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Abstract. Creating an effective ensemble of clauses for large, skewed
data sets requires finding a diverse, high-scoring set of clauses and then
combining them in such a way as to maximize predictive performance.
We have adapted the RankBoost algorithm in order to maximize area
under the recall-precision curve, a much better metric when working with
highly skewed data sets than ROC curves. We have also explored a range
of possibilities for the weak hypotheses used by our modified RankBoost
algorithm beyond using individual clauses. We provide results on four
large, skewed data sets showing that our modified RankBoost algorithm
outperforms the original on area under the recall-precision curves.
Keywords: Learning to Rank, Ensembles, Boosting

1 Introduction

Research over the past 15 years has shown an improvement in predictive accuracy
by using an ensemble of classifiers [4] over individual classifiers. In the Inductive
Logic Programming [6] domain ensembles have been successfully used to increase
performance [5,9,10]. Successful ensemble approaches must both learn individ-
ual classifiers that work well with a set of other classifiers as well as combine
those classifiers in a way that maximizes performance. AdaBoost [8] is a well
known ensemble method that does both of these things. AdaBoost learns weak
hypotheses iteratively, increasing the weight on previously misclassified exam-
ples so successive learners focus on misclassified examples. AdaBoost combines
weak hypotheses into a single classifier by using a weighted sum, where each
weak hypothesis is weighted according to its accuracy.

While AdaBoost focuses on improving accuracy of the final classifier, other
boosting algorithms have been created that maximize other metrics. The objec-
tive of Freud et al.’s RankBoost algorithm [7] is to maximize the correct ordering
of all possible pairs of examples in a list of examples. RankBoost maintains a
probability distribution over all pairs of examples. The weak learner uses this
distribution and finds a hypothesis that minimizes the weighted misorderings
from the correct ordering of the examples.
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One version of RankBoost, named RankBoost.B, is designed to work with
binary classification problems. Weights are only assigned to pairs of examples if
the examples are from different classes. This focuses learning on ordering exam-
ples so that all positive examples will be ranked before the negative examples
and ignoring the ordering of examples if they are of the same class. Cortes and
Mohri [1] showed RankBoost.B maximizes the area under the receiver operator
characteristic (AUROC) curve.

AUROC is a common metric used to discriminate between classifiers. Davis
and Goadrich [3] however demonstrated that AUROC is not a good metric for
discriminating between classifiers when working with highly skewed data where
the negatives outnumber the positives. They recommend using area under the
recall-precision curve (AURPC) when working with skewed data.

We present a modified version of the RankBoost.B algorithm that works well
with skewed data which we name PRankBoost for precision-recall RankBoost.
Its objective function seeks to maximize AURPC. We implement a top-down,
heuristic-guided search to find high-scoring rules for the weak hypotheses and
then use this modified RankBoost algorithm to combine them into a single clas-
sifier. We also evaluate several other possibilities for weak hypotheses that use
sets of the best-scoring rules found during search.

2 PRankBoost—A Modified RankBoost Algorithm

PRankBoost, a modified version of Freud et al.’s RankBoost.B algorithm, ap-
pears in Table 1. We have modified the sum of the weights on the negative set
to the skew between the size of the negative set and the size of the positive set.
We make this change to expose enough information to the weak learner so that
it can optimize the AURPC.

PRankBoost initializes weights on the positive examples uniformly to ﬁ
where X7 is the set of positive examples. Negative examples are also uniformly
initialized so that the sum of their weights is equal to the skew between posi-
tives and negatives. These initial weights preserve the same distribution between
positive and negative examples as what exists in the unweighted data set. Cal-
culating recall and precision for a model on the initial-weighted data set will
be identical to calculating recall and precision on the unweighted version of the
data set.

After PRankBoost initializes example weights, the algorithm enters a loop
to learn a set of T" weak learners. A weak learner is trained using the weighted
examples. We have explored using several different weak learners which we will
discuss shortly. The objective function used during training is the weighted AU-
RPC. After training, PRankBoost assigns a weight to the weak learner. The
weight is calculated analogous to the third method discussed by Freud et al. In
this method « is an upper bound on the normalization factor, Z. Cortes and
Mohri show that the r parameter used to calculate « is equivalent to a weighted
version of the area under the ROC curve. We modify this approach for PRank-
Boost so that the r is a weighted version of AURPC.



