and various other “wet” laboratory

methods (Wong et al. 2004).

Using the reference sequence, I designed a resequencing chip including both the forward and

reverse strands of this virus. I then exposed this chip to the sample. After that I used my algorithm

to predict the SNPs on this chip. Once these results were obtained, I combined the forward and

reverse predictions for each possible SNP position by averaging the two predictions.
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Table 7.2 The features used to describe the p-groups
Reference Sequence: AGCGCTTTAAGCATATATCCATCCTAGCATACGATCTTTATACTTACATTACCCT

Resequencing probes (reference probes are boxed )

p-group 7:XXXXXXXX

XXTTTAAGCATATATCAATCCTAGCATACGA← Probe 7A
TTTAAGCATATATCCATCCTAGCATACGA← Probe 7C

XXTTTAAGCATATATCGATCCTAGCATACGA← Probe 7G
XXTTTAAGCATATATCTATCCTAGCATACGA← Probe 7T

p-group 8:XXXXXXXXX

TTAAGCATATATCGATCCTAGCATACGAT← Probe 8A
XXTTAAGCATATATCGCTCCTAGCATACGAT← Probe 8C
XXTTAAGCATATATCGGTCCTAGCATACGAT← Probe 8G
XXTTAAGCATATATCGTTCCTAGCATACGAT← Probe 8T

p-group 9:XXXXXXXXXX

XXTAAGCATATATCGAACCTAGCATACGATC← Probe 9A
XXTAAGCATATATCGACCCTAGCATACGATC← Probe 9C
XXTAAGCATATATCGAGCCTAGCATACGATC← Probe 9G

TAAGCATATATCGATCCTAGCATACGATC← Probe 9T

Resulting Intensities (obtained by exposing the chip to the sample)
Probe Intensity

... ...
7A 1543
7C 3354
7G 342
7T 737
8A 1456
8C 2432
8G 212
8T 334
9A 332
9C 456
9G 232
9T 2443
... ...

← The reference probe for p-group 7 is 7C. This is also the highest-intensity
probe in this p-group. Hence, I call p-group 7 a conformer.

← Note that, though the reference probe from p-group 8 is 8A,
← the highest intensity probe from this p-group is 8C. I call such a p-group

a non-conformer.

The Feature Set Each p-group produces one example. The features are the reference base and the four
sorted intensities (note that the feature set contains no information about which actual probe has the highest
intensity). The category of the example is either conformer or non-conformer, that is whether or not this
p-group’s highest intensity probe is the reference base.

Example Reference Base Intensity 1 Intensity 2 Intensity 3 Intensity 4 Category
... ... ... ... ... ... ...
7 C 3354 1543 737 342 conformer
8 A 2435 1456 334 212 non-conformer
9 T 2443 456 332 232 conformer
... ... ... ... ... ... ...
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Table 7.3 A baseline algorithm for identifying SNPs�

�

�

�

Algorithm 7.2.2: BASELINESNPFINDER(threshold, dataset)

for each example ∈ dataset

maxIntensity ← intensity of the highest intensity base in example

secondIntensity ← intensity of the second highest intensity base in example

P ← 0

for each otherExample ∈ these K nearest neighborsif otherExample is a conformer

then P + +

if maxIntensity
secondIntensity

> threshold

then classify example as a non-call (i.e. possibly bad data)

else


if the category of example is conformer

then classify example as a non-SNP

else classify example as a candidate SNP

return (classifications)
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7.4 Materials and Methods

A detailed description of the methods used to prepare and analyze the SARS samples has been

previously published (Wong et al. 2004). The following is a brief overview.

7.4.1 Preparation and Hybridization of SARS Sample.

Total RNA is extracted from patient lung, sputum or fecal samples, or from Vero E cultured

cells inoculated with SARS-CoV RNA. RNA is reverse-transcribed into double-stranded cDNA.

Tissue samples are amplified using a nested-PCR strategy. For each sample, PCR-product frag-

ments are pooled at an equimolar ratio, digested with DNase I (from Invitrogen, Carlsbad, CA)

and end labeled with Biotin-N6 ddATP (Perkin Elmer, Wellesley, MA) using Terminal Deoxynu-

cleotidyl Transferase (Promega, Madison, WI).

The arrays are synthesized as previously described (Nuwaysir et al. 2002; Singh-Gasson et al.

1999). The re-sequencing arrays are hybridized with biotinylated DNA overnight, then washed

and stained with Cy3-Streptavidin conjugate (Amersham Biosciences, Piscataway, NJ). Cy3 signal

is amplified by secondary labeling of the DNA with biotinylated goat anti-streptavidin (Vector

Laboratories, Burlingame, CA).

7.4.2 Data Extraction and Analysis.

Microarrays are scanned at 5µm resolution using the Genepix 4000b scanner (Axon Instru-

ments, Inc., Union City, CA). The image is interpolated and scaled up 2.5x in size using NIH

Image software (http://rsb.info.nih.gov/nih-image/). Each feature on the microarray consists of

49 pixels; pixel intensities are extracted using NimbleScan Software (NimbleGen Systems, Inc.

Madison, WI).

7.5 Results

Out of the 24,900 sequence positions represented by p-groups on this chip, 442 are non-

conformers (i.e., p-groups where the highest-intensity probe was not from the reference sequence).
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Of these 442, my algorithm identifies 36 as candidate SNPs. Subsequent laboratory experimenta-

tion by NimbleGen Systems produced 24 actual SNPs, all of which were identified by my algo-

rithm.

Figure 7.2 ROC curve for SARS SNP detection

Note, though, that in general it is possible for a conformer to truly be a SNP; however, my

algorithm will not call these as SNPs, at best it will label this p-group as suspicious data. Since the

SARS strain I used did not contain any “conforming” SNP’s, I am unable to evaluate how well my

approach does at labeling such SNPs as non-calls. Of the 24,458 conformers, my algorithm (using

the same parameter settings as used for categorizing the non-conformers) only marked 3% as bad

data.

In order to verify this result, five more identical SNP chips were generated and exposed to the

same sample using the same values of K and threshold (later in this section I discuss how I choose

good values for K and threshold). The results varied only slightly. My algorithm found all 24

SNPs in each of the five cases. The number of false positives ranged from 6 to 13.

Figure 7.2 contains a Receiver-Operating-Characteristic (ROC) curve (Davis and Goadrich

2006) that further illustrates the performance of my algorithm, and compares it to my baseline

algorithm. A ROC curve is a plot of true positives against false positives. It is typically obtained

by running an algorithm at various thresholds. Recall that in the case of the K-nearest-neighbors

algorithm, this threshold is the minimum percentage of neighbors that must be conformers in order
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for a non-conforming p-group to be classified a SNP (see Table 7.1). In my task, false positives

are non-SNPs incorrectly classified as SNPs. True positives are SNPs correctly identified by my

algorithm. A perfect algorithm’s curve would immediately reach the upper-left corner, since that

would mean that the algorithm is capable of identifying all of the true positives without producing

any false positives. Though the curve for my algorithm does not quite reach this corner, note that

it substantially dominates the baseline algorithm.

Based on the results of these experiments, it seems that my system is clearly superior to the

baseline algorithm described above and is a reliable and efficient method for the identification of

SNPs.

My algorithm is largely self-tuning, in that examples are compared to their neighbors in feature

space and classifications are made according to the properties of the neighbors, as opposed to

specific portions of feature space being pre-labeled as clean or noisy. However, I do have two

parameters, K and threshold. Next, I describe some experiments that investigate the sensitivity

of my algorithm to the particular settings of these parameters.

Figure 7.3 The impact of K. The Y-axis reports the number of false positives (noisy examples
misclassified as SNPs) that result for the given value of K for the largest threshold that allows

my algorithm to detect all 24 true SNPs.

In order to choose an appropriate value for K, I tried various values between 1 and 250 to see

how many false positives would result if one chose the largest threshold that allowed my algorithm

to detect all 24 of the true SNPs. The results of this experiment appear in Figure 7.3. Fortunately
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my approach is not overly sensitive to the particular value of K; I chose K=100 and hypothesize

that this parameter setting will work well across a wide variety of organisms and strains.

Figure 7.4 presents the impact of varying threshold (for K=100). It reports the number of

true SNPs detected, as well as the number of false positives (non-SNPs incorrectly called SNPs).

