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Abstract. Uplift modeling is a classification method that determines
the incremental impact of an action on a given population. Uplift mod-
eling aims at maximizing the area under the uplift curve, which is the
difference between the subject and control sets’ area under the lift curve.
Lift and uplift curves are seldom used outside of the marketing domain,
whereas the related ROC curve is frequently used in multiple areas.
Achieving a good uplift using an ROC-based model instead of lift may
be more intuitive in several areas, and may help uplift modeling reach a
wider audience.

We alter SAYL, an uplift-modeling statistical relational learner, to use
ROC instead of lift. We test our approach on a screening mammography
dataset. SAYL-ROC outperforms SAYL on our data, though not signif-
icantly, suggesting that ROC can be used for uplift modeling. On the
other hand, SAYL-ROC returns larger models, reducing interpretability.

1 Introduction

Uplift modeling is a modeling and classification method initially used in market-
ing to determine the incremental impact of an advertising campaign on a given
population [8]. Seminal work includes Radcliffe and Surry’s true response mod-
eling [8], Lo’s true lift model [4], and Hansotia and Rukstales’ incremental value
modeling [3]. In some applications, especially medical decision support systems,
gaining insight into the underlying classification logic can be as important as
system performance. Reviewing the classification logic in medical problems can
be an important method to discover disease patterns that may not be known
or easily otherwise gleaned from the data. Such insight can be achieved using
rule-learners. Decision trees [9, 10], inductive logic programming (ILP) [7], and
statistical relational learning (SRL) [6] methods have been proposed.

Uplift modeling aims at maximizing uplift, which is the difference in a model
or intervention M ’s lift scores over the subject and control sets:

UpliftM = LiftM (subject)− LiftM (control). (1)

Given a fraction ρ such that 0 ≤ ρ ≤ 1, a model M ’s lift is defined as the
number of positive examples amongst the model’s ρ-highest ranking examples.
Uplift thus captures the additional number of positive examples obtained due to
the intervention. Quality of an uplift model is often evaluated by computing an
uplift curve [9], generated by ranging ρ from 0 to 1 and plotting UpliftM . The
higher the uplift curve, the more profitable a marketing model/intervention is.
The area under the uplift curve (AUU) is often used as a metric to optimize.



Let P be the number of positive examples and N the number of negative
examples in a given dataset D. Lift represents the number of true positives
detected by model m amongst the top-ranked fraction ρ. Varying ρ ∈ [0, 1]
produces a lift curve. The area under the lift curve (AUL) for a given model and
data becomes:

AUL =

∫
Lift(D, ρ)dρ ≈ 1

2

P+N∑
k=1

(ρk+1− ρk)(Lift(D, ρk+1) +Lift(D, ρk)) (2)

Let s be the subject set, and c the controls. For a given ρ, we can rewrite
equation 1 as:

UpliftM (ρ) = LiftM (s, ρ)− LiftM (c, ρ). (3)

Since uplift is a function of a single value for ρ, the area under the uplift curve
(AUU) is the difference between the areas under the lift curves (AUL) for the
subjects and the controls, ∆(AUL):

AUU = AULs −AULc = ∆(AUL). (4)

Lift and uplift curves are seldom used outside of the marketing domain,
whereas the related ROC curve is frequently used in the machine learning and
biomedical informatics communities. Especially in the biomedical domain, using
ROC may be more intuitive, and may help uplift modeling reach a wider audi-
ence. This work investigates the use of the area under the ROC curve (AUR)
as an alternate scoring method, while still resulting in a good model uplift. We
alter SAYL [6], the state-of-the-art relational uplift modeling algorithm, to se-
lect rules that optimize ∆(AUR) instead of ∆(AUL). We test our approach on
a screening mammography dataset.