PrankBoost updates weights using the parameter «, the weak learner h(x),
and a factor Z, which maintains the same weight distribution between the posi-
tive and negative examples as exists with the initial weights. An example’s weight
is decreased relative to how well the weak learner scores the example. The higher
a positive example is scored by the weak learner the smaller the weight while
be, while the opposite is true for negative examples. The effect is to place more
weight on examples which the weak learner has difficulty classifying.

The final classifier, H(x), assigns a score to a new example, z, as a weighted
sum of the individual weak learners. We designed PRankBoost to be analogous
to RankBoost. While RankBoost’s final classifier maximizes AUROC, our mod-
ified version attempts to maximize AURPC. We hypothesize that this modified
version will outperform RankBoost when comparing AURPC.

Table 1. PRankBoost—A modified RankBoost algorithm for optimizing area under the
recall-precision curve.
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3 Weak Learners

As shown in Table 1, a weak learner, h;(z) is a function that maps an example to
a real value. A perfect weak learner maps all positive examples to higher values
than negative examples. Often it is not possible to find a perfect weak learner



and some objective function is used to decide among possible weak learners. In
Adaboost the object function guides learning towards models that minimize a
weighted version of misclassification error. In RankBoost the objective function
maximizes a weighted area under the ROC curve. Our PRankBoost algorithm
for finding weak learners uses area under the recall-precision curve as the object
function.

When deciding what search algorithm to use for finding a weak learner we
had several goals in mind. First, we wanted the search algorithm to find a clause
that worked well with highly skewed data. This is the reason we use AURPC as
the objective function. Second, we wanted to apply this algorithm to large data
sets. Evaluation of clauses in large data sets is a costly time step and limits the
number of weak learners that can be considered in a reasonable amount of time.
Because of this we use a greedy hill-climbing algorithm to find weak learners.

We consider several possibilities for weak learners. The simplest weak learner
we use consists of a single first-order rule. To find this rule we select a random
positive example as a seed and saturate it to build the bottom clause. We begin
with the most general rule from this bottom clause. All legal literals are consid-
ered to extend the rule. The extension that improves the AURPC the most is
selected and added to the rule. The process repeats until no improvement can be
found or some time limit or rule-length limit is reached. Each weak hypothesis,
hi(x), is the best scoring individual rule found during this search.

This weak learner maps an example, x, to the range {0, 1} where the map-
ping is 1 if the example is predicted as true, 0 otherwise. We call this learner
PRankBoost.Clause.

We have also explored other possibilities for the weak learner and how the
AURPC is calculated for the objective function. Our goal in developing other
weak learners was to create more accurate models without increasing the number
of rules evaluated on training data. One method of developing more complex first-
order models is to retain more than just the best clause found during search.
Taking an idea from the Gleaner algorithm [9] which retains an entire set of rules
found during search that span the range of recall values, we have developed a
second weak learner that retains a set of the best rules found during search. This
weak learner, PRankBoost.Path, contains all rules along the path from the most
general rule to the highest-scoring rule found during search. This set of rules will
contain short, general rules that cover many examples and longer, more specific
rules that have higher accuracy but lower coverage on the positive examples.

For example consider the rules that appear in Figure 1. A set of rules would
contain the highest-scoring rule, h(X):-p(X),q(X,Y),r(Y), along with the subsets
of the rule from the most general rule to this rule, h(X):-p(X,Y),p(Y,Z) and
h(X):-p(X,Y). This weak hypothesis, h;(z), maps an example, z, to the range
[0,1] by finding the most specific of these rules that covers the example. If the
highest-scoring rule did not cover some new example then the next most specific
rule would be considered until a rule is found that covers the example. h;(z) is
the fraction of the total AURPC covered by this rule as illustrated in Figure 1.



