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Abstract. This paper introduces a new type of application for ILP called Bootstrapped 
Learning (BL).  BL brings several challenges to ILP, including the need to (a) automate the 
“ILP setup” problem, (b) exploit the fact that a well-meaning teacher is providing 
pedagogically chosen examples and may be offering hints, (c) deal with small numbers of 
training examples and sometimes no explicit negative examples; and (d) "bootstrap", i.e., to 
automatically base learning in part on the results of earlier learning sessions. 
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1   Introduction  
It has long been recognized that ILP systems require substantial knowledge 
engineering in preparation to run on a new dataset or domain, especially in contrast to 
standard feature-vector learners such as decision trees or support vector machines.  
Motivated by a new area of machine learning – Bootstrapped Learning (BL) – this 
paper addresses the task of, at least partially, automating the process of preparing an 
ILP algorithm to run on a new dataset or domain. 

Bootstrapped Learning. BL is a new machine-learning paradigm, proposed by 
Dan Oblinger [3], that focuses on learning progressively more complicated concepts 
through a “ladder” of lessons; lower (earlier) rungs of the lesson ladder teach simpler 
concepts needed to learn the concepts at the higher rungs.  The key assumption 
underlying BL is the presence of a helpful teacher.  Therefore, the emphasis in BL is 
on efficient communication between teacher and student, rather than on de novo 
discovery as in much of the rest of supervised machine learning. 

In the BL paradigm, the machine student should be able to learn from a variety of 
modalities of teacher input, including from pedagogical examples, from being told, 
from noticing, and from experimentation and feedback.  One of the motivations of BL 
is that it may be easier for a teacher to instruct, say, an agent to play “Robocup” than 
to program it to do so. The teacher might tell the student the rules, give examples of 
the ball being in or out of bounds, provide initial strategy advice, and then give 
feedback as the student plays the game, much as a human coach would do.  One can 
imagine similar situations in domains where a teacher instructs an unmanned aircraft 
how to fly a recon mission, or teaches a system how to diagnose a problem on a ship. 

Inductive logic programming [1] is especially well-suited for the “learning from 
examples” component of a BL system for two reasons.  First, it can use a rich 
knowledge base that may have been provided to the learner initially or may have been 
learned/augmented during earlier lessons.  Second, the declarative representation of 
both examples and learned rules makes it easier for teacher and student to 
communicate about what has been learned so far; for example, a teacher can identify 
and correct student mistakes from earlier lessons.  Similarly, the use of logic allows 



for sharing lessons of learned knowledge between modules that learn from different 
kinds of instruction.  This paper describes our work on ILP within the context of 18 
months of a large project to construct a BL student. 

Motivations and a Proposed Approach.  BL poses several key challenges for 
ILP, addressing them can drive future research, and will be beneficial for other 
applications of ILP beyond BL, which could extend the usability of ILP systems to 
non-ILP experts.  The major BL challenge for ILP is that ILP has to be used, not only  
for different lessons within the same domain, but also across different domains; this 
necessitates the automation of the ILP setup problem without the intervention of an 
ILP expert.  

Another important aspect requiring automated ILP runs is that the parameter 
settings cannot change between different runs.  We cannot expect any human 
guidance regarding settings and need to find good default values that work broadly. 
Actually, we are able to have our algorithms themselves try out a few parameter 
settings and use cross validation to choose good settings. However, given the large 
number of parameters in typical ILP systems (maximum rule length, modes, minimal 
acceptable accuracy of learned clauses, etc.), our algorithms cannot exhaustively try 
all combinations and hence we must choose an appropriate set of candidate parameter 
settings that will work across dozens of learning tasks. 

A separate group of researchers is tasked with producing natural lessons for the 
BL student across different domains. These lessons are taught via natural instruction 
methods designed to be used by non-experts; the "teaching team" provides an 
appealing source of lessons from outside the ILP community (these lessons will be 
made publicly available). 

Motivated by our prior experiences with ALEPH [5], we are developing a Java-
based ILP system called the Wisconsin Inductive Logic Learner or WILL, for which 
the BL framework caused us to add capabilities not found in ALEPH.  Our main 
approach to automatically handling domains is via a multi-layer strategy that 
investigates various combinations of strategies such that the hypothesis space is 
steadily expanded until an acceptable theory is learned.  We discuss the approach, 
which is a work in progress, in Section 3.  We conclude in Section 4 by presenting 
some directions for future research.  

