
Abstract

Angry Birds is a popular video game in which
players shoot birds at pigs and other objects. Be-
cause of complexities in Angry Birds, such as con-
tinuously-valued features, sequential decision mak-
ing, and the inherent randomness of the physics
engine, learning to play Angry Birds intelligently
presents a difficult challenge for machine learning.
We describe how we used the Weighted Majority
Algorithm and Naïve Bayesian Networks to learn
how to judge possible shots. A major goal of ours
is to design an approach that learns the general task
of playing Angry Birds rather than learning how to
play specific levels. A key aspect of our design is
that the features provided to the learning algo-
rithms are a function of the local neighborhood of a
shot’s expected impact point. To judge generality
we evaluate the learning algorithms on game levels
not seen during training. Our empirical study
shows our learning approaches can play statistical-
ly significantly better than a baseline system pro-
vided by the organizers of the Angry Birds compe-
tition.

1 Introduction

Angry Birds is one of the most popular video games around

the world. Many millions of players use a slingshot to shoot

a variety of birds at structures to destroy targets, mainly

pigs. Human players, who may easily understand how to

play the game, are limited to their visual reasoning and intu-

ition when choosing shots. Conversely, an artificially intel-

ligent agent lacks human intuition and relies on computer-

vision techniques to identify objects on the playing field.

Our goal is to build, via machine learning, a computer pro-

gram that plays Angry Birds well.

Playing Angry Birds requires making four choices:

Shot angle: the release angle of the bird being shot. Our

algorithms focused on evaluating candidate shot an-

gles; that is, they learn the predicate goodShot (for

simplicity, we use the term badShot to indicate

¬goodShot, but note we only predict one variable).

Shot strength: how far the bird is pulled back in the sling-

shot. For ease, we always execute shots with maxi-

mum shot strength to ensure full energy upon impact.

Tap time: when the game’s screen is “tapped,” the behav-

ior of the flying bird changes. Tap times are learned

using a simple statistical analysis of training data tap

times; this is elaborated in Section 3.4.

Delay after shot: it takes a while for the game state to set-

tle after a shot. Following prior work, we wait 10

seconds between shots.

Players must interpret different outcomes due to simulat-

ed physics of gravity and collisions resulting from the above

choices. The problem of designing an intelligent player thus

is challenging. We choose to investigate creating an intelli-

gent artificial player of Angry Birds. In doing so, we may

learn more about effective machine learning techniques to

deal with other dynamic, real-world problems involving

large and continuous-valued feature spaces.
The Angry Birds testbed we use is the “Poached Eggs”

game set provided by the Angry Birds Chrome plugin
(chrome.angrybirds.com). Each level consists of a playing
field, containing structures of wood, ice, stones, terrain, and
TNT, as well as one or more pigs (if the game is unfamiliar,
see Fig. 3). To complete a level, one is required to destroy
all the pigs by shooting a limited number of birds. Birds are
shot via a slingshot and come in different colors and sizes,
indicating special bird features. In this testbed, we are lim-
ited to red birds, which have no special features; blue birds,
which divide into a set of three birds when the player taps
the screen; yellow birds, which accelerate upon taps; white
birds, which drop bombs upon taps; and black birds, which
explode themselves upon taps or after a set time upon im-
pact. Our experiments involve Levels 1-21, which do not
have any TNT nor white or black birds.

Our paper is structured as follows. We first introduce in

Section 2 the supervised machine learning algorithms we

use: the Weighted Majority Algorithm [Littlestone, 1988;

we follow Table 7.1 of Mitchell, 1997] and Naïve Bayesian

Networks [Russell and Norvig, 2010]. We choose these two

because they provide a rank-ordering of examples, rather

than just a binary decision; additionally, they are easy to

An Empirical Evaluation of Machine Learning Approaches for Angry Birds

Anjali Narayan-Chen, Liqi Xu, and Jude Shavlik
University of Wisconsin-Madison

narayanchen@wisc.edu, lxu36@wisc.edu, shavlik@cs.wisc.edu

Appears in Proc. of the IJCAI 2013 Symposium on AI in Angry Birds.

implement and can process large numbers of training exam-

ples in a short amount of time. We then explain in Section 3

how we collect data to learn from by using an agent provid-

ed by aibirds.org and several agents we wrote ourselves.

