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Abstract:
Link discovery (LD) is an important task in data mining for counter-terrorism and is
the focus of DARPA’s Evidence Extraction and Link Discovery (EELD) research pro-
gram. Link discovery concerns the identification of complex relational patterns that
indicate potentially threatening activities in large amounts of relational data. Most
data-mining methods assume data is in the form of a feature-vector (a single relational
table) and cannot handle multi-relational data. Inductive logic programming is a form
of relational data mining that discovers rules in first-order logic from multi-relational
data. This paper discusses the application of ILP to learning patterns for link discovery.
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1 Introduction
Since the events of September 11, 2001, the development of information technology
that could aid intelligence agencies in their efforts to detect and prevent terrorism has
become an important focus of attention. The Evidence Extraction and Link Discovery
(EELD) program of the Defense Advanced Research Projects Agency (DARPA) is one
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research project that attempts to address this issue. The establishment of the EELD
program for developing advanced software for aiding the detection of terrorist activity
pre-dates the events of 9/11. The program had its genesis at a preliminary DARPA
planning meeting held at Carnegie Mellon University after the opening of the Center
for Automated Learning and Discovery in June of 1998. This meeting discussed the
possible formation of a new DARPA research program focused on novel knowledge-
discovery and data-mining (KDD) methods appropriate for counter-terrorism.

The scope of the new program was subsequently expanded to focus on three re-
lated sub-tasks in detecting potential terrorist activity from numerous large information
sources in multiple formats. Evidence extraction (EE) is the task of obtaining structured
evidence data from unstructured, natural-language documents. EE builds on infor-
mation extraction technology developed under DARPA’s earlier MUC (Message Un-
derstanding Conference) programs [Lehnert & Sundheim1991, Cowie & Lehnert1996]
and the current ACE (Automated Content Extraction) program at the National Institute
of Standards and Technology (NIST)[NIST]. Link Discovery (LD) is the task of iden-
tifying known, complex, multi-relational patterns that indicate potentially threatening
activities in large amounts of relational data. Some of the input data for LD comes
from EE, other input data comes from existing relational databases. Finally, Pattern
Learning (PL) concerns the automated discovery of new relational patterns for poten-
tially threatening activities. Novel patterns learned by PL can be used to improve the
accuracy of LD. The current EELD program focused on these three sub-topics started
in the summer of 2001. After 9/11, it was incorporated under the new Information
Awareness Office (IAO) at DARPA.

The data and patterns used in EELD include representations of people, organiza-
tions, objects, and actions and many types of relations between them. The data is
perhaps best represented as a large graph of entities connected by a variety of relations.
The areas of link analysis and social network analysis in sociology, criminology, and
intelligence [Jensen & Goldberg1998, Wasserman & Faust1994, Sparrow1991] study
such networks using graph-theoretic representations. Data mining and pattern learning
for counter terrorism therefore requires handling such multi-relational, graph-theoretic
data.

Unfortunately, most current data-mining methods assume the data is from a sin-
gle relational table and consists of flat tuples of items, as in market-basket analysis.
This type of data is easily handled by machine learning techniques that assume a
“propositional” (a.k.a “feature vector” or “attribute value”) representation of examples
[Witten & Frank1999]. Relational data mining (RDM) [Dz̆eroski & Lavrac̆2001b], on
the other hand, concerns mining data from multiple relational tables that are richly con-
nected. Given the style of data needed for link discovery, pattern learning for link dis-
covery requires relational data mining. The most widely studied methods for inducing
relational patterns are those in inductive logic programming (ILP) [Muggleton1992,
Lavrac & Dzeroski1994]. ILP concerns the induction of Horn-clause rules in first-
order logic (i.e., logic programs) from data in first-order logic. This paper discusses
our on-going work on applying ILP to link discovery as a part of the EELD project.
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2 Inductive Logic Programming (ILP)
ILP is the study of learning methods for data and rules that are represented in first-
order predicate logic. Predicate logic allows for quantified variables and relations and
can represent concepts that are not expressible using examples described as feature
vectors. A relational database can be easily translated into first-order logic and be used
as a source of data for ILP [Wrobel2001]. As an example, consider the following rules,
written in Prolog syntax (where the conclusion appears first), that define the uncle
relation:

uncle(X,Y) :- brother(X,Z),parent(Z,Y).
uncle(X,Y) :- husband(X,Z),sister(Z,W),parent(W,Y).

