Appears in Computational Learning Theory and Natural Learning Systems, Vol. 111,
T. Petsche, S. Hanson and J. Shavlik, editors, (pp. 3-19), MIT Press, 1995.

Using Heuristic Search to Expand
Knowledge-Based Neural Networks

David W. Opitz and Jude W. Shavlik

opitzQcs.wisc.edu
(608) 262-6613

1210 W. Dayton St.
Computer Sciences Department
University of Wisconsin — Madison
Madison, WI 53706

Abstract

Knowledge-based neural networks are networks whose topology is determined by mapping
the dependencies of a domain-specific rulebase into a neural network. However, existing
network training methods lack the ability to add new rules to the (reformulated) rulebases.
Thus, on domain theories that are lacking rules, generalization is poor, and training can
corrupt the original rules, even those that were initially correct. We present TopGen, an
extension to the KBANN algorithm, that heuristically searches for possible expansions of a
knowledge-based neural network, guided by the domain theory, the network, and the training
data. TopGen does this by dynamically adding hidden nodes to the neural representation
of the domain theory, in a manner analogous to adding rules and conjuncts to the symbolic
rule base. Experiments indicate that our method is able to heuristically find effective places
to add nodes to the knowledge bases of four real-world problems, as well as an artificial
chess domain. The experiments also verify that new nodes must be added in an intelligent
manner. Our algorithm showed statistically-significant improvements over KBANN in all five
domains.

1 Introduction

The task of theory refinement is to improve an imperfect “domain theory” using new data
(Ginsberg, 1990; Ourston & Mooney, 1990; Towell et al., 1990). The initial theory can
involve such information as textbook knowledge or rules of thumb obtained from an expert or
learning algorithm. A learning system should make repairs that minimize the changes to the
initial domain theory, while making it consistent with the data. We present a connectionist
approach to theory refinement, particularly focusing on the task of expanding impoverished
domain theories.

KBANN (Towell, 1992) is a connectionist theory-refinement system that translates a set
of approximately-correct, domain-specific inference rules (called a domain theory) into a
neural network, thereby determining the network’s topology. It then applies backpropagation
to refine these reformulated rules. KBANN has been shown to generalize to previously-
unseen examples better than many other inductive learning algorithms (Towell et al., 1990;
Towell, 1992; Towell & Shavlik, in press). KBANN’s superiority over other symbolic systems
has been mostly attributed to both its underlying learning algorithm (i.e., backpropagation)
and its effective use of domain-specific knowledge (Towell, 1992; Towell & Shavlik, in press).

However, KBANN suffers from the fact that, since it does not alter the initial network’s
topology, it essentially only adds and subtracts antecedents of existing rules. Thus it is
unable to add new symbolic rules to an impoverished rule set. Towell (1992) has shown
that, while KBANN is reasonably insensitive to extra rules in a domain theory, its ability to
generalize (i.e., correctly classify examples not seen during training) degrades significantly as
rules are removed from a domain theory. In addition, with sparse domain theories, KBANN
needs to significantly alter the original rules in order to account for the training data. While
it is clearly important to classify the examples as accurately as possible, changes to the
initial domain theory should be kept to a minimum because the domain theory presumably
contains useful information, even if it is not completely correct. Also, large changes to
the domain theory greatly complicated rule extraction following training (Towell & Shavlik,
1993). Hence, our goal is to expand, during the training phase, knowledge-based neural
networks — networks whose topology is determined as a result of the direct mapping of the
dependencies of a domain theory — so that they are able to learn the training examples without
needlessly corrupting their initial rules.

The TopGen (Topology Generator) algorithm, the subject of this paper, heuristically
searches through the space of possible expansions of a knowledge-based network, guided by
the symbolic domain theory, the network, and the training data. It does this by adding hid-
den nodes to the neural representation of the domain theory. TopGen uses heuristic search,
rather than a faster hill-climbing algorithm, because CPU cycles are becoming increasingly
plentiful and cheap. It therefore seems wise to search more of the hypothesis space to find
a good network topology. Finding such a topology allows better generalization, provides
the network with the ability to learn without overly corrupting the initial set of rules, and
increases the interpretability of the network so that efficient rules may be extracted. This
paper presents evidence for these claims.

