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Abstract. We introduce Score As You Lift (SAYL), a novel Statistical
Relational Learning (SRL) algorithm, and apply it to an important task
in the diagnosis of breast cancer. SAYL combines SRL with the mar-
keting concept of uplift modeling, uses the area under the uplift curve
to direct clause construction and final theory evaluation, integrates rule
learning and probability assignment, and conditions the addition of each
new theory rule to existing ones.

Breast cancer, the most common type of cancer among women, is cat-
egorized into two subtypes: an earlier in situ stage where cancer cells are
still confined, and a subsequent invasive stage. Currently older women
with in situ cancer are treated to prevent cancer progression, regardless
of the fact that treatment may generate undesirable side-effects, and the
woman may die of other causes. Younger women tend to have more ag-
gressive cancers, while older women tend to have more indolent tumors.
Therefore older women whose in situ tumors show significant dissimilar-
ity with in situ cancer in younger women are less likely to progress, and
can thus be considered for watchful waiting.

Motivated by this important problem, this work makes two main con-
tributions. First, we present the first multi-relational uplift modeling
system, and introduce, implement and evaluate a novel method to guide
search in an SRL framework. Second, we compare our algorithm to pre-
vious approaches, and demonstrate that the system can indeed obtain
differential rules of interest to an expert on real data, while significantly
improving the data uplift.

1 Introduction

Breast cancer is the most common type of cancer among women, with a 12%
incidence in a lifetime [2]. Breast cancer has two basic categories: an earlier in
situ stage where cancer cells are still confined to where they developed, and a
subsequent invasive stage where cancer cells infiltrate surrounding tissue. Since
nearly all in situ cases can be cured [1], current practice is to treat in situ occur-
rences in order to avoid progression into invasive tumors [2]. Nevertheless, the
time required for an in situ tumor to reach invasive stage may be sufficiently long
for an older woman to die of other causes, raising the possibility that treatment
may not have been necessary.
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Cancer occurrence and stage are determined through biopsy, a costly, inva-
sive, and potentially painful procedure. Treatment is also costly and may gener-
ate undesirable side-effects. Hence there is a need for pre-biopsy methods that
can accurately identify patient subgroups that would benefit most from treat-
ment, and especially, those who do not need treatment. For the latter, the risk
of progression would be low enough to employ watchful waiting (mammographic
evaluation at short term intervals) rather than biopsy [26].

Fortunately, the literature confirms that the pre-biopsy mammographic ap-
pearance as described by radiologists can predict breast cancer stage [28, 29].
Furthermore, based on age, different pre-biopsy mammographic features can be
used to classify cancer stage [18]. A set of mammography features is differentially-
predictive if it is significantly more predictive of cancer in one age group as com-
pared to another. We may be able to use such differentially-predictive features
to recommend watchful waiting for older in situ patients accurately enough to
safely avoid additional tests and treatment.

In fact, younger women tend to have more aggressive cancers that rapidly
proliferate, while older women tend to have more indolent cancers [8, 13]. We
assume that younger in situ patients should always be treated, due to the longer
potential time-span for cancer progression. We also assume that older in situ
patients whose mammography features are similar to in situ in younger patients
should also be treated, because the more aggressive nature of cancer in younger
patients may be conditioned on those features. On the other hand, older in situ
patients whose mammography features are significantly different from features
observed in younger in situ patients are less likely to experience rapid prolifera-
tion, and can thus be recommended for watchful waiting.

The general task of identifying differentially predictive features occurs nat-
urally in diverse fields. Psychologists initially assessed for differential prediction
using linear regression, defining it as the case where a common regression equa-
tion results in systematic nonzero errors of prediction for given subgroups [6].
The absence of differential prediction over different groups of examinees was an
indicator of the fairness of a cognitive or educational test [31].

Psychologists aim to decrease differential prediction on their tests. This is
not the case in the closely related concept of uplift modeling, a modeling and
classification method used in marketing to determine the incremental impact of
an advertising campaign on a given population. Uplift modeling is effectively
a differential prediction approach aimed at maximizing uplift [11, 16, 23]. Uplift
is defined as the difference in a model or intervention M ’s lift scores over the
subject and control sets:

UpliftM = LiftM (subject)− LiftM (control). (1)

Given a fraction ρ such that 0 ≤ ρ ≤ 1, a model M ’s lift is defined as the
number of positive examples amongst the model’s ρ-highest ranking examples.
Uplift thus captures the additional number of positive examples obtained due
to the intervention. We generate an uplift curve by ranging ρ from 0 to 1 and
plotting UpliftM . The higher the uplift curve, the more profitable a marketing
model/intervention is.



