
Abstract 

Angry Birds is a popular video game in which 
players shoot birds at pigs and other objects. Be-
cause of complexities in Angry Birds, such as con-
tinuously-valued features, sequential decision mak-
ing, and the inherent randomness of the physics 
engine, learning to play Angry Birds intelligently 
presents a difficult challenge for machine learning. 
We describe how we used the Weighted Majority 
Algorithm and Naïve Bayesian Networks to learn 
how to judge possible shots. A major goal of ours 
is to design an approach that learns the general task 
of playing Angry Birds rather than learning how to 
play specific levels.  A key aspect of our design is 
that the features provided to the learning algo-
rithms are a function of the local neighborhood of a 
shot’s expected impact point.  To judge generality 
we evaluate the learning algorithms on game levels 
not seen during training.  Our empirical study 
shows our learning approaches can play statistical-
ly significantly better than a baseline system pro-
vided by the organizers of the Angry Birds compe-
tition. 

1 Introduction 

Angry Birds is one of the most popular video games around 

the world. Many millions of players use a slingshot to shoot 

a variety of birds at structures to destroy targets, mainly 

pigs. Human players, who may easily understand how to 

play the game, are limited to their visual reasoning and intu-

ition when choosing shots. Conversely, an artificially intel-

ligent agent lacks human intuition and relies on computer-

vision techniques to identify objects on the playing field. 

Our goal is to build, via machine learning, a computer pro-

gram that plays Angry Birds well. 

Playing Angry Birds requires making four choices: 

Shot angle: the release angle of the bird being shot. Our 

algorithms focused on evaluating candidate shot an-

gles; that is, they learn the predicate goodShot (for 

simplicity, we use the term badShot to indicate 

¬goodShot, but note we only predict one variable). 

Shot strength: how far the bird is pulled back in the sling-

shot. For ease, we always execute shots with maxi-

mum shot strength to ensure full energy upon impact. 

Tap time: when the game’s screen is “tapped,” the behav-

ior of the flying bird changes. Tap times are learned 

using a simple statistical analysis of training data tap 

times; this is elaborated in Section 3.4. 

Delay after shot: it takes a while for the game state to set-

tle after a shot.  Following prior work, we wait 10 

seconds between shots. 

Players must interpret different outcomes due to simulat-

ed physics of gravity and collisions resulting from the above 

choices. The problem of designing an intelligent player thus 

is challenging. We choose to investigate creating an intelli-

gent artificial player of Angry Birds. In doing so, we may 

learn more about effective machine learning techniques to 

deal with other dynamic, real-world problems involving 

large and continuous-valued feature spaces. 
The Angry Birds testbed we use is the “Poached Eggs” 

game set provided by the Angry Birds Chrome plugin 
(chrome.angrybirds.com). Each level consists of a playing 
field, containing structures of wood, ice, stones, terrain, and 
TNT, as well as one or more pigs (if the game is unfamiliar, 
see Fig. 3). To complete a level, one is required to destroy 
all the pigs by shooting a limited number of birds. Birds are 
shot via a slingshot and come in different colors and sizes, 
indicating special bird features. In this testbed, we are lim-
ited to red birds, which have no special features; blue birds, 
which divide into a set of three birds when the player taps 
the screen; yellow birds, which accelerate upon taps; white 
birds, which drop bombs upon taps; and black birds, which 
explode themselves upon taps or after a set time upon im-
pact.  Our experiments involve Levels 1-21, which do not 
have any TNT nor white or black birds. 

Our paper is structured as follows. We first introduce in 

Section 2 the supervised machine learning algorithms we 

use: the Weighted Majority Algorithm [Littlestone, 1988; 

we follow Table 7.1 of Mitchell, 1997] and Naïve Bayesian 

Networks [Russell and Norvig, 2010].  We choose these two 

because they provide a rank-ordering of examples, rather 

than just a binary decision; additionally, they are easy to 
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implement and can process large numbers of training exam-

ples in a short amount of time. We then explain in Section 3 

how we collect data to learn from by using an agent provid-

ed by aibirds.org and several agents we wrote ourselves. 

Our goal is to learn a general-purpose Angry Birds player, 

rather than one tailored to the specific levels from which we 

get training data.  To address that goal, we have developed a 

data structure we call “the grid” with which we represent the 

local environment surrounding the impact point of a shot. 