2  Bootstrap Learning Domains  
The domains of the BL project we have been provided so far are Blocks World, 
RoboCup [2], and Unmanned Aerial Vehicle (UAV) control.  We assume the first two 
already are familiar to the ILP community. In Blocks World, one of the goals was to 
learn the concept of isAStack given only positive examples.  WILL was also used to 
learn makeStack which requires the student to learn a plan using ILP.  In RoboCup, 
one task was to learn whether a ball is outOfBounds given the real-valued position of 
the ball. 

The UAV domain involves operating a UAV and its camera to execute a 
reconnaissance mission.  Tasks include determining if the UAV has enough fuel to 
accomplish a mission, achieving appropriate latitude, altitude, etc., of the UAV, 
achieving appropriate pan, tilt and zoom of its camera, and recognizing which objects 
in the camera’s field of vision are of interest.  The learned has to deal with complex 



structures such as position, which consists of attributes such as latitude, longitude, 
altitude, etc. Encoding these spatial attributes as part of one position literal would 
enable WILL to learn a smaller clause, but would increase the branching factor during 
search due to the additional arguments introduced by such a large-arity predicate.  
Representing these spatial attributes as separate predicates would decrease the 
branching factor at the expense of the target concept being a longer clause. In 
addition, the tasks involve learning the concept of "near" that can exist between any 
two objects of interest. In a later lesson, this concept might be used, for instance, to 
determine if a truck is at an intersection. It is a challenge for the ILP systems to 
automatically generalize and specialize at different levels of the type hierarchy. 

3 Tackling the Bootstrapped Learning Challenges for ILP  
Often, researchers face the problem of designing new predicates, guiding ILP’s 
search, setting additional parameters, etc.  These domain-specific necessities greatly 
limit the applicability of an ILP system across different problems. BL brings a major 
challenge for ILP in this area, because WILL must automatically set up training 
without the intervention of an ILP expert.  This is needed because teachers cannot be 
expected to understand the algorithmic details of a learning approach; rather they 
communicate with the student in and as natural and human-like dialog as is feasible 
[3]. This necessitates the guiding of search automatically in a domain independent 
manner. Automatic parameter selection methods such as the one proposed in [7] are 
not useful in our system due to the fact that we do not have access to a large number 
of examples. Instead we resort to a multi-layered strategy that tries several approaches 
to learn the target concept. 

Generation of Negative Examples.  In general, ILP requires a large number of 
examples (both positive and negative) to learn a concept.  While this is a challenge in 
all of supervised learning, the need to sometimes learn complex relational concepts 
makes it even more so in ILP.  In some domains, it is natural for a teacher to say that a 
particular world state contains a single positive example; for example, it is natural for 
a teacher to point to a set of three blocks and state that they form a stack.  It is a 
reasonable assumption that various combinations of the rest of the blocks in that scene 
do not form a stack and hence, WILL assumes these are (putative) negative examples. 
We have found that for most of the lessons provided in BL there is such a need for 
automatically constructing negatives [6] because instruction contains mainly positive 
examples. This issue of limited or positive-only data arises because human teachers 
often provide only a few carefully and pedagogically chosen examples rather than 
hundreds of examples drawn randomly from some probability distribution. 

Another natural way for expressing negative examples is to say some world state 
does not contain any instances of the concept being taught: "the current configuration 
of blocks contains no stacks", for example.  Here, WILL is more confident about the 
negative examples it creates from such instruction.  Assume the teacher indicates 
isaStack takes three arguments, each of which is of type block.  If WILL is 
presented with a world containing N blocks where there are no stacks, it can create N3 
negative examples. Such a scenario occurs in the UAV domain, where the goal is to 
learn if two objects are near one another. The teacher might present an instance and 
point out that no two objects are near one another. In general, negative examples are 



generated by instantiating the arguments of predicates whose types we may have been 
told (if not, their type is any), in all possible ways using typed constants encountered 
in world states; finally, examples known to be positive are filtered out.  Depending on 
the BL task, the BL student may have either teacher-provided negatives (either 
directly specified or via a world state that contains no positives) or induced negatives. 
As we do not want to treat these identically, WILL allows costs to be assigned to 
examples ensuring that the cost of covering a putative negative can be less than 
covering a teacher-provided one. 