As can be seen, the algorithm’s performance is not overly sensitive to the setting for threshold.

I also anticipate that a single setting for threshold (such as the 0.97 that I use) will work well

across many organisms and strains, and hope that neither K nor threshold need to be reset for

each new dataset. Remember, however, that my approach classifies some p-groups as non-calls,

namely those whose neighbors are predominantly non-conformers. The percentage of p-groups

that are called (either SNP or non-SNP) is typically known as the call rate. If this rate is too low,

the procedure is of much less use since the algorithm only interprets a small fraction of the data.

In order to increase the call rate, one can lower the threshold value. Using my chosen parameter

settings I achieve a call rate of over 97%, while still identifying all of the SNPs in the samples I

tested and misclassifying only a small number of non-SNPs.

Figure 7.4 The impact of the threshold value. The Y-axis reports the number of SNPs found
and the number of false positives that result for the given threshold with the value of K fixed at

100.

I am unable to directly compare against the haploid SNP calling accuracy of the current stan-

dard algorithm, ABACUS, from the Cutler group in conjunction with Affymetrix Corp. However,
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I believe my results to be comparable to those published by Cutler et al. (2001), while my ap-

proach has much less overhead due to tuning and does not require high-resolution scanning. Their

published results indicate an emphasis on high-confidence SNPs, at the cost of having a low call

rate. The Cutler group’s reported accuracy is good. Of the 108 SNPs they predicted in the human

X chromosome, all 108 were verified to be real. However, they report their call rate on the chip

as a whole to only be approximately 80%. Though my method is currently geared more toward a

high sensitivity to SNPs, I can change this by increasing my threshold from 97% to 99%. My call

rate drops from 97% to 81% and, though I only make 22 SNP calls at that level, only 2 of them are

false positives (hence I only detect 20 of the 24 known SNPs). Of course, one should not closely

compare results across species, but these numbers do at least suggest the accuracy of my algorithm

is on par with that of the Cutler group.

7.6 Discussion

This work as proven to be quite useful in the field of SNP identification. Combined with

the technology similar to that described in Chapter 6, this method is an efficient way to identify

thousands of SNPs to date. The CGH process is used as a filter which can identify short regions

that may contain SNPs, cutting down amount of sequence that needs to be interrogated by our SNP

finding procedure. This process is used in Albert et al. (2005), Herring et al. (2006), Kane et al.

(2007), and many other studies.



66

Chapter 8

Generalizing the SNP-Finding Method

In this chapter, I describe a possible further use for the SNP-finding algorithm of the previous

chapter. Though developed for a specific purpose – to identify SNPs – it has a novel property

that may be of more general use. As will be described in detail, the algorithm makes use of the

distribution of examples with regard to an observed feature – conformer vs non-conformer – to

infer the distribution examples with regard to an unobserved feature – SNPs vs noise. If put to use

in a general setting, this could yield valuable results.

8.1 The Concept of a Key Feature

Consider the feature space pictured in Figure 8.1. Similar to Figure 7.1, a dense cluster of

conformers indicates data that are likely reporting correct values, indicating that non-conformers

among them are likely the result of actual SNPs. Conversely, a dense cluster of non-conformers

indicate data that are likely noise; the non-conformers that make up this space are likely to be

mostly bad data.

I am able to make this judgment because I have background information that conformer vs non-

conformer is, in this sense, a key feature. This feature value has special meaning in examples in

which its value is unexpected. It is important to note that whether or not a feature itself is predictive

or unpredictive has very little bearing on whether or not it is a key feature. A key feature is an

observed feature that represents the dimension of feature space that separates a dense relatively-

easy-to-characterize cluster of data from sparser more-difficult-to-characterize data. The idea is

that, as in the SNP-finding algorithm, I may be able to gain insights about the sparser data from
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Figure 8.1 Feature space similar to Figure 7.1

the distribution of the denser data. One way to do this would be to simply ignore this separating

key feature, collapsing the dense and sparse data into a single cluster. However, as is the case with

the SNP data, sometimes this separating feature is, itself, of crucial importance.

Consider the situation where I have the same data as Figure 8.1, but no knowledge about key

features. Figure 8.2 depicts this situation. The data is the same, but conformer vs non-conformer,

rather than Feature 3, is displayed on the Y-axis. Feature 3 from Figure 8.1 is displayed as H vs

L rather than being displayed on the Y-axis. Without knowing that conformer vs non-conformer is

a key feature, the learner cannot use the procedure from the previous chapter. In order to use that

procedure, we need to know which is the key feature in order to know which to attempt to predict

from the others.

In addition to the fact that I do not know which, if any, feature is a key feature. I also do not

know how a key feature should be interpreted. In the SNP data conformer vs non-conformer is

the key feature. The way that I interpret it is that when the rest of the features strongly suggest

conformer but the actual value is non-conformer, I call the example a SNP.
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Figure 8.2 The same data as Figure 8.1, plotted with features 1 and 3 reversed

8.2 The Pretraining Algorithm

If the learner were able to identify key features and figure out how to use them, the principles

underlying this procedure could be of general use.

So, for the general algorithm, I allow the learner to decide these things for us. Specifically,

using a ten-fold cross-validation framework, I predict each feature from the others and add these

predictions as additional features, as illustrated in Table 8.2. As opposed to the typical machine-

learning prediction depicted in Table 8.1, my final predictions use these additional features as in

Table 8.3. The pseudocode is in Table 8.4. The idea behind this is that, at prediction time, the

learner has access to more of the information about whether or not a feature is a key feature. If

the feature was wrongly predicted from the others, this information can be used in the predictive

model for the category.

As described in Chapter 3, in machine learning, most datasets include features and categories.

For example, a database of medical patients, designed to predict the presence or absence of a par-

ticular difficult-to-diagnose disease might have features that corresponding to particular diagnostic

test results or attributes about the patient, and the category might be the ground truth about whether

or not the patient actually had the disease as evidenced by some additional more-reliable diagnostic

test or a future manifestation of the disease.
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However, there is no reason that I could not restructure the examples so that one of the features

becomes the category. For instance, say I want to predict the result of one of the diagnostic tests

from the results of the others. I could simply relabel that feature the category and train and test

on it. One existing application of this kind of relabeling is in the context of feature selection

(Blum and Langley 1997). The theory is that, if a feature can be reliably predicted from the others,

that feature must not be necessary since it carries no unique information. So, any well-predicted

feature is discarded. In my algorithm, I am not concerned with predictability of features. Instead

of discarding features, I use the predicted feature values as additional features themselves.

Specifically, if one considers the dataset contained in Table 8.1, where each feature is a column,

with one extra column for the category, I add, for each feature one new column. To do this I do the

following:

As in Panel 8.2(a):
1) Relabel column 1 the category column.

2) Ignore the original category column.

3) Predict the values in column 1 from the other features.

4) Add the resulting column of predictions as a new feature column.

5) Replace column 1’s original label.

As in Panels 8.2(b) and 8.2(c):
6) Repeat steps 1 through 5 for each of columns 2 through N where N is the number

of features.

As in Table 8.3:
7) Use the 2N feature columns (N original features + N columns of predictions) to

predict the original category column.

8) Report the results of this final prediction.

For a more detailed pseudocode description see Table 8.4
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It is important to note that, in order to participate in the feature prediction phase of this algo-

rithm – that is, the phase where the feature prediction columns are added – an example does not

need to be labeled with a category. All that is required are the feature values. So, it can make use

of unlabeled data as well as labeled data. This is important in the common case that labeled data

are scarce. In this way, the pretraining algorithm can be considered a semi-supervised learning

algorithm (e.g. Chapelle et al. 2006).

8.3 Experiments

Here I present experiments to show that pretraining is able to make use of unlabeled data.

These experiments are done using a support vector machine (SVM) (Scholkopf et al. 1999) in

both feature prediction and final category prediction. This is because the SVM is a very successful

standard machine-learning algorithm and is also known to perform well on high-dimensional data.

8.3.1 Unbalanced Data

In order to create a region of feature space dense with negative examples, I need the data to

be unbalanced in order to have a few members of one class in a region of feature space dense

with the other. In order to achieve this, we, to the extent possible given the sizes of the datasets,

undersample the positive class. One exception to this is the 3-bit-parity dataset, in which I instead

oversampled the negative class while being careful not to allow the same negative example to

appear in the training and test sets for the same experiment. In the typical real-world dataset,

this would probably not be required since very few real-world learning problems involve balanced

data. In fact, the use of machine learning algorithms often requires that real-world data be filtered

in order to create balanced datasets.