The motivating problem at hand can readily be cast as an uplift modeling
problem (see Table 1). Even though we are not actively altering the cancer stage
as a marketing intervention would alter the subject population behavior, one
may argue that time is altering the cancer stage. Our subject and control sets
are respectively older and younger patients with confirmed breast cancer —where
time, as an intervention, has altered the cancer stage— and we want to predict
in situ versus invasive cancer based on mammography features. By maximizing
the in situ cases’ uplift, which is the difference between a model’s in situ lift on
the older and younger patients, we are identifying the older in situ cases that
are most different from younger in situ cases, and thus are the best candidates
for watchful waiting. Exactly like a marketing campaign would want to target
consumers who are the most prone to respond, we want to target the ones that
differ the most from the control group.

Table 1. Casting mammography problem in uplift modeling terms

Intervention Subject Group Control Group Positive Class Negative Class

Time Older cohort Younger cohort In Situ Invasive

In recent work, Nassif et al. inferred older-specific differentially-predictive in
situ mammography rules [20]. They used Inductive Logic Programming (ILP)
[14], but defined a differential-prediction-sensitive clause evaluation function that
compares performance over age-subgroups during search-space exploration and
rule construction. To assess the resulting theory (final set of rules), they con-
structed a TAN classifier [9] using the learned rules and assigned a probability
to each example. They finally used the generated probabilities to construct the
uplift curve to assess the validity of their model.

The ILP-based differential prediction model [20] had several shortcomings.
First, this algorithm used a differential scoring function based on m-estimates
during clause construction, and then evaluated the resulting theory using the
area under the uplift curve. This may result in sub-optimal performance, since
rules with a high differential m-estimate score may not generate high uplift
curves. Second, it decoupled clause construction and probability estimation: af-
ter rules are learned, a TAN model is built to compute example probabilities.
Coupling these two processes together may generate a different theory with a
lower ILP-score, but with a more accurate probability assignment. Finally, rules
were added to the theory independently of each other, resulting in redundancies.
Having the addition of newer rules be conditioned on the prior theory rules is
likely to improve the quality and coverage of the theory.

In this work, we present a novel relational uplift modeling Statistical Rela-
tional Learning (SRL) algorithm that addresses all the above shortcomings. Our
method, Score As You Lift (SAYL), uses the area under the uplift curve score
during clause construction and final theory evaluation, integrates rule learning
and probability assignment, and conditions the addition of new theory rules to
existing ones. This work makes two main contributions. First, we present the first
multi-relational uplift modeling system, and introduce, implement and evaluate
a novel method to guide search in an SRL framework. Second, we compare our



algorithm to previous approaches, and demonstrate that the system can indeed
obtain differential rules of interest to an expert on real data, while significantly
improving the data uplift.

2 Background: The SAYU Algorithm

Score As You Use (SAYU) [7] is a Statistical Relational Learner [10] that inte-
grates search for relational rules and classification. It starts from the well known
observation that a clause or rule r can be mapped to a binary attribute b, by
having b(e) = 1 for an example e if the rule r explains e, and b(e) = 0 otherwise.

This makes it possible to construct classifiers by using rules as attributes,
an approach known as propositionalization [32]. One limitation, though, is that
often the propositional learner has to consider a very large number of possible
rules. Moreover, these rules tend to be very correlated, making it particularly
hard to select a subset of rules that can be used to construct a good classifier.

SAYU addresses this problem by evaluating the contribution of rules to a
classifier as soon as the rule is generated. Thus, SAYU generates rules using a
traditional ILP algorithm, such as Aleph [27], but instead of scoring the rules
individually, as Aleph does, every rule SAYU generates is immediately used to
construct a statistical classifier. If this new classifier improves performance over
the current set of rules, the rule is added as an extra attribute.