2 Lift and ROC Area Under the Curve

There is a strong connection between AUL and AUR. Let π = P
P+N be the prior

probability for the positive class or skew, then:

AUL = P ∗ (
π

2
+ (1− π) AUR) [11, p.549]. (5)

Uplift modeling aims at optimizing uplift, the difference in lift over two sets.
It constructs a new classifier such that:

∆(AUL∗) > ∆(AUL) (6)

As discussed in [6], by expanding and simplifying we get:

AUL∗
s −AUL∗

c > AULs −AULc

Ps(
πs
2

+ (1− πs)AUR∗
s)− Pc(

πc
2
− (1− πc)AUR∗

c) >

Ps(
πs
2

+(1− πs)AURs)− Pc(
πc
2
− (1− πc)AURc)

Ps(1− πs)AUR∗
s − Pc(1− πc)AUR∗

c > Ps(1− πs)AURs − Pc(1− πc)AURc
Ps(1− πs)(AUR∗

s −AURs) > Ps(1− πs)(AUR∗
c −AURc)



and finally
AUR∗

s −AURs
AUR∗

c −AURc
>
Pc
Ps

1− πc
1− πs

. (7)

In a balanced dataset, we have πc = πs = 1
2 and Pc = Ps, so we have that

Pc

Ps

1−πc

1−πs
= 1. If the subject and control sets have the same numbers and skew,

we can conclude that ∆(AUL∗) > ∆(AUL) implies ∆(AUR∗) > ∆(AUR).
If the two sets are skewed or their numbers differ, we cannot guarantee that
∆(AUL∗) > ∆(AUL) implies ∆(AUR∗) > ∆(AUR), as we can increase uplift
with rules that have similar accuracy but cover more cases in the positive set. In
general, the two metrics are related, with uplift being more sensitive to variations
in coverage when the two groups have different size.

3 SAYL-ROC

SAYL [6] is a Statistical Relational Learner based on SAYU [1] that integrates
uplift modeling with the search for relational rules. Similar to SAYU, every
valid rule generated is used to construct a Bayesian network (alongside with
current theory rules) via propositionalization, but instead of constructing a single
classifier, SAYL constructs two TAN [2] classifiers; one Bayes net for each of the
subject and control groups. Both classifiers use the same set of attributes, but
are trained only on examples from their respective groups. SAYL uses the TAN
generated probabilities to construct the lift and uplift curves. If a rule improves
AUU by threshold θ, the rule is added to the attribute set. Otherwise, SAYL
continues the search.

Algorithm 1 SAYL

Rs← {};Ms
0 ,M

c
0 ← InitClassifiers(Rs)

while DoSearch() do
e+s ← RandomSeed();
⊥

e+s
← saturate(e);

while c← reduce(⊥
e+s

) do

Ms,Mc ← LearnClassifiers(Rs ∪ {c});
if Better(Ms,Mc,Ms

0 ,M
c
0 ) then

Rs← Rs ∪ {c};Ms
0 ,M

c
0 ←Ms,Mc;

break
end if

end while
end while

The SAYL algorithm is shown as Algorithm 1. SAYL maintains a current set
of clauses, Rs, and current reference classifiers for the subjects Ms and controls
M c. SAYL requires separate training and tuning sets, accepting a rule only
when it improves the score on both sets. This requirement is extended with the
threshold of improvement θ, and a minimal rule coverage requirement minpos.
Finally, SAYL has two search modes, greedy and exploration. Refer to [6] for
details.



SAYL guides the rule search by using the AUU score. It computes AUU by
computing AUL for each of the groups using the two classifiers, and returning the
difference ∆(AUL) (Equation 4). We implement SAYL-ROC, a SAYL variant
that computes AUR instead for each of the groups using the two classifiers, and
returns ∆(AUR) as a rule score to guide the search. SAYL thus optimizes for
∆(AUL), while SAYL-ROC optimizes for ∆(AUR).

4 Experimental Results

We test SAYL-ROC on a breast cancer mammography dataset, fully described
in [5]. Our subject and control sets are respectively older and younger patients
with confirmed breast cancer. Positive instances have in situ cancer, and negative
instances have invasive cancer. The aim is to maximize the in situ cases’ uplift.