8.3.2 Datasets

I test five real-world datasets from the UCI Machine Learning Repository (Asuncion, et al.,

2007) and one synthetic dataset. The five UCI datasets are thyroid disease database (Quinlan, et

al., 1987), the primate splice-junction database (Towell, et al., 1992), the contraceptive method
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Table 8.1 Category prediction in typical machine-learning methodology: In typical
machine-learning methodology, the learner is trained to predict a Category column from the

features in the Feature columns. I have depicted the training phase here with the Train arrow from
the Feature columns, whose values are used to make the prediction, to the Category column,

whose values are being predicted. I have depicted the testing phase with the Test arrow from the
Category column being predicted to the column of Predictions made by the learner.
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Table 8.2 Creating
additional features in the
pretraining algorithm: For
each feature in the original
dataset, another feature is
added. Each panel, as in

Table 8.1, has a Train arrow
from the Feature columns
whose values are used to

make the prediction to the
column whose values are
being predicted and a Test

arrow from the column being
predicted to the column of
Predictions made by the

learner. The difference is that
the column being predicted is
not the Category column. The
columns being predicted are

the Feature columns. The
reason to do this is to produce

columns of Feature
Predictions that will be used

in the prediction of the
Category column (Table 8.3).

Note that the Category
column is ignored during this

phase of the algorithm.

(a) adding feature 1 predictions

(b) adding feature 2 predictions

(c) adding feature 3 predictions



73

Table 8.3 Final category prediction in the pretraining algorithm: Much like typical
machine-learning methodology (Table 8.1), the learner is trained to predict a Category column

from the features in the Feature columns. The training phase is depicted by the Train arrow from
the columns whose values are used to make the prediction to the Category column whose values

are being predicted. The difference is that, in addition to the original features, there are also
columns for the Feature Prediction columns that also function as features in this phase of the
algorithm. The testing phase is depicted with the Test arrow from the Category column being

predicted to the column of Predictions made by the learner.
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Table 8.4 Pseudocode for the pretraining algorithm�

�

�

�

Algorithm 8.2.1: PRETRAIN(dataset, features, category)

procedure PRETRAIN(dataset)

n← the number of features in dataset

Randomly reorder dataset

for m← 1 to n
predFeaturesm ← CROSSVALIDATE(


dataset,

features{1, 2, · · · , m-1, m+1, · · · , n},

featurem

)

results← CROSSVALIDATE(


dataset + predFeatures,

features + predFeatures,

category

)

Calculate accuracy by comparing results to category

procedure CROSSVALIDATE(dataset, features, category)

Divide dataset into 10 disjoint test sets: testSet1 to TestSet10

for i← 1 to 10

trainingSet← dataset− testSeti

for each example ∈ testSeti

Given: feature values for example and trainingSet and categories for trainingSet

Predict: category for example

if category is numeric

then record prediction - category in results

else record ”CORRECT” or ”INCORRECT” in results

return (results)
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choice (Lim, et al., 1999) database, the mushrooms database (Schlimmer, 1987) and the breast

cancer Wisconsin database (Street, et al., 1993). I modified most of these by undersampling the

positive class. The ratios of negative to positive examples after undersampling are listed in Table

8.6. I also modified the splice junctions database by removing exon/intron sites, leaving only

intron/exon sites and negative values, reducing it to a two-class problem. The synthetic dataset is

called 3-bit parity.

3-bit parity is the function:

((Feature1 ⊕ Feature2) ≡ Feature3) ≡ Category

Each of the features and the category have values of either TRUE or FALSE. The truth table for

this function is listed in Table 8.5.

Table 8.5 The 3-bit parity truth table
Feature1V alue Feature2V alue Feature3V alue CategoryV alue

True True True False

True True False True

True False True True

True False False False

False True True True

False True False False

False False True False

False False False True

All of the datasets are tested using 10-fold cross validation except for 3-bit parity. Since 3-bit

parity has so few examples, leave-one-out testing is used. I also ran each experiment ten times with

the data randomly reordered each time. The results reported here are the average of these runs.



76

3-bit Parity Thyroid Disease

Splice Junctions Contraceptive Method Choice

Mushrooms Wisconsin Breast Cancer

Figure 8.3 Learning curves for the six datasets. As is standard practice in machine learning the
baseline error rate is the error rate that would be achieved if the majority class were always

chosen. In addition to the synthetic dataset, statistically significant results were also achieved in
two of the UCI datasets: the splice junction dataset and the Wisconsin breast cancer dataset.
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Table 8.6 Positive:negative ratios for UCI datasets after undersampling
UCI Dataset Positive:Negative Ratio

thyroid disease (Quinlan, et al., 1987) 1:20

primate splice-junctions (Towell, et al., 1992) 1:30

contraceptive method choice (Lim, et al., 1999) 1:1

mushrooms (Schlimmer, 1987) 1:1

breast cancer Wisconsin (Street, et al., 1993) 1:15

8.4 Results

Figure 8.3 contains learning curves for the six datasets. Increasing amounts of the training data

are labeled at each point on the curve.

The SVM does seem to sometimes make good use of the feature prediction columns. On my

synthetic dataset and two of the UCI datasets, the these columns provide statistically significant

improvement of the performance of the learning algorithm. It is surprising that, on the splice

junctions dataset, the improvement increases as the amount of labeled data increases. This could

be a result of predicted features that are only useful in the presence of sufficient labeled data.

8.5 Discussion

At the center of conventional semi-supervised learning algorithms is what is known as the

cluster assumption (Chapelle et al. 2006). Simply stated, it is the assumption that two examples

that appear in the same dense section of feature space are likely to be in the same class.

Most current semi-supervised learning methods rely on this assumption (Chapelle et al. 2006),

but my SNP-finding method is different because it relies on density in another region of feature

space in order to learn. This is similar to a feature-selection step that eliminates the feature that

separates the example from the dense part of feature space, but with one important difference. This

feature is not ignored. It plays a different role as the switch that helps to decide the class of the

example.
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This algorithm, as it currently exits, has several weaknesses. Chief among them is the fact that,

though it does not tend to decrease accuracy, it only seems to produce a statistically significant

improvement in a small fraction of datasets. This may be a result of the scarcity of datasets that

contain key features. The cost of running this algorithm is another serious issue. The training and

testing time are effectively multiplied by the number of features. One way to mitigate this effect

might be to use a Bayes network learner (Mitchell 1997) as the learner for the feature prediction

phase of the algorithm. The Bayes Network representation has the advantage that, once the rela-

tionships among the features are learned, any feature can be predicted naturally from the others.

No further training is needed.

An illustration of how this works can be found in Figure 8.4. Panels (a) and (b) illustrate the

use of the cluster assumption in making use of unlabeled data. Figure 8.5 illustrates the situation

where, under the Nearby-Cluster Hypothesis, a nearby cluster – differing in a single feature –

can cause two examples – one labeled and another unlabeled – to have the same feature wrongly

predicted. In this case, they will have that incorrect feature prediction in common. In this way, the

labeled example passes information through the nearby cluster as in panel 8.5(a). This can even

work if the cluster itself has the opposite label as in panel 8.5(b).

8.6 Current and Future Work

Empirical study has shown that not all real-world datasets respond well to the pretraining

algorithm. This may be because not all real-world datasets contain key features. I would like to

develop method for identifying datasets that have this property in order to exploit it.

Another possible reason for this difficulty is that the algorithm needs to be improved. To

this end, I have begun to develop an SVM kernel that tries to make use of The Nearby Cluster

Hypothesis directly.
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Legend

(a) Learning in the absence of unlabeled

data: In supervised learning methodology,

only labeled data is used. If a learner is given

labeled training data that equally predict that

an example is in two different classes (In this

case, positive and negative) the learner does

not have a good way to make a prediction

one way or the other. A simple case of this

is depicted here where only three examples

exist, the positive example and the negative

example are equidistant from the example to

be predicted. In this case, both of the labeled

examples have the same influence on the ex-

ample to be predicted.