Algorithm 1 SAYU

Rs← {};M0 ← InitClassifier(Rs)
while DoSearch() do

e+ ← RandomSeed();
⊥e+ ← saturate(e);
while c← reduce(⊥e+) do

M ← LearnClassifier(Rs ∪ {c});
if Better(M,M0) then

Rs← Rs ∪ {c};M0 ←M ;
break

end if
end while

end while

Algorithm 1 shows SAYU in more detail. SAYU maintains a current set of
clauses, Rs, and a current reference classifier, M0. SAYU extends the Aleph [27]
implementation of Progol’s MDIE algorithm [17]. Thus, it starts search by ran-
domly selecting a positive example as seed, e+, generating the corresponding
bottom clause, ⊥e+ , and then generating clauses that subsume ⊥e+ . For every
new such clause c, it constructs a classifier M and compares M with the current
M0. If better, it accepts c by adding it to Rs and making M the default classifier.
SAYU can terminate search when all examples have been tried without adding
new clauses. In practice, termination is often controlled by a time limit.

Quite often, most execution time will be spent learning classifiers. Therefore,
it is important that the classifier can be learned in a reasonable time. Further,



the classifier should cope well with many related attributes. We use the TAN
classifier, a Bayesian network that extends naive Bayes with at most one other
edge per attribute [9]. TAN has quadratic learning time, which is acceptable for
SAYU, and compensates well for highly dependent attributes.

Second, comparing two classifiers is not trivial. SAYU reserves a tuning set
for this task: if the classifier M has a better score on both the initial training
and tuning sets, the new rule is accepted. The scoring function depends on the
problem at hand. Most often SAYU has been used in skewed domains, where
the area under the precision-recall curve is regarded as a good measure [5], but
the algorithm allows for any metric.

The original SAYU algorithm accepts a logical clause as soon as it improves
the network. It may be the case that a later clause would be even better. Un-
fortunately, SAYU will switch seeds after selecting a clause, so the better clause
may be ignored. One solution is to make SAYU less greedy by exploring the
search space for each seed, up to some limit on the number of clauses, before
accepting a clause. We call this version of SAYU exploration SAYU : we will refer
to it as e-SAYU, and to the original algorithm as greedy SAYU, or g-SAYU.

Algorithm 2 e-SAYU

Rs← {};M0 ← InitClassifier(Rs)
while DoSearch() do

e+ ← RandomSeed();
⊥e+ ← saturate(e+);
ce+ ← >; Me+ ←M0;
while c← reduce(⊥e+) do

M ← LearnClassifier(Rs ∪ {c});
if Better(M,Me) then

ce+ ← c;Me+ ←M ;
end if

end while
if ce+ 6= > then

Rs← Rs ∪ {ce+};M0 ←Me+ ;
end if

end while

Algorithm 2 details e-SAYU. It differs from g-SAYU in that it keeps track,
for each seed, of the current best classifier Me+ and best clause ce+ . At the end,
if a clause ce+ was found, we commit to that clause and update the classifier.

3 Background: Uplift Modeling

Next we discuss uplift in more detail and compare it to related measures.

3.1 Uplift

Let P be the number of positive examples and N the number of negative exam-
ples in a given dataset D. Lift represents the number of true positives detected



by model m amongst the top-ranked fraction ρ. Varying ρ ∈ [0, 1] produces a lift
curve. The area under the lift curve AUL for a given model and data becomes:

AUL =

∫
Lift(D, ρ)dρ ≈ 1

2

P+N∑
k=1

(ρk+1− ρk)(Lift(D, ρk+1) +Lift(D, ρk)) (2)

Uplift compares the difference between the model M over two groups, sub-
jects s and controls c. It is obtained by:

Uplift(Ms,Mc, ρ) = LiftMs
(S, ρ)− LiftMc

(C, ρ). (3)

Since uplift is a function of a single value for ρ, the area under the uplift curve is
the difference between the areas under the lift curves of the two models,∆(AUL).

It is interesting to note the correspondence of the uplift model to the differen-
tial prediction framework [20]. The subjects and controls groups are disjoint sub-
sets, and thus form a 2-strata dataset. LiftM is a differential predictive concept,
since maximizing Uplift(Ms,Mc, ρ) requires LiftMs

(S, ρ) � LiftMc
(C, ρ). Fi-

nally, Uplift is a differential-prediction-sensitive scoring function, since it is pos-
itively correlated with LiftMs

(S, ρ) and negatively correlated with LiftMc
(C, ρ).