Our goal is to learn a general-purpose Angry Birds player,

rather than one tailored to the specific levels from which we

get training data. To address that goal, we have developed a

data structure we call “the grid” with which we represent the

local environment surrounding the impact point of a shot.

We explain this localized representation and our approach

for both training and using models in Section 3. Section 4

presents our experiments where we show that our machine

learning approaches can produce statistically significantly

better Angry Birds players than the provided agent from

aibirds.org.

2 Background and Related Work

Before presenting our approach, we provide some back-
ground, including a pre-existing AngryBirds player.

2.1 Experimental Control

The agent we use to help collect training examples and also
as our experimental control is the NaiveAgent provided by
the IJCAI 2013 Angry Birds AI competition (aibirds.org/
angry-birds-ai-competition.html; for some prior results, see
aibirds.org/benchmarks.html). This agent detects the sling-
shot and other objects, then shoots at randomly chosen pigs
using either high or low trajectories. These trajectories are
randomly chosen between high-arching shots (release angle
≥ 45°) and direct shots (angle < 45°), with a preference to-
wards direct shots. This agent uses predetermined tap-time
intervals for both types of shots. The sample agent provides
a baseline for agent performance on the Angry Birds
testbed, and our goal is to clear levels faster and with higher
scores than this agent. We use the provided trajectory-
generating code in all of the players we have implemented.

2.2 Weighted Majority Algorithm

The Weighted Majority Algorithm (WMA) is a machine

learning technique that uses a pool of prediction algorithms

to build an efficient compound algorithm. The algorithm

evaluates examples by taking a weighted vote among the

members of this pool. The algorithm learns by altering the

hypotheses’ associated weights when it makes mistakes.

An advantage of this algorithm is that it operates without

any prior knowledge about the quality of the prediction al-

gorithms in the pool. The Weighted Majority Algorithm is

able to handle inconsistent training data, is simple to im-

plement, and runs very quickly.

Below is the pseudocode for WMA. Our implementation

uses β = 0.95 (we did not yet experiment with any other

values). In our usage for Angry Birds, each “prediction

algorithm” is simply a Boolean feature or its negation, de-

scribing a property of our localized representation of the

Angry Birds game state (more details appear later). Basical-

ly, each feature has a weighted vote for and against a shot,

and the difference between the sum across all the features of

weighted votes for a shot and the weighted votes against a

shot is the net score for that shot. Votes that lead to incor-

rect decisions have their weights reduced. In our experi-

ments, we process each training example a few times (more

precisely, we execute the WMA algorithm’s outer loop one

million times, which takes about one minute).

Given a pool A of algorithms, where ai is the ith predic-

tion algorithm; wi, where wi ≥ 0, is the associated weight

for ai; and β is a scalar < 1:

Initialize all weights to 1

For each example in the training set {x, f(x)}

Initialize y1 and y2 to 0

For each prediction algorithm ai,

 If ai(x) = 0 then y1 = y1 + wi

 Else if ai(x) = 1 then y2 = y2 + wi

If y1 > y2 then g(x) = 1

Else if y1 < y then g(x) = 0

Else g(x) is assigned to 0 or 1 randomly.

 If g(x) ≠ f(x) then for each prediction algorithm ai

 If ai(x) ≠ f(x) then update wi with βwi.

2.3 Naïve Bayesian Networks

The Naïve Bayes (NB) classifier encodes a directed, acyclic

graph with conditional independence relations among varia-

bles. In Naïve Bayes, a dependent class variable 𝑌 is the

root and feature variables 𝑋1 through 𝑋𝑛 are conditioned by

Y’s value. The naïve (yet effective) assumption is that each

feature 𝑋𝑖 is conditionally independent of every other fea-

ture 𝑋𝑗 for 𝑗 ≠ 𝑖 given 𝑌.

 We wish to estimate the probability 𝑝(𝑌 | 𝑋1, … , 𝑋𝑛). For

Angry Birds, the Y is goodShot and the X’s are the features

used to describe the game’s state and the shot angle. We

use the same features for NB as we used for WMA. Using

Bayes’ Theorem, we can rewrite this probability as

𝑝(𝑌 | 𝑋1, … , 𝑋𝑛) =
𝑝(𝑌) 𝑝(𝑋1, … 𝑋𝑛 | 𝑌)

𝑝(𝑋1, … , 𝑋𝑛)

Because the denominator of the above equation does not

depend on the class variable 𝑌 and the values of features 𝑋1

through 𝑋𝑛 are given, we can treat it as a constant and only

need estimate the numerator.

