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ABSTRACT
Breast cancer is the most common type of cancer among
women. Current clinical breast cancer diagnosis involves a
biopsy, which is a costly, invasive and potentially painful
procedure. Some researchers proposed models, based on
mammography features and personal information, that help
identify pre-biopsy invasive breast carcinoma and ductal car-
cinoma in situ (DCIS). Recently, a differential discriminat-
ing ability between invasive and DCIS has been linked to age.
Based on this finding, we use an age-stratified mammogra-
phy and biopsy relational dataset and apply Inductive Logic
Programming (ILP) techniques to learn age-specific logical
rules that classify invasive and DCIS occurrences. We then
use statistical modeling to retrieve rules that have a sig-
nificantly different performance across age-stratas. These
final rules reveal a number of interesting results. Although
a palpable lump is more commonly associated with younger
patients, it turns out to be a better predictor of invasive can-
cer in older women. A recurrence has a higher probability to
be invasive in older and middle-aged women. A previously
unreported rule revealed by our technique is that recurrence
is more likely a DCIS predictor in younger women. This
younger DCIS predicting rule effectively links the current
diagnostic mammogram to older studies, and provides op-
posite predictions across the age divide. The resulting rules
are age-specific, can help patients and their physicians make
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more informed decisions about managing their breast health,
and constitute a personalized predictive model.
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1. INTRODUCTION
Breast cancer is the most common type of cancer among

women. An estimated 1.3 million new cases of invasive
breast cancer were expected to occur among women in 2007
[12]. Statistical data shows that a woman in the US have a
1/8 lifetime risk of developing breast cancer [4].

There are two basic stages of breast cancer. If cancer cells
are confined within the ducts and lobules where they devel-
oped and have not spread, the stage is in situ. It is important
to note that classifying lobular in situ carcinoma as a form
of true cancer is debatable [3]. If cancer cells have broken
through their originating ductal or lobular structures to in-
vade the surrounding tissue, the stage is invasive. Nearly all
in situ breast cancers can be cured; in situ cancers represent
25% of breast tumors, 80% of which are ductal [3].



The American Cancer Society recommends that all pa-
tients with ductal carcinoma in situ (DCIS) be treated to
avoid the development of invasive cancer [4]. While DCIS is
associated with developing a subsequent invasive cancer, the
time it requires to progress to invasive may be sufficiently
long for women to die of other causes. For this reason, the
2009 National Institutes of Health (NIH) consensus confer-
ence on DCIS highlighted the need for methods that can
accurately identify patients subgroups that would benefit
most from treatment [2].

Researchers have used mammography databases and fea-
tures to build breast-cancer classifiers [7]. Some of these are
capable of discriminating between invasive and DCIS can-
cers [15, 19, 24]. Using patient characteristics and mammog-
raphy findings, our group recently applied logistic regression
to uncover a differential ability in predicting invasive can-
cer as compared to DCIS in older versus younger women
[Ayvaci, personal communication [6]]. This finding confirms
that, based on age groups, different mammographic features
can be used to classify cancer as invasive or DCIS.

In this study, we apply an Inductive Logic Programming
(ILP) approach to (a) build age-specific models of invasive
versus DCIS cancer occurrence across an age-stratified mam-
mography dataset; and (b) to investigate the age-specific dif-
ferences between the age-stratified datasets. ILP provides
algorithms to learn hypotheses, expressed as logical rules.
It has been successfully applied to various medical [8] and
biological datasets [10, 20].

ILP’s resulting model is a set of logical if-then rules. If any
rule applies, the model classifies a mammogram instance as a
positive instance (positive can be invasive or DCIS, depend-
ing on the model). If no rule applies, the model considers
the mammogram instance as negative (the alternative class).
We investigate each rule’s performance on the various age-
stratas, and isolate rules that have a significantly different
performance across age-stratas. The resulting rules are age-
specific and may offer a personalized predictive model that
helps patients and their physicians to make more informed
decisions about managing their breast health.

2. MATERIALS AND METHODS
In this section we describe the original dataset, present our

algorithm and preprocessing steps, and specify the method-
ology and experimental setup we use.