3.2 Lift AUC and ROC AUC

In order to obtain more insight into this measure it is interesting to compare
uplift and lift curves with receiver operating characteristic (ROC) curves. We
define AUL as the area under the lift curve, and AUR as the area under the
ROC curve. There is a strong connection between the lift curve and the ROC
curve: Let π = P

P+N be the prior probability for the positive class or skew, then:

AUL = P ∗ (
π

2
+ (1− π) AUR) [30, p.549]. (4)

In uplift modeling we aim to optimize for uplift over two sets, that is we aim
at obtaining new classifiers such that ∆(AUL∗) > ∆(AUL), where ∆(AUL) =
AULs − AULc, subscripts s and c referring to the subject and control groups,
respectively. The equation ∆(AUL∗) > ∆(AUL) can be expanded into:

AUL∗
s −AUL∗

c > AULs −AULc. (5)

Further expanding and simplifying we have:

Ps(
πs
2

+ (1− πs)AUR∗
s)− Pc(

πc
2
− (1− πc)AUR∗

c) >

Ps(
πs
2

+(1− πs)AURs)− Pc(
πc
2
− (1− πc)AURc)

Ps(1− πs)AUR∗
s − Pc(1− πc)AUR∗

c > Ps(1− πs)AURs − Pc(1− πc)AURc
Ps(1− πs)(AUR∗

s −AURs) > Ps(1− πs)(AUR∗
c −AURc)

and finally
AUR∗

s −AURs
AUR∗

c −AURc
>
Pc
Ps

1− πc
1− πs

. (6)



In a balanced dataset, we have πc = πs = 1
2 and Pc = Ps, so we have that

1−πc

1−πs
= 1. In fact, if the subject and control datasets have the same skew we can

conclude that ∆(AUL∗) > ∆(AUL) implies ∆(AUR∗) > ∆(AUR).
In the mammography dataset, the skews are Ps = 132, πs = 132

132+401 (older),

and Pc = 110, πc = 110
110+264 (younger). Thus equation 6 becomes:

AUR∗
s −AURs

AUR∗
c −AURc

> 0.86. (7)

Therefore we cannot guarantee that ∆(AUL∗) > ∆(AUL) implies ∆(AUR∗) >
∆(AUR) on this data, as we can increase uplift with rules that have similar
accuracy but cover more cases in the older cohort, and there are more cases to
cover in the older cohort. On the other hand, breast cancer is more prevalent in
older women [1], so uplift is measuring the true impact of the model.

In general, we can conclude that the two tests are related, but that uplift is
sensitive to variations of dataset size and skew. In other words, uplift is more
sensitive to variations in coverage when the two groups have different size. In
our motivating domain, this is particularly important in that it allows capturing
information related to the larger prevalence of breast cancer in older populations.

4 SAYL: Integrating SAYU and Uplift Modeling

SAYL is a Statistical Relational Learner based on SAYU that integrates search
for relational rules and uplift modeling. Similar to SAYU, every valid rule gen-
erated is used for classifier construction via propositionalization, but instead of
constructing a single classifier, SAYL constructs two classifiers; one for each of
the subject and control groups. Both classifiers use the same set of attributes,
but are trained only on examples from their respective groups. If a rule improves
the area under the uplift curve (uplift AUC) by threshold θ, the rule is added
to the attribute set. Otherwise, SAYL continues the search.

Algorithm 3 SAYL

Rs← {};Ms
0 ,M

c
0 ← InitClassifiers(Rs)

while DoSearch() do
e+s ← RandomSeed();
⊥

e+s
← saturate(e);

while c← reduce(⊥
e+s

) do

Ms,Mc ← LearnClassifiers(Rs ∪ {c});
if Better(Ms,Mc,Ms

0 ,M
c
0 ) then

Rs← Rs ∪ {c};Ms
0 ,M

c
0 ←Ms,Mc;

break
end if

end while
end while

The SAYL algorithm is shown as Algorithm 3. Like SAYU, SAYL maintains
separate training and tuning example sets, accepting rules only when the clas-
sifiers produce a better score on both sets. This requirement is often extended



with a specified threshold of improvement θ, or a minimal rule coverage require-
ment minpos. Additionally, SAYL also has a greedy (g-SAYL) and exploratory
(e-SAYL) versions that operate in the same fashion as they do for SAYU.