TopGen differs from other network-growing algorithms (Fahlman & Lebiere, 1989; Frean,
1990; Mezard & Nadal, 1989) in that it is designed for knowledge-based networks. TopGen
uses a symbolic interpretation of the trained network to help locate the primary errors in the

A:- B, not C.
B:-D,notE, I

B :- D, not F, not K.

C:-notG,H,J
G “,
D EFGH I J K

@ (b)

Figure 1: Translation of a knowledge base into a neural network.

network. Units are added in a matter analogous to adding rules and conjuncts to the symbolic
rule base. Adding hidden nodes in this fashion synergistically combines the strengths of
refining the rules symbolically with the strengths of refining them with backpropagation.

The rest of the paper is organized as follows. In the next section of this paper, we give a
brief overview of KBANN. We present the details of the TopGen algorithm in Section 3. This
is followed by an example of how TopGen works. In Section 5 we present results from four
real-world Human Genome domains and controlled studies on an artificial domain. This is
followed by discussion of these results, as well as future and related work. We present our
conclusions in the last section.

2 The KBANN Algorithm

KBANN translates a set of propositional rules, representing what is initially known about
a domain, into a neural network. This translation algorithm defines the topology and the
initial connection weights of the network it creates.

An example of this process is shown in Figure 1. Figure la shows a Prolog-like rule
set that defines membership in category A. Figure 1b represents the hierarchical structure
of these rules, with solid lines representing necessary dependencies and dotted lines repre-
senting prohibitory dependencies. Figure lc represents the resulting network created from
this translation. KBANN creates nodes B1 and B2 in Figure lc to handle the two rules
deriving B in the rule set. The thin lines in Figure 1c are low-weighted links that KBANN
added to allow refinement of these rules during backpropagation training. Biases are set
so that nodes representing disjuncts have an output near 1 only when at least one of their
high-weighted antecedents is correct (i.e., near 1 for positive links and near 0 for negative
links), while nodes representing conjuncts must have all of their high-weighted antecedents
correct. Otherwise activations are near 0. Refer to (Towell et al., 1990; Towell, 1992;
Towell & Shavlik, in press) for more details.

KBANN refines the network links using training examples. This training alters the an-
tecedents of existing rules; however, KBANN does not have the capability of inducing new
rules. For example, KBANN is unable to add a new rule for inferring B. Being able to
introduce such new rules 1s the focus of this paper.

3 The TopGen Algorithm

TopGen heuristically searches through the space of possible ways of adding nodes to the
network, trying to find the network that best refines the initial domain theory (as measured
using “validation sets”). Briefly, TopGen looks for nodes in the network with high error
rates, and then adds new nodes to these parts of the network.

Table 1 summarizes the beam-search-based TopGen algorithm. TopGen uses two valida-
tion sets, one to evaluate the different network topologies, and one to help decide where new
nodes should be added (we also use the second validation set to decide when to stop training
individual networks). TopGen uses KBANN’s rule-to-network translation algorithm to define
an initial guess for the network’s topology. This network is trained using backpropagation
(Rumelhart et al., 1986) and is placed on an OPEN list. In each cycle, TopGen takes the
best network from the OPEN list (as measured by validation-set-2), decides possible
ways to add new nodes, trains these new networks, and places them on the OPEN list. This
process is repeated until reaching either (a) a validation-set-2 accuracy of 100% or (b) a
previously-set time limit.

3.1 Where Nodes Are Added

TopGen must first find nodes in the network with high error rates. It does this by scoring
each node (which corresponds to a rule in the symbolic domain theory) using examples from
validation-set-1. By using examples from this validation set, TopGen adds nodes on the
basis of where the network fails to generalize, not where it fails to memorize the training set.
TopGen makes the empirically-verified assumption that almost all of the nodes in a trained
knowledge-based network are either fully active or inactive. By making this assumption,
each non-input unit in a TopGen network can be treated as a step function (or a Boolean
rule) so that errors have an all-or-nothing aspect, thus concentrating topology refinement on
misclassified examples, not on erroneous portions of each example. Towell (1992), as well as
self-inspection of our networks, has shown this to be a valid assumption.