We explain this localized representation and our approach 

for both training and using models in Section 3. Section 4 

presents our experiments where we show that our machine 

learning approaches can produce statistically significantly 

better Angry Birds players than the provided agent from 

aibirds.org. 

2 Background and Related Work 

Before presenting our approach, we provide some back-
ground, including a pre-existing AngryBirds player. 

2.1 Experimental Control 

The agent we use to help collect training examples and also 
as our experimental control is the NaiveAgent provided by 
the IJCAI 2013 Angry Birds AI competition (aibirds.org/ 
angry-birds-ai-competition.html; for some prior results, see 
aibirds.org/benchmarks.html). This agent detects the sling-
shot and other objects, then shoots at randomly chosen pigs 
using either high or low trajectories. These trajectories are 
randomly chosen between high-arching shots (release angle 
≥ 45°) and direct shots (angle < 45°), with a preference to-
wards direct shots. This agent uses predetermined tap-time 
intervals for both types of shots. The sample agent provides 
a baseline for agent performance on the Angry Birds 
testbed, and our goal is to clear levels faster and with higher 
scores than this agent.  We use the provided trajectory-
generating code in all of the players we have implemented. 

2.2 Weighted Majority Algorithm 

The Weighted Majority Algorithm (WMA) is a machine 

learning technique that uses a pool of prediction algorithms 

to build an efficient compound algorithm. The algorithm 

evaluates examples by taking a weighted vote among the 

members of this pool. The algorithm learns by altering the 

hypotheses’ associated weights when it makes mistakes. 

An advantage of this algorithm is that it operates without 

any prior knowledge about the quality of the prediction al-

gorithms in the pool. The Weighted Majority Algorithm is 

able to handle inconsistent training data, is simple to im-

plement, and runs very quickly. 

Below is the pseudocode for WMA. Our implementation 

uses β = 0.95 (we did not yet experiment with any other 

values).  In our usage for Angry Birds, each “prediction 

algorithm” is simply a Boolean feature or its negation, de-

scribing a property of our localized representation of the 

Angry Birds game state (more details appear later). Basical-

ly, each feature has a weighted vote for and against a shot, 

and the difference between the sum across all the features of 

weighted votes for a shot and the weighted votes against a 

shot is the net score for that shot.  Votes that lead to incor-

rect decisions have their weights reduced.  In our experi-

ments, we process each training example a few times (more 

precisely, we execute the WMA algorithm’s outer loop one 

million times, which takes about one minute). 

Given a pool A of algorithms, where ai is the ith predic-

tion algorithm; wi, where wi ≥ 0, is the associated weight 

for ai; and β is a scalar < 1: 

Initialize all weights to 1 

For each example in the training set {x, f(x)} 

Initialize y1 and y2 to 0 

For each prediction algorithm ai,  

  If ai(x) = 0 then y1 = y1 + wi 

  Else if ai(x) = 1 then y2 = y2 + wi 

If  y1 > y2  then g(x) = 1 

Else if y1 < y then g(x) = 0 

Else g(x) is assigned to 0 or 1 randomly. 

     If g(x) ≠ f(x) then for each prediction algorithm ai 

  If ai(x) ≠ f(x) then update wi with βwi.  

2.3 Naïve Bayesian Networks 

The Naïve Bayes (NB) classifier encodes a directed, acyclic 

graph with conditional independence relations among varia-

bles. In Naïve Bayes, a dependent class variable 𝑌 is the 

root and feature variables 𝑋1 through 𝑋𝑛 are conditioned by 

Y’s value. The naïve (yet effective) assumption is that each 

feature 𝑋𝑖 is conditionally independent of every other fea-

ture 𝑋𝑗  for 𝑗 ≠ 𝑖 given 𝑌. 

 We wish to estimate the probability 𝑝(𝑌 | 𝑋1, … , 𝑋𝑛). For 

Angry Birds, the Y is goodShot and the X’s are the features 

used to describe the game’s state and the shot angle.   We 

use the same features for NB as we used for WMA.  Using 

Bayes’ Theorem, we can rewrite this probability as 

𝑝(𝑌 | 𝑋1, … , 𝑋𝑛)  =  
𝑝(𝑌) 𝑝(𝑋1, … 𝑋𝑛 | 𝑌)

𝑝(𝑋1, … , 𝑋𝑛)
 

Because the denominator of the above equation does not 

depend on the class variable 𝑌 and the values of features 𝑋1 

through 𝑋𝑛 are given, we can treat it as a constant and only 

need estimate the numerator.   