The total AURPC, r, is the area under the entire path from the most specific
rule to the most general rule (the total grayed area in Figure 1).
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Fig. 1. Area under the recall-precision curve for a path of clauses learned during hill
climbing. The total grayed area is the total AURPC, r. If h(X) :- p(X), q(X,Y) is the
most specific clause in the path to cover an example then h:(z) maps the example to
the value (light gray area / total grayed area).

4 Calculating AURPC

We use a weighted version of AURPC as both the objective function used to find
weak learners as well as to weight weak learners when combining them into an
ensemble. In general we follow the algorithm outlined by Goadrich et al. [9] to
calculate AURPC, however We made two modifications to work in this ensemble
setting and to improve accuracy and increase speed. First, we use a weighted
version of recall and precision. Second, when calculating the area between two
points in recall-precision space, A and B, Davis and Goadrich use a discretized
version that estimates the area under the curve. We calculate the area under the
curve exactly using a closed form solution to the integral for the curve between
the two points,

TPp " .
/TPA z+ FPy +S(JJ—TPA) LE

where TP is the true positive weight and FP is the false positive weight. Pa-
rameter s is the local skew of false positives to true positives between the two
points A and B, s = %. The total AURPC is a piece-wise integral be-
tween each of the points in recall-precision space that correspond to the rules of
a weak learner. For PRankBoost.Clause, which consists of a single clause, this
would be a single point in recall-precision space. We use Goadrich et al.’s method
for extending this point down to zero recall and up to 100% recall by using the
most general clause. For PrankBoost.Path we perform the same extension down



to zero recall and up to 100% recall but we use all point that correspond to the
clauses in the set retained by the weak learner. This curve is shown in Figure 1.

5 Experimental Methodology and Results

We modified Aleph [12] to incorporate RankBoost and my modified versions,
PRankBoost.Clause and PRankBoost.Path. RankBoost uses the same hill-climbing
algorithm for finding weak learners as my two variants use. We used individ-
ual clauses for the weak learners in RankBoost. This makes the RankBoost
algorithm directly comparable to PRankBoost.Clause. We compared these algo-
rithms using AUROC and AURPC on four large, skewed data sets, two from the
information-extraction domain and two from the mammography domain.

Protein Localization data set consists of text from 871 abstracts taken from
the Medline database. The task is to find all phrase pairs that specify a
protein and where it localizes in a cell. The data set comes from Ray and
Craven [11]. Additional hand annotation was done by Goadrich et al. [9] The
data set contains 281,071 examples with a positive/negative skew of 1:149.

Gene Disease data set also comes from Ray and Craven [11]. We utilized the
ILP implementation by Goadrich et al. [9] The task is to find all phrase pairs
showing genes and their associated disorder. the data set contains 104,192
examples with a positive/negative skew of 1:446.

Mammography1 data set is described by Davis et al. [2] It contains 62,219
findings. The objective with this data set is to determine if a finding is
benign or malignant given descriptors of the finding, patient risk factors,
and radiologist’s prediction. The positive/negative skew is 1:121.

Mammography?2 is a new data set that has the same task as Mammography1,
however the data was collected from mammograms from a second institution,
the University of Wisconsin Hospital and Clinics. The data set consists of
30,405 findings from 18,375 patients collected from mammograms at the
radiology department. The positive/negative skew is 1:86.

We ran 10-fold, cross-validation for the mammography data sets and 5-fold
for the IE data sets. We ran each fold 10 times using a different random seed
to average out differences due to random effects such as seed selection. We cal-
culated average AURPC, average AUROC, and standard deviations across the
different runs and folds. Also, to compare how quickly the ensembles converged,
we created learning curves with the x-axis showing the number of rules evaluated
and the y-axis showing the average AURPC.

Table 2 shows average AURPC and AUROC results with standard devi-
ations for ensembles containing 100 weak learners for RankBoost and PRank-
Boost.Clause. RankBoost outperforms PRankBoost.Clause when comparing AU-
ROC on three of the four data sets. The AUROC scores are high and close
together. This makes it more difficult to visually distinguish ROC curves from



Table 2. Average AUROC and AURPC percentages with standard deviations for sev-
eral large, skewed data sets using the RankBoost and PRankBoost.Clause algorithms.
Bold indicates statistically significant improvement at 5% confidence level.