2.1 Dataset
Our initial database consists of 146, 198 consecutive mam-

mograms recorded at the University of California San Fran-
cisco Medical Center (UCSFMC) between January 6, 1997
and June 29, 2007. The mammography reports use a struc-
tured format that records patient characteristics and exam-
ination findings (Table 1). Additional details describing the
findings were dictated by the interpreting radiologist in free
text. Mammography features and findings are based on the
American College of Radiology’s Breast Imaging Reporting
and Data System (BI-RADS) [5]. We applied Natural Lan-
guage Processing (NLP) techniques to extract the BI-RADS
descriptors from the dictated text [21] (Table 1).

In addition to the mammography table, our relational
database includes another table consisting of 4081 biopsies
performed between January 7, 1997 and November 18, 2007.
Biopsy results are either invasive, DCIS or benign. Attempt-
ing to discriminate invasive versus DCIS cancers based on

Table 1: List of Structured and Extracted Features

Structured Extracted using NLP [21]

Family breast cancer history Mass margin
Personal breast cancer history Mass shape
Prior surgery Calcification distribution
Palpable lump Calcification morphology
Screening v/s diagnostic Architectural distortion
Indication for exam Associated findings
Breast Density Mammary lymph node
BI-RADS code left Asymmetric breast tissue
BI-RADS code right Focal asymmetric density
BI-RADS code combined Tubular density
Principal finding Mass size

mammography findings, we identify cancerous biopsies and
match each of them with its corresponding diagnostic mam-
mography exam. We end up with 1063 invasive and 412
DCIS cancerous diagnostic mammography exam cases.

We separate our data into three cohorts based on age. We
designate patients aged 65 and older as an “older” cohort,
patients between 50 and 64 years as a “middle” cohort, and
patients less than 50 years old as a “younger” cohort. Our
separation is correlated with menopausal status; whereas
our younger cohort is mostly premenopausal, our middle co-
hort contains most perimenopausal, and our older cohort
is mostly postmenopausal. To accentuate age-based differ-
ences, we limit our discriminating rules generation process
to the younger and older cohorts. We observe 401 older inva-
sive, 132 older DCIS, 264 younger invasive, and 110 younger
DCIS cancerous diagnostic mammography exam cases.

2.2 ILP
ILP is a machine learning approach that learns a set of

rules in first-order logic that explain a given dataset. More
formally, ILP requires (a) some background knowledge B;
(b) a language specification L to construct hypotheses; and
(c) a finite set of examples E [16]. ILP generates a hypoth-
esis H composed of a set of logical if-then rules that cover
most of the positive examples, and as few negative exam-
ples as possible. ILP has three major advantages over other
machine learning and data mining techniques. First, it al-
lows an easy interaction between humans and computers by
using background knowledge to guide the search. Second,
it returns results in an easy-to-understand if-then format.
Finally, it can operate on data in a relational database, be-
cause such databases are a theoretical subset of first-order
logic.

The backbone of ILP’s background knowledge for our task
is the cancerous diagnostic mammography subset. Our ex-
amples are diagnostic mammograms that recommended and
led to a breast biopsy. The radiologist thus knows, by an-
alyzing the mammogram, which breast is suspicious and is
to be biopsied. We can thereby associate with each can-
cerous diagnostic mammogram example its corresponding
suspicious breast sides.

The mammography table schema (Table 1) specifies a
“left-breast” and a “right-breast” BI-RADS code. A BI-
RADS code is a number that summarizes the radiologist’s
opinion and findings concerning the mammogram [5]. The
BI-RADS codes are ranked as 1 < 2 < 3 < 0 < 4 < 5, in



Table 2: List of Extensional Predicates

first diagnostic mammogram (id)
old study (id, old id)
old biopsy (id, old id, result)
old biopsy same location (id, old id, result)
mass size decrease (id, old id)
mass size increase (id, old id)
this side BI-RADS old study (id, old id, old BI-RADS)
other side BI-RADS old study (id, old id, old BI-RADS)
combined BI-RADS old study (id, old id, old BI-RADS)
this side BI-RADS decrease (id, old id)
other side BI-RADS decrease (id, old id)
combined BI-RADS decrease (id, old id)
this side BI-RADS increase by at least X (id, old id)
other side BI-RADS increase by at least X (id, old id)
combined BI-RADS increase by at least X (id, old id)

increasing order of malignancy probability. Since we know
which breast was biopsied for our target cancerous patients,
we convert the left and right BI-RADS features to“this-side”
and “other-side” BI-RADS codes. Similarly we change any
“left”or“right”value into“this-side”or“other-side”. We then
translate each row of the cancerous diagnostic mammogra-
phy exam table into a number of logical facts, or predicates,
one per column.