Using the conditional independence assumptions utilized 

by NB, we can simplify the above expression: 

𝑝(𝑌 | 𝑋1, … , 𝑋𝑛)  =  
1

𝑍
  𝑝(𝑌) ∏ 𝑝(𝑋𝑖  | 𝑌)

𝑛

𝑖=1

 

where 𝑍 represents the constant term of the denominator.  

Learning in NB simply involves counting the examples’ 

features to estimate the simple probabilities in the above 

expression’s right-hand side. 

 Finally, to eliminate the term Z, we take the ratio 

𝑝(𝑌 | 𝑋1, … , 𝑋𝑛)

𝑝(¬𝑌 | 𝑋1, … , 𝑋𝑛)
 



which represents the odds of a favorable outcome given the 

features of the current state. 

 Our implementation of Naïve Bayes estimates the odds of 

the class variable goodShot given the same Boolean features 

used in WMA. For each feature, we compute the probability 

that it is present for both goodShot and badShot; the ratio of 

these probabilities is the score of a candidate shot. NB pro-

cesses each training example only once (for 400,000 train-

ing examples, training takes about 3 seconds). 

3 Learning to Play Angry Birds  

We train our learning algorithms on a set of training exam-
ples generated by non-learning agents with varying degrees 
of intelligence. This data is then categorized into positively 
and negatively labeled datasets. To gather enough positively 
categorized data (from winning games), we engineer agents 
that learn how to play each specific level. To help reduce 
noise within our datasets, we employ a number of filtering 
criteria, weeding out ambiguously categorized shots, shots 
with bad tap times, and duplicate examples. Finally, we dis-
card excess data in order to achieve approximately equal 
numbers of positive and negative examples per level. 

We define a standard example representation, the An-
gryBirdsGridExample, and separately determine tap time 
using a simple estimator explained below. After training and 
tuning on the examples, we use our algorithms to play An-
gry Birds by scoring a set of a few dozen candidate shot 
angles, choosing one of the highest-scoring candidates, 
where the probability of selecting a shot is proportional to 
its score. Coupled with the tap time recommended by our 
estimator, we then execute these shots in games. 

3.1  Data Collection 

We use a number of different game-playing agents to facili-
tate gathering enough data from which our learning algo-
rithms can learn to play Angry Birds. Such agents include 
the provided NaiveAgent and our “RandomAngleAgent” 
that randomly chooses shot angles, preferring less extreme 
angles. Each agent runs on a number of machines, either 
directly or through remote connection (via Putty) and we 
collect all the data in a central location. 
 Due to the inability of the NaiveAgent and the Ran-
domAngleAgent to win games consistently, however, we 
engineered another agent, called the “TweakMacro” agent, 
to help gather more winning games. This agent takes a list 
of saved shot sequences that resulted in one of the three 
highest scores for each level and replays the exact shots 
with some small random variation in the shot angles. In do-
ing so, we explore the neighborhood of successful games. 
However, since our goal is to build agents that can solve 
unknown levels, we use the TweakMacro agent strictly for 
data collection, as it depends on knowing the specific level 
being played to re-execute successful shots. 

3.2  Data Categorization and Filtering 

Fig. 1 illustrates how we convert data saved from games 
into training examples. We first label examples as either 

positive or negative. Positive examples include shots in 
winning games, while negative examples include shots in 
losing games, with one exception. 
 In order to clarify our definition of negative examples, we 
filter out ambiguous negative examples, which we define as 
those shots in losing games that killed pigs. Since killing a 
pig is a desired secondary outcome, shots that achieved this 
objective despite being in a losing game are not categorized 
as negative examples and therefore discarded. 
 Furthermore, our RandomAngleAgent attempts a large 
number of shots whose angles are valid but had poor tap 
times, either tapping too early (causing birds to fly off-
screen) or too late (where taps would not register because 
the bird had already reached its impact point). Since our 
models for simplicity learn about shot angles and ignore tap-
time information, we filter examples featuring bad tap times 
in order to discard noisy data. Data is thus filtered using the 
thresholds of tap time generated by our tap-time estimator, 
which we explain in Section 3.4. 
 Because each level’s game state before any shots are tak-
en is (nearly) constant, we also filter duplicate shots from 
our datasets. Every first shot taken at each level occurs in a 
game state essentially identical to all other first shots in that 
level. We thus identify duplicate shots as first shots of a 
given level whose shot angles differ by no more than 10-5 
radians. We filter duplicate shots from our positive and neg-
ative datasets separately.  We do not attempt to detect dupli-
cations on shots other than the first shot in a level. 
 Finally, because our experiments are considered active 
tasks, there is no natural positive-to-negative ratio of exam-
ples. For this reason, we provide to our learning algorithms 
an approximately even mix of positive and negative exam-
ples per level. This is achieved by randomly discarding ex-
cess examples from some levels.  From 724,993 games in-
volving 3,986,260 shots, we end up with 224,916 positive 
and 168,549 negative examples. 