TopGen keeps two counters for each node, one for false-negatives and one for false-
positives, defined with respect to each individual node’s output, not the final output. An
example is considered a false negative if it is incorrectly classified as a negative example,
while a false positive is one incorrectly classified as a positive example. TopGen increments
counters by recording how often changing the “Boolean” value of a node’s output leads
to a misclassified example being properly classified. That is, if a node is active for an
erroneous example and changing its output to be inactive results in correct classification for
the example, then the node’s false-positives counter is incremented. TopGen increments a
node’s false-negatives counter in a similar fashion. By checking for single points of failure,
TopGen looks for rules that are near misses. TopGen adds nodes where counter values are
highest, while breaking ties by preferring nodes farthest from the output node.

We also tried other approaches for blaming nodes for error, but they did not work as
well on our testbeds. One such method is to propagate errors back by starting at the final
conclusion and recursively considering an antecedent of a rule to be incorrect if both its
consequent is incorrect and the antecedent does not match its “target.” We approximate
targets by starting with the output node, and recursively considering a node to have the

Table 1: The TopGen Algorithm

TopGen:
GOAL: Search for the best network describing the domain theory and training examples.

1. Set aside a testing set. Break the remaining examples into a training set and two
validation sets (validation-set-1 and validation-set-2).

2. Train, using backpropagation, the initial network produced by KBANN’s rules-to-
network translation and put on OPEN list.

3. Until stopping criterion reached:

(a) Remove best network, according to validation-set-2, from OPEN list.
(b) Use ScoreEachNode to determine N best places to expand topology.
(c) Create N new networks, train and put on OPEN list.

(d) Prune OPEN list to length M.

4. Output the best network seen so far according to validation-set-2.

ScoreEachNode:
GOAL: Use the error in validation-set-1 to suggest good ways to add new nodes.

1. Score each node in the network as follows:

(a) Set each node’s correctable-false-negative and correctable-false-
positive counters to 0. Assume each node is a threshold unit.

(b) For each misclassified example in validation-set-1, cycle through each node
and determine if modifying the output of that node will correctly classify the
example, incrementing the counters when appropriate.

2. Use the counters to order possible node corrections. High correctable-
false-negative counts suggest adding a disjunct while high correctable-
false-positive counts suggest adding a conjunct.

Existing Node | | Decrease False Negatives || Decrease False Positives

XE/A\

B C B C New
Node

OR Node
(;jj%é;ji) ki \

B C New
B c Node
AND Node

Figure 2: Possible ways to add new nodes to a knowledge-based neural network. Arcs
indicate AND nodes.

same target as its parent, if the weight connecting them is positive, or the opposite target, if
this weight is negative. While this method works for symbolic rules, TopGen suffers under
this method because its antecedents are weighted. Antecedents with small-weighted links
are counted as much as antecedents with large-weighted links. Because of this, we also tried
using the backpropagated error to blame nodes, however backpropagated error becomes too
diffuse in networks having many layers, such as the ones often created by TopGen. It is
important to note that these methods are just heuristics to help guide the search of where
to add new nodes, thus TopGen is able to backtrack if a “bad” choice is made.

3.2 How Nodes Are Added

Once we estimate where we should add new nodes, we need to know how to add these nodes.
TopGen makes the assumption that when training one of its networks, the meaning of a
node does not shift significantly. Making this assumption allows us to alter the network in
a fashion similar to refining symbolic rules. Towell (Towell & Shavlik, 1993; Towell, 1992)
showed that making a similar assumption about KBANN networks was valid.