Using the conditional independence assumptions utilized

by NB, we can simplify the above expression:

𝑝(𝑌 | 𝑋1, … , 𝑋𝑛) =
1

𝑍
 𝑝(𝑌) ∏ 𝑝(𝑋𝑖 | 𝑌)

𝑛

𝑖=1

where 𝑍 represents the constant term of the denominator.

Learning in NB simply involves counting the examples’

features to estimate the simple probabilities in the above

expression’s right-hand side.

 Finally, to eliminate the term Z, we take the ratio

𝑝(𝑌 | 𝑋1, … , 𝑋𝑛)

𝑝(¬𝑌 | 𝑋1, … , 𝑋𝑛)

which represents the odds of a favorable outcome given the

features of the current state.

 Our implementation of Naïve Bayes estimates the odds of

the class variable goodShot given the same Boolean features

used in WMA. For each feature, we compute the probability

that it is present for both goodShot and badShot; the ratio of

these probabilities is the score of a candidate shot. NB pro-

cesses each training example only once (for 400,000 train-

ing examples, training takes about 3 seconds).

3 Learning to Play Angry Birds

We train our learning algorithms on a set of training exam-
ples generated by non-learning agents with varying degrees
of intelligence. This data is then categorized into positively
and negatively labeled datasets. To gather enough positively
categorized data (from winning games), we engineer agents
that learn how to play each specific level. To help reduce
noise within our datasets, we employ a number of filtering
criteria, weeding out ambiguously categorized shots, shots
with bad tap times, and duplicate examples. Finally, we dis-
card excess data in order to achieve approximately equal
numbers of positive and negative examples per level.

We define a standard example representation, the An-
gryBirdsGridExample, and separately determine tap time
using a simple estimator explained below. After training and
tuning on the examples, we use our algorithms to play An-
gry Birds by scoring a set of a few dozen candidate shot
angles, choosing one of the highest-scoring candidates,
where the probability of selecting a shot is proportional to
its score. Coupled with the tap time recommended by our
estimator, we then execute these shots in games.

3.1 Data Collection

We use a number of different game-playing agents to facili-
tate gathering enough data from which our learning algo-
rithms can learn to play Angry Birds. Such agents include
the provided NaiveAgent and our “RandomAngleAgent”
that randomly chooses shot angles, preferring less extreme
angles. Each agent runs on a number of machines, either
directly or through remote connection (via Putty) and we
collect all the data in a central location.
 Due to the inability of the NaiveAgent and the Ran-
domAngleAgent to win games consistently, however, we
engineered another agent, called the “TweakMacro” agent,
to help gather more winning games. This agent takes a list
of saved shot sequences that resulted in one of the three
highest scores for each level and replays the exact shots
with some small random variation in the shot angles. In do-
ing so, we explore the neighborhood of successful games.
However, since our goal is to build agents that can solve
unknown levels, we use the TweakMacro agent strictly for
data collection, as it depends on knowing the specific level
being played to re-execute successful shots.

3.2 Data Categorization and Filtering

Fig. 1 illustrates how we convert data saved from games
into training examples. We first label examples as either

positive or negative. Positive examples include shots in
winning games, while negative examples include shots in
losing games, with one exception.
 In order to clarify our definition of negative examples, we
filter out ambiguous negative examples, which we define as
those shots in losing games that killed pigs. Since killing a
pig is a desired secondary outcome, shots that achieved this
objective despite being in a losing game are not categorized
as negative examples and therefore discarded.
 Furthermore, our RandomAngleAgent attempts a large
number of shots whose angles are valid but had poor tap
times, either tapping too early (causing birds to fly off-
screen) or too late (where taps would not register because
the bird had already reached its impact point). Since our
models for simplicity learn about shot angles and ignore tap-
time information, we filter examples featuring bad tap times
in order to discard noisy data. Data is thus filtered using the
thresholds of tap time generated by our tap-time estimator,
which we explain in Section 3.4.
 Because each level’s game state before any shots are tak-
en is (nearly) constant, we also filter duplicate shots from
our datasets. Every first shot taken at each level occurs in a
game state essentially identical to all other first shots in that
level. We thus identify duplicate shots as first shots of a
given level whose shot angles differ by no more than 10-5
radians. We filter duplicate shots from our positive and neg-
ative datasets separately. We do not attempt to detect dupli-
cations on shots other than the first shot in a level.
 Finally, because our experiments are considered active
tasks, there is no natural positive-to-negative ratio of exam-
ples. For this reason, we provide to our learning algorithms
an approximately even mix of positive and negative exam-
ples per level. This is achieved by randomly discarding ex-
cess examples from some levels. From 724,993 games in-
volving 3,986,260 shots, we end up with 224,916 positive
and 168,549 negative examples.