(b) The cluster assumption: Semi-

supervised learning uses both labeled and

unlabeled data to make predictions. Most

semi-supervised learning algorithms depend

on the cluster assumption (Chapelle et al.

2006) which state that examples in the same

category will tend be nearer to each other

in feature space than examples that are not,

and its corollary of low-density separation

(Chapelle et al. 2006) which states that

category boundaries are less likely to appear

in areas of feature space that are dense with

examples than those that are sparse. This

has the effect of increasing the influence

of labeled examples acting through dense

regions of feature space.

Figure 8.4 The cluster assumption
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Legend

(a) The nearby-cluster hypothesis: I posit

here that it is useful in some datasets, to allow

the density of examples in feature space adja-

cent to the region between two examples to

influence affect the interaction between those

examples.

(b) The nearby cluster can have a differ-

ent label: To illustrate how this differs from a

feature-selection step that simply removes the

feature that separates the two examples from

the dense area of feature space, it is important

to note that they do not need to have the same

label or predicted label as the adjacent dense

region of feature space.

Figure 8.5 The nearby-cluster hypothesis
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Chapter 9

Literature-Based Expression Analysis

The development of microarrays and their associated large collections of experimental data

have led to the need for automated methods that assist in the interpretation of microarray-based

biomedical experiments. In this chapter, I present a method for creating partial interpretations

of microarray experiments that combine the expression-level data with textual information about

individual genes. These interpretations consist of models that characterize the genes whose ex-

pression levels were up- (or down-) regulated. The goal of the models is to assist a human scientist

in understanding the results of an experiment. Our approach is to use machine learning to create

models that are both accurate and comprehensible. I report here on experiments using actual E.

coli microarray data, demonstrating the trade-offs between model accuracy and comprehensibility.

In order to make them comprehensible, my models are expressed in terms of English words

from text descriptions of individual genes. I currently get these descriptions from the curated Swis-

sProt protein database (Bairoch and Apweiler 2000). It contains annotations of proteins; I use the

text associated with the protein generated by a gene as the description of that gene. My models con-

sist of sets of words from these descriptions that characterize the up-regulated or down-regulated

genes. Note that I can use the same text descriptions of the genes to generate interpretations of

many different microarray experiments. In each experiment, different genes will be up-regulated

or down-regulated, even though the text description associated with each gene is the same across

all experiments.
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The basic task can be described as follows:

Given:

a) The (numeric) RNA-expression levels of each gene on a gene array un-

der two conditions, before and after a particular event (e.g., antibiotic

treatment), and

b) For each gene on the microarray, the SwissProt text describing the pro-

tein produced by that gene.

Produce: A text-based model that accurately characterizes the genes that were up-

regulated or down-regulated in response to the event.

In my work, my models are sets of disjunctive IF-THEN rules of the form:

IF Word1 and Word2 appear in the gene’s annotation and Word3 and Word4 are not present

THEN this gene is up-regulated.

For shorthand, in the remainder of this chapter I will only present the IF part of the rules and

I always focus on the up-regulated group (an arbitrary choice). That is, I would list the above rule

as:

Word1 and Word2 and NOT Word3 and NOT Word4

Since my rules are disjunctive, if any of the rules match a gene’s annotation, my model char-

acterizes that gene as up-regulated. If no rule matches, then my model characterizes that gene as

down-regulated.

My work is related to several prior attempts to use machine learning to predict gene-regulation

levels (e.g., Brown et al. 2000, Dudoit et al. 2000; Xing et al. 2001), but my focus is different in

that my goal is not to predict gene-regulation levels, but to automatically generate human-readable

characterizations of the up- or down-regulated genes to help scientists generate hypotheses to ex-

plain experiments.
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I investigate herein a new rule-building algorithm of my own design against a standard success-

ful algorithm from the machine-learning literature, evaluating how well each satisfies my desider-

ata of accuracy and comprehensibility. The standard approach to which I compare is PFOIL ,

(Mooney 1995) a rule learner based on propositional logic.

In my current set of experiments, I consider a gene up-regulated if its ratio of RNAafter to

RNAbefore (the gene’s expression ratio) is greater than 2; if this ratio is less than I consider it

down-regulated. As is commonly done, I currently discard as ambiguous all genes whose expres-

sion ratio is between 1
2

and 2. I train the learners only using the data set of up-regulated and

down-regulated genes and do not attempt to model the ambiguous genes.

In a published paper (Molla et al. 2002) we describe experiments that pitted two successful,

standard, machine-learning algorithms against each other at the same task of interpreting gene

chip expression data using text annotating the genes. The two algorithms were PFOIL and Nave

Bayes (Mitchell 1997). Here I introduce a new algorithm, GORB. I also propose an atypical

evaluation method for machine-learning algorithms. Previously, I used cross-validation, the domi-

nant technique for machine-learning evaluation. We now argue that a statistical method called the

permutation test is actually a more appropriate metric for characterization tasks and that, though

cross-validation is still a good measure for predictive accuracy, the permutation test could be ap-

plied to other learning tasks where a model or characterization of the data, rather than an accurate

predictor, is the desired output.

I use this method to measure my first desired property: accuracy. I record the accuracy of

the model in classifying the examples in the entire data set. This is in contrast to my previous

work, which recorded the accuracy of models on a held-out test set to ensure that the accuracy

measurement was unbiased. Instead of using a test set, in this paper, I repeatedly randomly permute

the labels of the examples, train the learner and then record the accuracy of the resulting model

each time. I only consider the model from the real data to be significant if the accuracy of the

model is significantly better than the accuracy of the models from the permuted data sets. Section

9.1.3 further explains the permutation test.
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My second desired property is human comprehensibility. As mentioned before, comprehensi-

bility is the reason I express the rules in terms of English words. The actual comprehensibility of

a particular model, however, is difficult to measure. I use a crude approximation by counting the

number of distinct SwissProt words appearing in a given model.

Section 9.1 presents the machine-learning algorithms I investigate in my experiments. Sec-

tion 9.2 further explains my experimental methodology and Section 9.3 presents and discusses

experimental results obtained using data from the Blattner E. coli Laboratory at the University of

Wisconsin.

9.1 Algorithm Descriptions

This section describes the two algorithms – PFOIL (Mooney 1995) – and GORB (General-

purpose One-step-look-ahead Rule Builder), an algorithm devised by me. Both algorithms take

as input a collection of training instances (in my case, genes), labeled as belonging to one of two

classes (which I will call up and down), and described by a vector of Boolean-valued features.

Each feature corresponds to a word being present or absent from the text description of the gene.

Both algorithms produce a model that can be used to categorize a gene on the basis of its feature

values (i.e., the words describing it).

9.1.1 PFOIL

PFOIL (Mooney 1995) is a propositional version of FOIL (Quinlan 1990), a rule-building algo-

rithm that incrementally builds rules that characterize the instances of a class in a data set. FOIL

builds rules for a first-order logic language, so that the rules are conjunctions of features (in this

case, English words or their negation) that may contain logical variables (and may even be re-

cursive) and must be interpreted by a first-order reasoning engine such as Prolog. PFOIL uses a

simpler propositional language, and builds rules that are conjunctions of features. PFOIL rules can

be interpreted straightforwardly – a rule covers an instance if each feature in the rule is true of

the instance. In my domain, a rule specifies words that must or must not be present in a gene’s

annotation.
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PFOIL builds a set of rules by constructing one rule at a time. It constructs each rule by adding

one feature (or its negation) at a time to the current rule. At each step, it chooses the feature that

maximizes the performance of the rule according to the FOILGain measure. It stops adding to a

rule when either the rule covers only positive instances, or none of the remaining features have a

positive FOILGain. When a rule is complete, the algorithm removes all of the positive instances

covered by that rule from the data set, and then builds a new rule if there are any positive examples

not yet covered by at least one learned rule.

FOILGain is a measure of the improvement that would be obtained by adding a new feature to

a rule. It is a trade-off between the coverage of the new rule – the number of positive instances of

the class that are covered by the rule – and the increase in precision of the rule – the fraction of the

instances covered by the rule that are positive:

F OILGain(rule, f) = p(log(
p

p + n
))− log(

P

P + N
)

where P and N are the number of positive and negative instances covered by rule, and p and n

are the number of positive and negative instances that are covered when feature f is added to rule.