Figure 2 shows the possible ways TopGen adds nodes to a TopGen network. In a symbolic
rule base that uses negation-by-failure, we can decrease false negatives by either dropping
antecedents from existing rules or adding new rules to the rulebase. Since KBANN is effective
at removing antecedents from existing rules, TopGen adds nodes, intended for decreasing
false negatives, in a fashion that is analogous to adding a new rule to the rulebase. If the
existing node is an OR node, TopGen adds a new node as its child (see Figure 2a), and fully-
connects this new node to the input nodes. If the existing node is an AND node, TopGen
creates a new OR node that is the parent of the original AND node and another new node
that TopGen fully-connects to the inputs (Figure 2c); TopGen moves the outgoing links of
the original node (A in Figure 2¢) to become the outgoing links of the new OR nodes.

In a symbolic rule base, we can decrease false positives by either adding antecedents to

existing rules or removing rules from the rule base. While KBANN can effectively remove
rules (Towell, 1992), it is less effective at adding antecedents to rules and is unable to invent
(constructively induce) new terms as antecedents. Figures 2b,d show the ways (analogous
to Figures 2a,c explained above) of adding constructively-induced antecedents. By allowing
these additions, TopGen is able to add rules whose consequents were previously undefined
to the rulebase.

TopGen handles nodes that are neither AND nor OR nodes by deciding if such a node is
closer to an AND node or an OR node (by looking at the node’s bias and incoming weights).
TopGen classifies previously added nodes in such a manner, when deciding how to add more
nodes to them at a later time.

3.3 Additional Algorithmic Details

After new nodes are added, TopGen must train the network. While we want the new weights
to account for most of the error, we also want the old weights to change if necessary. That
is, we want the older weights to retain what they have previously learned, while at the same
time move in accordance with the change in error caused by adding the new node. In order
to address this issue, TopGen multiplies the learning rates of existing weights by a constant
amount (<1) every time new nodes are added, producing an exponential decay of learning
rates.

We also do not want to change the domain theory unless there is considerable evidence
that it is incorrect. That is, there is a trade-off between changing the domain theory and
disregarding the misclassified training examples as noise. To help address this, TopGen uses
a variant of weight decay (Hinton, 1986). Weights that are part of the original domain
theory, decay toward their initial value, while other weights decay toward zero.

Our weight decay term, then, decays weights as a function of their distance from their
initial value and is a slight variant of the term proposed by Rumelhart in 1987 (Weigand
et al., 1990). The idea of our weight decay is to add, to the usual cost function, a term that
measures the distance of each weight from its initial value:

(wi — Wz’nitl)2
Cost = E target, — outputy)® + A E :
keT() o 1+ (Wi — Winat,)?

The first term sums over all training examples 7', while the second term sums over all
connections C'. The tradeoff between performance and distance from initial values is weighted
by A.

4 Example of TopGen

Assume that Figure 1a’s domain theory should have also included the following rule:
B :--F, G, H.

Although we trained the KBANN network shown in Figure 1c with all possible examples, it
was unable to learn the correct concept.

TopGen begins by training the network in Figure 1c, obtaining no improvement to the
original rule base. It then proceeds by taking misclassified examples from validation-set-1
to find places where adding nodes could be beneficial. The following example of category A
is incorrectly classified by the domain theory:

notFF NG N H A notl AnotJ NnotK N LANM

While node C (from Figure 1c is correctly false in this example, node B is incorrectly false. B
is false since both B1 and B2 are false. If B had been true, this example would have been cor-
rectly classified (since C'is correct), so TopGen increments the correctable-false-negative
counter for B. TopGen also increments the counters of B1, B2, and A, using similar argu-
ments.

Nodes A, B, B1, and B2 will all have high correctable-false-negative counters after
all the examples are processed. Given these high counts, TopGen considers adding OR nodes
to nodes A, B1, and B2, as done in Figure 2c, and also considers adding another disjunct,
analogous to Figure 2a, to node B. Any one of these for corrections allows the network to
learn the target concept. Since TopGen breaks ties by preferring nodes farthest from the
output node, it prefers B1 or B2.

5 Experimental Results

We tested TopGen on five domains: an artificial chess-related domain, and four real-world
Human Genome problems. While real-world domains are clearly useful in exploring the
utility of an algorithm, they are difficult to use in closely-controlled studies that examine
different aspects of an algorithm. An artificial domain allows us to determine the relationship
between the theory provided to the learning system and the correct domain theory. Knowing
this relationship allows us to better understand the effectiveness of the learning algorithm.