For example, suppose a cancerous diagnostic mammogra-
phy record is identified by UniqueID = 21 and has the fol-
lowing features: FamilyHistory = None, BiradsCodeLeft

= 4, PalpableLump = Right. By consulting the biopsy ta-
ble, we find that the left breast was biopsied. We thus
convert BiradsCodeLeft to ThisSideBirads = 4, and the
value Right to OtherSide. We then translate these fea-
tures into predicates, coded in the logical language Pro-
log: FamilyHistory(21, None), ThisSideBirads(21, 4),

PalpableLump(21, OtherSide).
We extend this basic background knowledge by linking

each patient’s cancerous diagnostic mammography record
to the patient’s other previous screening or diagnostic mam-
mograms. This link allows ILP to access and learn from
the patient’s previous mammography history. In addition,
we add predicates that monitor mass size change and BI-
RADS code change when compared to older mammography
studies, as well as predicates detecting the occurrence and
location of prior biopsies (Table 2).

We perform our experiments using the ILP engine Aleph
[23] running within the Yap Prolog compiler [22]. Both
Aleph and Yap are open-source softwares, freely available
from [23]. Aleph’s examples are the invasive and DCIS di-
agnostic mammography exams. We allow Aleph to construct
rules using any predicate of the background knowledge per-
taining to the current cancerous example, or linked to it
through an older study. We also include mass and BI-RADS
code comparisons within our language specification. This al-
lows Aleph to compare mass sizes to given size intervals, and
different BI-RADS codes to each other.

Because the data is relational with multiple mammograms
for the same patient, we employ ILP. Since the aim of the
paper is to learn differential diagnosis rules in older versus
in younger women, rather than to compare machine learning
algorithms, for focus we do not test other machine learning

Table 3: Age Cohort Subsets

Subset Invasive DCIS Subset Total

Younger1 132 55 187
Younger2 132 55 187
Younger Total 264 110 374

Middle1 199 85 284
Middle2 199 85 284
Middle Total 398 170 568

Older1 200 66 266
Older2 201 66 267
Older Total 401 132 533

Grand Total 1063 412 1475

algorithms on this task. Comparison of other algorithms
with ILP for this task is one area for future work.

2.3 Methodology
We want to construct an invasive versus DCIS cancer

model for both the younger and older cohorts. Each model
should be trained and tested on separate subsets of the rel-
evant data. We therefore randomly divide each cohort into
two same-size subsets, making sure all records pertaining
to the same patient end up in the same subset (Table 3).
The idea is to train a model on one subset, and test its re-
sulting rules on a same-age cohort and different-age cohort
subsets. For example, we train on Older1 and test its indi-
vidual rules on Older2 and Younger2. Age-specific rules are
ones that have a significantly different performance on the
older and younger testing subsets. We exclude the middle
cohort from the rule-generation process.

ILP treats positive examples and negative examples dif-
ferently. Each resulting model is composed of a set of rules
that, together with the background knowledge, explains the
positive examples and fails to explain the negative examples.
We will therefore get different models if we consider inva-
sive examples as positives or negatives. To encounter this
positive-negative assignment bias, and any subset-splitting
bias, we construct eight different model types. We first as-
sume invasive cases are positives, and we train on each of
the four subsets. We then assume DCIS cases are positives
and repeat the process. For each model type, we run multi-
ple experiments varying Aleph’s evaluation function and the
number of positive examples required to be covered by an
acceptable rule.