Figure 1: Filtering examples. 



3.3  Representing Features about a Game State 

We construct an example by collecting values for various 
features (see Fig. 2) within the game state before a shot is 
made. An AngryBirdsGridExample contains the shot release 
angle and object targeted (pig, ice, etc.). It is important to 
note that these two features are considered as input features 
in our example model and not as outputs. Furthermore, 
these examples represent a localized portion of the game 
state as a 7x7 grid of cells located around the shot impact 
point (see Fig. 3). We encode the contents of each cell in a 
series of 2D arrays of Boolean values, based on whether or 
not they contain a game object: pig, ice, wood, stone, or 
TNT. To further enhance our feature representation, we cre-
ated a terrain detector to identify immovable wall areas in 
game states and include them as features in our grid exam-
ples.  Note that one cell in the grid can have multiple fea-
tures being true for that that cell. 

Our grid examples also compute features that encode 
relative positions and counts of objects within the grid. As 
such, our grid examples calculate whether a given cell con-
tains pigs above, below, and to the right of structures, as 
well as the counts of objects above, below, and to the right 
of the shot’s predicted impact point. We do so to learn 
whether the relative positions of structures and pigs within a 
game state affect the outcome of a given shot.  

Additionally, we do not consider features that are the 
same across all candidates of a given shot, such as the total 
number of pigs in the current game state. Because our cho-
sen models are linear and weight each feature separately, 
features constant across all candidate shots do not result in 
varying scores across these shots. 

3.4  Choosing the Tap Time 

For our experiments, we consider tap time as a feature sepa-
rate from our grid-example representation. Tap time is thus 
not learned by our standard algorithms. We instead built a 
separate TapTimeIntervalEstimator, a simple estimator 
which keeps track of tap times in training data to determine 
the best tap intervals for each bird type (other than red). 

Since tap times vary across levels due to distance be-
tween slingshot and impact, we normalize tap times instead 
as a fraction of the impact time. Impact time is calculated as 
the estimated time it takes for a bird to reach its impact 
point without utilizing its tap. The provided code performs 
this calculation for us. 

For each bird requiring a tap, the TapTimeIntervalEstima-
tor counts tap-time fractions (separately for high and 
straight shots) that resulted in either a win or a loss. Taking 
the ratio of wins to losses results in visible peak intervals in 
which best taps were made for certain bird and angle com-
binations. Finally, during experiments, we select from these 
intervals using triangle distributions to compute desired tap 
times for a given shot whose angle has been selected by our 
previous described algorithms. (We performed some infor-
mal experiments and our tap-time method leads to slightly 
better performance than the method in the provided Naive-
Agent, but we do not report on those experiments here.) 

Figure 3: Visualization of the grid we use to construct our fea-

tures for an example.  The grid is placed at the estimated impact 

point (marked with a red asterisk) for that shot.  We do not center 

the grid around the impact point because, due to physics, the con-

sequences of a shot are largely to the right of the impact. 

Figure 4: Consideration of candidate shots during Angry Birds 

gameplay. Each black point indicates the impact location of a 

candidate shot.  The scores of the candidate shots are normalized 

between [0, 1]; solid black circles indicate candidates with nor-

malized score ≥ 0.5, while open circles indicate candidates with 

scores < 0.5. 

Figure 2: Features represented in AngryBirdsGridExamples.  

“Counting an object” counts the number of cells containing that 

object.  Relations like stoneAboveIce(x,y) are true if cell x-y con-

tains ice and some cell at or above y in column x contains a stone. 