The key difference between SAYL and SAYU, then, is that SAYL maintains
a distinction between the groups of interest by using two separate classifiers.
This is what allows SAYL to demonstrate differential performance as opposed
to standard metrics, such as the area under a precision-recall curve. To compute
uplift AUC, SAYL simply computes the area under the lift curve for each of the
groups using the two classifiers and returns the difference.

SAYL and SAYU also differ in selecting a seed example to saturate. Instead
of selecting from the entire set of positive examples, SAYL only selects seed
examples from the positive examples in the subject group. This is not necessary,
but makes intuitive sense as clauses produced from examples in the subject set
are more likely to produce greater lift on the subject set in the first place.

5 Experimental Results

Our motivating application is to detect differential older-specific in situ breast
cancer by maximizing the area under the uplift curve (uplift AUC). We apply
SAYL to the breast cancer data used in Nassif et al. [20]. The data consists of two
cohorts: patients younger than 50 years form the younger cohort, while patients
aged 65 and above form the older cohort. The older cohort has 132 in situ and
401 invasive cases, while the younger one has 110 in situ and 264 invasive.

The data is organized in 20 extensional relations that describe the mam-
mogram, and 35 intensional relations that connect a mammogram with related
mammograms, discovered at the same or in prior visits. Some of the extensional
features have been mined from free text [19]. The background knowledge also
maintains information on prior surgeries. The data is fully described in [18].

We use 10-fold cross-validation, making sure all records pertaining to the
same patient are in the same fold. We run SAYL with a time limit of one hour
per fold. We run folds in parallel. On top of the ILP memory requirements,
SAYL requires an extra 0.5 gigabyte of memory for the Java Virtual Machine.
For each cross-validated run, we use 4 training, 5 tuning and 1 testing folds.
For each fold, we used the best combination of parameters according to a 9-fold
internal cross-validation using 4 training, 4 tuning and 1 testing folds. We try
both e-SAYL and g-SAYL search modes, vary the minimum number minpos of
positive examples that a rule is required to cover between 7 and 13 (respectively
5% and 10% of older in situ examples), and set the threshold θ to add a clause
to the theory if its addition improves the uplift AUC to 1%, 5% and 10%. We
concatenate the results of each testing set to generate the final uplift curve.

Table 2 compares SAYL with the Differential Prediction Search (DPS) and
Model Filtering (MF) ILP methods [20], both of which had minpos = 13 (10%
of older in situ). A baseline random classifier achieves an uplift AUC of 11. We
use the Mann-Whitney test at the 95% confidence level to compare two sets
of experiments. We show the p-value of the 10-fold uplift AUC paired Mann-
Whitney of each method as compared to DPS, DPS being the state-of-the-art
in relational differential prediction. We also plot the uplift curves in Figure 1.



Table 2. 10-fold cross-validated SAYL performance. AUC is Area Under the Curve.
Rule number averaged over the 10 folds of theories. For comparison, we include results
of Differential Prediction Search (DPS) and Model Filtering (MF) methods [20]. We
compute the p-value comparing each method to DPS, * indicating significance.

Algorithm Uplift Lift(older) Lift(younger) Rules DPS
AUC AUC AUC Avg # p-value

SAYL 58.10 97.24 39.15 9.3 0.002 *

DPS 27.83 101.01 73.17 37.1 -
MF 20.90 100.89 80.99 19.9 0.0039 *

Baseline 11.00 66.00 55.00 - 0.0020 *
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Fig. 1. Uplift curves for the ILP-based methods (Differential Prediction Search (DPS)
and Model Filtering (MF), both with minpos = 13 [20]), a baseline random classifier,
and SAYL with cross-validated paramters. Uplift curves start at 0 and end at 22, the
difference between older (132) and younger (110) total in situ cases. The higher the
curve, the better the uplift.

SAYL 10-fold cross-validation chose g-SAYL in 9 folds and e-SAYL in 1, while
minpos was 13 (10% of older in situ) in 5 folds, and 7 (5%) in the remaining 5
folds. θ was selected to be 1% in 4 folds, 5% in 3 folds, and 10% in the remaining
3 folds. Table 3 shows how sensitive SAYL is to those different parameters.