Figure 1: Filtering examples.

3.3 Representing Features about a Game State

We construct an example by collecting values for various
features (see Fig. 2) within the game state before a shot is
made. An AngryBirdsGridExample contains the shot release
angle and object targeted (pig, ice, etc.). It is important to
note that these two features are considered as input features
in our example model and not as outputs. Furthermore,
these examples represent a localized portion of the game
state as a 7x7 grid of cells located around the shot impact
point (see Fig. 3). We encode the contents of each cell in a
series of 2D arrays of Boolean values, based on whether or
not they contain a game object: pig, ice, wood, stone, or
TNT. To further enhance our feature representation, we cre-
ated a terrain detector to identify immovable wall areas in
game states and include them as features in our grid exam-
ples. Note that one cell in the grid can have multiple fea-
tures being true for that that cell.

Our grid examples also compute features that encode
relative positions and counts of objects within the grid. As
such, our grid examples calculate whether a given cell con-
tains pigs above, below, and to the right of structures, as
well as the counts of objects above, below, and to the right
of the shot’s predicted impact point. We do so to learn
whether the relative positions of structures and pigs within a
game state affect the outcome of a given shot.

Additionally, we do not consider features that are the
same across all candidates of a given shot, such as the total
number of pigs in the current game state. Because our cho-
sen models are linear and weight each feature separately,
features constant across all candidate shots do not result in
varying scores across these shots.

3.4 Choosing the Tap Time

For our experiments, we consider tap time as a feature sepa-
rate from our grid-example representation. Tap time is thus
not learned by our standard algorithms. We instead built a
separate TapTimeIntervalEstimator, a simple estimator
which keeps track of tap times in training data to determine
the best tap intervals for each bird type (other than red).

Since tap times vary across levels due to distance be-
tween slingshot and impact, we normalize tap times instead
as a fraction of the impact time. Impact time is calculated as
the estimated time it takes for a bird to reach its impact
point without utilizing its tap. The provided code performs
this calculation for us.

For each bird requiring a tap, the TapTimeIntervalEstima-
tor counts tap-time fractions (separately for high and
straight shots) that resulted in either a win or a loss. Taking
the ratio of wins to losses results in visible peak intervals in
which best taps were made for certain bird and angle com-
binations. Finally, during experiments, we select from these
intervals using triangle distributions to compute desired tap
times for a given shot whose angle has been selected by our
previous described algorithms. (We performed some infor-
mal experiments and our tap-time method leads to slightly
better performance than the method in the provided Naive-
Agent, but we do not report on those experiments here.)

Figure 3: Visualization of the grid we use to construct our fea-

tures for an example. The grid is placed at the estimated impact

point (marked with a red asterisk) for that shot. We do not center

the grid around the impact point because, due to physics, the con-

sequences of a shot are largely to the right of the impact.

Figure 4: Consideration of candidate shots during Angry Birds

gameplay. Each black point indicates the impact location of a

candidate shot. The scores of the candidate shots are normalized

between [0, 1]; solid black circles indicate candidates with nor-

malized score ≥ 0.5, while open circles indicate candidates with

scores < 0.5.

Figure 2: Features represented in AngryBirdsGridExamples.

“Counting an object” counts the number of cells containing that

object. Relations like stoneAboveIce(x,y) are true if cell x-y con-

tains ice and some cell at or above y in column x contains a stone.

3.5 Learning Models and Playing Angry Birds

After categorizing and filtering our datasets, we divide them
into training and tuning sets used by our learning algorithms
to learn models of good shots. To address overfitting, our
implementation of the Weighted Majority Algorithm uses
the tuning data to determine and save the iteration of trained
weights that performs the best on the tuning dataset (more
precisely, we choose the iteration with the lowest average
rank of the top 25% of the positive examples in the sorted
list of predicted scores on the tune set). Our implementation
of the Naïve Bayesian Network does not incorporate any
correction factors, and instead combines the training and
tuning datasets.