3.5  Learning Models and Playing Angry Birds 

After categorizing and filtering our datasets, we divide them 
into training and tuning sets used by our learning algorithms 
to learn models of good shots. To address overfitting, our 
implementation of the Weighted Majority Algorithm uses 
the tuning data to determine and save the iteration of trained 
weights that performs the best on the tuning dataset (more 
precisely, we choose the iteration with the lowest average 
rank of the top 25% of the positive examples in the sorted 
list of predicted scores on the tune set). Our implementation 
of the Naïve Bayesian Network does not incorporate any 
correction factors, and instead combines the training and 
tuning datasets. 

After completing training, we use our learned models to 
play Angry Birds. For every game state, we consider several 
dozen candidate shots (depending on how many pigs and 
other objects are in the current scene), considering both 
high- and straight-angled shots for each potential target. 
Each candidate shot is presented as a grid example to be 
evaluated by the learning algorithm being tested: the 
Weighted Majority Algorithm returns a net weighted sum 
score, while the Naïve Bayesian Network returns a calcula-
tion of the odds of winning given the features present in the 
grid example. We then consider the five highest-scoring 
candidate shots, choosing among them proportionally to 
each of their scores, and the selected candidate shot is exe-
cuted in the current real-time Angry Birds game (see Fig. 4). 

4 Experimental Methodology 

For our experiments, we train our two algorithms 21 times 
each on data from Levels 1 to 21, creating separate models 
for use on each level. Each model was trained on training 
examples from all levels except the level it would be used to 
play (e.g., a model trained on all levels except the first level 
is only used to play the first level). We then test our sets of 
learned models on Levels 1 to 21. 

In running the experiments, we start Chrome instances 
with all Angry Birds levels (1-21) unlocked. Our process for 
deciding which level to play is as follows. 

 First, from 1 to 21, play each level once. 
 Next, again from 1 to 21, play once those levels not 

yet solved.  Repeat this until all levels solved. 
 When all levels solved, play the level with the best 

ratio of number of times a new high score was set 
over number of times level was played. 

5 Results and Discussion 

Fig. 5 shows the performance of our learning algorithms and 
of our experimental control as a function of the number of 
shots taken versus the sum of the highest scores for each of 
the 21 levels (only scores in winning games are counted). 
We play 300 shots, which takes about 75 minutes. The re-
sults are averaged over ten repeated runs. Both our learning 
methods perform better than our experimental control, the 
provided NaiveAgent. 

We also show in Fig. 6 the performance of our algorithms 
when, instead of using 21 differently trained models, we use 

a single model trained on all 21 levels to play all the levels. 
This figure shows the difference in performance when the 
learners have the advantage of playing each level many 
times before being evaluated.  When comparing results re-
ported in various papers it is important to note whether or 
not learners have training examples from the levels being 
played (Fig. 6) or the levels are novel (Fig. 5). It is also in-
teresting to see that, in our experiments, our Naïve Bayes 
model trained on all but test levels eventually scores similar-
ly to our NB model trained on all levels. Apparently Naïve 
Bayes is able to learn the general skill sufficiently well to 
largely compensate for not having any training examples for 
the level currently being played. 

The mean areas under the five curves in Fig. 6 are as fol-
lows: 167 Million (Naïve Agent), 175M (WMA trained on 
all but current level), 187M (NB trained on all but current 
level), 205M (WMA trained on all levels), and 205M (NB 
trained on all levels). Using an unpaired two-tailed t-test, the 
differences between the NaiveAgent are statistically signifi-
cant for all but WMA (p-values of less than 0.0001 for the 
two versions trained on all levels and p= 0.01 for NB). 

Figure 5: Performance of our learning algorithms 

trained on all levels except the current level. 

Figure 6: Performance of our learning algorithms  

trained on both all levels and all levels except current level. 



Our experiments reported here only involved Levels 1-21, 
for both training and testing, but we also let our agents run 
on Levels 22-42 a small number of times.  Tables 1 and 2 
show the highest scores we ever found in playing about four 
million games (note that these games were all played after 
we fixed the bug in the score-reading code). We present 
them as a reference for use by other researchers.  The total 
of the best scores in Levels 1-21 is 1,267,530 and for Levels 
22-42 is 1,532,710.  Comparing these totals to the results in 
Fig. 5 and 6, combined with the fact that even in many-hour 
runs, our algorithms would reach only slightly more than 
one million points, one can see there is sizable room for 
improvement.  It is interesting to see how many levels can 
be solved with a single shot! Unfortunately, if the best se-
quences are replayed verbatim they do not come close to 
replicating the scores in Tables 1 and 2 without performing 
many replications, showing that results in Angry Birds are 
quite sensitive to the initial conditions (a given level’s initial 
states are nearly but not totally identical across runs) as well 
as any non-determinacy in the game’s physics engine. 