5.1 A Chess-Related Domain

The first domain, derived from the game of chess, defines board configurations where moving
a king one space forward is legal (i.e., the king would not be in check). Figure 3 shows the
subset of the chess board considered by this domain. The king wants to move from position
4-3 to position 3-3. Possible pieces include a queen, a rook, a bishop, and a knight for both
sides.

In order to investigate how well TopGen completes impoverished domain theories, we ran
experiments where we perturbed the correct domain theory in various ways, and gave these
incorrect domain theories to TopGen. One could perturb a domain theory by either: (a)
adding an antecedent to a rule, (b) deleting an antecedent from a rule, (¢) adding a rule, or
(d) deleting a rule. Since Towell (1992) previously showed that KBANN effectively corrects
perturbations (a-c), we only ran experiments where rules are deleted from the correct domain
theory (i.e., the domain theory given to the learning algorithms is impoverished).

To help test the efficiency of TopGen’s approach of choosing where to add hidden nodes,
we compare its performance with a simple approach (referred to as Strawman from here after)
that adds one layer of fully-connected hidden nodes “off to the side” of the KBANN network.

1-1) 1-2| 1-3| 1-4| 1-5

2-1| 2-2| 2-3| 2-4| 2-5

MPTY
3-1| 3-2| 3-3| 3-4| 3-5
4-1| 4-2|(4-3 4-4| 4-5

Figure 3: Portion of the chess board covered by the domain theory.

Outputs

Knowledge-base
Portion

Extra Hidden
Units

Figure 4: Topology of networks used by Strawman.

Figure 4 shows the topology of such a network. The topology of the original KBANN network
remains intact, while we add extra hidden nodes in a fully-connected fashion between the
inputs nodes and the output nodes. If a domain theory is impoverished, it is reasonable to
think that simply adding nodes in this fashion would increase performance. Strawman trains
21 different networks (using weight decay), ranging from 0 to 20 extra hidden nodes and,
like TopGen, uses a validation set to choose the best network. (In the experiments presented
in this paper, TopGen never tested networks with more than 20 new nodes.)

Our initial experiment addresses the generalization ability of TopGen when rules are
deleted from a correct domain theory. Figure 5 shows the test-set error when we randomly
delete rules from the chess domain theory. The results are averages of five runs of five-fold
cross-validation. The top horizontal line results from a fully-connected, single-layer feed-
forward neural network. For each fold, we trained various networks containing up to 100
hidden nodes and used a validation set to choose the best network. The line is horizontal
because the neural network does not use any of the domain theories. The next curve down,
the top diagonal curve, is the test-set error of the initial, corrupted domain theory given to
Strawman, KBANN, and TopGen. The next two curves, produced by KBANN and Strawman,
cut the test-set error of the initial domain theory almost in half; Strawman produced almost
no improvement over KBANN. Finally, TopGen, the bottom curve, had a significant increase
in accuracy, having an error rate of about half that of either KBANN or Strawman. As a
point of comparison, when 45% of the rules were deleted, TopGen added 10.9 nodes on the
average, while the average of the best Strawman networks added 5.2 nodes. One-tailed, two-
sample t-tests indicate that the difference between TopGen and KBANN (t=31.71, d.f.=8)

- 15%—%—4} -/t ——— — — — — — —

o ‘\“

- Domain Theor vt

5 10% _ Yo

g ot KBANN

g 5% et e Strawvman
................... -?OpGen

= 0% =

0% 10% 20% 30% 40% 50%

Per cent of Missing Rules

Figure 5: Test set error on the chess problem.

and the difference between TopGen and Strawman (t=27.41, d.f.=8) are significant at the
99.5% confidence level (when 45% of the rules were deleted).