We test each subset-trained model’s rules on its corre-
sponding same-age cohort and different-age cohort testing
subsets. We compute the contingency table, precision, and
recall for each rule on each testing set. We assume a uniform
prior and use a probabilistic interpretation of precision and
recall [13]. This method allows us to represent the preci-
sion (or recall) as a Beta distribution, and hence to compare
precision (or recall) measurements on different datasets. We
consider rules whose precision is significantly better, at the
95% confidence level, on one testing subset compared to the
other. To avoid reporting rules with low coverage, or with
bad predictive precision, we select rules whose recall on the
same-age testing subset is greater than or equal to 10%, and
precision on the same-age testing subset is greater than or
equal to 60%.



As a reminder, precision (p) and recall (r) are defined as:

p =
TP

TP + FP
and r =

TP

TP + FN
, (1)

where TP stands for true positives, FP for false positives
and FN for false negatives.

3. RESULTS
We present the logical rule’s English translation. We di-

vide them by the age cohort and cancer stage categories they
refer to. In cases where no rule meets our selection criteria
for a certain category, we report sub-optimal rules for com-
pleteness as well as comparison purposes. We group rules
by predicate similarity and provide their clinical summary.
A more detailed discussion follows in Section 4.

We include for each rule its invasive and DCIS coverage,
as well as its precision p and recall r, on both its correspond-
ing younger and older testing subsets. We round precision
and recall to the nearest decimal digit. We also include the
results over the middle cohort for comparison purposes. The
middle cohort experiments were not used in rule generation
or selection.

3.1 Rules Predicting Invasive in Older Cohort
The following invasive-predicting rules have a significantly

better precision, at the 95% confidence level, on the older co-
hort when compared to the younger. A cancerous diagnostic
mammogram A is invasive if:

1. The mammogram has a palpable lump in this-
side breast.
(younger: 86 invasive, 13 DCIS, p = 87%, r = 65%)
(middle: 99 invasive, 15 DCIS, p = 87%, r = 50%)
(older: 85 invasive, 5 DCIS, p = 94%, r = 42%)

2. The mammogram’s indication for exam is“breast
problem palpable lump”.
(younger: 82 invasive, 13 DCIS, p = 86%, r = 62%)
(middle: 78 invasive, 15 DCIS, p = 84%, r = 39%)
(older: 71 invasive, 4 DCIS, p = 95%, r = 35%)

3. The mammogram’s indication for exam is“breast
problem palpable lump”,
its other side BI-RADS is less than 3,
and its mass margin is not reported.
(younger: 54 invasive, 8 DCIS, p = 87%, r = 41%)
(middle: 42 invasive, 6 DCIS, p = 88%, r = 21%)
(older: 39 invasive, 1 DCIS, p = 98%, r = 19%)

The presence of a palpable lump leads to a more precise
prediction of invasive cancer as compared to DCIS in older
women. Having a palpable lump in younger women does not
differentiate as well between invasive and DCIS.

4. The mammogram has an old-biopsy that was
invasive.
(younger: 24 invasive, 4 DCIS, p = 86%, r = 18%)
(middle: 82 invasive, 1 DCIS, p = 99%, r = 41%)
(older: 101 invasive, 3 DCIS, p = 97%, r = 50%)

5. The mammogram has an old-biopsy that was
invasive,
and the biopsy happened within the same age
group.

(I.e. an older women had the prior biopsy when she
was above 65 years old)
(younger: 24 invasive, 4 DCIS, p = 86%, r = 18%)
(middle: 81 invasive, 0 DCIS, p = 100%, r = 41%)
(older: 89 invasive, 0 DCIS, p = 100%, r = 44%)

In the setting of recurrence, older women may be more
likely to have invasive rather than DCIS cancer. In other
words, the fact that a woman is having a recurrence is a
better predictor of invasiveness in older women than it is in
younger women.

3.2 Rules Predicting DCIS in Older Cohort
Only one DCIS-predicting rule has a significantly better

precision, at the 95% confidence level, on the older cohort
when compared to the younger. Its recall value is 4.55%,
well below our cutoff value of 10%, and thus is a sub-optimal
rule that we report for completeness. A cancerous diagnostic
mammogram A is DCIS if:

1. The mammogram’s indication for exam is“breast
problem other”,
there is no prior surgery,
and its mass size is not reported.
(younger: 2 DCIS, 7 invasive, p = 22%, r = 4%)
(middle: 11 DCIS, 9 invasive, p = 55%, r = 13%)
(older: 3 DCIS, 1 invasive, p = 75%, r = 5%)

The coverage of this rule is very low and doesn’t allow for
an adequate clinical interpretation.