As originally described by Mooney (1995), PFOIL does not prune its rule set. Because PFOIL

keeps constructing rules until it has covered all the positive instances, a data set with noise is likely

to result in a large set of rules, many of which may be specific to particular instances.

To address this problem, I have extended PFOIL to include a rule-pruning stage, along the lines

of the pruning in FOIL. In the pruning stage, the algorithm repeatedly removes a single feature

from one of the rules, choosing the feature whose removal results in the highest accuracy of the

remaining rule set. When all the features are removed from a rule, the rule is removed from the

rule set. Rather than halting the pruning when the accuracy peaks, in my experiments I continue

the pruning until the rule set is empty in order to explore the trade-off between comprehensibility

and accuracy.
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9.1.2 GORB

The GORB algorithm (Table 9.1) is similar to that of PFOIL in terms of its input and output. It

searches the identical hypothesis space of possible rules, but differs in how it searches this space.

Like PFOIL, GORB explores the hypothesis space by adding one feature at a time to an ever-

expanding disjunction of conjunctive rules. One difference, however, is that instead of building

the rules sequentially, one rule at a time, GORB considers adding a feature to any existing rule or

starting a new rule. This is illustrated in Figure 9.2 with each letter representing one feature. At

each step, the current rule set is illustrated.

The other difference is that, instead of using an information-gain-based heuristic to decide

which feature to add, GORB computes the accuracy that will result from the addition of this feature.

Though time-consuming, this method directly seeks to improve accuracy, which is my desired

property.

As with my version of PFOIL, I have included a pruning phase. It works identically to my

PFOIL pruning stage, repeatedly removing a single feature from one of the rules, choosing the fea-

ture whose removal results in the highest accuracy of the remaining rule set. It is worth noting that

this phase, in both PFOIL and GORB, is essentially GORB’s hypothesis-space search in reverse.

Instead of searching the space of possible features for the one whose addition results in the best

accuracy, the pruning algorithm searches the space of features included in the model for the one

whose removal results in the best accuracy.

9.1.3 The Permutation Test

A property of both PFOIL and GORB is that they are guaranteed to find a model for any data

set, regardless of whether there is any relationship between the descriptions and the labels, because

the space of disjunctions of conjunctive rules is large enough to describe any set of instances with

any labels. In the worst case, the algorithms could generate a distinct rule for each instance.

In most data sets, especially if the instances have many features, the algorithms will be able to

find more compact models that exploit possibly random associations between instances and labels.

Therefore, the fact that a model is produced by one of the algorithms is not evidence that the model



87

Table 9.1 Rule construction with GORB�

�

�

�

Algorithm 9.1.1: GORB(dataSet, featureSet)

ruleSet← ∅, accuracy ← 0, prevAccuracy ← −1, curAccuracy ← 0

while accuracy > prevAccuracy

prevAccuracy ← accuracy

for each feature ∈ featureSet

newRule← a new rule consisting only of the current feature: eg.

“IF feature then up-regulated”
curRuleSet← ruleSet ∪ newRule

curAccuracy ← accuracy of curRuleSet on dataSet

if curAccuracy > accuracy

then accuacy ← curAccuracy

for each rule ∈ ruleSet

newRule← the current feature added to the current rule

curRuleSet← ruleSet ∪ newRule

curAccuracy ← accuracy of curRuleSet on dataSet

if curAccuracy > accuracy

then accuacy ← curAccuracy

Repeat the above process for the negation of feature

if accuracy > prevAccuracy

then Add the feature that generated accuracy to the rule in ruleSet (either new or

existing) where accuracy was measured
return (ruleSet)
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Table 9.2 Hypothesis space search: PFOIL vs. GORB

Step1 Step2 Step3 Step4 Step5 Step6

PF
O

IL Rule1 : A Rule1 : AB Rule1 : AB Rule1 : AB Rule1 : AB Rule1 : AB

Rule2 : C Rule2 : CD Rule2 : CDE Rule2 : CDE

Rule3 : F

G
O

R
B

Rule1 : A Rule1 : A Rule1 : AC Rule1 : AC Rule1 : ACE Rule1 : ACE

Rule2 : B Rule2 : B Rule2 : B Rule2 : B Rule2 : BF

Rule3 : D Rule3 : D Rule3 : D

represents a meaningful relationship between the descriptions and the labels. To show that a model

is significant, one must show that the algorithm is unlikely to have produced a model of the same

quality as a result of random associations.

A standard way of showing the significance of a model in a classification or prediction task is to

test its accuracy on a held-out test set, since a model that is merely the result of chance associations

in the training set will perform poorly on the test set. This approach is appropriate for prediction

tasks, since the accuracy of the model on the test set is also a good estimate of the accuracy on

future instances, which is important in a prediction task. In a characterization task, there are no

future instances to predict, and the training data is the complete data set. Therefore measuring

accuracy on a test set is not a useful measure. Furthermore, the limited size of the data set means

that holding any data out of the training set will likely reduce the quality of any models that are

learned. A permutation test is a better way of measuring the significance for a characterization task

since it does not require holding out any data and is unrelated to prediction.

A permutation test (Good 2001) is a statistical test to determine significance by comparing the

results of an algorithm on a real data set to the results of the algorithm on permutations of the real

data set in which the meaningful relationships have been lost. If the model from the real data set

is no better than the models from the permuted data sets, then it is not considered meaningful. If

the model from the real data set is much better than models from the permuted data sets, then the
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model must be taking advantage of semantically meaningful relationships in the data set and is

considered meaningful.

In my application, the quality of a model is its accuracy on the data set given the size of the

model. My permutation test compares the accuracy of a model on the real data set to the accuracy

of the models of the same size produced on data sets obtaining by randomly permuting the labels

(i.e., whether the gene is up- or down-regulated) of the real data set. The model from the real data

set is considered significant if its accuracy is clearly higher than the accuracies of all the models

from the permuted data sets. It is important in any permutation test that enough permutations are

considered to obtain a statistically valid result. The number of permutations required depends on

the data. I have found that 30 permutations are adequate for my particular application .

9.2 Experimental Methodology

The data I am using are from microarray experiments performed by the Blattner E. coli Se-

quencing Laboratory at the University of Wisconsin. In my computational experiments, I used my

methods on 43 different experiments that measure expression of approximately 4,200 genes in E.

coli under various conditions. These conditions include heat and cold shock and various antibiotics

for various periods of time. In order to measure the change in expression due to each condition, I

compare these expression levels to the mean of those measured in six replicate microarrays under

standard conditions . By this definition, each experiment includes, on average, 717 up-regulated

genes, 352 down-regulated genes and 3221 unregulated genes.

To construct the text description for the genes, I use all words of all the text fields in the Swis-

sProt database. These include the comment (CC) fields (with the exception of the database (CDB)

and mass spectrometry (CMS) topics since these only contain ibnformation about the experimental

techniques used, not about the protein itself), the description (DE) field, the Organism Classifica-

tion (OC) field, the keyword (KW) field, and the reference title (RT) fields (with the exception of

titles containing: The Complete Sequence of the E. coli K12 Genome).
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9.3 Experimental Results

Figure 9.3 shows the rulesets of PFOIL and GORB on a typical run, this one from my cold-

shock testbed, after the all features have been added and the rule sets have been pruned to 10

features each. As it shows, the format of the models is similar, but not the content. Some of

the PFOIL rules seem plausible. For example, Rule 2: “NOT transport and membrane” can be

interpreted as an indication that the non-transport-related membrane proteins are involved in the E.

coli’s cold-shock response. Others seem to be spurious. Rule 1 is simply the word an. The GORB

rules, for the most part, seem more reasonable. Rule 5 points predictably to E. coli’s “SOS”

response, a well known E. coli stress response pathway. Rule 2 points to factors other than control

factors and activation factors. Their up-regulation may provide a hint at what types of processes

are involved in the E. coli cold shock response.