As stated earlier, it is important to correctly classify the examples while deviating from
the initial domain theory as little as possible. Because the domain theory may have been
inductively generated from past experiences, we are concerned with semantic distance, rather
than syntactic distance, when deciding how far a learning algorithm has deviated from the
initial domain theory. Also, syntactic distance is difficult to measure, especially if the learning
algorithm generates rules in a different form than the initial domain theory. However, we
can estimate semantic distance by using only those examples in the test set that the original
domain theory classifies correctly. Error on these examples indicates how much the learning
algorithm has corrupted correct portions of the domain theory.

Figure 6 shows accuracy on the portion of the test set where the original domain theory
is correct. When the initial domain theory has few missing rules (less than 15%), neither
TopGen, KBANN, nor Strawman overly corrupt this domain theory in order to compensate
for these missing rules. However, as more rules are deleted, both KBANN and Strawman
corrupt their domain theory more than TopGen does. For example, when 45% of the rules
are missing, TopGen has less than half the error rate on originally-correct examples as both
KBANN and Strawman.

5.2 Four Human Genome Domains

We also ran TopGen on four problems from the Human Genome Project. Each of these
problems aid in locating genes in DNA sequences. The first domain, promoter recognition,
contains 234 positive examples, 4,921 negative examples, and 17 rules. (Note that this data
set and domain theory are a larger version of the one that appears in Towell, 1992, and Towell
et al. 1990). The second domain, splice-junction determination, contains 3,190 examples
distributed among three classes, and 23 rules. The third domain, transcription termination
sites, contains 142 positive examples, 5,178 negative examples, and 60 rules. Finally, the
last domain, ribosome binding sites, contains 366 positive examples, 1,511 negative examples,
and 17 rules. See Craven and Shavlik (1993) for a detailed description of these tasks. (We
thank Michiel Noordewier for creating these domains.)

Test (Sub)set Error
H
Q
N
|

T T T T |
0% 10% 20% 30% 40% 50%

Per cent of Missing Rules

Figure 6: Error on the subset of the test set where the initial domain theory is correct.

9% — 865 Key
7.91

8%

KBANN -
Strawman |:|
TopGen mm]ﬂ]

7% 4

6% —|

5% | 458 453

4.17
4%

3% |
231 515 506

Test Set Error Rate

2% 4

1%

0% -
RB S Splice Junctions Promoters Terminators

Figure 7: Error rates on four Human Genome problems.

Our experiment addresses the test-set accuracy of TopGen on these domains. The results
in Figure 7 show that TopGen generalizes better than does both KBANN and Strawman;
these results are averages of five runs of five-fold cross-validation. Two-sample, one-tailed
t-tests indicate TopGen differs from both KBANN and Strawman at the 97.5% confidence
level on all four domains, except with Strawman on the promoter domain. Table 2 shows
that TopGen and Strawman added about the same number of nodes on all domains, except
the terminator data set. On this data set, adding nodes off to the side of the KBANN
network, in the style of Strawman, usually decreases accuracy. Therefore, when Strawman
picked a network other than the KBANN network, its generalization usually decreased. Even
with Strawman’s difficulty on this domain, TopGen was still able to effectively add nodes to
increase performance.

6 Discussion and Future Work

Towell (1992) has shown that KBANN generalizes better than many machine learning algo-
rithms on the promoters and splice-junctions domains, including purely symbolic approaches

Table 2: Total number of nodes added (on average).

Domain TopGen | Strawman
RBS 8.2 8.0
Splice Junction 4.0 5.2
Promoters 4.4 5.0
Terminators 9.4 1.2

to theory refinement. Yet, even though a domain expert (M. Noordewier) believed the four
Human Genome domain theories were large enough for KBANN to adequately learn the
concepts, TopGen is able to effectively add new nodes to the corresponding network. The
effectiveness of adding nodes in a manner similar to reducing error in a symbolic rule base,
is verified with comparisons to a naive approach to adding nodes. If a KBANN network, re-
sulting from an impoverished domain theory, suffered only in terms of capacity, then adding
nodes between the input and output nodes would have been just as effective as TopGen’s
approach to adding nodes. The difference between TopGen and this naive approach is par-
ticularly pronounced on the terminator data set.