3.3 Rules Predicting Invasive in Younger Co-
hort

No invasive-predicting rule has a significantly better pre-
cision, at the 95% confidence level, on the younger cohort
when compared to the older. The best discriminating rule
is only significant at the 87% confidence level, and is thus a
sub-optimal rule. A cancerous diagnostic mammogram A is
invasive if:

1. The mammogram has a palpable-lump in this-
side breast,
its breast density is class 2,
and its calcification distribution is not reported.
(younger: 15 invasive, 1 DCIS, p = 94%, r = 11%)
(middle: 31 invasive, 0 DCIS, p = 100%, r = 16%)
(older: 23 invasive, 6 DCIS, p = 79%, r = 12%)

Low breast density usually allows for easier mass detection
on the mammogram. However, when there is a palpable
finding, the detection task facilitated by low breast density
ceases to be important.

3.4 Rules Predicting DCIS in Younger Cohort
The following DCIS-predicting rule have a significantly

better precision, at the 95% confidence level, on the younger
cohort when compared to the older. A cancerous diagnostic
mammogram A is DCIS if:

1. The mammogram has a personal history of can-
cer in this-side breast,
this-side breast has a prior surgery,
and its combined BI-RADS increased by at least
2 points compared to a previous study.



(younger: 6 DCIS, 3 invasive, p = 67%, r = 11%)
(middle: 4 DCIS, 9 invasive, p = 31%, r = 5%)
(older: 1 DCIS, 11 invasive, p = 8%, r = 2%)

This rule suggests that if a patient has a recurrence, this
is a better predictor of DCIS in younger women. This rule
complements rules 4− 5 in Section 3.1.

4. DISCUSSION
ILP provides a number of interesting rules, some of which

are previously unreported and are worthy of further investi-
gation.

4.1 Predicting Invasive in Older Cohort
Starting with rules predicting invasive in older women, we

notice that the first three rules involve palpable lump, the
first two rules having it as a sole predicate. We further check
recall values, and find that the three rule’s recall is signifi-
cantly better for the younger cohort. This means that there
is a significantly higher percentage of younger women diag-
nosed with palpable lumps; but the presence of a palpable
lump is a significantly more precise indicator of invasiveness
in older women.

Typically women under the age of 40 are not included in
a breast-screening program. Because younger women with
breast cancer rarely undergo mammography before diagno-
sis, they often present a palpable lump detected through
self-examination or by assessment by their general practi-
tioner [11]. As opposed to a screening mammogram de-
tection, which is often the case with older women. Which
explains higher palpable lump recalls associated with the
younger cohort.

The palpable lump rules’ higher precision associated with
the older cohort is more interesting. Here is a possible expla-
nation. Studies have shown that breast cancer in younger
women is pathophysiologically more aggressive and has a
poorer prognosis [9, 11]. Younger women tend to have higher
proportions of poorly differentiated, rapidly proliferating tu-
mors that tend to be larger and to involve regional lymph
nodes [1]. Due to their larger size, the tumors are more
likely to be palpable, increasing the palpability likelihood of
a DCIS tumor in younger women. Which may explain the
palpable lump rules’ better precision over the older cohort,
where the mass grows at a slower pace, and once it is big
enough to be palpable, it is almost certainly invasive. These
rules merit further investigation, with a possible factoring of
histological grade and date of last screening mammogram.

Rules 4 and 5 predict an invasive tumor based on a prior
biopsied invasive tumor. Both rules also exhibit a signif-
icantly better recall in the older cohort. This reflects the
higher risk of proliferation and recurrence of invasive tu-
mors [17] which, combined with a longer life-span for the re-
currence to manifest itself, is more common in older women.