Table 1: Highest scores found for Levels 1-21, 

formatted as: level (shots taken) score. 

1 (1) 35,900 8 (1) 59,830 15 (1) 57,310 

2 (1) 62,890 9 (1) 52,600 16 (2) 71,850 

3 (1) 43,990 10 (1) 76,280 17 (1) 57,630 

4 (1) 38,970 11 (1) 63,330 18 (2) 66,260 

5 (1) 71,680 12 (1) 63,310 19 (2) 42,870 

6 (1) 44,730 13 (1) 56,290 20 (2) 65,760 

7 (1) 50,760 14 (1) 85,500 21 (3) 99,790 

Table 2: Highest scores found for Levels 22-42. 

22 (2) 69,340 29 (2) 60,750 36 (2) 84,480 

23 (2) 67,070 30 (1) 51,130 37 (2) 76,350 

24 (2) 116,630 31 (1) 54,070 38 (2) 39,860 

25 (2) 60,360 32 (3) 108,860 39 (1) 76,490 

26 (2) 102,880 33 (4) 64,340 40 (2) 63,030 

27 (2) 72,220 34 (2) 91,630 41 (1) 64,370 

28 (1) 64,750 35 (2) 56,110 42 (5) 87,990 

6 Future Work 

Our experiments open up many diverse possibilities for fu-

ture work. Our definitions of good and bad shots, which 

play key factors in supervised learning, are probably insuffi-

cient. Another interesting possibility is to learn separate 

models for each type of bird, as well as for high shots, low 

shots, first shots, last shots, and shots when only one pig 

remains. Currently we only consider the two trajectories the 

provided code calculates and it might be worthwhile to con-

sider more candidate angles for each object targeted. 

We only considered two learning methods in this initial 

work and more should be considered, including reinforce-

ment learning approaches which have worked well for tasks 

such as RoboCup [Stone & Sutton, 2001], plus additional 

supervised learning methods such as support vector ma-

chines and neural networks. 

 We would also like to go beyond Naïve Bayesian Net-

works by designing Bayesian networks with dependencies 

among features. Hand-coded engineered dependencies could 

serve to improve Bayesian Network performance on the 

Angry Birds testbed. In addition, we can use algorithmic 

search to find good Bayesian Network structures. 

 Another interesting task to consider is to use teacher 

demonstrations or teacher-provided solutions in supervised 

learning algorithms. In Angry Birds, human intuition proves 

helpful in solving complex levels that require rolling birds 

along angled terrain and knocking over secondary objects. 

Given a graphical interface that shows potential trajectories 

and calculates impact points, human teachers could suggest 

good shots and even provide complete solutions that score 

well. We could then use these solutions to train machine 

learning algorithms to play more intelligently and attempt to 

emulate human intuition. Potential challenges include gath-

ering enough data for training (as teacher demonstrations 

are time consuming) and generalizing the learned playing 

techniques across all levels, as some solutions may only be 

valid for a particular complex level. 

7 Conclusion 

The Angry Birds testbed serves as a challenging problem for 
machine learning. We present and empirically evaluate a 
design for creating a computerized player based on machine 
learning. While our learning algorithms are able to statisti-
cally significantly outperform the provided NaiveAgent, 
there is much room for improvement when dealing with the 
Angry Birds task and many opportunities for future work. 
Our empirical results provide a baseline for the performance 
of future machine learning (and other AI) methods. 

A key aspect of our approach is that we represent training 
examples in a manner that we strove to make independent of 
any specific game level, which we did by creating features 
whose semantics were relative to a candidate shot’s impact 
point (shotAngle and objectTargeted were the only excep-
tions).  We argue that the primary goal should be to learn 
the general task of playing Angry Birds, rather than aiming 
to learn how to play specific levels.  This can be addressed 
by making sure models for choosing shots for Level i are 
not trained with any examples from Level i. 
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