The older cohort has 132 in situ and 401 invasive cases, while the younger
one has 110 in situ and 264 invasive. The skews are Ps = 132, πs = 132

132+401

(older), and Pc = 110, πc = 110
110+264 (younger). Thus equation 7 becomes:

AUR∗
s −AURs

AUR∗
c −AURc

> 0.86. (8)

We use 10-fold cross-validation, making sure all records pertaining to the
same patient are in the same fold. We run both SAYL and SAYL-ROC with a
time limit of one hour per fold. For each cross-validated run, we use 4 training,
5 tuning and 1 testing folds. For each fold, we used the best combination of
parameters according to a 9-fold internal cross-validation using 4 training, 4
tuning and 1 testing folds. We try both search modes, vary minpos between 7
and 13 (respectively 5% and 10% of older in situ examples), and set θ to 1%,
5% and 10%. We evaluate the final SAYL and SAYL-ROC models using their
final uplift curves, concatenated from the results of each testing set.

Table 1. 10-fold cross-validated SAYL-ROC and SAYL performance. Rule number
averaged over the 10 folds of theories. For comparison, we include results of Differential
Prediction Search (DPS) and Model Filtering (MF) methods [7]. We compute the p-
value comparing each method to SAYL, * indicating significance.

Algorithm AUU AULs AULc Rules Avg p-value

SAYL-ROC 62.99 95.64 32.65 24.7 0.4316
SAYL 58.10 97.24 39.15 9.3 -

DPS 27.83 101.01 73.17 37.1 0.0020 *
MF 20.90 100.89 80.99 19.9 0.0020 *

Baseline 11.00 66.00 55.00 - 0.0020 *

Table 1 compares SAYL-ROC, SAYL, and the ILP-based methods Differen-
tial Prediction Search (DPS) and Model Filtering (MF) [7], both of which had
minpos = 13 (10% of older in situ). A baseline random classifier achieves an
AUU of 11. We use the paired Mann-Whitney test at the 95% confidence level
to compare two sets of experiments. We plot the uplift curves in Figure 1.



Fig. 1. Uplift curves for SAYL-ROC, SAYL, ILP methods Differential Prediction
Search (DPS) and Model Filtering (MF), both with minpos = 13 [7], and baseline
random classifier. Uplift curves start at 0 and end at 22, the difference between older
(132) and younger (110) total in situ cases. The higher the curve, the better the uplift.
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5 Discussion and Future Work

SAYL and SAYL-ROC significantly outperform previous methods (Table 1, Fig-
ure 1), but there is no significant difference between the two. Even though SAYL-
ROC is optimizing for ∆(AUR) during its training phase, it returns a slightly
better testing ∆(AUL) than SAYL, which optimizes for ∆(AUL).

This result suggests that, on a moderately subject/control skewed data, AUR
can indeed be used for uplift modeling. ROC is more frequently used than lift,
and may be more intuitive in many domains. Nevertheless, more experiments
are needed to establish ROC-based uplift performance. We plan on measuring
∆(AUL) vs. ∆(AUR) for various Equation 7 skews.

SAYL-ROC produces as many rules as ILP-based methods, more than twice
that of SAYL. The ILP theory is a collection of independent rules that each indi-
vidually increases uplift [7]. It is thus easy to interpret the final model. SAYL and
SAYL-ROC theory rules are conditioned on each other as nodes in a Bayesian
network, decreasing rule interpretability especially in larger graphs. Individual
rules may not increase uplift, but the final network does. At an average of 9.3
rules, a SAYL model is interpretable, whereas at 24.7, SAYL-ROC sacrifices
interpretability.

We note that Equation 7 depends on both the positive number and skew.
Even if the subject and control positive skews were equal, say Pc = 100, Nc =
200, Ps = 10 and Ns = 20, we will have 1−πc

1−πs
= 1 but Pc

Ps
= 10, maintaining a

subject/control Equation 7 skew.



This work uses the definition of lift as the number of positives amongst the ρ-
highest ranking examples. An alternative lift definition is the fraction of positives
amongst the ρ-highest ranking examples. Equation 7 then becomes:

AUR∗
s −AURs

AUR∗
c −AURc

>
1− πc
1− πs

, (9)

eliminating the dependence on the number of positive instances. We plan on
investigating how ∆(AUL) and ∆(AUR) empirically relate under this definition.

In conclusion, SAYL-ROC exhibits a similar performance to SAYL on our
data, suggesting that ROC can be used for uplift modeling. SAYL-ROC returns
larger models, reducing interpretability. More experiments are needed to test
ROC-based uplift over different subject/control skews.
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