TopGen has a longer run-time than KBANN; however, we believe this is a wise investment,
since computer cycles are becoming cheaper. A future plan is to implement a parallel version
of TopGen. In doing so, we hope to increase the number of networks considered, from
30 networks (the current number for results presented in this paper) to several hundred
networks, and in the process, obtain even better results.

Future work includes using a rule-extraction algorithm (Towell & Shavlik, 1993; Sestito
& Dillon, 1990; Fu, 1991) to measure the interpretability of a refined TopGen network. We
hypothesize that TopGen builds networks that are more interpretable than naive approaches
of adding nodes, such as the approach taken by Strawman. Trained KBANN networks are
interpretable because (a) the meaning of its nodes does not significantly shift during training
and (b) almost all the nodes are either fully active or inactive (Towell & Shavlik, 1993). Not
only does TopGen add nodes in a symbolic fashion, it adds them in a fashion that does not
violate these two assumptions.

Other future work includes extensively testing other approaches for localizing error. Even
though this is only a heuristic to help guide the search, a good heuristic will allow more
efficient search of the hypothesis space. Methods of using the back-propagated error as well as
symbolic techniques for determining error have been tested, but did not improve performance,
for reasons explained earlier. A future research direction includes trying variants of these
techniques.

A final research direction includes testing new ways of adding nodes to the network.
Nodes are currently added so that they are fully connected to all the input nodes. Other
possible approaches include: adding them to only a portion of the inputs, adding them to
nodes that have a high correlation with the error, or adding them to the next “layer” of
nodes.

7 Related Work

The most obvious related work is the KBANN system (Towell, 1992), described in detail
earlier in this paper. The DAID algorithm (Towell & Shavlik, 1992), an extension to KBANN,
uses the domain knowledge to help train the KBANN network. Because KBANN is more
effective at dropping antecedents than adding them, DAID tries to find potentially-useful
inputs features not mentioned in the domain theory. DAID backs-up errors to the lowest
level of the domain theory, computes correlations with the features, and increases the weight
value of potentially useful features. In summary, DAID, tries to locate low-level links with
errors, while TopGen searches for nodes with errors.

Additional related work includes theory-refinement systems. Systems such as EITHER
(Ourston & Mooney, 1990) and RTLS (Ginsberg, 1990) are propositional in nature. These
systems differ from TopGen, in that their approaches are purely symbolic. Even though
TopGen adds nodes in a manner analogous to how a symbolic system adds antecedents
and rules, its underlying learning algorithm is “connectionist.” EITHER, for example, uses
ID3 for its induction component. While Towell (1992) showed that KBANN was superior to
EITHER on a promoter problem, TopGen outperformed KBANN. Systems such as FOCL
(Pazzani et al., 1991) and FORTE (Richards & Mooney, 1991) revise first-order theories.
One drawback to these types of systems is that, due to their computational demands, the
problems currently used by these systems are quite simple. Another drawback is that many
such systems are unable to create new predicates. This is because current predicate-invention
methods are computationally expensive and often require an oracle.

A final area related to TopGen is network growing algorithms (Fahlman & Lebiere, 1989;
Frean, 1990; Mezard & Nadal, 1989). The most obvious difference between TopGen and these
algorithms is that TopGen uses domain knowledge and symbolic rule-refinement techniques
to help determine the network’s topology. A second difference is that these other algorithms
restructure their network based solely on training set error. Also, TopGen uses beam search,
rather than hill climbing when determining where to add nodes.

8 Conclusion

Although KBANN has previously been shown to be an effective theory-refinement algorithm,
it suffers because it is unable to add new nodes (rules) during training. KBANN suffers
when domain theories are sparse because (a) generalization degrades significantly and (b)
the original rules are significantly altered in order to account for the training data. Our
algorithm, TopGen, heuristically searches through the space of possible expansions of the
original network, guided by the symbolic domain theory, the network, and the training data.
It does this by adding hidden nodes to the neural representation of the domain theory, in a
manner analogous to adding rules and conjuncts to the symbolic rule base.