6 Discussion

6.1 Model Performance

SAYL significantly outperforms DPS (Table 2, Figure 1), while ILP-based runs
have the highest older and younger lift AUC (Tables 2, 3). This is because ILP



Table 3. 10-fold cross-validated SAYL performance under various parameters. minpos
is the minimum number of positive examples that a rule is required to cover. θ is the up-
lift AUC improvement threshold for adding a rule to the theory. We also include results
of SAYL using cross-validated parameters and Differential Prediction Search (DPS).
We compute the p-value comparing each method to DPS, * indicating significance.

minpos θ search Uplift Lift(older) Lift(younger) Rules DPS
(%) mode AUC AUC AUC Avg # p-value

13 1 g-SAYL 63.29 96.79 33.50 16.4 0.002 *
13 1 e-SAYL 43.51 83.82 40.31 2.0 0.049 *
13 5 g-SAYL 58.06 96.14 38.07 5.9 0.002 *
13 5 e-SAYL 53.37 85.66 32.29 1.8 0.027 *
13 10 g-SAYL 61.68 96.26 34.58 3.6 0.002 *
13 10 e-SAYL 65.36 90.50 25.14 1.1 0.002 *
7 1 g-SAYL 65.48 98.82 33.34 18.3 0.002 *
7 1 e-SAYL 25.50 74.39 48.90 3.0 0.695
7 5 g-SAYL 58.91 96.67 37.76 5.8 0.002 *
7 5 e-SAYL 32.71 79.52 46.81 2.5 0.557
7 10 g-SAYL 61.98 96.87 34.89 3.6 0.002 *
7 10 e-SAYL 52.35 83.64 31.29 1.6 0.002 *

- - SAYL 58.10 97.24 39.15 9.3 0.002 *
13 - DPS 27.83 101.01 73.17 37.1 -

methods use different metrics during clause construction and theory evaluation,
and decouple clause construction from probability estimation. SAYL builds mod-
els that are slightly less predictive of in situ vs. invasive over the younger subset,
as measured by the slightly lower older lift AUC, but on the other hand it ef-
fectively maximizes uplift. In fact, increasing lift on one subset will most often
increase lift on the other subset, since both sets share similar properties. SAYL
avoids this pitfall by selecting rules that generate a high differential lift, ignor-
ing rules with good subject lift that are equally good on the controls. These
results confirm the limitations of a pure ILP approach, demonstrating signifi-
cantly higher uplift using SAYL.

e-SAYL explores a larger search space for a given seed before selecting a
rule to add to the theory. This results in smaller theories than greedy g-SAYL.
Increasing θ, the uplift AUC improvement threshold for adding a rule to the
theory, also results in smaller theories, as expected. Ranging minpos between 7
and 13 doesn’t seem to have a sizable effect on rule number.

g-SAYL’s performance remains constant across all parameters, its uplift AUC
varying between 58.06 and 65.48. At the same time, its theory size ranges from
3.6 to 18.3. This indicates that the number of rules is not correlated with uplift
AUC. Another indication comes from e-SAYL, whose theory size changes little
(1.1 – 3.0), while its performance tends to increase with increasing minpos and θ.
Its uplift AUC jumps from the lowest score of 25.50, where it is significantly worse
than g-SAYL, to nearly the highest score of 65.36. In fact, g-SAYL outperforms
e-SAYL on all runs except minpos = 13 and θ = 10%.



e-SAYL is more prone to over fitting, since it explores a larger search space
and is thus more likely to find rules tailored to the training set with a poor gen-
eralization. By increasing minpos and θ, we are restricting potential candidate
rules to the more robust ones, which decreases the chances of converging to a
local minima and overfitting. This explains why e-SAYL had the worst perfor-
mances with lowest minpos and θ values, and why it achieved the second highest
score of all runs at the highest minpos and θ values. These limited results seem
to suggest using e-SAYL with minpos and θ equal to 10%.

6.2 Model Interpretation

SAYL returns two TAN Bayes-net models, one for the older and one for the
younger, with first-order logic rules as the nodes. Each model includes the clas-
sifier node, presented top-most, and the same rules. All rules depend directly on
the classifier and have at least one other parent. Although both models have the
same rules as nodes, TAN learns the structure of each model on its correspond-
ing data subset separately, resulting in different networks. SAYL identifies the
features that best differentiate amongst subject and control positive examples,
while TAN uses these features to create the best classifier over each set.