Table 9.3 Sample small rule-sets built from the experimental cold-shock data

Figures 9.1.1 and 9.1.2 show the results of the permutation tests on the two algorithms on four

of the experimental data sets and the results of each step of pruning on the two algorithms on the

same data set. All data points for model sizes between one and twenty are plotted. The baseline

accuracies for these experiments are also plotted; these are the accuracies that would be achieved

if the learner always chose the most frequent category (i.e., up-regulated).
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On both the real data and the permuted data, PFOIL tends to make much larger models. Though

the accuracy of PFOIL’s complete model on real data is comparable to the accuracy of GORB’s,

when models of similar size are compared, GORB is substantially more accurate. For example,

in the case of heat shock, both complete rule sets are about 87% accurate. However, PFOIL’s

complete rule set contains 119 words while GORB’s contains only 31. By the time PFOIL’s rule

set is pruned down to 31 rules, its accuracy has dropped to 68%.

Also striking is the fact that, though both algorithms tend to perform better on the real data

than on permuted data, GORB’s margin is much wider and remains so well into the range of

comprehensibility (around 10 words). This is of crucial importance because, as explained earlier,

this means that GORB is making models that rely on real patterns in the data since, when those

patterns are removed, GORB performs much worse.

9.4 Discussion

Though it may seem surprising that GORB is able to exceed baseline accuracy on randomly

permuted data, the fact that the data can be fit whether or not there exists a pattern is precisely the

point of doing the permutation test. The permutation test is meant to show, by virtue of the fact that

the accuracy is much better on the real data than on the permuted data, that the learner is picking

up on real connections between the text and the biological behavior. When these connections are

removed, the learner ceases to perform as well.

Conversely, it may seem strange that PFOIL does not always exceed the baseline accuracy,

even on the non-permuted data. One thing to keep in mind, however, is the fact that the data points

plotted in Figure 9.1.1 correspond to the performance of heavily pruned rule sets. The full rule sets

exceed the baseline by a wide margin.

Though the GORB rule sets are more accurate and more significant than the PFOIL rule sets

across the full range of rule set sizes, the difference in the heavily pruned models is most striking.

GORB appears to be much better at characterizing the data when only allowed to use a few words

in its models. This suggests that it is doing a better job at identifying the real regularities in the

data.
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Though more accurate, the GORB strategy does suffer from having a large number of rules

that are only relevant in the context of the greater rule set. This occurs because they only specify

a single infrequently occurring word that may or may not be descriptive on its own; that is on

the whole set of genes, not just those not covered by other rules. One remedy for this may be an

variant on GORB that is biased toward rules of similar length or individual rules that each have

high precision even if they have only moderate coverage.

By my measure, the comprehensibility of both methods is good. Short models tend to be

almost as good as longer ones. It is, however, also clear that, as mentioned earlier, length is a crude

measure. Attainment of a sophisticated answer on comprehensibility will probably someday have

to involve a large number of human testers.

This work in mining biomedical text for explanations of experiments is an early step in what is

now a growing field (Ananiadou and Mcnaught 2005).
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Figure 9.1 PFOIL results vs. GORB results
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Chapter 10

Additional Computational Methods for Molecular Biology

In addition to direct applications of machine learning, I have also developed other algorithms

and methods to solve specific problems in molecular biology. Here I will present two of these. The

first is a novel extension to a tree-based approach to efficiently choosing microarray probes that are

sufficiently unique within a genome. The second is a genetic simulation meant to test a long-held

theory in evolutionary biology.

10.1 Probe Uniqueness Testing

When choosing probes for a gene chip, one crucial concern is the uniqueness of the probes. Not

only should they be strictly unique in the genome being tested, there should not even be another

similar region in this genome. This is because non-specific hybridization can severely confound

the results of an experiment.

10.1.1 Suffix Trees

Suffix trees are generally used for this purpose (Kurtz et al. 2001). A suffix tree is an efficient

tree data structure designed to hold string data. Each string is encoded as a path from the root of

the tree down, with a sequential character of the string represented at each vertex. For the task of

uniqueness testing, the tree only needs to be as deep as the longest probe to be tested. Figure 10.1

is an illustration of such a suffix tree holding every possible substring of a very short (15-base-

long) DNA sequence. Characters terminating the DNA sequence are denoted by a “$”. Also, this

particular suffix tree only extends to a depth of 5. Though real-world probes are typlically between
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20 and 120 bases long, for simplicity, I have designed this fictitious suffix tree to test probes of

length 5.

In this context, the suffix tree is typically used to count the number of mismatches from the

most similar region of the genome. Probes are eliminated based on a simple threshold value for

this count. Each path from the root is traversed until it has either accumulated enough mismatches

to be disregarded or reached the end of the probe sequence. Each path that is disregarded in this

way represents a genomic region that is sufficiently dissimilar from the probe sequence. Each path

that is explored to the completion of the probe sequence represents a region of the genome that is

similar to the probe within the threshold value. This process is illustrated in Figure 10.2.

Figure 10.1 A suffix tree containing every substring of the genome sequence
ACGGAGTAATTGCCT, truncated, for simplicity, to a maximum depth of 5. The positions that

represent the terminus of the DNA sequence are denoted by a “$”.

In collaboration with NimbleGen Systems, I have discovered that the bases in the probe do not

contribute uniformly to the hybridization characteristics. Specifically, mismatches in the middle

of a probe sequence contribute more to uniqueness than those at the ends. This effect can be

seen in Figure 10.3 from Tobler et al. (2002). This is a graph of the normalized information

gain attributed to the identity of each probe in a 24-base-long probe sequence. Though the task is

different – we were measuring the contribution of each base to the predicted efficiency of the probe
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– the information is still relevant. If the identity of the base at one position is more important than

that at another, we assume that a mismatch at that position will also have more of an impact.

Because of this, I have developed a modification to the standard uniqueness-testing algorithm

that weights bases differently based on their position in the probe and eliminates probes based on

the accumulation of this weight or, more precisely, the lack thereof.

10.1.2 Sequence Alignment

Others have tried to account for this effect by adding a further step to measure the hybridization

potential between the probes and the most similar sections of the genome. An alignment step can

be used to further filter the probes based on Melting Point (Tm) (Kaderali and Schliep 2002). This

will also up-weight bases in the middle of a probe because they will more substantially lower the

Tm of the probe-target combination, also known as the complex. Unfortunately, this uses O(n2)

time for each probe analyzed, where n is the length of the probe. This is not feasible for microarrays

for which over 400,000 probes routinely need to be evaluated.

10.1.3 Our Uniqueness Testing Method

So, in collaboration with NimbleGen Systems, I have developed a method to take this into

account in the suffix tree-traversal step itself. Instead of simply counting the number of mismatches

(up to the threshold value) from every path in the suffix tree (Figure 10.2), we assign a weight to

each position in the tree and add the appropriate weight at each node during the traversal of the

tree. It is this accumulated weight that is compared to the threshold value to make a determination

with regard to uniqueness (Figure 10.4).

Observe that we will never have to explore more than threshold
minWeightBase

paths, where minWeightBase

is the weight at the base position that contributes the least to the total weight, and that threshold

and minWeightBase are both constants specified by the user. This implies that, given

minWeightBase > 0
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Figure 10.2 The result of a traversal of the suffix tree in Figure 10.1 by the standard method
(Kurtz, 2001) in search of matches to the probe sequence: GAATT. Each path from the root is
traversed until it has either accumulated enough mismatches to be disregarded or reached the end
of the probe sequence. Each path that is disregarded in this way represents a genomic region that
is sufficiently dissimilar from the probe sequence. Each path that is explored to the completion of

the probe sequence represents a region of the genome that is similar to the probe within the
threshold value. The nodes that were visited are denoted by a gray box. In each gray box is a

number. This specifies the number of mismatches from the probe sequence (GAATT)
accumulated between the root node and the node whose gray box contains the number.
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Figure 10.3 The bases in the probe do not contribute uniformly to the hybridization
characteristics. Their influence seems to be position-dependent. From Tobler et al. (2002), this
is a graph of the normalized information gain (Shannon, 1948) attributed to the identity of each
probe in a 24-base-long probe sequence. We made this graph by dividing a set of probes, who’s
comparative hybridization efficiency and base sequence are known, into two classes: good and
bad probes. Then we measured the value of each base’s identity A,G,C, or T in predicting the

class of a probe, in terms of entropy. For a more detailed explanation of this type of prediction,
see Section 3.3.