The goal of inductive logic programming (ILP) is to infer rules of this sort given a
database of background facts and logical definitions of other relations [Muggleton1992,
Lavrac & Dzeroski1994]. For example, an ILP system can learn the above rules for
uncle (the target predicate) given a set of positive and negative examples of uncle
relationships and a set of facts for the relations parent, brother, sister, and husband (the
background predicates) for the members of a given extended family, such as:

uncle(tom,frank), uncle(bob,john),
not uncle(tom,cindy), not uncle(bob,tom)
parent(bob,frank), parent(cindy,frank),
parent(alice,john), parent(tom,john),
brother(tom,cindy), sister(cindy,tom),
husband(tom,alice), husband(bob,cindy).

Alternatively, rules that logically define the brother and sister relations could be
supplied and these relationships inferred from a more complete set of facts about only
the “basic” predicates: parent, spouse, and gender.

If-then rules in first-order logic are formally referred to as Horn clauses. A more
formal definition of the ILP problem follows:

� Given:

– Background knowledge, � , a set of Horn clauses.

– Positive examples, � , a set of Horn clauses (typically ground literals).

– Negative examples, � , a set of Horn clauses (typically ground literals).

� Find: A hypothesis, 	 , a set of Horn clauses such that:

– 
���
�����	������ ��� (completeness)

– 
���
�����	����! � �"� (consistency)

A variety of algorithms for the ILP problem have been developed [Dz̆eroski & Lavrac̆2001a]
and applied to a variety of important data-mining problems [Dz̆eroski2001]. Neverthe-
less, relational data mining remains an under-appreciated topic in the larger KDD com-
munity. For example, recent textbooks on data mining [Han & Kamber2001, Witten & Frank1999,
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Hand, Mannila, & Smyth2001] hardly mention the topic. Therefore, we believe it is an
important topic for “next generation” data mining systems. In particular, it is critical
for link discovery applications in counter-terrorism.

3 Initial Work on ILP for Link Discovery
We tested different ILP algorithms on various EELD datasets. The current EELD
datasets pertain to two domains – Nuclear Smuggling and Contract Killing. The Con-
tract-Killing domain is further divided into natural (real world) data manually collected
and extracted from news sources and synthetic (artificial) data generated by simulators.
Section 3.1 presents our experimental results on the natural Smuggling and Contract-
Killing data, while section 3.2 presents our initial results on the synthetic Contract-
Killing data.

3.1 Experiments on Natural Data
3.1.1 The Nuclear-Smuggling Data

The Nuclear-Smuggling dataset consists of reports on Russian nuclear materials smug-
gling [McKay, Woessner, & Roule2001]. The Chronology of Nuclear and Radioactive
Smuggling Incidents is the basis for the analysis of patterns in the smuggling of Russian
nuclear materials. The information in the Chronology is based on open-source report-
ing, primarily World News Connection (WNC) and Lexis-Nexis. There are also some
articles obtained from various sources that have been translated from Italian, German
and Russian. The research from which the Chronology grew began in 1994 and the
chronology itself first appeared as an appendix to a paper by Williams and Woessner
in 1995 [Williams & Woessner1995b, Williams & Woessner1995a]. The continually
evolving Chronology then was published twice as separate papers in the same journal
as part of the “Recent Events” section [Woessner1995, Woessner1997]. As part of the
Evidence Extraction and Link Discovery (EELD) project, the coverage of the Chronol-
ogy was extended to March 2000 and the Chronology itself grew to 572 incidents. The
incident descriptions in the Chronology are one entry descriptions per incident. The
incidents in the Chronology have also been extensively cross-referenced.

The data is presented as a chronology of the incidents in a relational database for-
mat. This format contains Objects (described in rows in tables), each of which has
Attributes of differing types (i.e., columns in the tables), the values of which are a
matter of input from the source information or from the user. The Objects are of dif-
ferent types, which are denoted by prefixes (E , EV , LK , and L ), and consist of the
following.