Learning the Negation of a Concept.  Human teachers typically gauge the 
difficulty of concepts being taught by human comprehensibility, in terms of which, 
accurate, short, conjunctive rules are preferred.  When learning concepts such as 
outOfBounds in a soccer field, the target concept might have a large set of 
disjunctions (since it can be out of bounds on any of four sides).  It is easier to learn if 
the ball is in bounds and then negate the learned concept.  So, one general heuristic in  
WILL is: 

 When learning P(x1, ..., xn)  
  look for one or more rules for predicting P(x1,..., xn)  

    that individually have high coverage and high accuracy 
 
  do the same, but now focus on predicting not P(x1,..., xn) 

Our inductive bias here is that our benevolent teacher is teaching a concept that is 
simple to state, but we are not sure if the concept or its negation is simple to state as 
one or more Horn clauses, so we always consider both. 

The main bottleneck was the number of available examples. For a small number of 
examples, it is usually hard to learn a disjunctive rule, especially if the examples are 
not the best ones, but rather only 'reasonable' in that they were near the boundaries, 
but not exactly next to them.   

Automatic Background-Knowledge Generation. One of the bottlenecks for ILP 
is the creation of background knowledge: modes, facts, type hierarchy, etc. In our 
setting, it is not possible to hand-craft the background-knowledge and there is a 
necessity to automate the generation of the knowledge. BL domains have type 
hierarchies including mode specifications [5], which are used by WILL to control the 
search for good clauses.  We first create the hierarchy by walking through the domain 
description; then modes are created by traversing this hierarchy.  For each predicate, 
we climb the hierarchy until all the facts match the type.  For instance, consider the 
type eagle, whose supertype is bird and its supertype, animal.  For the predicate 
flies, it is sufficient to climb the hierarchy up to bird, but, for the predicate 
numberOfLegs, we will have to climb all the way up to animal (assuming here that 
all animals have legs but only birds have wings). Once the base types and modes have 
been constructed, it is possible to add special predicates such as bins (described 
below), actions, orderings, etc., to the background after mode construction.  The 
existence of type hierarchies means WILL needs to handle hierarchical mode 
specifications, which led to some technical challenges when controlling the expansion 
of candidate clauses during WILL’s search. 



Handling Hints from Teacher.  In our setting, the teacher can specify relevance 
information that provides advice while learning the target concept.  Relevances can be 
specified at varying resolutions: a particular attribute, object, type or even the 
relationship between predicates (less than, greater than, etc.) can be designated 
relevant by the teacher. As the number of examples is low in BL, relevant information 
becomes quite significant.  Relevance statements are exploited by WILL to speed up 
learning by introducing costs on predicates, which guide the search towards a 
minimal-cost solution.  Our heuristic scheme is used to assign costs to predicates 
based on an ordering of relevance information.  This is based on the imperatives 
provided by the teacher (indicating some features as more relevant than others) as 
well as the specificity of a designated relevant (more specific relevant features have 
lower costs).  

Using Feedback. It is natural for the teacher to provide some kind of feedback to 
the target concept that WILL has learned. This feedback could be a judicious example 
that could guide WILL towards the correct concept. The feedback could also explain 
that a particular predicate is relevant and needs to be included in the target predicate. 
Yet another method of providing feedback is to present an example and explain why 
the target concept is true or false. This explanation could be a part of a disjunction 
that was not considered by WILL. We are currently working on incorporating such 
feedback in WILL. Extending WILL to address the problem of theory refinement in 
the lines of [8] remains an interesting direction for future research.  

Handling Numeric Data.  Several BL domains contain substantial numeric data 
and require WILL to perform numeric reasoning.  The tasks may range from 
reasoning problems such as outOfBounds described above, to more complex tasks 
such as being able to learn a numeric relationships among data features.  Our 
approach to introducing numeric reasoning is by adding several basic capabilities to 
WILL’s search space.  These include simple mathematical operators, such as plus, 
product, etc., and comparators for equalities and inequalities, including allowing 
for comparison up to a tolerance, e.g., equalsWithTolerance. 