Figure 10.4 Instead of simply counting the number of mismatches (up to the threshold
value) from every path in the suffix tree (Figure 10.2), we assign a weight to each position in

the tree and add the appropriate weight at each node during the traversal of the tree. It is this
accumulated weight that is compared to the threshold value to make a determination with regard

to uniqueness. At the right are the weight values for each base position.
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, just as is the case with a simple thresholding of the number of mismatches, the time complexity

is linear in the length of the probe for each probe being evaluated based. This can be proved in the

following way:

• When exploring a path, we only branch in the case that we can afford a mismatch. That is,

the mismatch weight accumulated prior to this point in the tree plus the mismatch weight at

this level of the tree is less than or equal to the threshold value.

• By definition, no position in the tree contributes less to total weight than minWeightBase.

• So, weight cannot be accumulated any faster than:

minWeightBase(the number of branching events on the path)

.

• Since threshold is the maximum amount of weight that can be accumulated before a path is

discarded, a path can have no more than threshold
minWeightBase

branching events.

• Since there are only 4 bases to choose from, each branching event will create, at most, 4

new paths. So the breadth of the tree of traversals can never exceed 4( threshold
minWeightBase

); because
threshold

minWeightBase
is a constant, 4

threshold
minWeightBase is also a constant. Since the maximum breadth

of this traversal tree is constant, the maximum size of this tree is linear in the depth of the

traversal tree, which is the same as the length of the probe.

It may be observed that, though the algorithm is linear with regard to the length of the probe,

it is exponential with regard to threshold
minWeightBase

. This value is analogous to the maximum number

of mismatches allowed by a simple shreshold in the more typical suffix-tree traversal method. In

practice, however, this is not a major issue since, for reasonable values, threshold tends to be

exhausted quickly by base positions that exhibit more influence than minWeightBase.

This represents an efficiency improvement over the O(n2) alignment step, which is no longer

needed when probe position is taken into account in the suffix-tree phase.
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Though a comprehensive study of this approach has not been done, in practice, this method

provides an effective substitute to the the time-consuming sequence-alignment step. Since I devel-

oped this method in 2001, NimbleGen Systems has been successfully using it as their method to

assess probe uniqueness.

10.2 Genetic Simulation for Evolutionary Biology

In collaboration with Eric Haag, an evolutionary biologist at the University of Maryland, I

wrote a population-simulation program that we used to simulate a phenomenon known as compen-

satory evolution (Kimura, et al. 1990). We adjusted the parameters to reflect different hypotheses

about the phenomenon and, by comparing the results of our simulation to observations made in real

organisms, were able to strongly support one hypothesis over the others (Haag and Molla 2005).

10.2.1 Compensatory Evolution

When changes occur in two genes that, together, are beneficial, but would each have been

deleterious on their own, this is known as compensatory evolution. According to most annalytical

models, this should be a very rare event.

Until recently, evolutionary-biology theory held that it could only occur in the presence of ei-

ther tight linkage between the genes involved, high mutation rates, or very little evolutionary pres-

sure against the deleterious single-gene changes (Crow and Kimura 1965, Gillespie 1984, Kimura

1985, Michalakis and Slatkin 1996, Phillips 1996). However, it has been shown empirically that

compensatory evolution does happen quickly in the absence of these circumstances (Swanson and

Vacquier 1995, Metz and Palumbi 1996, Hellberg and Vacquier 1999, Kachroo et al. 2001, Haag

et al. 2002).

10.2.2 Pseudocompensation

In order to solve this conundrum, Professor Eric Haag developed the theory of pseudocom-

pensation (Haag and Molla 2005). His idea was that there may be intermediate forms of the
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Figure 10.5 Compensatory versus pseudocompensatory evolution of interacting gene
products, from Haag and Molla (2005). The products of two genes, A and B, interact via multiple

bonds, numbered here 1-3. Any one of these bonds is dispensible. In both true compensatory
evolution and in pseudocompensation, ancestral alleles allowing interaction via bond 1 could

evolve into descendant alleles functioning via bond 3 (both indicated by the shaded ovals). Bond
2 does not change, but is included to represent the multipartite nature of macromolecular

interactions. Panel (A) In traditional compensatory evolution, fully functional allele pairs, such as
A1B1 or A3B3, are separated mutationally by nonfunctional mismatch genotypes that have only a
single bond. With strong selection against mismatched alleles, evolution from A1B1 to A3B3 is

possible only under a narrow range of conditions. Panel (B) In pseudocompensation, a
multifunctional adaptor allele at each interacting locus (A2 or B2) is posited to exist that has the
capacity to interact productively with the products of both ancestral and derived alleles. Since
multiple alleles exist for each gene, arrows are included here to represent all possible direct
mutational events under pseudocompensation. For simplicity, our models only consider the

forward arrows (i.e. the arrows causing allele numbers to ascend rather than descend)

.
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genes, known as multifunctional intermediates, that mitigate the cost of making the first single-

gene change in the compensatory evolution process (Figure 10.5). For example, imagine a ficti-

tious 2-gene organism where gene A can have either allele A1 or allele A3 and gene B can have

either allele B1 or allele B3. The combination A1B1 produces a fit organism and the combination

A3B3 produces an even fitter organism. However, the genotypes A1B3 and A3B1 are strongly se-

lected against. It is also known that populations do mutate from A1B1 to A3B3 in far less time than

it should take for both genes to, by chance, mutate in the same individual.

Professor Haag’s Pseudocompensation idea was the idea that there may be an allele A2 or B2

that works with either of the other gene’s alleles, working as a sort of stepping stone between the

two genotypes. However, he had no way to test this theory.

10.2.3 Genetic Population Simulation Experiments

So, I developed software that simulated this process. It used parameters to specify the presence

or absence of an intermediate allele, selective pressures against the various alleles, mutation rate,

and population size. I used this software to simulate the evolution of populations over millions of

generations. I used the University of Wisconsin-Madison’s CONDOR system to run these simula-

tions, varying the parameters to investigate the likelihood of a compensatory-evolution event under

various conditions.

As described in Table 10.1, the first step in each simulation is to calculate the relative fitness

of each of the nine (haploid) or 81 (diploid) possible genotypes given the particular fitness model

specified. Each generation of the simulation consists of three phases: mutation, survival, and

mating. In the mutation phase, each individual in the population is mutated with probability de-

scribed by the given six forward mutation rates. The resulting population is then subjected to the

survival phase in which the quantity of each of the possible genotypes is adjusted directly by its

precomputed relative fitness. Finally, in the mating phase, a number of gametes equal to twice the

population size are formed by pulling random pairs of A and B alleles (with replacement) from the

population pool, and these are then randomly paired to form the next generation. The mutation,

survival, and mating phases are then repeated. Note that, though the number of individuals in the
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population may diverge from the given population size during the survival phase, it will return to

its original size during the mating phase. This ensures a population of consistent size at the start

of each iteration.

The C program that performs the haploid simulations, synthPopHap, was compiled and run

by me on a Sun cluster at the University of Wisconsin, Madison. The diploid version, synthPop,

is much slower, and was compiled on a Linux cluster to run up to 50 simultaneous runs with the

gracious assistance of Kai Zhang and the University of Maryland Institute for Advanced Com-

puter Studies. Both sets of simulations were run using the Condor Software Program, developed

by the Condor Team at the Computer Sciences Department of the University of Wisconsin, Madi-

son (available at http://www.cs.wisc.edu/condor/downloads/v6.6.license.html). For each of the 30

unique combinations of selection strength, fitness model, and population size tested, 20 replicate

runs were performed using the same 20 random seeds (1-20). To avoid potential artifacts due to

random number generator periodicity, the seeds of simulations that had not reached at least semi-

incompatibility by the 10 millionth generation were changed by adding a “1” in front of each (e.g.,

13 becomes 113). This was only required for two runs of the 840 performed, both in the haploid

adaptive bond gain simulations with N = 10,000 (seeds 15 and 19). Depending on population size,

some diploid runs took as long as several weeks to complete. Data are output as tab-delimited files

that note the frequency of each of the possible ordered genotypes at intervals of 200 generations.