Data set [ AUROC [ AURPC |
RankBoost [PRankBoost.Clause| RankBoost |PRankBoost.Clause
Mammography 1 | 89.9 +4.2 88.1 +5.8 18.5 £ 5.7 329+76
Mammography 2 | 92.5+2.0 96.7£1.1 162+£74 41.3 £10.6
Protein Localization| 98.9 + 0.1 979+ 0.7 404+£79 40.5 £ 8.6
Gene Disease 98.2+0.9 954+ 2.4 32.9+10.7 46.6 +11.9

each other. However when comparing AURPC the difference between the two
algorithms is large. PRankBoost.Clause outperforms RankBoost on three of the
four data sets. The variance is much larger for AURPC scores than for AUROC
scores because when recall is close to zero variance in precision values is high.

Learning curves on the four data sets appear in Figure 2. Each graph shows
the AURPC on the y-axis by the number of rules considered during training on
the z-axis. Each curve extends until 100 weak hypotheses have been found. We
do this as a way of showing that the various algorithms do different amounts of
work to produce 100 hypotheses, a fact that would be lost if we simply extended
all three to the full width of the x-axis.

My PRankBoost.Path algorithm reaches an AURPC of 0.44 on the Protein
Localization data set after less than 20,000 clauses searched. The Gleaner algo-
rithm takes over 100,000 clauses to surpass this level of performance [9]. On the
Gene Disease data set my PRankBoost.Clause algorithm reaches 0.48 AURPC
after 45,000 clauses searched, while the Gleaner algorithm does not reach this
level of performance even after 10 million clauses searched.

The more complex weak learner, PRankBoost.Path does not appear to dom-
inate the simple learner, PRankBoost.Clause, on all of the data sets. We believe
this is because PRankBoost.Clause learns a very specific clause and reduces the
weights on just a few positive examples. This forces search to focus on other pos-
itive examples and find other specific clauses that perform well on those positive
examples. PRankBoost.Path on the other hand learns both specific and general
clauses in the set of clauses used as a model for the weak learner. This means
many positive examples will be down-weighted rather quickly. The remaining
positive examples may consist of very difficult examples where it is not easy
to find a good clause that covers those positive examples without also covering
many negatives. After observing these characteristics We designed other weak
learners that try to find a mix of models somewhere between PRankBoost.Clause
and PRankBoost.Path.
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Fig.2. Learning curves for Freund et al.’s RankBoost algorithm, our PRank-
Boost.Clause and PRankBoost.Path algorithms on four large, skewed data sets. Learn-
ing curves extend until 100 weak hypotheses are learned. This makes some curves
extend farther than others.

6 Additional Experiments with Variations on Weak
Learners

We have additional results using other weak learners that combine variations of
PRankBoost.Clause and PRankBoost.Path. Remember that PRankBoost.Clause
retains the single rule that is the best seen during search. Its score, «, is a
weighted version of the area under the recall-precision curve of that single rule.
PRankBoost.Path retains a set of rules along the trajectory from the most gen-
eral rule to the best rule found during hill climbing. The weak learner’s score
is based upon the area under the entire path of rules. Figure 3 shows the two
methods of scoring a weak learner based upon the single rule or the entire tra-
jectory. The solid curve uses the entire trajectory from the most general rule to
the rule itself while the dashed curve uses only the rule itself.

These two scoring methods create a very different search pattern. Consider
scoring rules based upon the entire path from the most general rule. A por-
tion of the score is fixed based upon the portion of the rule that has already
been chosen. Any extension to the rule will only decrease recall or at best leave



recall unchanged. The score will change only the left-most portion of the recall-
precision curve. Any extension that increases precision will also increase the
rule’s overall score. This is not true when scoring a rule based upon only the
rule itself. Adding a literal to a rule, even though it may increase the precision of
the rule, may still decrease the overall rule’s score because the curve to the single
rule will also change. No portion of the curve is fixed. The difference between
these two scoring methods means that using the entire path to score a rule will
search more deeply in the search space and discover longer rules with higher
precision but lower recall.

h(X):-p(X),q(X,Y),r(Y).
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Fig. 3. Two scoring methods for a weak learner. One scoring method (solid curve) used
by the PRankBoost.Path and Mix1 weak learners is based upon the entire trajectory of
rules from the most general rule to the best rule. The second scoring method (dashed
curve) used by the PRankBoost.Clause and Mix2 weak learners is based upon the single
best rule alone. Mix3 alternates between using these two scoring methods.