# Entity Objects (E ...): these consist of E LOCATION, E MATERIAL, E OR-
GANIZATION, E PERSON, E SOURCE, and E WEAPON;

# Event Objects (EV ...): these currently consist of the generic EV EVENT;
# Link Objects (LK ...): used for expressing links between/among Entities and

Events, and currently consisting of those represented by X’s in Table 3.1.1.
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Table 1: Links among Entities and Events in Nuclear-Smuggling Data
Event Person Organization Location Weapon Material

Event X
Person X X
Organization X X X
Location X X X X
Weapon X X X X X
Material X X X X X X

The actual database we use in our experiments has over 40 relational tables. The
number of tuples in a relational table vary from 800 to as little as 2 or 3 elements.

The ILP system has to learn which events in an incident are related in order to
construct larger knowledge structures that can be recognized as threats. Hence the
ILP system needs positive training examples that specify “links” between events. We
assume all other events are unrelated and therefore compose a set of negative examples.
We stipulate that related is commutative. Therefore we specified to the ILP system
used in our experiments that related(B,A) is true if related(A,B) is proven,
and vice-versa. Our set of examples consists of 140 positive examples and 140 distinct
negative examples randomly drawn from a full set of 8124 negative examples.

The linking problem in the Nuclear-Smuggling data is thus quite challenging in
that it is a heavily relational learning problem over a large number of relations, whereas
traditional ILP applications usually require a small number of relations.

3.1.2 The Natural Contract-Killing Data

The dataset of contract killings was first compiled by O’Hayon and Cook [Cook & O’Hayon2000].
It was a response to research on Russian organized crime that encountered frequent and
often tantalizing references to contract killings. Each of the contract-killing reports
provided a still photograph of the criminal scene in Russia, but there was no compara-
ble assessment of how these were linked, what the trends were, who the victims were,
the relationship between victims themselves or the relationship between victims and
perpetrators. The dataset on contract killings has been continually expanded by Cook
and O’Hayon with funding from DARPA’s EELD program through Veridian Systems
Division (VSD) [Williams2002]. The database was captured as a “chronology” of the
incidents. Each incident in the chronology received a description of the information
drawn from the sources, typically one news article, but occasionally more than one.
As in the Nuclear-Smuggling dataset, information in the chronology is based on open-
source reporting, especially Foreign Broadcast Information Service (FBIS) and Joint
Publications Research Service (JPRS) journals, and subsequently both FBIS on-line
and the cut-down on-line version World News Connection (WNC). These services and
Lexis-Nexis are the main information sources. Additional materials on the worldwide
web were consulted when this was feasible and helpful. The search was as exhaustive
as possible given the limited time and resources of those involved.
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The data is organized in relational tables in the same format as the Nuclear-Smu-
ggling data described in the previous section. The dataset used in our experiments has
48 relational tables. The number of tuples in a relational table varies from 1,000 to
as little as 1 element. The ILP learner task was to characterize Rival versus Obstacle
plus Threat events (i. e., the Obstacle and Threat examples were pooled into one cate-
gory, thereby producing a two-category learning task). Rival, Obstacle, and Threat are
treated as “motives” in the dataset. The motivation to this learning task thus is to rec-
ognize patterns of activity that indicate underlying motives, which in turn contributes
to recognizing threats. The number of positive examples in this dataset is 38, while the
number of negative examples is 34.

3.1.3 ILP Results on the Natural Data

Aleph We use the ILP system Aleph [Srinivasan2001] to learn rules to the natural
datasets. By default, Aleph uses a simple greedy set covering procedure that constructs
a complete and consistent hypothesis one clause at a time. In the search for any single
clause, Aleph selects the first uncovered positive example as the seed example, ”satu-
rates” this example, and performs an admissible search over the space of clauses that
subsume this saturation, subject to a user-specified clause length bound. Further details
about our use of Aleph in these experiments are available in [Dutra, Page, & V. Santos Costa2002].