10.2.4 Results

The results of this study are described in detail in Haag and Molla (2005). We showed that

pseudocompensation does indeed explain the apparent disconnect between laboratory results and

annalytical results. Figure 10.6 shows the interesting result of one of our experiments. A small

number of the B2 allele appear after approximately 14,000 generations and the A3, and subse-

quently the B3, alleles take over and dominate the population.
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Table 10.1 Pseudocode for the synthPop algorithm�

�

�

�

Algorithm 10.2.1: SYNTHPOP(populationSize, mutationRates, fitnessModel)

for each genotype ∈ the 9 (haploid) or 81 (diploid) possible{
fitnessgenotype ← calculate fitness based on fitnessModel

population← populationSize individuals of genotype A1B1; numGenerations← 0

repeat

for each individual ∈ population

MUTATION



for each gene ∈ individual
choose a random number, rand, where 0 < rand < 1

if rand < the mutation rate for this allele specified in mutationRates{
change this individual’s genotype by mutating this gene

newPopulation← ∅

for each genotype ∈ the 9 (haploid) or 81 (diploid) possible

SURVIVAL


curTotal = the number of individuals in populaton with this genotype

newTotal← curTotal ∗ fitnessgenotype

add newTotal individuals of genotype to newPopulation

population← newPopulation; newPopulation← ∅

for each i← 1→ populationSize

MATING



choose, at random, one member of population

record the A allele of this member

choose, at random, another member of population

record the B allele of this member

combine the two chosen alleles to form an individual

add this individuals to newPopulation

population← newPopulation; numGenerations + +

until the entire population is A3B3

return (numGenerations)
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Figure 10.6 An example of allele frequency dynamics in one of the experiments. The total
population size is normalized to 1.0. For simplicity, the A1 and B1 alleles are not plotted. Their
abundance can be inferred from the difference between the other totals and the 1.0 level on the

Y-axis. In this experiment, 3-type alleles can rapidly spread when even a small population of the
other 2-type allele is present. In this case, a very small proportion of allele B2 has been produced
by drift at around generation 14,000. The subsequent arising of the A3 mutation in this context

leads to rapid fixation of both alleles.
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10.3 discussion

These methods that I developed were both the result of current needs by biologists. The pro-

belms were both interesting and required efficient computational methods to solve. Using sound

programming concepts, the computer scientist can make a distinct contribution to the science of

biology.
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Chapter 11

Conclusion

I have focused on applying machine learning to problems in genetics, contributing to both. I

have helped to enhance the strong synergy between the two disciplines. Here I will summarize my

major contributions to genetics and to machine learning.

11.1 Contributions to Genetics

I have used machine learning and other computational methods to directly affect the process

by which microarrays are designed and used. Most significantly, I have contributed directly to the

following major areas of current microarray use.

11.1.1 Automated Analysis of Expression

As also described in Chapter 9 and in Molla et al. (2002), we developed an early system to use

textual descriptions of genes and proteins to automatically generate descriptions of the phenomena

underlying microarray-expression experiments. We followed this up with studies to actually peruse

a published textbook (Ingraham and Neidhardt, 1987) for relevant strings of text and report them

to the user, without any human intervention, based on the results of microarray experiments.

11.1.2 SNP Identification

As described in Chapter 7 and Molla et al. (2004), we developed a new method to interpret

SNP-finding gene chips. As an alternative to the complex parametric statistical technique requiring
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a great deal of tuning that had been used previously (Cutler et al. 2001), we developed a machine-

learning approach that requires virtually no tuning. This method drastically improved the efficiency

of the process, is currently in use at Nimblegen Systems, and has identified thousands of SNPs over

the time since it was developed.

11.1.3 Genomic Copy-Number Variation Analysis (CHG)

Human genome copy-number polymorphisms, either amplifications or deletions in human

DNA, are often indicative of specific diseases including cancer. The most effective known method

for identifying such polymorphisms involves oligonucleotide microarrays and is know as Com-

parative Genomic Hybridization (CGH). In Chapter 6, I described how we developed a dynamic-

programming method for interpreting such an experiment which executes a standard benchmark

more effectively and efficiently than any other known method. This method is also in current use

at NimbleGen and had been used to identify thousands of such polymorphisms.

11.1.4 Direct Genomic Selection using Gene Chips

In Chapter 5, I described how I helped to pioneer a fourth and completely new use of gene chips.

The ability to discover novel variation in a genome is a key challenge in genomics, especially in

the human. I played a significant role in the development, with NimbleGen Systems, of a process

described in an upcoming paper by which gene chip can be used as a filter for genomic DNA,

allowing the sequencing of all of exons in any given human genome for well under $1,000.

11.2 Contributions to Machine Learning

In doing this work, I have also helped to advance the science of machine learning. Here I will

describe two major contributions.
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11.2.1 Text Mining

In addition to the vast amount of data being generated through the use of gene chips, the amount

of annotated genomic data available in public databases is also rapidly increasing. Through col-

laboration with University of Wisconsin’s E. coli lab, as described in Chapter 9 and in Molla

et al. (2002, 2004c) developed automated methods for combining these two sources of infor-

mation to produce insight into the operation of cells under various conditions. Our approach

uses machine-learning techniques to identify words associated with genes that are up-regulated

or down-regulated in a particular microarray experiment.

11.2.2 Semi-supervised Learning for Large-Scale Experiments

In order to make use of both labeled and unlabeled examples, one can use a relatively new

class of algorithms: semi-supervised learning (Chapelle et al. 2006). This class of learning is

particularly useful in domains where unlabeled data are abundant and labeled data are scarce. In

Chapter 8, using the insights gained in the SNP-finding project (Chapter 7), I have developed a

new algorithm for semi-supervised learning which I have tried, with some promising results, on

both biological and non-biological datasets.

11.3 Future Work

Through continued collaboration with biologists, statisticians, and other computer scientists

in both academia and private industry, I intend to continue to participate in the design and in-

terpretation of high-throughput experiments, design algorithms to increase both throughput and

comprehensibility, and add new dimensions to the automated interpretation of experiments. By

doing so, I will not only participate in discovery in field of biology; I will also continue to uncover

new computer science principles and techniques that can be of general use.
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11.3.1 Data Mining

I plan to use an approach similar to my text-mining projects to combine other sources of data

such as protein structures, functional classifications, and other chemical assays. Such methods

could also be used for text mining in different experimental domains.

I also plan to improve my methods of text mining to produce results that can not only be

comprehended, but can also be evaluated. In retrospect, the most difficult aspect of mining a piece

of prose text like a book is the ability to reliably and algorithmically evaluate the results. Once

such a method is created, searching the space of explanations for a phenomenon or experimental

result can proceed more rapidly.

11.3.2 Semi-Supervised Learning

At present, over a dozen large-scale projects to gather genetic information are underway around

the world . Some are sequencing DNA; others are measuring gene reactions to chemical com-

pounds; still others are cataloging genetic variation. One thing that all of the projects have in

common, however, is that they are collecting data at a much higher rate than can be thoroughly

analyzed by researchers. In most cases, only a small fraction of the data has been closely investi-

gated. This small fraction can be considered labeled data. The rest is unlabeled data. This is the

perfect domain for the ongoing development of semi-supervised learning methods.

Empirical study has shown that not all real-world datasets respond well to Chapter 8’s pretrain-

ing algorithm. This may be because not all real-world datasets contain key features. I would like

to develop methods for identifying datasets that have this property in order to exploit it. Another

possible reason for this difficulty is that my algorithm needs to be improved. To this end, I have

begun to develop an SVM kernel that tries to make use of the nearby cluster hypothesis directly.

11.3.3 Microarray Technology

I will also continue to contribute to the science and technology of genetic microarrays. As I

have shown most clearly, in chapter 5, with our genome enrichment project, this dynamic technol-

ogy continues to be applied in surprising ways with profound results. I intend to remain on the
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forefront of this work by creating the means by which new types of gene chips are designed and

used.

The ease and scalability of the genome enrichment approach show that the method can be

adapted for larger fractions of the genome and for analysis of many samples. Current efforts aim

to produce a microarray that can capture the whole human exon set for sequencing. Though the

probes were made using information gained from my study of probe quality reported in chapter

4 and from Tobler et al. (2002), I am in the process of performing a similar experiment in the

context of sequence capture. The longer probes and different goals of this process could have a

strong influence on the type of probe that is effective at this job.

11.4 Final Remarks

It is clear that high-throughput techniques, such as rapid DNA sequencing and gene chips are

changing the science of genetics. Hypothesis-driven science is now strongly complemented by

these newer data-driven approaches. It is well understood that computer science will play a crucial

role in their development and application. As I and others have shown, machine learning has been

of particular value in this domain.
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