4.2 Predicting DCIS in Older Cohort
The only reported rule is based on a very small number

of older examples and doesn’t meet the 10% recall cut-off.
It specifies “other” as the clinical indication for the exam, a
miscellaneous and not very informative category. In addi-
tion, rules reporting the absence of features are difficult to
clinically interpret. Unfolding DCIS-predicting rules with
a significantly better performance in older women requires
further studies.

4.3 Predicting Invasive in Younger Cohort
Although the reported rule is only significant at the 87%

confidence level, and no conclusions should be drawn based
on it, it sheds some light on the previously discussed palpable
lump issue.

The rule requires a palpable lump in this-side breast, to-
gether with a breast density of class 2, scattered fibroglandu-
lar tissue. This is a relatively low breast density for younger
women, since it is well established that younger women tend
to have denser breasts than older women [14, 26]. Mammo-
gram sensitivity significantly increases with declining breast
density [18], since a low breast density allows for easier mass
detection on the mammogram. However, when there is a
palpable finding, the detection task facilitated by low breast
density ceases to be important. While the discriminating
ability of low breast density may explain the relative in-
crease in invasive detection precision in younger women in
this rule, the inclusion of a palpable lump predicate adds
some doubts to the clinical explanation of this rule.

4.4 Predicting DCIS in Younger Cohort
The rule predicting DCIS in the younger cohort requires

both a prior surgery and a personal cancer history to be
present in the same breast. Combined with a BI-RADS
increase, it favors DCIS in younger and invasive in older.
This rule complements rules 4− 5 in Section 3.1, suggesting
that a recurrence is a better predictor of DCIS in younger
women.

This rule covers more invasive than DCIS cases when
tested on the older subset. It thus provides opposite pre-
dictions across the age divide. In addition, it is the only
rule that links the current mammogram to older ones. This
rule takes full advantage of ILP’s relational capabilities, and
allows previous mammograms features to influence the cur-
rent mammogram classification.

Opposite predictions across age-stratas, and linking to
previous mammograms, this previously unreported rule of-
fers a clear-cut age-specific personalized prediction and mer-
its further clinical investigation.

5. MIDDLE COHORT COMPARISON
To accentuate age-based differences, we limited our age-

specific rule-generation to the younger and older cohorts. In
this section, we investigate the performance of the resulting
rules on the middle cohort.

5.1 Middle Cohort Experiments
Applying the same methodology to the middle cohort, we

randomly divide it into two same-size subsets, making sure
all records pertaining to the same patient end up in the
same subset (Table 3). We then apply each age-specific rule
on its corresponding middle-aged subset. For example, if
Rule1 was generated by training on Older1 and confirmed
by testing on Older2 and Younger2, we now apply it on
Middle2. Results were reported in the results section.

We compare each resulting rule’s performance on the mid-
dle cohort to its performance on the younger and older co-
horts. We apply the same statistical test used to select our
age-specific rules: a rule has a different performance over two
cohorts if its precision is significantly better, at the 95% con-
fidence level, on one testing subset compared to the other.
We assume a uniform prior and use a probabilistic interpre-
tation of precision [13]. We report the p-value of the statis-



Table 4: Middle Cohort Precision Comparisons

Comparing Middle Cohort with:

Rule Older Cohort Younger Cohort
(p-value) (p-value)

Invasive Older Prediction

Rule 1 0.04* 0.50

Rule 2 0.01* 0.32
Rule 3 0.05 0.49

Rule 4 0.26 0.00*

Rule 5 0.48 0.00*

DCIS Older Prediction
Rule 1 0.27 0.06

Invasive Younger Prediction

Rule 1 0.00* 0.12

DCIS Younger Prediction
Rule 1 0.10 0.06

*
Statistically significant at the 95% confidence

level.

tical test and its significance, for middle cohort comparisons
with both the older and younger cohorts (Table 4).

Suppose a rule has a middle cohort performance that is
significantly different from one non-middle cohort, say older,
and is not significantly different from the other, younger in
this case. Then the middle cohort is more similar to the
non-significant (i.e. younger) cohort in the scope of the con-
cerned rule. On the other hand, suppose a rule has a middle
cohort performance that is not significantly different from
both non-middle cohorts. Then, in the scope of this rule,
the middle cohort shares similarities with, and its features
lie in between, the two other cohorts.