Ensembles Ensembles aim at improving accuracy through combining the predic-
tions of multiple classifiers in order to obtain a single classifier. Therefore, we also
investigate employing an ensemble of classifiers, where each classifier is a logical
theory generated by Aleph. Many methods have been presented for ensemble gen-
eration [Dietterich1998]. In this paper, we concentrate on a popular method that is
known to frequently create a more accurate ensemble than individual components, bag-
ging [Breiman1996a]. Bagging works by training each classifier on a random sample
from the training set. Bagging has the important advantage that it is effective on “un-
stable learning algorithms” [Breiman1996b], where small variations in parameters can
cause huge variations in the learned theories. This is the case with ILP. A second ad-
vantage is that it can be implemented in parallel trivially. Further details about our
bagging approach within ILP, as well as our experimental methodology, can be found
in [Dutra, Page, & V. Santos Costa2002]. Our experimental results are based on a five-
fold cross-validation, where five times we train on 80% of the examples and then test
what was learned on the remaining 20% (in addition, each example is in one and only
one test set).

For the task of identifying linked events within the Nuclear-Smuggling dataset,
Aleph produces an average testset accuracy of 85%. This is an improvement over the
baseline case (majority class—always guessing two events are not linked), which pro-
duces an average accuracy of 78%. Bagging (with 25 different sets of rules) increases
the accuracy to almost 90%.

An example of a rule with good accuracy found by the system is shown in Figure 1.
This rule covers 43 of the 140 positive examples and no negative examples. According
to this rule, two smuggling events A and E are related if event A involves a person C
who is also involved in another event F. Event F involves some material G that appears
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linked(A,E) :-
lk_event_person(_,EventA,PersonC,_,RelationB,RelationB,DescriptionD),
lk_event_person(_,EventF,PersonC,_,RelationB,RelationB,DescriptionD),
lk_material_location(_,MaterialG,_,EventE,_,_,_,_,_),
lk_event_material(_,EventF,MaterialG,_,_,_,_).

Figure 1: Nuclear-Smuggling Data: Sample Learned Rule

in event E. In other words, a person C in event A is involved in a third event F that
uses material from event E. Person C played the same role B, with description D, in
events A and F. The “ ” symbols mean that those arguments were not relevant for that
rule. Figure 2 illustrates the connections between events, material and people involved.
Solid lines are direct connections shown by the literals in the body of the clause. The
dotted line corresponds to the new concept learned that describes connection between
two events.

Person C Material G

Event F Event EEvent A

Inferred

Figure 2: Pictorial representation of a learned rule.

The task of identifying motive in the Contract-Killing data set is much more dif-
ficult, with Aleph’s accuracy at 59%, compared with the baseline accuracy of 52%.
Again the utilization of ensembles improves the accuracy, this time to 69%. The rule in
Figure 3 shows one kind of logical clause the ILP system we use found for this dataset.

The rule covers 19 of the 38 positive examples and a single negative example. The
rule says that event A is a killing by a rival if we can follow a chain of events that
connects event A to event B, event B to event E, and event E to an event F that relates
two organizations. Events A and E have the same kind of relation, RelationC, to B.
All events in the chain are subsets of the same incident D.

3.2 Experiments on Synthetic Data
The synthetic data for Contract Killing are provenient from two different simulators.
One is a Bayesian Network (BN) Simulator [Extraction & Transport2002] and the sec-
ond one is a Task-Based (TB) Simulator [Team, Lead, & Powers2002]. The Bayesian
Network simulator generates data based on a probabilistic model developed by Infor-
mation Extraction and Transport Incorporated (IET). The BN simulator outputs case
files, which contain complete and unadulterated descriptions of each murder case.
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rivalKilling(EventA) :-
lk_event_event(_,EventB,EventA,RelationC,EventDescriptionD),
lk_event_event(_,EventB,EventE,RelationC,EventDescriptionD),
lk_event_event(_,EventE,EventF,_,EventDescriptionD),
lk_org_org(_,_,_,EventF,_,_,_,_,_).