Tiling/Binning of Numeric Features.  The numeric features (location of the ball 
and field dimensions) can be discretized by thresholding.  For each numeric attribute, 
we sorted the values and determined the transition values (boundary of the bins) 
between positive and negative examples following the method used in decision-tree 
induction [4], creating a predicate corresponding to each bin. The learned 
outOfBounds predicate is shown below, where the thresholds are encoded in the 
predicate names ('m' means 'minus'; constructs like '10_5' represent floats like 10.5): 

 

outOfBounds(Ball, Field) :-  
    NOT( position(Ball, P), 
         locationX_gte_m10_5(P), locationY_gte_m10_5(P), 
         locationY_lte_10_5(P),  locationX_lte_10_5(P) ). 

As can be seen, the negated target concept was learned. We are currently 
extending this to 2D and 3D bins, since many domains involve reasoning about spatial 
features. It should be noted that the combinatorics grow quickly with the number of 
numeric features. One possible improvement is to consider only the numeric 
attributes of the same type while binning the values. 



Automating Learning of Simple Plans. WILL was also used to learn simple 
plans, such as making a stack of three blocks from a set of blocks on the table.  To 
deal with time, we incorporate the standard notion of state in the predicate.  This led 
to a simple version of situation calculus that allows WILL to learn plans.  Using 
WILL for planning tasks introduced another challenge.  ILP typically discriminates 
positive examples from negatives.  However, we need ILP to generate good plans and 
this requires a sequence of actions from the initial state to a terminal state (or possibly 
a set of them).  For example, it is insufficient to simply learn that to separate the 
positive and negative cases of makeStack, the second step must involve a block with 
nothing on top of it. 

We addressed this need for generative plans rather than discriminative clauses by 
adding to WILL, the ability to say that a certain literal (in this case finalState) 
must be in a clause for that rule to be acceptable.  We also extended the modes used 
by WILL to include the ability to limit the number of times a given variable could be 
used in a clause.  For example, we constrain the first argument of an action predicate 
to be a variable that appears exactly once in the existing clause if action() is to be 
added.  This ensures that the rule WILL learns produces a linear sequences of state 
variables in actions.  The learned plan is 

 makeStack(B1, B2, B3, State1)  :- 
  action(State1, moveOnto(B2, B1), State2),  
  action(State2, moveOnto(B3, B2), State3),    
  finalState(State3). 

This plan is buggy - the teacher did not show WILL how to deal with the case 
where blocks to be moved currently have another block on top of them.  Such 
refinement was left to another lesson, in this case one where a reinforcement-learning 
agent was allowed to practice building stacks in the blocks world. 

Yet another interesting issue is that WILL had to deal with partially ordered plans 
(moving one block from another or to move the bottom block of the stack to be on the 
table, etc.).  We used a special predicate called actionsInAnyOrder to deal with 
this.  Similarly, some of the steps could be optional for which we used another special 
predicate: isAnOptionalStep.  Finally, the random creation of negatives for plan 
generation is not a trivial problem, since subsequent states need to be “physically 
realizable,” and is an interesting research question.  

A Multi-Layered Strategy for Controlling the Hypothesis Space.  It is 
infeasible to empirically consider all the possible parameter settings for WILL owing 
to the combinatorial explosion of the possibilities.  To this end, we are developing a 
multi-layered strategy that can try various (manually chosen) combinations in the 
hope of being able to automatically handle a variety of lessons in a diversity of 
domains. 

The innermost layer implements the basic strategy: invoking WILL after 
automated mode construction, using only the relevant features (as told by the teacher), 
cross-validation to score a small set of candidate parameters. This means that WILL 
initially explores a very restricted hypothesis space.  If no theory is learned or if the 
learned theory has a poor score (based on heuristics), then the hypothesis space is 
expanded, say by considering features not mentioned by the teacher and allowing for 



longer clauses.  Continuing this way, our multi-layered approach successively 
expands the space of hypotheses until an acceptable theory is found.   

4   Conclusion 
We have motivated the problem of Bootstrap Learning, presented the challenges for 
ILP in the different domains, and described the initial set of strategies we adopted to 
solve these problems.  The initial results for the project are intriguing.  Since we 
describe our current experiences with building a large-scale system using ILP, we do 
not present quantitative results here.  Rigorous evaluation of our system remains an 
interesting direction for future research.  The automation of ILP runs is critical in 
several problems beyond BL where human intervention is not feasible between 
problems.  Currently, we are focusing on our layered approach, called the ONION, to 
more robustly automate ILP in these different tasks.  Also, we are currently looking at 
more richly exploiting teacher-provided feedback beyond statements about which 
features and objects are relevant. 
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