After completing training, we use our learned models to
play Angry Birds. For every game state, we consider several
dozen candidate shots (depending on how many pigs and
other objects are in the current scene), considering both
high- and straight-angled shots for each potential target.
Each candidate shot is presented as a grid example to be
evaluated by the learning algorithm being tested: the
Weighted Majority Algorithm returns a net weighted sum
score, while the Naïve Bayesian Network returns a calcula-
tion of the odds of winning given the features present in the
grid example. We then consider the five highest-scoring
candidate shots, choosing among them proportionally to
each of their scores, and the selected candidate shot is exe-
cuted in the current real-time Angry Birds game (see Fig. 4).

4 Experimental Methodology

For our experiments, we train our two algorithms 21 times
each on data from Levels 1 to 21, creating separate models
for use on each level. Each model was trained on training
examples from all levels except the level it would be used to
play (e.g., a model trained on all levels except the first level
is only used to play the first level). We then test our sets of
learned models on Levels 1 to 21.

In running the experiments, we start Chrome instances
with all Angry Birds levels (1-21) unlocked. Our process for
deciding which level to play is as follows.

 First, from 1 to 21, play each level once.
 Next, again from 1 to 21, play once those levels not

yet solved. Repeat this until all levels solved.
 When all levels solved, play the level with the best

ratio of number of times a new high score was set
over number of times level was played.

5 Results and Discussion

Fig. 5 shows the performance of our learning algorithms and
of our experimental control as a function of the number of
shots taken versus the sum of the highest scores for each of
the 21 levels (only scores in winning games are counted).
We play 300 shots, which takes about 75 minutes. The re-
sults are averaged over ten repeated runs. Both our learning
methods perform better than our experimental control, the
provided NaiveAgent.

We also show in Fig. 6 the performance of our algorithms
when, instead of using 21 differently trained models, we use

a single model trained on all 21 levels to play all the levels.
This figure shows the difference in performance when the
learners have the advantage of playing each level many
times before being evaluated. When comparing results re-
ported in various papers it is important to note whether or
not learners have training examples from the levels being
played (Fig. 6) or the levels are novel (Fig. 5). It is also in-
teresting to see that, in our experiments, our Naïve Bayes
model trained on all but test levels eventually scores similar-
ly to our NB model trained on all levels. Apparently Naïve
Bayes is able to learn the general skill sufficiently well to
largely compensate for not having any training examples for
the level currently being played.

The mean areas under the five curves in Fig. 6 are as fol-
lows: 167 Million (Naïve Agent), 175M (WMA trained on
all but current level), 187M (NB trained on all but current
level), 205M (WMA trained on all levels), and 205M (NB
trained on all levels). Using an unpaired two-tailed t-test, the
differences between the NaiveAgent are statistically signifi-
cant for all but WMA (p-values of less than 0.0001 for the
two versions trained on all levels and p= 0.01 for NB).

Figure 5: Performance of our learning algorithms

trained on all levels except the current level.

Figure 6: Performance of our learning algorithms

trained on both all levels and all levels except current level.

Our experiments reported here only involved Levels 1-21,
for both training and testing, but we also let our agents run
on Levels 22-42 a small number of times. Tables 1 and 2
show the highest scores we ever found in playing about four
million games (note that these games were all played after
we fixed the bug in the score-reading code). We present
them as a reference for use by other researchers. The total
of the best scores in Levels 1-21 is 1,267,530 and for Levels
22-42 is 1,532,710. Comparing these totals to the results in
Fig. 5 and 6, combined with the fact that even in many-hour
runs, our algorithms would reach only slightly more than
one million points, one can see there is sizable room for
improvement. It is interesting to see how many levels can
be solved with a single shot! Unfortunately, if the best se-
quences are replayed verbatim they do not come close to
replicating the scores in Tables 1 and 2 without performing
many replications, showing that results in Angry Birds are
quite sensitive to the initial conditions (a given level’s initial
states are nearly but not totally identical across runs) as well
as any non-determinacy in the game’s physics engine.

Table 1: Highest scores found for Levels 1-21,

formatted as: level (shots taken) score.