Figure 3: Natural Contract-Killing Data: Sample Learned Rule

These case files are then filtered for observability, so that facts that would not be acces-
sible to an investigator are eliminated. To make the task more realistic this data is also
corrupted, e.g., by misidentifying role players or incorrectly reporting group member-
ships. This filtered and corrupted data form the evidence files. In our representation of
the evidence files, facts about each event are represented as binary predicates, such as:

isa(murder714, murder_for_hire)
perpetrator(murder714, killer186)
victim(murder714, murder_victim996)
deviceTypeUsed(murder714, pistol_czech)

The Task-Based simulator [Team, Lead, & Powers2002] provides a flexible mech-
anism for creating synthetic datasets within the EELD program. It includes a pat-
tern specification language, a Knowledge Base, case generation and representation,
evidence generation and corruption, and answer key representations. Whereas the
Bayesian simulator relied on a Bayesian network, the core of the task-based simulator
are tasks. Each task contains one or more methods, where each method has a prob-
ability of being selected given that its preconditions are satisfied. The simulator also
provides powerful functionality for filtering and corrupting data. This is particularly
important to represent situations where actual data is expected to have low observabil-
ity.

As shown next, we also represent simulation output as binary predicates:

report_on_situation(uid6147).
starting_date(uid6147,"1/15/2002").
information_source_type(uid6147,police_organization).
meeting_taking_place(uid6146).
date_of_event(uid6146,"1/9/2002").
social_participants(uid6146,uid4126).
social_participants(uid6146,uid3152).
ite_illocutionary_force(uid6146,inform).

Notice that the simulation results include meta-data, such as when and where a specific
event was reported. We do not take advantage of that data in our current experiments.

3.2.1 ILP Results on the Synthetic BN-based Data

The synthetic BN-based contract killing dataset that we used consists of 200 mur-
der events. Each murder event has been labeled as a murder for hire, first-degree or
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second-degree murder. There are 71 murder for hire events, 75 first-degree and 54
second-degree murder events. Our task was to learn a classifier to correctly classify an
unlabeled event into one of these three categories.

For this task, we used a variation of mFoil [Lavrac & Dzeroski1994] to learn a
binary classifier to discriminate between events that are murder for hire and events that
are not. Like Aleph, mFoil learns one clause at a time using greedy covering, but uses
a constrained, general-to-specific search to learn individual rules. We also used mFoil
to learn two more classifiers to identify first-degree and second-degree murders. The
three binary classifiers are combined to form a three-way classifier for the task. If an
event is classified as a positive example by only one classifier then the event is labeled
with the category corresponding to that classifier. If more than one classifier classifies
an event as a positive example then we select the category more commonly represented
in the training data.

We ran 10-fold cross-validation on the dataset of 200 murder events. We measured
the precision and recall of our classifier for each of the three categories. Precision and
recall for a category is defined below:

$&%('*),+.-/+10*24365 2�7�8:9,'*%;0=<>'*?@'/2�AB-C)D0E%=%('*),A.FHGI)/FHJK-E-/+1<L+M'ENOJP-RQ
2�7S8T9,'/%O0(<>'/?K'/2�AB-C)DFHJP-*-/+.<U+1'*NVJK-CQ WYX/Z(Z\[

]V'*)DJKFHFH3�5 2�7S8T9,'/%;0(<>'/?K'/2�AB-C)D0E%=%='E),A.FHGI)DF^JK-E-D+.<U+1'ENOJP-RQ
2�7S8T9,'/%V0=<_Q6'*?@'*2�AB- WYX/Z(Z\[

The results are summarized in Table 2. We observe that apart from recall for second-
degree murders, the precision and recall results are all above 85%. Our system learns a
very precise classifier for second-degree murders, but as a consequence it has a lower
recall. However, we can adjust the parameters of our system to compromise precision
for higher recall.

We also computed the accuracy of our classifier, which is defined as the percent-
age of events correctly classified into one of the three categories. We compare this
to the majority-class classifier, which always classifies events as the most frequently
represented category. In our experiments the accuracy of the majority-class classifier
is 38%. And the classification accuracy of our system is 77% which is more than twice
that of the majority-class classifier.

Figure 4 shows some of the sample rules that our system learns. According to the
first rule a murder event that involves a member of a criminal organization and that is
associated with another crime that was motivated by economic gains is a murder for
hire. The second rule says that if a murder is the result of an event that was performed
by someone in love, then it is a first-degree murder (as these are mainly premeditated
murders). According to the third rule if a murder is the result of a theft that is mo-
tivated by rivalry and that is performed on public property then it is a second-degree
murder. These sample rules show that not only does our system do well in classify-
ing the different events, it also produces rules that are meaningful and interpretable by
humans.