To generate the final model and inspect the resulting rules, we run SAYL with
5 folds for training and 5 for tuning. As an example, Figures 2 and 3 respectively
show the older and younger cases TAN models of g-SAYL with minpos = 13
and θ = 5%. The older cohort graph shows that the increase in the combined
BI-RADS score is a key differential attribute. The BI-RADS score is a number
that summarizes the examining radiologist’s opinion and findings concerning
the mammogram [3]. We then can see two sub-graphs: the left-hand side sub-
graph focuses on the patient’s history (prior biopsy, surgery and family history),
whereas the right-hand side sub-graph focuses on the examined breast (BI-RADS
score, mass size). In contrast, the younger cohort graph is very different: the
graph has a shorter depth, and the combined BI-RADS increase node is linked
to different nodes. . .

As the number of rules increases, it becomes harder for humans to interpret
the cohort models, let alone their uplift interaction. In ILP-based differential
prediction methods [20], theory rules are independent and each rule is an older in
situ differential rule. In SAYL, theory rules are dependent on each other, whereas
a rule can be modulating another rule in the TAN graph. This is advantageous
because such modulated rule combinations can not be expressed in ILP-theory,
and therefore might not be learnable. On the other hand, SAYL individual rules
are not required to be older in situ specific. A SAYL rule can predict invasive,
or be younger specific, as long as the resulting model is uplifting older in situ.
Which decreases clinical rule interpretability.

The average number of rules returned by SAYL is lower than ILP-based
methods (Table 2), SAYL effectively removes redundant rules by conditioning
the addition of a new rule on previous ones. We also note that SAYL, like SAYU,
tends to like short rules [7]. DPS found five themes amongst its older in situ rules
with a significantly better precision and recall: calcification, prior in situ biopsy,
BI-RADS score increase, screening visit, and low breast density [20].



breast category

combined BI-RADS increased up to 3 points over previous mammogram

had previous in situ biopsy at same location breast BI-RADS score = 4

no family history of cancer, and no prior surgery breast has mass size ≤ 13 mm

Fig. 2. TAN model constructed by SAYL over the older cases: the topmost node is
the classifier node, and the other nodes represent rules inserted as attributes to the
classifier. Edges represent the main dependencies inferred by the model.

breast category

combined BI-RADS increased
up to 3 points

over previous mammogram

had previous in situ biopsy
at same location

breast BI-RADS score = 4
no family history of cancer,

and no prior surgery breast has mass size ≤ 13 mm

Fig. 3. TAN model constructed by SAYL over the younger cases. Notice that is has
the same nodes but with a different structure than its older counterpart.

For SAYL runs returning small theories, the resulting rules tend to be differ-
ential and fall within these 5 themes. For example, g-SAYL with minpos = 13
and θ = 10% returns 3 rules:

1. Current study combined BI-RADS increased up to 3 points over previous
mammogram.

2. Had previous in situ biopsy at same location.
3. Breast BI-RADS score = 4.

These rules cover two of the 5 DPS themes, namely prior in situ biopsy and
BI-RADS score increase.

As the number of SAYL returned rules increases, rule interactions become
more complex, individual rules tend not to remain older in situ differential, and
rules are no longer confined to the above themes. In the Figures 2 and 3 example,
we recover the prior in situ biopsy and BI-RADS score increase themes, but
we also have non-thematic rules like “no family history of cancer, and no prior
surgery”. In the two runs returning the largest theories, g-SAYL with θ = 1% and



minpos = 7 and 13, we recover 4 of the themes, only missing calcification. Note
that, as the graph size increases, medical interpretation of the rules becomes
more difficult, as well as identifying novel differential themes, since rules are
conditioned on each other.

Although the SAYL rules may not be differential when viewed individually,
the SAYL final model is differential, significantly outperforming DPS in uplift
AUC. DPS, on the other hand, is optimized for mining differential rules, but
performs poorly as a differential classifier. SAYL returns a TAN Bayes net whose
nodes are logical rules, a model that is human interpretable and that offers insight
into the underlying differential process. Greedy g-SAYL’s performance depended
little on the parameters, while exploratory e-SAYL’s performance increased when
requiring more robust rules.