1 (1) 35,900 8 (1) 59,830 15 (1) 57,310

2 (1) 62,890 9 (1) 52,600 16 (2) 71,850

3 (1) 43,990 10 (1) 76,280 17 (1) 57,630

4 (1) 38,970 11 (1) 63,330 18 (2) 66,260

5 (1) 71,680 12 (1) 63,310 19 (2) 42,870

6 (1) 44,730 13 (1) 56,290 20 (2) 65,760

7 (1) 50,760 14 (1) 85,500 21 (3) 99,790

Table 2: Highest scores found for Levels 22-42.

22 (2) 69,340 29 (2) 60,750 36 (2) 84,480

23 (2) 67,070 30 (1) 51,130 37 (2) 76,350

24 (2) 116,630 31 (1) 54,070 38 (2) 39,860

25 (2) 60,360 32 (3) 108,860 39 (1) 76,490

26 (2) 102,880 33 (4) 64,340 40 (2) 63,030

27 (2) 72,220 34 (2) 91,630 41 (1) 64,370

28 (1) 64,750 35 (2) 56,110 42 (5) 87,990

6 Future Work

Our experiments open up many diverse possibilities for fu-

ture work. Our definitions of good and bad shots, which

play key factors in supervised learning, are probably insuffi-

cient. Another interesting possibility is to learn separate

models for each type of bird, as well as for high shots, low

shots, first shots, last shots, and shots when only one pig

remains. Currently we only consider the two trajectories the

provided code calculates and it might be worthwhile to con-

sider more candidate angles for each object targeted.

We only considered two learning methods in this initial

work and more should be considered, including reinforce-

ment learning approaches which have worked well for tasks

such as RoboCup [Stone & Sutton, 2001], plus additional

supervised learning methods such as support vector ma-

chines and neural networks.

 We would also like to go beyond Naïve Bayesian Net-

works by designing Bayesian networks with dependencies

among features. Hand-coded engineered dependencies could

serve to improve Bayesian Network performance on the

Angry Birds testbed. In addition, we can use algorithmic

search to find good Bayesian Network structures.

 Another interesting task to consider is to use teacher

demonstrations or teacher-provided solutions in supervised

learning algorithms. In Angry Birds, human intuition proves

helpful in solving complex levels that require rolling birds

along angled terrain and knocking over secondary objects.

Given a graphical interface that shows potential trajectories

and calculates impact points, human teachers could suggest

good shots and even provide complete solutions that score

well. We could then use these solutions to train machine

learning algorithms to play more intelligently and attempt to

emulate human intuition. Potential challenges include gath-

ering enough data for training (as teacher demonstrations

are time consuming) and generalizing the learned playing

techniques across all levels, as some solutions may only be

valid for a particular complex level.

7 Conclusion

The Angry Birds testbed serves as a challenging problem for
machine learning. We present and empirically evaluate a
design for creating a computerized player based on machine
learning. While our learning algorithms are able to statisti-
cally significantly outperform the provided NaiveAgent,
there is much room for improvement when dealing with the
Angry Birds task and many opportunities for future work.
Our empirical results provide a baseline for the performance
of future machine learning (and other AI) methods.

A key aspect of our approach is that we represent training
examples in a manner that we strove to make independent of
any specific game level, which we did by creating features
whose semantics were relative to a candidate shot’s impact
point (shotAngle and objectTargeted were the only excep-
tions). We argue that the primary goal should be to learn
the general task of playing Angry Birds, rather than aiming
to learn how to play specific levels. This can be addressed
by making sure models for choosing shots for Level i are
not trained with any examples from Level i.

Acknowledgments

This work was supported by the University of Wisconsin-

Madison, USA. Authors ANC and LX are undergraduate

students doing independent study under the direction of au-

thor JS. Jochen Renz provided valuable assistance that we

greatly appreciate.

References

[Mitchell, 1997] T. Mitchell. Machine Learning. The McGraw Hill

Companies, Inc., Boston, MA, 1997.

[Russell and Norvig, 2010] S. Russell and P. Norvig. Artificial

Intelligence: A Modern Approach (3rd ed). Pearson Education,

Inc., Upper Saddle River, NJ, 2010.

[Littlestone, 1988] N. Littlestone. Learning Quickly When Irrele-

vant Attributes Abound: A New Linear-threshold Algorithm.

In Machine Learning, pages 285-318, 1988.

[Stone and Sutton, 2001] P. Stone and R.S. Sutton. Scaling rein-

forcement learning toward RoboCup soccer. In Proceedings of

the 18th International Conference on Machine Learning, pages

537-544, Williams, MA, 2001.