3.2.2 ILP Results on the Synthetic TB Data

The synthetic TB contract killing dataset that we used consists of several runs of the
task-based simulator. Parameters were set to very low observability and to large simu-
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Table 2: Results on the Synthetic Contract-Killing Data
Murder for hire 1st degree 2nd degree

Precision 86% 91% 96%
Recall 91% 88% 59%

murder_for_hire(A) :-
group_member_maleficiary(A, B),
sub_events(A, C),
crime_motive(C, economic).

first_degree_murder(A) :-
sub_events(A, B),
performed_by(B, C),
loves(C, D).

second_degree_murder(A) :-
sub_events(A, B),
event_occurs_at_location_type(B, publicProperty),
crime_motive(B, rival),
occurrent_subevent_type(B, stealing_Generic).

Figure 4: Synthetic Contract-Killing Data: Sample Learned Rules

lations. We were interested in learning how to detect instances of murder for hire. We
define each instance to contain a victim, a perpretator, and a contractor. Positive exam-
ples were obtained from the simulator’s output. Because it is rather hard to define what
were the interesting cases of non-murder for hires, we did not use negative examples
for our initial experiments. Instead, we performed positive-only learning.

The simulator’s output includes a large number of relations, about 200 relations.
Each simulation generates background knowledge consisting of around 30,000 facts.
The number of positive examples also varies, ranging between 15 and 20 per simula-
tion.

Experiments were performed with Aleph using 10-fold cross-validation. We used
Aleph’s implementation of Muggleton’s positive data learning algorithm [Muggleton2001],
since there were no explicit negative examples. As mentioned before, each fold corre-
sponds to an independent run of the simulator. All simulator generated constants were
renamed uniquely across folds to avoid duplicate names in different folds.

Figure 5 shows a sample rule that the Aleph system learned (notice that the rules
were obtained with very low observability). The rule detects a murder for hire if the
Perpetrator is known to have commited a crime, and if the Contractor met with someone
whose bank account was used both to receive and transfer money. This rule covers 97
out of 165 positive examples.

The average accuracy over the 10 folds was 80%. Most of the best rules Aleph
generated focused on money transactions involving the perpretator or the contractor.
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murder_for_hire(VictimA,ContractorB,PerpetratorC) :-
perpetrator(CrimeD,PerpetratorC),
social_participants(MeetingE,ContractorB),
social_participants(MeetingE,PersonF),
account_holder(AccountG,PersonF),
from_generic(MoneyTransferH,AccountG),
to_generic(MoneyTransferI,AccountG).

Figure 5: Task-Based Simulator Data: Sample Learned Rule

4 Current and Future Research
An under-studied issue in relational data mining is scaling algorithms to very large
databases. Most research on ILP and RDM has been conducted in the machine learn-
ing and artificial intelligence (AI) communities rather than in the database and systems
communities. Consequently, there has been insufficient research on systems issues in-
volved in performing RDM in commercial relational-database systems and scaling al-
gorithms to extremely large datasets that will not fit in main memory. Integrating ideas
from systems work in data mining and deductive databases [Ramamohanarao & Harland1994]
would seem to be critical in addressing these issues.

Related to scaling, we are currently working on efficiently learning complex rela-
tional concepts from large amounts of data by using stochastic sampling methods. A
major shortcoming of ILP is the computational demand that results from the large hy-
pothesis spaces searched. Intelligently sampling these large spaces can provide excel-
lent performance in much less time [Srinivasan1999, Zelezny, Srinivasan, & Page2002].

We are also developing algorithms that learn more robust, probabilistic relational
concepts represented as stochastic logic programs [Muggleton2002] and variants. This
will enrich the expressiveness and robustness of learned concepts. As an alterna-
tive to stochastic logic programs, we are working on learning clauses in a constraint
logic programming language where the constraints are Bayesian networks [Page2000,
Costa, Page, & Cussens2002].