As variations on PRankBoost.Path and PRankBoost.Clause we have created
three other weak learners. The first retains the entire set of rules like PRank-
Boost.Path, but the scoring function of the learner is based upon the single
best rule like PRankBoost.Clause. The second does just the reverse by retain-
ing only the single best rule, but scoring it based upon the entire trajectory.
As a final variation we have also alternated between PRankBoost.Clause and
PRankBoost.Path for each weak learner created.

We ran experiments using the same experimental setup as my previous ex-
periments. Results for these three new weak learners appear in Figure 4. It
appears that these variations do not find models whose precision-recall perfor-
mance is consistently higher than PRankBoost.Clause and PRankBoost.Path
models when measuring AURPC. However the first mixed model (dashed line)
does show some interesting properties. Its initial performance is very low com-
pared to the other models. It has a more shallow learning curve and it does not
appear to have reached its asymptotic performance after 100 weak learners have
been included in the model. All of these observations make sense when consid-
ering the type of weak learner. Each weak learner is an individual clause that



will have high precision but low recall due to the scoring function being the area
under the entire path. After each weak hypothesis is learned the few positive
examples that are covered will be down-weighted and a new weak hypothesis
will be learned that covers new examples. Because of the small coverage of each
individual clause, learning will be slow and consistent, showing improvement
even after many clauses have been learned.

Mammography 1 Protein Localization
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Fig. 4. Learning curves for three models that mix components of PRankBoost.Path
and PRankBoost.Clause on four large data sets. Miz! includes clauses as weak learners
like PRankBoost.Clause but scores them like PRankBoost.Path. Miz2 includes entire
paths of clauses as PRankBoost.Path but scores the path like PRankBoost.Clause.
Miz3 alternates between the method used in PRankBoost.Path and the one used in
PRankBoost.Clause. PRankBoost.Clause is graphed for comparison purposes only.

7 Conclusion and Future Work

When working with skewed data sets metrics such as area under the recall-
precision curve have been shown to discriminate well between competing mod-



els. We designed a modified RankBoost algorithm to maximize area under the
recall-precision curve. We compared the original RankBoost algorithm, which
is designed to maximize area under the ROC curve, with our modified version.
When comparing AUROC on four large, skewed data sets the original Rank-
Boost algorithm outperforms our modified PRankBoost version. However when
comparing AURPC PRankBoost outperforms the original algorithm.

We created several first-order logic weak learners. The simplest weak learner,
PRankBoost.Clause, consists of an individual rule. A second, more complex weak
learner, PRankBoost.Path, consists of all rules along the path to the best rule.
This more complex learner does not require any additional rules be evaluated
on training data. This is especially important when working with large data
sets because evaluation is a costly time step. Both weak learners have different
strengths with neither learner dominating in performance across all data sets.
In addition to these two weak learners We created several other weak learners
that are a combination of these two. The most promising, Mix1, consists of the
highest-scoring clause found during search, but its score is calculated using the
entire trajectory of rules from the most general rule to this best rule.

For future work we would like to create additional mixed models that be-
gin by learning more general clauses as seen in PRankBoost.Clause and then
switching to learning more specific clauses as seen in the first mixed model. We
believe this type of model will show good initial performance and will continue
to show predictive improvement reaching a higher asymptote. We would also
like to perform theoretical analysis to support our empirical work showing that
PRankBoost maximizes AURPC following Freund et al.’s proof that RankBoost
maximizes AUROC [7].
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RO01 CA127379, Houssam Nassif, David Page, and Ryan Woods and our anony-
mous reviewers for their comments and suggestions.
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