5.2 Middle Cohort Discussion
For our age-specific rules, the middle cohort behaves in-

deed as a “middle” cohort. For some rules it displays simi-
larities to either the younger or the older cohorts, while in
others it is situated in the middle (refer to Table 4).

5.2.1 Invasive Older Predicting Rules
The first three older invasive predicting rules are based on

a palpable lump predicate. For these rules, the middle co-
hort displays a behavior close to that of the younger cohort.
The first two rules show a significantly lower precision on the
middle cohort compared to the older, while the third rule is
barely below the significance level. Palpability appears to
be a consistently better predictor of invasive disease in older
women, as opposed to younger or middle-aged women.

The last two older invasive predicting rules are based on
a prior biopsied invasive tumor. For these rules, the middle
cohort is significantly different from the younger cohort, and
is similar to the older one. Recurrence is thus more likely to
be invasive in older and middle-aged women as well.

5.2.2 DCIS Older Predicting Rule
For this rule, the middle cohort’s performance is not signif-

icantly different from either the older or the younger cohorts.

Its precision lies in the middle of the other two cohorts’, not
close to any.

5.2.3 Invasive Younger Predicting Rule
Combining a low breast density and a palpable lump,

this rule is significantly different from the older cohort, and
is similar to the younger one. This behavior may be re-
lated to the similar relatively high breast densities observed
amongst premenopausal and perimenopausal women, while
postmenopausal women breast density shifts to relatively
low measures [14].

5.2.4 DCIS Younger Predicting Rule
For this rule, the performance of the middle cohort is not

significantly different from either the older or the younger
cohorts. Its precision lies in the middle of the other two co-
horts’, not close to any. A recurrence seems to be a better
predictor of DCIS only in younger women. This rule com-
plements rules 4 − 5 in Section 5.2.1, whereas recurrence is
more likely to be invasive in older and middle-aged women.

6. FUTURE WORK
Our age-specific invasive-DCIS discriminating rule-discovery

approach generates rules that match many of the prior inva-
sive versus DCIS knowledge [25]. It also generates new rules
that may provide novel insight.

One direction of future work is to generate, test and val-
idate rules on independent datasets from different institu-
tions. This would allow us to investigate the robustness of
the generated rules. In addition to varying the dataset, one
can also vary the machine learning algorithm used. Applying
other rule learning methods allows us to compare the per-
formance and clinical significance of our ILP rules to other
generated rules.

Another direction is to vary our rule performance mea-
surement. One idea is to use the Fβ score for rule perfor-
mance comparison, which is the weighted harmonic average
of precision and recall. Another is to use the rule’s preci-
sion ratio on both testing subsets. A complimentary idea is
to define a scoring function within Aleph that scores rules
based on the scale of their performance difference on the two
testing subsets. Instead of the current generate-and-test ap-
proach where we generate rules and then test them, we use
this scoring function to guide Aleph’s search for good rules.

A third direction for future work is to adopt a more flex-
ible data representations, where some ordinal or nominal
mammography features can be compared together. For ex-
ample, we may impose a partial ordering on the different
“indications for exam” feature nominal values, and define a
greater-than function to exploit that hierarchy.

7. CONCLUSION
In this study, we report the first attempt to investigate

age-specific mammography classification rules for invasive
and DCIS breast carcinomas. Using an age-stratified dataset,
we apply Inductive Logic Programming algorithms to build
age-specific invasive-DCIS discriminating models. We test
each rule’s performance on both the younger and older co-
horts, and isolate rules that have a significantly different
performance. We also investigate the age-specific rule’s per-
formance on the middle cohort. These final rules reveal a
number of interesting results. Although palpable lump is



more commonly associated with younger patients, it is a
better predictor of invasive cancer in older women. Recur-
rence is more likely to be invasive in older and middle-aged
women, while DCIS recurrence is more likely in younger
women. This previously unreported younger DCIS predict-
ing rule effectively links the current diagnostic mammogram
to older studies, and provides opposite predictions across the
age divide. These resulting rules are age-specific, can help
patients and their physicians make more informed decisions
about managing their breast health, and constitute a first
step towards a personalized predictive model.
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