One approach that we plan to further investigate is the use of approximate prior
knowledge to induce more accurate, comprehensible relational concepts from fewer
training examples [Richards & Mooney1995]. The use of prior knowledge can greatly
reduce the burden on users; they can express the “easy” aspects of the task at hand
and then collect a small number of training examples to refine and extend this prior
knowledge.

Finally, we plan to use active learning to allow our ILP systems to select more effec-
tive training examples for interactively learning relational concepts [Muggleton et al.1999].
By intelligently choosing the examples for users to label, better extraction accuracy can
be obtained from fewer examples, thereby greatly reducing the burden on the users of
our ILP systems.
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5 Related Work
Although it is the most widely studied, ILP is not the only approach to relational data
mining. In particular, other participants in the EELD program are taking alternative
RDM approaches to pattern learning for link discovery. This section briefly reviews
these other approaches.

5.1 Graph-based Relational Learning
Some relational data mining methods are based on learning structural patterns in graphs.
In particular, SUBDUE [Cook & Holder1994, Cook & Holder2000] discovers highly
repetitive subgraphs in a labeled graph using the minimum description length (MDL)
principle. SUBDUE can be used to discover interesting substructures in graphical data
as well as to classify and cluster graphs. Discovered patterns do not have to match the
data exactly since SUBDUE can employ an inexact graph-matching procedure based
on graph edit-distance. SUBDUE has been successfully applied to a number of im-
portant RDM problems in molecular biology, geology, and program analysis. It is also
currently being applied to discover patterns for link discovery as a part of the EELD
project (more details at http://ailab.uta.edu/eeld/). Since relational data for
LD is easily represented as labeled graphs, graph-based RDM methods like SUBDUE
are a natural approach.

5.2 Probabilistic Relational Models
Probabilistic relational models (PRM’s) [Koller & Pfeffer1998] are an extension of
Bayesian networks for handling relational data. Methods for learning Bayesian net-
works have also been extended to produce algorithms for inducing PRM’s from data
[Friedman et al.1999]. PRM’s have the nice property of integrating some of the ad-
vantages of both logical and probabilistic approaches to knowledge representation and
reasoning. They combine some of the representational expressivity of first-order logic
with the uncertain reasoning abilities of Bayesian networks. PRM’s have been applied
to a number of interesting problems in molecular biology, web-page classification, and
analysis of movie data. They are also currently being applied to pattern learning for
link discovery as a part of the EELD project.

5.3 Relational Feature Construction
One approach to learning from relational data is to first “flatten” or “propositional-
ize” the data by constructing features that capture some of the relational informa-
tion and then applying a standard learning algorithm to the resulting feature vectors
[Kramer, Lavrac̆, & Flach2001]. PROXIMITY [Neville & Jensen2000] is a system that
constructs features for categorizing entities based on the categories and other properties
of other entities to which it is related. It then uses an interactive classification proce-
dure to dynamically update inferences about objects based on earlier inferences about
related objects. PROXIMITY has been successfully applied to company and movie
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data. It is also currently being applied to pattern learning for link discovery as a part of
the EELD project.

6 Conclusions
Link discovery is an important problem in automatically detecting potential threaten-
ing activity from large, heterogeneous data sources. The DARPA EELD program is
a U.S. government research project exploring link discovery as an important prob-
lem in the development of new counter-terrorism technology. Learning new link-
discovery patterns that indicate potentially threatening activity is a difficult data min-
ing problem. It requires discovering novel relational patterns in large amounts of
complex relational data. Most existing data-mining methods assume flat data from
a single relational table and are not appropriate for link discovery. Relational data
mining techniques, such as inductive logic programming, are needed. Many other
problems in molecular biology [Srinivasan et al.1996], natural-language understand-
ing [Zelle & Mooney1996], web page classification [Craven et al.2000], information
extraction [Califf & Mooney1999, Freitag1998], and other areas also require mining
multi-relational data. However, relational data mining requires exploring a much larger
space of possible patterns and performing complex inference and pattern matching.
Consequently, current RDM methods are not scalable to very large databases. Conse-
quently, we believe that relational data mining is one of the major research topics in
the development of the next generation of data mining systems, particularly those in
the area of counter-terrorism.
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