7 Related Work

Differential prediction was first used in psychology to assess the fairness of cog-
nitive and educational tests, where it is defined as the case where consistent
nonzero errors of prediction are made for members of a given subgroup [6]. In
this context, differential prediction is usually detected by either fitting a com-
mon regression equation and checking for systematic prediction discrepancies for
given subgroups, or by building regression models for each subgroup and testing
for differences between the resulting models [15, 31]. If the predictive models dif-
fer in terms of slope or intercept, it implies that bias exists because systematic
errors of prediction would be made on the basis of group membership. An ex-
ample is assessing how college admission test scores predict first year cumulative
grades for males and females. For each gender group, we fit a regression model.
We then compare the slope, intercept and/or standard errors for both models. If
they differ, the test exhibits differential prediction and may be considered unfair.

In contrast to most studies of differential prediction in psychology, market-
ing’s uplift modeling assumes an active agent. Uplift modeling is used to un-
derstand the best targets for an advertising campaign. Seminal work includes
Radcliffe and Surry’s true response modeling [23], Lo’s true lift model [16], and
Hansotia and Rukstales’ incremental value modeling [11]. As an example, Han-
sotia and Rukstales construct a regression and a decision tree, or CHART, model
to identify customers for whom direct marketing has sufficiently large impact.
The splitting criterion is obtained by computing the difference between the esti-
mated probability increase for the attribute on the subject set and the estimated
probability increase on the control set.

In some applications, especially medical decision support systems, gaining
insight into the underlying classification logic can be as important as system
performance. Insight into the classification logic in medical problems can be an
important method to discover disease patterns that may not be known or eas-
ily otherwise gleaned from the data. Recent developments include tree-based
approaches to uplift modeling [24, 25], although ease-of-interpretation was not
an objective in their motivating applications. Wanting to maximize rule inter-
pretability, Nassif et al. [20] opted for ILP-based rule learning instead of decision-
trees because the latter is a special case of the former [4].



To the best of our knowledge, the first application of uplift modeling in
medical domains is due to Jaśkowski and Jaroszewicz [12], who adapt standard
classifiers by using a simple class variable transformation. Their transformation
avoids using two models by assuming that both sets have the same size and
combining the examples into a single set. They also propose an approach where
two classifiers are learned separately but they help each other by labeling extra
examples. Instead, SAYL directly optimizes an uplift measure.

Finally, we observe that the task of discriminating between two dataset strata
is closely related to the problem of Relational Subgroup Discovery (RSD), that is,
“given a population of individuals with some properties, find subgroups that are
statistically interesting” [32]. In the context of multi-relational learning systems,
RSD applies a first propositionalization step and then applies a weighted covering
algorithm to search for rules that can be considered to define a sub-group in the
data. Although the weighting function is defined to focus on unexplored data
by decreasing the weight of covered examples, RSD does not explicitly aim at
discovering the differences between given partitions.

8 Future Work

A key contribution of this work is constructing a relational classifier that maxi-
mizes uplift. SAYL effectively identifies older in situ patients with mammography
features that are significantly different from those observed in the younger in situ
cases. But one may argue that, for a model to be clinically relevant, we should
take into account all mammography features when staging an uplift comparison.
We can start the SAYL TAN model with the initial set of attributes, and then
learn additional rules, composed of relational features or a combinations of at-
tributes, to maximize uplift [21]. This could potentially increase the achievable
lift on both the subject and control groups, making the uplift task harder.

Given the demonstrated theoretical similarity between lift and ROC curves
(Section 3.2), and the fact that ROC curves are more widely used especially in
the medical literature, it is interesting to compare our approach with a SAYL
version that optimizes for ROC AUC.

Finally, we are in the process of applying SAYL to different problems. For
example, working on uncovering adverse drug effects, SAYL can be used to con-
struct a model identifying patient subgroups that have a differential prediction
before and after drug administration [22].

9 Conclusion

In this work, we present Score As You Lift (SAYL), a novel Statistical Rela-
tional Learning algorithm and the first multi-relational uplift modeling system.
Our algorithm maximizes the area under the uplift curve, uses this measure
during clause construction and final theory evaluation, integrates rule learning
and probability assignment, and conditions the addition of new theory rules to
existing ones. SAYL significantly outperforms previous approaches on a mam-
mography application (p = 0.002 with similar parameters), while still producing



human interpretable models. We plan on further investigating the clinical rele-
vance of our model, and to apply SAYL to additional differential problems.
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