Experiments indicate that our method is able to heuristically find effective places to
add nodes to the knowledge bases of four real-world problems, as well as an artificial chess
domain. Our algorithm showed statistically-significant improvements over KBANN in all
five domains, and over a strawman approach in four domains. Hence our new algorithm
is successful in overcoming KBANN’s limitation of not being able to dynamically add new

nodes. In doing so, our system promises to increase KBANN’s ability to generalize and
learn a concept without needlessly corrupting the initial rules, while at the same time,
increasing the comprehensibility of rules extracted from a trained network. Thus, our system
further increases the applicability of neural learning to problems having a substantial body
of preexisting knowledge.

9 Acknowledgement

This work was partially supported by DOE Grant DE-FG02-91ER61129, NSF Grant IRI-
9002413, and ONR Grant N00014-90-J-1941.

References

Fahlman, S. E. & Lebiere, C. (1989). The cascade-correlation learning architecture. In
Touretzky, D., editor, Advances in Neural Information Processing Systems (volume 2),
(pp- 524-532), San Mateo, CA. Morgan Kaufmann.

Frean, M. (1990). The upstart algorithm: A method for constructing and training feedfor-
ward neural networks. Neural Computation, 2:198-209.

Fu, L. M. (1991). Rule learning by searching on adapted nets. In Proceedings of the Ninth
National Conference on Artificial Intelligence, (pp. 590-595), Anaheim, CA.

Ginsberg, A. (1990). Theory reduction, theory revision, and retranslation. In Proceedings
of the Fighth National Conference on Artificial Intelligence, (pp. 777-782), Boston, MA.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings of
the Eighth Annual Conference of the Cognitive Science Society, (pp. 1-12), Amherst, MA.

Mezard, M. & Nadal, J.-P. (1989). Learning in feedforward layered networks: The tiling
algorithm. Journal of Physics A, 22:2191-2204.

Ourston, D. & Mooney, R. J. (1990). Changing the rules: A comprehensive approach to the-
ory refinement. In Proceedings of the Eighth National Conference on Artificial Intelligence,
(pp. 815-820), Boston, MA.

Pazzani, M. J., Brunk, C. A., & Silverstein, B. (1991). A knowledge-intensive approach to
relational concept learning. In Proceedings of the Eighth International Machine Learning
Workshop, (pp. 432-436), Evanston, IL.

Richards, B. L. & Mooney, R. J. (1991). First-order theory revision. In Proceedings of the
FEighth International Machine Learning Workshop, (pp. 447-451), Evanston, IL.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations
by error propagation. In Rumelhart, D. E. & McClelland, J. L., editors, Parallel Distributed

Processing: Fxplorations in the microstructure of cognition. Volume 1: Foundations. MIT
Press, Cambridge, MA.

Sestito, S. & Dillon, T. (1990). Using multi-layered neural networks for learning symbolic
knowledge. In Proceedings of the 1990 Australian Artificial Intelligence Conference, Perth,
Australia.

Towell, G. & Shavlik, J. (1992). Using symbolic learning to improve knowledge-based neural
networks. In Proceedings of the Tenth National Conference on Artificial Intelligence, (pp.
177-182), San Jose, CA.

Towell, G. & Shavlik, J. (1993). Extracting refined rules from knowledge-based neural
networks. Machine Learning, 13(1):71-101.

Towell, G. & Shavlik, J. (in press). Knowledge-based artificial neural networks. Artificial
Intelligence.

Towell, G. G. (1992). Symbolic Knowledge and Neural Networks: Insertion, Refinement,
and Extraction. PhD thesis, University of Wisconsin, Madison, WI.

Towell, G. G., Shavlik, J. W., & Noordewier, M. O. (1990). Refinement of approximately
correct domain theories by knowledge-based neural networks. In Proceedings of the Fighth
National Conference on Artificial Intelligence, (pp. 861-866), Boston, MA.

Weigand, A. S., Rumelhart, D. E., & Huberman, B. A. (1990). Generalization by weight-
elimination with application to forecasting. In Lippmann, R., Moody, J., & Touretzky, D.,
editors, Advances in Neural Information Processing Systems (volume 3), (pp. 875-882),
San Mateo, CA. Morgan Kaufmann.

